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INTERPOLATION, CONTINUATION, AND
QUADRATIC INEQUALITIES

W. HENGARTNER AND G. SCHOBER

1. C. H. FitzGerald considered conditions for interpolat-
ing the values of an analytic function in terms of quadratic
inequalities. In addition, he used them to obtain an
interesting result concerning analytic continuation of func-
tions of two variables and related them to Pick-Nevanlinna
interpolation.

We shall show that these theorems follow directly from
well-known principles of functional analysis. Since these
principles are not limited to interpolating values of an
analytic function, we shall obtain applications to interpolat-
ing functional values of both analytic and harmonic func-
tions of several variables. In addition, we obtain analogous
applications to analytic and harmonic continuation and to
Pick-Nevanlinna interpolation.

2. Abstract framework. Let X be a reflexive topological
vector space over the real or complex field and X* its topological
dual space. Assume that p(z*) is a continuous semi-norm defined on
X*. A classical theorem of Helly and Hahn (see G. Kothe [4, p.
113]) is the following. Since the proof is brief, we include it for
completeness.

THEOREM 2.1 (Helly-Hahn). Let {c};e; be a set of scalars and
{x¥}ic; @ corresponding set of functionals in X*. Then there exists
an x e X such that

(i) xfx) =¢; for all 1el, and
(ii) [|z*(@)| < pla*) for all x*eX™,

if and only if

(1)

N
= p( k; ai,,ws;,)

N

Jor every finite collection of scalars a,, ---, a;,.

Proof. The necessity is trivial. For the sufficiency, let A be
the linear span of {x}},.;. Define a linear functional x on A by
setting *(C0_, a2%) = S, a¢,. Then « is well defined since if
Sia,xd =3, B,af, then (1) implies

IZ aikc'tk - Z Bilzcilc{ é p(z aikx’;;; - Z B’l-xx:;) = p(o) = 0 M
139
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Obviously,
(2) |z(@*)| = p(x™*)

for each 2* € A. By the Hahn-Banach theorem we may extend z to
all of X* and (2) persists. Since X is reflexive, we may identify
with a point of X.

We shall be concerned with applications of the Helly-Hahn
theorem. One important case occurs when the semi-norm p is
generated by a positive, continuous, conjugate-linear operator
T: X* - X. Positive means that z*(Tx*) =0 for every z*eX*,
and conjugate-linear means that T(ax*) = aTx* when the scalar
field is complex. In this case p(x*) = V2*(Tx*) is a continuous
semi-norm on X* and the Helly-Hahn theorem takes the following
form.

COROLLARY 2.1. Let {¢;};c; be a set of scalars and {x}};c; @ cor-
responding set of functionals in X*. Suppose that T: X* - X is a
positive, continuous, conjugate-linear operator. Then there exists
an x e X such that

(i) a}@x) =e¢; for all 11 and

(ii) |=e*(@) > < «*(Tx*) for all x* e X*
if and only if

2

N N
kg; Qe | = kél a;a; v (Tek)

(3)
Sor every finite collection of scalars a;, ---, a,,.

A second case occurs when the semi-norm p is generated by a
bounded operator T defined on a linear subspace of X* to X.

COROLLARY 2.2. Let {¢;};c; be a set of scalars and {x}},c; a
corresponding set of functionals in X*. Suppose that T is a
bounded, conjugate-linear operator from the linear span A of {x¥}ic;
to X. There exists an x e X such that

(i) zX=x) =e¢; for all 1€,

(ii) |z*(@)|* £ 2*(Tx*) for all x* in the closure of A, and

(i) [z =|T|.
if and only if

N

k=1

2

(4)

k

N
= > a,doi(Tol
K=

Sfor every finite collection of scalars a,, ---, a;,.
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Proof. The function p(x*) = V/[[T|, |#*|| defines a (semi-)norm
on X*. Since y* =31, a,af is in A, the condition (4) implies

2

S Y (Ty) | = ITlally* P = [pw™]T

N

so that (1) holds. Now by the Helly-Hahn theorem an z ¢ X exists
such that (i) holds, and (iii) follows from the inequality

[o(@*)| = |z*@)| < p@*) = VT, [|[2*] -

Finally, (4) implies that |[2*(x)|* < 2*(T2*) for 2*c A, and by con-
tinuity for all z* in the closure of A. The converse is trivial since
(4) follows from (i) and (ii).

