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REPRESENTATIONS OF THE MAUTNER GROUP, I

LARRY BAGGETT

The five-dimensional connected Lie group known as the
"Mautner group" is not of type I. In fact all of its irre-
ducible unitary representations are not yet known. We
present here a discussion of the known representations and
produce a five-parameter family of new representations.

I* Introduction* By the Mautner group we shall mean the
semidirect product G = C2R of two-dimensional complex space C2 with
the real line R in which multiplication is given by ((z, w, t)(z', w', t')) =
(z + euzr, w + e2πitw', t + t'). This group is distinguished by being
the "Smallest" connected Lie group whose unitary dual, space of
equivalence classes of irreducible unitary representations, remains
unknown. In particular, Mackey's theory for semi-direct products
is insufficient in this case, the Mautner group not being a "Regular"
semi-direct product. Our goal has been to develop new techniques
for constructing irreducible representations of G which would supple-
ment Mackey's method and hopefully provide a realization of all the
irreducible unitary representations of the Mautner group together
with a reasonable criterion for their mutual equivalence. This group
is not of type I, (indeed Mautner himself discovered it as the first ex-
ample of a connected Lie group which was not of type I), so that its
unitary dual is not "Smooth." We will then not be able to catalogue the
entire dual by any "Nice" space of parameters, but we can hope that
an adequate description of the dual, if less precise, does exist. For
example, in this first paper we shall produce a series [U^'8'λ>μ>d)] of
irreducible representations of G, with r and s positive real numbers,
λ and μ real numbers, and d an integer, which satisfies:

THEOREM 1.1. u{r>s'λ'μ'd) is equivalent to U{1"'s''λ''μf>df) if and only
if r = r', 8 = s', d = df, and λ + dμ = λ' + dfμ' + p + 2πq, for some
integers p and q. For d unequal to zero, the representations [U{r}8fλ'μjd)]
are "New" representations of G.

We mention here that the theory of representations induced from
virtual subgroups of G, invented by Mackey and developed by Ramsay
in [5], classifies completely, in a sense, the entire unitary dual. Really
it only replaces the problem of constructing the irreducible unitary
representations of G by the two problems: (a) finding all the virtual
subgroups of G, (very difficult and not yet solved even in this simplest
case), and (b) finding all the irreducible representations of these
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virtual subgroups, (harder yet). Our idea is to circumvent these
problems by discovering methods, alternative to inducing, for con-
structing irreducible representations.

To make clear what we shall mean by a "New" representation
of the Mautner group, let us recall where Mackey's procedure leaves
us. The Mautner group acts, by innter automorphisms, on the normal
subgroup C2 of G, and therefore it acts dually on the dual group
[C2]" of C2 the character (χ, φ) of C2 being transformed by the group
element (z, w, t) to the character (e~uχ, e~2πitφ). We let Sr denote the
circle in the complex plane with center at the origin and radius
r ^ 0.

THEOREM 1.2. (Mackey) Let π be an irreducible representation
of G. Let .^π be the projection-valued measure on [C2]" corresponding,
via Stone's theorem, to the representation τr|[(72]. Then ^ π is con-
centrated on a unique torus Sr x Ss in [C2]". Further, &>π is
completely determined by a "Quasi-Invariant" measure Σ on Sr x Ss

and an integer j . (A measure Σ is called "Quasi-Invariant" with
respect to an action of a group G ifΣ(E-g) — 0 whenever Σ(E) — 0.)

A "Mackey" representation of G is a representation π such that
έ^π is concentrated on some orbit in [C2]". This happens if and only
if &* gives nonzero measure to some orbit. It π is not a Mackey
representation, then we say that π is associated with the quasi-orbit
Σ and that it has multiplicity j .