REMARKS. It is evident that z is unique whenever {x}},., is a
complete set in X* (i.e., the closure of A is X*).

Positive, continuous, conjugate-linear operators T: X* — X occur
naturally. For example, if X is a Hilbert space, the familiar identi-
fication of X* with X has these properties. See also §5.

3. An example. As an application of Corollary 2.2, we shall
obtain the following result, and then note in the next section that
a similar proof implies several significant generalizations.

THEOREM 3.1 (FitzGerald [2, Thm. 1.1]). Let {z,}7-, be a sequence
of distinct points in a domain D of C, with an accumulation point
in D. Suppose K(z, £) is defined on D X D and 1s analytic in 2
and anti-analytic in . Suppose {c,)i-, is a sequence of complex
numbers. If

(5)

N

=S

m,n=

N
> a.c,
n=1

) a,a,K(z,, z,)

Jor every finite collection of complex numbers a,, ---, ay, then there
exists a unique analytic function fin D such that f(z,) = ¢, for n =
1,2, ---. Furthermore,

2 N

N
(6) 2.0, f(z)] = 3 a,a.K(z,, 2,)
n=1 m,n=1
holds for every finite collection of complex mumbers «,, ---, Ay and

any sequence {z,} of points.

Proof. Let D, be a relatively compact subdomain of D, con-
taining an accumulation point of the sequence {z,}. Consider the
Hilbert space X = L%(D,) of square integrable analytic functions on
D,. Then the point evaluation functionals 2}: g — ¢(z,), for z,e D,
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are a complete set in X*. Define T: X* —» X by

(Te*)e) = | K, Op@)dm

where ¢ € L:(D,) represents 2* and m is area measure. Then T is
a bounded conjugate-linear operator and zX(Tx¥) = K(%,., 2.). By
Corollary 2.2 (or Corollary 2.1) a unique fe Li(D,) exists such that
f(z,) = ¢, for all z,e D,. Furthermore, by choosing z*: g — a,g(2}) +
-+ + ayg(zy) in part (ii) of the corollary, we obtain (6) whenever
the points zj, ---, 2y belong to D,. The theorem now follows from
exhausting D by such subdomains D,.

4. Some generalizations. In our proof of FitzGerald’s theorem
the particular choice of functionals and the complex plane were
inessential. A similar proof yields the following generalization for
H(D), the space of analytic functions on a domain D in C*», with
the topology of locally uniform convergence.

First, we need some notation: If ¢ is anti-analytic in D and
x* ¢ H*(D), define z*g = 2*(9). In addition, if K(z, {) is defined in
D x D, analytic in z and anti-analytic in {, and z*, y* ¢ H*(D), we
define 2*y*K = xf,(¥% K(2, ).  In particular, we write |a* | = 2*Z*.
Furthermore, K is a positive kernel if [2*|’K = 0 for every z*e¢
H*(D).

THEOREM 4.1. Let D be a domain in C* and K(z, L) a positive
kernel on D x D that is analytic in z and anti-analytic in C.
Suppose that {x}};.; is a set of functionals in H*(D) and that {c}:c;
18 a corresponding set of complex numbers. If

2

N N
() I; Ay, | = kél ;& xrTr K
for every finite collection of complex numbers a,, ---, a,,, then there

exists a function fe H(D) such that x¥(f) = ¢; for all ie 1. Further-
more, we have

(8) le* ()P = |a*PK
for all «* € H*(D).

Proof. Let {D,} be an exhaustion of D by relatively compact
subdomains. Each functional z} may be represented by a complex
measure with compact support in D. Let I, be the subset of I for
which the support of z} is in D,. As before, let L:(D,) be the
Hilbert space of square integrable analytic functions on D,. Since
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the topology of Li(D,) implies uniform convergence on each compact
subset of D,, the representing measure for x} may be used to
extend ¥ to L:(D,) for each i¢1I,.

Define T,: Li(D,)*—Ly(D,) by (T, x*)(z) = %%(K(z, ) lp,xp,)- Then

T, is continuous, conjugate-linear, and

T, |t = SD KGO dm.dm,

It is even positive since point evaluation functionals form complete
sets in H*(D) and L:(D,)*. By Corollary 2.1 there exists a function
fn€ LA(D,) such that z}(f,) = ¢, for each 7¢I, and

(9) lo*(fw) P = |2* FKp, 0, Tor all «*eLi(D,)*.
In particular, for the point evaluation functionals we have
|fu(?) P < K(23,2) for zeD, .