The Mackey representations are exactly the ones obtained by his
procedure. In many cases these Mackey representations exhaust the
entire set of irreducible representations. However, in the case of
the Mautner group we may easily write down an irreducible non-
Mackey representation. Thus let r and s be posititive real numbers,
and define a representation π{r>s) of G, acting in I/2(SL x SJ, and
given by

(π[r

z;
s

w\t)f)(a, β) = e

i{ra>z)ei{sβ>w)f{ae-u, βe~2πit) ,

where ( , ) denotes the real vector space inner product in the complex
plane C.

One may verify directly that τr ( r s ) is irreducible, that it is
associated with the Lebesgue measure quasi-orbit of Sr x Ss, and
that it has multiplicity 1.

There is a slight generalization of these representations. Recall
that if π is an irreducible representation of G and if 7 is a
character of G, then yπ also is an irreducible representation. The
characters of the Mautner group are the mappins (z, w, t) => em for
λ real. Define then representations [π{r>sλ)] of G by π[r

z;
s

w\
?i\ = eiλtπ\r

z;
s

w\w,t)
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THEOREM 1.3. Each π{r'$>λ) is irreducible. We have that π{r's>λ)

is equivalent to n{r'iSf'λ/) if and only if r = r', s = s', and λ = λ/ +
p + 2πg /or some integers p and q.

Proof. The irreducibility has already been observed. If r = r',
s = s', and λ — λ' + p + 2π# for some integers p and #, then the
operator A on L2(SX x SJ defined by A/(α, /3) = apβgf(a, β) effects
the equivalence between τr(r'β>;) and π^'*'^.

Finally, suppose that πir>s'λ) is equivalent to π{r's'λΊ. First consider
their restrictions to the subgroup C\ The one is concentrated (by
inspection) on the torus Sr x Ss, while the other is concentrated on
the torus £ r, x S9>. By the uniqueness of that torus we have that
r = r and s = sr. Next consider their restrictions to the subgroup R.
We have

(<'os//)7X^ β) - eutf{ae~u, βe~2πit) ,

while

The first representation decomposes into a direct sum of the characters
I __j, e;ίu+2>+2;rg) for ^ a n ( j ^ running over the set of integers. (The
functions apβq form an orthonormal basis of eigenvectors.) On the
other hand the second representation decomposes as a direct sum of
the characters t => eita'+p+2πg) for p and q running over the set of
integers. Clearly, in order for these representations to be equivalent,
we must have λ' = X + p + 2πq for some integers p and q.

These representations [π{r>s'λ)] certainly have been known to
researchers for some time. Similar constructions can be made begin-
ning with any quasi-invariant measure Σ on the torus Sx x Sl3 and a
similar series of representations can be produced. Such measures
are not well understood, although their existence in abundance is
assured. One of the aspirations of the author is to discover one of
these "Other" representation through a different method of construc-
tion. In any event, to the author's knowledge the representations
[π{rsλ)] are the only known examples of irreducible unitary repre-
sentations of the Mautner group which are associated with the
Lebesgue measure quasi-orbit on the torus Sr x Ss. In § IV we
shall produce an enlarged list of such representations. All the
known representations, as well as those presented in this article,
have multiplicity 1. In the next paper we shall produce irreducible
representations associated with the Lebesgue measure quasi-orbit but
having multiplicity j > 1.
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Our method of constructing "New" representations of the Mautner
group begins as follows: take N to be the closed normal subgroup
of G consisting of the triples (0, w, 0). Then N is regularly imbedded
in G, (all the orbits in N are circles), and we may apply the Mackey
machine, reducing the problem of determining the unitary dual of
G to the problem of determining the duals of the various "Little
Groups" which occur. But for any nonzero character φ of N, the
stability subgroup H of G for φ consists of the triples (z, w, n), n
an integer. So only one nontrivial little group occurs and it is
isomorphic with the "Discrete Mautner Group" D which is defined
to be the semi-direct product CZ of the complex plane C with the
group Z of integers, where multiplication is given by ((z, ri)(z'f n')) =
(z + einz', n + n').

THEOREM 1.4. {Mackey) Let V be an irreducible representation
of the discrete Mautner group D. Define a representation S of the
stability subgroup H of G for the nonzero character φ of N by
Su,w,n) = eίiφ'w)S(z,n), where as before ( , ) denotes the real inner product
in C. Define a representation U of G by U = ind^S. Then the
mapping V=>U is a one-to-one, equivalence-preserving, correspond-
ence between the set of all irreducible representations of D and the
set of all irreducible representations U of G which are associated
with the orbit of φ in n.

This marvelous theorem of Mackey enables us to replace the
problem of determining the unitary dual of G by the "Presumably
easier" problem of determining the unitary dual of the discrete
Mautner group D. Of course D also is not a regular semi-direct
product. Indeed D must be as complicated as is G. If V is a Mackey
representation of D, then the corresponding U is a Mackey repre-
sentation of G. There are nonMackey representations of D. Thus
if r is a positive real number and λ is real, define a representation
p{r*X) of D, acting in L\S\), and given by

(P\:ii]f)(*) = eiλnei{ra>z)f(ae-in) .

THEOREM 1.5. Each p{r'λ) is irreducible and is not a Mackey
representation of D. We have that p{r'λ) is equivalent to p{r'>λf)

if and only if r — rf and λ = λ' + p + 2πq for some integers p
and q.

Proof. This proof is completely analogous to the proof of Theorem
1.3. We omit the details.
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Now if V is the representation p{r>λ) of D, and if s = | |0| |, then
the representation U of G corresponding to V as in Theorem 1.4
is the representation π{r>s>λ). Hence the "Known" representation of
D lead, a la 1.4, to the "Known" representations of G. So what we
shall in fact do here is to construct "New" representations of D.

REMARK. In § IV we shall explicitly calculate the mapping
V=^U of Theorem 1.4. The two statements just made about that
mapping will then be clear.

In § II we introduce the idea of the "Generalized Tensor Product"
of representations. This is in a sense the only new notion in this
paper. We apply this method in §111 to construct the new repre-
sentations of D, and then in § IV we construct the new representations
of G. Even though we are endeavoring to circumvent the Mackey
machine, it is always lurking in the background. The reader who
has some familiarity with those ideas will be well-prepared to follow
these arguments.

Many of the results contained here were presented in an informal
seminar at the conference on representations of Lie groups held at
Oxford during July of 1977. The author would like to express his
appreciation to the organizers and participants for giving him the
opportunity to speak there. He also would like to thank Professor
Arlan Ramsay for much valuable counsel.

XL Generalized tensor products of representations* Let G
denote an arbitrary locally compact group. One way of constructing
irreducible representations of G, given at least one nontrivial repre-
sentation to start with, is by taking tensor products and then
decomposing into irreducible constituents. For example we have the
so-called "Stone-Weierstrass" theorem for compact groups.

THEOREM 2.1. (Disguised Peter-Weyl theorem) Let G be a com-
pact group, and let J^~ be a collection of representations of G which
separates the points of G. Then every irreducible representation of
G is a subrepresentation of some tensor product of finitely many
representations which either are elements of J7~ or are conjugate to
elements of

Although no such result holds for noncompact groups, one might
expect to be able to construct some new representations from old
ones via this method. For example, in the case we are pursuing G
is the discrete Mautner group D, and we do have some representations
to begin with, namely the Mackey representations and the [p{r'λ)].
However, what happens is the following:
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THEOREM 2.2. The tensor product of two Mackey representations
of D is a direct sum of other Mackey representions. The tensor
product of a p^r'λ) with a p{r'a'] is a direct integral of other p{r">λ")ys.
The tensor product of a Mackey representation with a p{r>λ) is a
direct sum of other p{r'*λ')ys.

These facts follow more or less directly from Mackey's analysis.
Since the results are negative from our point of view, we shall not
even include the proof.

A procedure which does yield new representations is one which
we shall call a "Generalized Tensor Product." Let us think of the
ordinary tensor product of two representation V and W of G as the
restriction to the diagonal subgroup of G x G of the outer Kronecker
product V x W of V and W. We shall generalize the notion of this
outer product.