Therefore {f,} forms a normal family, and the limit f of any con-
vergent subsequence interpolates: z}(f) = ¢; for all 1el. Further-
more, since (9) holds for each finite linear combination of point
evaluations if m is sufficiently large, then (8) holds for such func-
tionals. Such functionals are dense in H*(D); hences (8) holds for
all z* e H*(D).

REMARKS. 1. In case {z}},., is a complete set of functionals,
then (7) implies that K is a positive kernel. This occurred in
FitzGerald’s theorem; however, we do not need to assume that the
set of functionals is complete.

2. If the kernel K(z, () of Theorem 4.1 is already square
integrable over D x D, then the exhaustion is not needed in the
proof. As a consequence, we may conclude that there exists an
interpolating function belonging to L:(D). Unfortunately, the
Bergman kernel does not have this property. However, we shall
see in Theorem 5.1 that it also produces interpolating functions in
Li(D).

3. In case D = C", Theorem 4.1 gives sufficient conditions for
existence of interpolating entire functions of several variables.

4. In Theorem 4.1 the index set I may be uncountable. It
therefore gives sufficient conditions for analytic continuation of
functions defined on subsets of D.

5. Some obvious choices for the set of functionals are the
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following:

ExampLE 4.1. If {2},.; is a set of points in DcC", define
2¥(g9) = 9(z;). Then (7) takes the form

2

N N
IGZ‘-l azkczk g k;——l azkaz,;K(zzk) zi,;) .

If, for example, there is a point Ze D such that each coordinate of
Z is an accumulation point of corresponding coordinates of the set
{#.}:c1, then the set {x}},.; is complete and the interpolating function
is unique.

ExampPLE 4.2. If Iis a set of multi-indices 7 = (m,, ---, m,) and
z,eDcC is fixed, define z}(g) = (0°g/02*)(z,). Then (7) takes the
form
"< S @ 220 g o)

kye=1 ik i‘azikaziﬁ z={=z) )

N
a;, C;

If I contains all multi-indices, then the set {x}},.; is complete and
the interpolating function is again unique.

There are many other possible choices for funectionals. For
example, one can use point evaluations of the function and its
derivatives at various points, their linear combinations, or integrals
over compact sets.

The proof of Theorem 4.1 applies equally well to the space (D)
of harmonic functions on a domain D cC R", with the topology of
locally uniform convergence. We simply state it:

THEOREM 4.1'. Let D be a domain in R" and K(s, t) a continu-
ous function on D X D, that is harmonic in each variable. Assume
that K is a positive kernel in the sense that (x*)’K = x,(x¥,K(s, t)) = 0
for every x* eh*(D). Suppose that {x}}.c; is a set of functionals in
h*(D) and that {¢.};c; 15 a corresponding set of real mumbers. If

N 2 N
(10) :;::1' a;,c;,| = ’”Z=1 a;a; vhri K

for every finite collection of real mnumbers a,, ---, a;,, then there
exists a function u € h(D) such that x¥(u) = ¢; for all 1€ I. Further-
more, we have |x*(w)|* £ (@*)K for all x* e h*(D).

REMARKS. Just as in Example 4.1 we may choose point evalua-
tions for the set {x}},.; of functionals and then (10) assumes an
analogous form. This set of functionals will be complete and » will
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be unique if, for example, DC R® and there are infinitely many
points on some analytic Jordan curve in D whose interior is also
in D.

If, as in Example 4.2, we specify certain partial derivatives at
a fixed point ¢,€D, then (10) will assume a corresponding form.
Furthermore, » will be unique if we interpolate all its partial
derivatives at .

Another proof of Theorems 4.1 and 4.1’ could be based on the
fact that Montel spaces, such as H(D) and h(D), are reflexive. In
this case one can apply Corollary 2.1 directly after showing that
the conjugate-linear operator Tx* = Z¥K is continuous.

5. Reproducing kernels. Let X be a Hilbert space with a
reproducing kernel. That is, X is a space of functions on a set D.
In addition, there is a kernel function K(z, ) on D x D such that

(a) K(z, -)e X for each ze D, and

(b) x(z) = (z, K(z, -)) for each x € X and ze D.

Since X is a Hilbert space, the natural identification of X* with
X defines a positive, bounded, conjugate-linear operator 7. It has
the property that «*(Ty*) = «*9y*K. Thus Corollary 2.2 implies the
following.

THEOREM 5.1 (Duren-Willtams). Let X be a Hilbert space with
a reproducing kernel K. Suppose that {x}};.; is a set of functionals
in X* and that {¢}.c; s a corresponding set of scalars. Then there
exists an x € X such that

(1) w¥@x) =c¢; for all 1el,

(i) |x*@)]* = |2*PK for all x* € X*, and

(iii) [zl =1,
if and only if

2

N N
> aue,| = 3 a,a xkti K
k=1 k,r=1

Sfor every finite collection of scalars a,, ---, a; .

REMARKS. This theorem was proved by P. L. Duren and D. L.
Williams in [1, Thm. 2]. They stated it for a family {z}},., of point
evaluation functionals, but their argument carries over in the
present form. They obtained it as an application of a very useful,
general interpolation theorem for function spaces, which in turn is
based on the proof of Theorem 2.1.

Since each positive kernel generates a proper functional inner
product space for which it is the reproducing kernel, a proof of
Theorems 4.1 and 4.1’ could be based on Theorem 5.1. In this
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framework one needs to identify points in the proper funectional
completion with analytic or harmonic functions when the kernel has
these properties.

We note a few examples of interesting kernels:

ExAMPLE 5.1. Let D be a domain in C*. A reproducing kernel
K for L:(D) is called a Bergman kernel. For example, if D = D"
is the unit polydisk in C", then the Bergman kernel is

K(z, ) = =[] (1 — 2¥P)

where z = (2", ---,2"™) and { = (W, ---,{™), and can be used in
Theorem 5.1. In addition, 2 Re K(z, {) — 1 is the reproducing kernel
for L:,(D"), the space of square integrable pluriharmonic functions,
to which Theorem 5.1 applies.

ExXAMPLE 5.2. Let H*D") be the Hardy space of analytic func-
tions ¢ in the polydisk D" with the property that

27
0

g = lim Sups . Sh | f(re®s, - -, reits) ’df, - - - dé,

is finite. Its reproducing kernel is
K(z, C) = (2ﬂ)-nlﬁ (1 _ z(k)@ﬁ)—1

and is called the Szegé kermel. In addition, 2Re K(2,{) — 1 is a
reproducing kernel for the Hardy space h%,(D") of pluriharmonic
functions. Theorem 5.1 applies in both cases.

One easily gives many additional examples. We have mentioned
these to suggest the wide applicability of Theorem 5.1.

Since Corollary 2.2 applies already to reflexive Banach spaces,
one may produce interpolating functions in the spaces L?, LZ,, H?,
ht, of the polydisk for 1 < p <2 for interpolating functionals in
the corresponding conjugate spaces. In these cases the reproducing
kernels of the examples above may be used.

For further information we refer the reader to Duren and
Williams [1].

6. Interpolation and continuation. The following theorem is
a generalization of a result of FitzGerald [2, Thm. 1.2], but the proof

is quite different.

THEOREM 6.1. Let D, be a domain in C™ and D, a domain in
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C". For v=1,2 let K[z, () be functions on D, x D, that are
analytic in z and anti-analytic in {. Suppose that {x}},c; and {y}};c,
are complete sets of functionals in H™*(D,) and H*(D,), respectively,
and that {¢;;}icr,;es 18 @ set of complex numbers. If

Ny, No 2 Ny - No _
L . =
(11) kz—‘l aikBichkfs = [k%1 aikalxxikxixKliu:kél Biklgiryiky;xK2:l
Sfor all finite collections of complex numbers a,,---, a; and

Bip * s Biyy then there ewists a unique function Ve H(D, x D,) such
that xfyrV = ¢,; for every i€l and jed. Furthermore, we have

(12) le*y* VI* = [l2* PEy* K]
for all a*e H*(D,) and y* e H*(D,).

Proof. Choose N, =1 in (11). Then we have

Ny

2 N1
=| 3 aya.e1mK [lvs K
K=

for all finite collections aiy, ---, @iy,. By Theorem 4.1 there exists
an f; e H(D,) such that z}(f;) = ¢;; for all 1eI and also

|2*(f)I* = [le* P[] K]

for every «* ¢ H*(D,).
Let C, = 322, 8;,¢:;, for a fixed collection Gi, -+, Biy, of complex
numbers. Then (11) implies

Ny

2 Ny
v X A3k
kgl, a,C,| = b,“Z:,l a0, x50 K,

where b = 302, 8;,8; ¥}y K.. By Theorem 4.1 there exists an
F e H(D,) such that z}(F') = C; for all i€l and, moreover,

(13) [x*(F))* £ bla*’K, for every a*e H*(D,) .