The ordinary outer Kronecker product of V and W is defined as
follows. It acts in the tensor product of the Hubert spaces X(V)
and X{W), and it is given by the formula ( F x w)(9v92) = V9l (x)W92.
If we try to describe this process entirely within the group G x G,
we may formulate it in a slightly different manner. Let F* be the
representation of the subgroup G x [e] defined by F(*,e) = Vg, and let
*W be the representation of the subgroup [e] x G defined by *WU}9) =
Wβ. We then see that ( F x W\9v92) = Vf9ι,e) (x) *WU}92)1 which we can
interpret as F(*'lfg2) Θ *W[gvg2)9 where V*' and *W are the obvious
extensions of F* and *W to all of G x G. The point is that there
are other extensions of F* and *PF to all of G x G, and we make
use of these others to form generalized outer Kronecker products
and generalized tensor products.

DEFINITION 2.3. Let F and W be representations of a locally
compact group G. Let F* and * W be the representations defined on
the subgroups G x [β] and [e] x ( ? a s defined in the above paragraph.
Let F*1 and * W1 be extensions of F* and * W to all of G x G. Then
the Generalized Outer Kronecker Product of V and W Depending on
the Extensions F* 1 and *W1 is the representation of G x G, acting
in the tensor product of the spaces X(V) and X(W), and given by
the mapping (gίf g2) ==> V*g\,g2) (x) *W(

1

gvgi). The Generalized Tensor
Product of V and W Depending on the Extensions F * 1 and *W1 is
the restriction to the diagonal subgroup of the outer product.

REMARK 1. If F*1 and * W1 are the obvious extensions of F* and
* W, then the generalized products agree with the ordinary ones. If
there is to be any value to this idea, it will come from the existence
of other extensions.



REPRESENTATIONS OF THE MAUTNER GROUP, I 13

REMARK 2. Although the obvious extensions of F* and *W are
unitary representations of G x G, the definition makes perfectly
good sense if we allow multiplier representations. Indeed it is this
situation which can produce new representations of G. Often the
multipliers for F*1 and .* W1 will cancel each other out anyway.

REMARK 3. If F*1 and F*2 are cohomologous extensions of V*9

i.e., if F*2 = r F * 1 where τ is a scalar function, and if *TF1 and *W*
are cohomologous extensions of *W, say *W2 = J*TΓS then the two
generalized tensor products of F and W depending on the extensions
F*1 and *Wι and on the extension F*2 and *W2 will be cohomologous
representations of G. Indeed they will differ by the scalar function
9 ==* τ(ΰ> g)Σ(g> flO So if the resulting tensor products are unitary
representations of G, they will only differ by a character. In other
words, in order to construct new representations of G, we need only
consider one extension F*1 from each cohomology class of extensions
of F*. Hence, if there is to be any metrit to this idea, there must
be some noncohomologous extensions of F* and *W.

REMARK 4. In [1] the set of all cohomology classes of extensions
of a representation F* to all of G x G is completely determined.
They are classified by a group of homomorphisms of G into a certain
abelian group Γ(V*). Sometimes this abelian group Γ(V*) is trivial,
in which case the generalized tensor products give nothing new.
Sometimes the group hom(G, Γ(V*)) is trivial, and again nothing
new is forthcoming. In fact, if we try this procedure for the
connect Mautner group G and for one of the representations π{r'Siλ),
we find that indeed Γ(V*) is nontrivial but hom(G, Γ(V*)) is trivial.

The point is that for the discrete Mautner group there do exist
nontrivial extensions and new representations do occur. In the next
section we shall recall the construction procedure for these other
extensions. We then apply the generalized tensor product method
to construct new representations of D.

Ill* Some new representations of the discrete Mautner group*
As before we let D be the semi-direct product CZ of the complex
C with the group Z of integers where multiplication is given by
0, n)(z'f nf) = (z + e 'V, n + n'). Let r and r' be positive numbers
and let λ and λ' be real numbers. Let V and W be the representations
p{r'λ) and p{r'>χf) respectively. (See §1 for the definitions of these
representations of D.) We wish to compute some generalized tensor
products of F and W.

To begin with we let F* be the representation of D x [e] defined
by V*d,e) = Vd. In order to construct the different extensions of F*
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to all of D x D, we must first, according to [1], determine the group
Γ(V*) of all characters 7 of D x [e] for which 7V* is equivalent to
V*. Now the characters of D x [β] are in one-to-one correspondence
with the elements of the unit circle, the element ψ determining the
character ((#, n), e) => ψn.

PROPOSITION 3.1. Γ(V*) consists of the elements ψ of the unit
circle of the form ψ = eip for p an integer.

Proof. First let ψ = eip, and define an operator Uψ on I/2(Si),
the space of V*, by U+f(a) = apf(a). Then we have that

- r{Vΐz{n),e)f){a) ,

which shows that ψ belongs to Γ(V*).
To see that this exhausts Γ(V*), let ψ be a character of D x [β]

and consider the restrictions of the representations V* and ψ F * to
the subgroup Z x [e] oΐ D x [e]. We have that

and

The first of these representations of Z decomposes into a direct sum
of the characters n->eίMλ+p) for p running through the integers, while
the second representation decomposes into the direct sum of the
characters n => eiMλ+p)ψn. The only way for these two representations
to be equivalent is for ψ to be eip for some p.

REMARK 1. Notice that the group Γ(V*) does not depend on
the parameters r and λ. Note also that the same kinds of arguments
would show that Γ{*W) would consist of exactly the same elements
[eip] of the circle.

REMARK 2. The construction of all the extensions of F* to D x D
requires that we know a mapping ψ=>Uψ of .Γ(F*) into the unitary
group on X(V*) such that U+Vΐ{.,n)t9)W - ψnVΐ{M)t§). (See [1].) As
a matter of fact we have seen in the course of the last proof what
this mapping is. Thus
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(Uψf)(a) = avf{a) where f = eip .

Next we must compute the group hom (JD, Γ(V*)), which is the
group hom (D, Z), which consists of the mappings (w, k) => jk for
some integer j . In other words, if h is an element of hom (D, Γ(V*)),
then there exists an integer j such that the character h(w, k) sends
the element ((2, n), e) of D x [β] to the number e<ifcn.

PROPOSITION 3.2. iw this case the group ^~(V*), see [1], is
isomorphic to the group of integers.

REMARK. Exactly similar calculations and results hold for the
group J^(*IF).

We are now ready to write down typical extensions of V* and
*ΫF. Fix integers j and j ' . We shall construct the generalized tensor
product of V and W depending on the extensions V*j and *Wjf deter-
mined, as in [1], by the homomorphisms in ^ " ( F * ) and J?~(*W)
corresponding respectively to the integers j and j f . The Mackey
extension of F* is the obvious one. We have then that

(where hj is the homomorphism corresponding to j),

= eiλnei{ra'z)ajke~ijknf(ae~in) .

Similarly we obtain the following extension *Wd' of *W.

The generalized tensor product of V and TF depending on these
extensions is then a representation Vir'r'JJ/\ acting in L\St x SJ,
and given by

We observe that this representation is a direct integral over
the unit circle, (think of β — aθ), of representations S{r'r'J'j'θ), acting
in L2(Si), and given by
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PROPOSITION 3.3. Each S{r'rfJ j''θ) is a multiplier representation
whose multiplier is a coboundary. In fact, if τ(z, n) = e

in2(U+j')/2)

t

then τS{r'r'>j'j''θ) is unitary.

Proof. Direct calculation of the multiplier.
We observe next that the unitary representations just constructed

are special cases of the following.