Since 3:2, Bi.Jfi, also interpolates the set {C};.; and the family {x{},.,
is complete, we conclude that F = 32, Bi.fi.- Therefore, taking

2* in (13) to be point evaluation at z, we have
Ny 2 No — _
(14) |38 00)| S Ko, 2) 3 0380507 Ke

Holding z fixed, inequality (14) is valid for every finite collection
Biiy ***y Bin,. Again by Theorem 4.1 there exists a function G, ¢
H(D,) such that y}(G,) = f;(z) for every jeJ and also

(15) [y (G = Ki(z, 2)|y* 'K,
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for all y*e H*(D,). Since the family {y}};.; is complete, we may
find finite linear combinations y* = 3. 75,97, that converge to the
point evaluation functional at a fixed point {,. In this case (15)
implies a uniform bound on compact subsets of D, for the analytic
functions y*(G,) = S Y5, Ji,,(2) of z. Consequently, their limit
G,(&,) is analytic in z.

Define V(z, ) = G,({). Then V is analytic in each variable and
so belongs to H(D, X D,). Furthermore, xfy}V = x}(f;) = ¢;; for all
7¢I and jeJ. Finally, (12) follows from (11) since the families
{x}};c; and {y}};., are complete. V is unique for the same reason.

REMARKS. FitzGerald’s theorem [2, Thm. 1.2] is the special
case m = n = 1 where the sets of functionals are sequences of point
evaluations, both having an interior accumulation point. As in the
examples following Theorem 4.1, there are many other possible
choices for functionals. Furthermore, the index sets I and J do
not need to be denumerable.

The following corollaries are fairly direct consequences of
Theorem 6.1. We omit their proofs since they are analogous to
those of FitzGerald [2, Theorems 1.3 and 1.4].

COROLLARY 6.1. Let D be a domain in C™ and K(z, () a func-
tion on D X D, that is analytic in z and anti-analytic in {. Sup-
pose that {x}};.; s a complete set of functionals in H*(D) and that
{isliier 18 @ symmetric (c; = c;;) set of complex numbers. If

N N

T ¥k
kz O 4, Ciyi, = Z aikailzmikwixK
JE=1 kyr=1

for every finite collection of complex numbers a;, -+, a; ., then there
exists a unique function Ve H(D X D) such that xfz}V = ¢; for all
i, jel.  Furthermore, V 1is symmetric (V(z, {) = V(, 7)) and

[(x*» V] £ |2*PK for every x* € H*(D).

COROLLARY 6.2. Let D, and D, be domains in C* with nonempty
intersection and K(z,{) a function defined on (D, x D)) U (D, x D,),
that is analytic in z and anti-analytic in . Suppose that {x}}.;
18 a complete set of functionals in H*(D, N D,). If

N
> a2k K = 0
k,r=1
Sfor every finite collection of complex numbers a;, ---, &;,, then K(z, )

can be continued to a positive kermel on (D, U D,) X (D, U D,) that
is analytic in z and anti-analytic in C.
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By using Theorem 4.1’ in place of Theorem 4.1 one obtains
the following parallel results for harmonic interpolation and con-
tinuation.

THEOREM 6.1'. Let D, be a domain in R™ and D, a domain in
R*. For v=12 let K(s, t) be continuous functions on D, X D,
that are harmonic in each variable. Suppose that {x}};.; and {y}};c,
are complete sets of functionals in h*(D,) and h*(D,), respectively,
and that {¢;;}icricr 18 @ set of real numbers. If

N1, No 2 Ny N
X pk X ok
k‘sx—‘;l. aika;cikj,; é [kﬁzr.l aikai,:xikximKl:'[k;:l Bjkﬁj,;yj'kyj,;I(;:l

Sfor all finite collections of real numbers aiy, - - -, aiy, and Bi, -, Biny
then there exists a wumique continuous function V onm D, X D, that
18 harmonic in each variable and satisfies x}y*V = c;; for every iel
and jed. Furthermore, we have |x*y* V|* < [(«*) K [(v*)*K,] for all
a* e h*(D,) and y* € h*(D,).