DEFINITION 3.4. Let r be a positive real number, λ a real number,
and d an integer. Define a representation V{r'λd) of D, acting in
L\S^), and given by

(VHiffXa) = e-in\d/2)eiXnandei{ra'z)f(ae~in) .

PROPOSITION 3.5. Each of the unitary representations τS
{r'r''j'jt'θ)

is equivalent to one of the [V{rλd)].

Proof. This is mostly a matter of renaming some of the variables.
The unitary operator A defined by Af(a) = /(α((r + rιθ)l\\r + r'0||2))
is needed as well. We omit the simple details.

REMARK. The last proposition is not exactly correct because of
the one case in which r + r'θ = 0. We simply ignore that one
degenerate case.

THEOREM 3.6. (i) Each V{Tthd) is irreducible.
(ii) Each V{r>λ>d) is associated with the Lebesgue measure quasi-

orbit on the circle \\χ\\ = r in C.
(iii) V{r*x*d) is equivalent to V{r>>λ'idf) if and only if' r = r'', d~ d',

and λ = λ' + p + 2πq for some integers p and q.
(iv) Vir'x>0) is equivalent to p{r>λ). See §1.

Proof. The usual proof shows the irreducibility, i.e., any operator
which commutes with all the Vfc&d) must be a multiplication operator,
and any multiplication operator which commutes with all the V\lιi\d)

must be a constant. The restriction of V{r'λ'd) to the subgroup Cof
D is clearly concentrated on the Lebesgue measure quasi-orbit | |χ| | =
r. Also it is immediate that Vir>λ>0) is the same as p{r*λ). It remains
only to prove (iii).

Suppose then that V{r'λ'd) is equivalent to V(r''λ''df). We may as
well assume that d Φ 0 since when d — 0 part (iii) follows from part
(iv) and Theorem 1.5. By restricting to the subgroup C, we see that
r must be r\ Next consider the restrictions of these representations
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to the subgroup Z of D. We have that

{V%iff){a) = e-
in2<d/2)eUnandf(ae-in) .

For each integer k, for 0 <Lk <\d\, we have that the subspace
Xk of L2(SX) spanned by the functions [amd+k], m running through the
integers, is invariant. We may identify Xk in the obvious way with
the space I2 and see that

(C\f(r,λ,d)\ \\ \
\\V \z)\(xk))

is equivalent to the representation π of Z, acting in I2, and given by
(πnf)(m) = q(n, m)f(m + ri), where q is a function of modulus 1. By
the lemma below, any such representation π is equivalent to the
regular representation. Therefore Vlr'Xtd)\z is equivalent to \d\ times
the the regular representation of Z. It therefore follows that \d\ =
\d'\.

We must rule out the possibility that df = —d. By way of
contradiction then suppose that df is — d. Let A be an operator
which effects an equivalence between Vir'x>d) and V(r>x''~d). Then A
actually commutes with all the operators [Fίί o/^], (since these operators
are the same as the operator [V$iv ~d)]f and therefore A is a multi-
plication operator M. We then obtain that

from which we obtain that

M(ae~ίn) =

Expanding M in its Fourier series, M(a) = Σcka
k, and equating

like coefficients, we have the following recursion relation:

which would imply that the sequence [ck] is not square-summable
unless it is identically zero. Since A is unitary, M cannot be zero.
Hence we arrive at a contradiction and d! must be d.

To see the necessary relation between λ and λ', again let A be
an operator effecting the equivalence. Then as before A is a multi-
plication operator M. This time we have

M(ae~in) = M(a)eina'-χ) .

Comparing Fourier coefficients gives that ein{χr~X) = einp for any p such
that cp Φ 0. This shows that λ = λ' + p + 2πq for some integers p
and q as desired.
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Finally, if A is the operator on L2(SJ defined by Af(a) = apf(a),
then A effects an equivalence between V{ryλ>d) and vιr*λ+p d). Clearly
adding a multiple of 2π to λ does not change the formula for V{r'λ>d)

in any way. The theorem is then complete modulo the following
lemma.

LEMMA 3.7. Let π be a representation of the group Z, acting in
I2, and given by the formula (τrn/)(m) = q(n, m)f(m + n), where q is
a scalar function of modulus 1. Then π is equivalent to the regular
representation L of Z.

Proof. Let δ be the element of I2 with coordinates δ0 = 1 and
δm = 0 for m Φ 0. If φn = Lnδ, then [φn] forms an orthonormal basis
of I2. If ψn = πnd, then [ψn] forms an orthonormal basis of I2. Let
A be the unitary operator on I2 which maps <pn to ψn. Then:

~^K) = (ALk)(φn) - A{LkLJ) - A(φn+k)

which proves that ALkA~ι = πk.

IV* Some new representations of the JVίautner group*

DEFINITION 4.1. Let r and s be positive numbers, let λ and μ
be real numbers, and let d be an integer. Define a mapping jj{r>s'hμ>d)

of the Mautner group G into the unitary operators on the Hubert
space LXS, x St) by

x ei[ra>z)ei{se2πiθ>w)f(ae-ιt

f e2πiθe-2πit) ,

where as usual ( , ) denotes the real inner product in the complex
plane, and where the square brackets denote the greatest integer
function.

THEOREM 4.2. (i) Each U{r's'x>μ>d) is an irreducible unitary
representation of G.

(ii) Each Jj{r>s'λ'μ'd) is associated with the Lebesgue measure
quasi-orbit on the torus Sr x S8 with multiplicity 1 in [C2]".

(iii) For all values of μ, we have that Jj{r>s'λ'μ'θ) is equivalent to
the representation π{r's>λ) deformed in §1.

(ίv) Suppose dΦ§. ThenU{r>s>hμ>d) is equivalent to U{r'>s'>λ''μ''d)

if and only if r = r', s = s\ d = d', and λ + dμ = λ' + d'μ' + p + 2πq
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for some integers p and q.
(v) // d Φ 0, then the representation U{r>8ihμ)d) is new.

Proof. One can check, with tenacity, directly the Uir>s'λ'μ'd) is
multiplicative and irreducible. However we shall obtain this formula
as a representation equivalent to an induced representation as in
Theorem 1.4. Part (i) will follow from that. Part (ii) is clear simply
by restricting this formula to the elements (z, w, 0). Part (iii) is
obvious, and part (v) certainly follows from part (iv) and remarks
in §1.

We let N be the closed normal subgroup of G consisting of the
triples (0, w, 0), and let φ be the character of N defined by the complex
number φ — se27ΐίμ. Recall that the "Little Group" for φ is the discrete
Mautner group D, and take V to be the representation V{rtλtd). of D.
Define the representation S on the stability subgroup H of G for φ
by SUtW}n) == eiφAw)V(z>n). Let U be the induced representation ind^S,
and let us show that U is equivalent to u{r>s'λ'μ>d).

The mapping (z, w, t) -* e2πit maps G onto the coset space G/H,
which is equivalent to Sx. We take for our cross-section of S1 into
G, see [2], the mapping 7 defined by Ύ(e2πίθ) == (0, 0, θ - [θ]). The
space of U then is the tensor product of L2(SL) with the Hubert
space of the representation S, i.e., the space of U is L^S^^LXS^. If
g and / both belong to LXSJ, then the formula for U is given by

= \ g{sι-{z
J Si

= f fir(eΛ<

J[0,l)

O JS1

o

x e

From this formula we can derive the action of U acting in L2(SX x
Thus

(U{z.w>t)f)(a, e2πiθ)

Now we conjugate by the operator A defined on L\S1 x St) by
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Af(a, e2πiθ) = f(a, e~2πiθ), and then by the operator B defined by
Bf(a, e2πiθ) = f(aeiιι-'+M), e2πiθ). This converts U into an equivalent
representation Ur of the form

(U[z,w,t)f)(a, e2*")

xei{a't*iμ '*i9 w)f(ae-it, e2πiθe~2πU) .