COROLLARY 6.1'. Let D be a domain in R" and K(s,t) a con-
tinuous function on D X D that is harmonic in each wvariable.
Suppose that {xf};.; is a complete set of functionals in h*(D) and
that {c;;}s;er 18 & symmetric set of real numbers. If

N N
Z O, i Cigi, = Z aikai/:x?(kx?/:K

k,e=1 k,e=1
for every finite collection of real numbers a,, ---, a; , then there
exists a unique continuous function V on D X D that is harmonic
wn each variable and satisfies xfx}V = ¢;; for all 1, j€l. Further-

more, V is symmetric and |(x*)? V]| < (x*) K for every x* ¢ h*(D).

COROLLARY 6.2". Let D, and D, be domains in R™ with nonempty
intersection and K(s,t) a symmetric continuous function on (D, x D,)U
(D, x D,) that is harmonic in each wvariable. Suppose that {x}}..;
18 a complete set of functionals in h*(D, N D,). If

N

> aiaiK =0

kyk=1
Sfor every finite collection of real mnumbers a,, ---, a;,, then K(s, t)
can be continued to a positive kermel on (D, U D,) X (D, U D,) that

18 continuous and 1s harmonic in each variable.

7. An application. This section contains an extension of Pick-
Nevanlinna interpolation and some remarks.
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THEOREM 7.1. Let {#};.; be a set of uniqueness for H(D™) and
{w}ier a set of complex numbers. For z and { in the polydisk D"
assume that a kernel K has the form

K@ 0 = 1+ 5 Gy GOTT) @Y - (g0 T

where all @umy..n, = 0. Then there exists an analytic function
f: D" — D such that

(1) f(z) = w; for all i€l and

(i) |2* (1 — fRFDIK(z, ) = 0 for all x* e H*(D")
if and only if

N

(16) kZ‘; 1 a0, (1 — w, 0, )K(z;, 2,) =0
Sfor all finite collections of complex mumbers a;, ---, a;,.

Proof. Inequality (16) is an immediate consequence of (i) and
(ii) for the functional x* defined by x*(9) = 3i_, @;,0(2;,).
Conversely, if (16) holds, then

N N
kZl aikai,cK(ziky zix) = kZI aikai,cwikwi,cK(zik’ zi,‘)
s K= yE=
N 2 N ( ) 2
1
= k_Z; a,w;, | + 2 0y, kZ_'; W, (2™ - - (&)™
N 2
z Z aikwik
k=1
foralla,, -+, a,, €C. Since the family {x{};., of point evaluations at

2; i1s complete, K is a positive kernel and by Theorem 4.1 there exists
a (unique) function fe H(D") that satisfies (i). Now (ii) follows from
(16) and the completeness of {x*},.,. Finally, to verify that f(D*)c D
one inserts point evaluation functionals into (ii) and uses the posi-
tivity of K.

REMARKS. Note that the Bergman and Szego kernels of Examples
5.1 and 5.2 satisfy the hypothesis of Theorem 7.1.

One easily obtains analogous versions of Theorem 7.1 for
harmonic or pluriharmonic functions.

For our final remark, let us restrict our attention to the unit
disk D and the kernels

1
1 — 20

where p is a positive integer. In this case, if {z,};-, is a sequence

K(z, 0) =
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of distinct points in D, with an accumulation point in D, and if

o _1—-w,w,
amn m%]:l amanm =0
for all finite collections «a,, ---, ay € C, then Theorem 7.1 implies that
there is an analytic function f in D that is bounded by 1 and that
satisfies f(z,) = w, for everyn =1, 2,8, ---. In (17) the special case
p =1 is, of course, the classical Pick-Nevanlinna conditions.

It is interesting to note that the conditions (17) are necessary
for all p=1,2,3, ---. For p =1 one usually bases a proof on the
Herglotz representation for analytic functions with positive real
part. This proof extends easily to (17). Alternatively, one may
deduce the cases p = 2,3, --- from »p = 1 by writing

1—w,w, _1—w,w, 1
(1 - zmgn)p 1-— zmgn (1 - zmgn)p_l .

Each factor generates a nonnegative hermitian form, and the Schur
product theorem ensures that their product does also. Consequently,
the conditions (17) are necessary and sufficient for every p =
1,28, «--.
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