Conjugating next by the operator Ϊ7{0,O,AO and then by the operator
C defined by Gf(αf e2πiθ) = f(αeiμ, e2πiθ), we see that U is equivalent
to Uir's'λ'μ'd). This verifies part (i) of the theorem. More to the point,
it indicates where Definition 4.1 comes from.

Now to the proof of part (iv). Suppose that U{r'*'λ'μ'd) is equivalent
to u{r''''*x'tμ''dt). Then by restricting to the subgroup C2 we see that
we must have r = r* and s = s'. Further, if A is an operator effecting
the equivalence between these representations, then as usual it must
be a multiplication operator M. Setting z = w = 0, we obtain

M(α, e2iciθ)M{αe~u

y ^xi{θ't))e

from which it follows that

where c(t, θ) is a function of modulus 1. We may now conclude that
d = d' by expanding M in its Fourier series in α for fixed θ, then
fixing t as well, and then arguing just as in the proof to Theorem
3.6.

Knowing that d = d' simplifies the above equation into the form

= Mice, e2πiθ)ei{αf+dμf)~{λ+dμ))[1+t~θ+ίθΏ .

Writing M in its Fourier series as M(α, e2πiθ) = ΣΣcjkα
5eZπikβ, setting

t = 1, and comparing like coefficients, gives us that eij = enα'+dμ')-α+dμ)>

for every j such that cjk Φ 0 for some k. Since some such j must
exist, it follows that (λ' + dμf) — (λ + dμ) — p + 2πq for some integers
p and q. This proves half of (iv).

Finally suppose that r = r', s = s', d = dr, and that λ + dμ =
λ; + djW' + p + 2ττ̂  for some integers p and g. Set λ" = λ' — p — 2ττg.
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Then by Theorem 3.6 we have that the representations V{r'λ'td) and
γir,χ",d) a r e equivalent, and therefore by Theorem 1.4 the representions
jj(r,8,λ',μ',d) a n ( j jj(r,s,x",μ',d) a r e equivalent. (The same character φ =
se2πiμ' is being used in both cases.) Hence we need only verify that
jj(r,s,λ,μ,d) jg equivalent to U{r>s'λ"'μ''d). But this is immediate from the
definitions since λ" + dμf — λ + dμ. This completes the proof.

REMARK 1. Because Wτ>s>λ>μ>d) is equivalent to u(r>s>λ+d{μ-μf)>μf>d), it is
clear that for each fixed μ the same set of representations of G occurs
in this series, but with a slightly different parametrization. In other
words the set [U{r's>λ>μ>d)] of representations of G depends only on the
orbit of the character se2πiμ. This is in analogy with Mackey's
procedure.

REMARK 2. The equivalence relation among parameters is one
of the famous "Bad" equivalence relations. This was to be expected
since the dual was known to be nonsmooth.

REMARK 3. All the representations Uίr-S'λ'μ'd) have multiplicity 1
on C2. The author has tried without success to decide whether these
representations exhaust all such representations of G.

REMARK 4. Beginning with the work of Auslander and Moore,
and proceeding through the research of many other mathematicians,
Kenstant, Pukanski, Kirillov, etc.), the unitary representation theory
for solvable group has been extensively investigated. Much of this
work has been directed toward the type I case, so that the results
are not applicable to the particular solvable group we have been
studying. For nontype I groups, most researchers have abandoned
the investigation of individual irreducible unitary representations
and have chosen to pursue "more tractible" problems, e.g., the de-
composition of a reducible representation into primary constituents,
and the determination of the Plancherel formula. To the author's
knowledge, no other techniques have led to a "New" irreducible
representations of the Mautner group, or for that matter to any
nontype I connected solvable Lie group. The fact that our methods
have succeeded in some small way we take then as an encouraging
sign that the individual irreducible representation can be investigated,
despite the lack of smoothness in the dual.
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