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REAL HOMOLOGY OF LIE GROUP
HOMOMORPHISMS

ROBERT F. BROWN

Let h: Gί-^G2 be a homomorphism of compact, connected
Lie groups and let h*\ H*{GX)->H*{G2) be the homomorphism
of homology with real coefficients induced by h. The inves-
tigation of the properties of h that can be deduced from
a knowledge of h* goes back at least to work of Dynkin in
the early 1950's. This paper presents several contributions
to the investigation. The main result is a characterization
of homomorphisms with abelian images as those whose
induced homomorphisms annihilate all three-dimensional
indecomposables. We then examine what the homology can
tell us about the dimension of the abelian image. Next, an
inequality relating the homology of the kernel of h to the
kernel of h* leads to sufficient conditions for h to have an
abelian, semisimple, or finite kernel. The final sections
present various relationships between h* and the kernel and
image of h and, in particular, show that if hiG^ is totally
nonhomologous to zero in G2, then h* gives quite precise
information about the behavior of h.

For the results of Dynkin, see [2] and [3].

In order to avoid frequently repeating the same hypotheses, we
state that throughout this paper:

HYPOTHESES, h: G^ -> G2 is a homomorphism where GL and G2

are compact, connected Lie groups.

1* Homomorphisms with abelian images* A homomorphism
Λ: (?! —• G2 induces homomorphisms of real homology h*s: JEΓ/GJ —>
HS(G2) for all s. We will need the following observation:

LEMMA 1.1. If h:G1-^G2 is surjective, then h*s: H£G1)-+H.(G2)
is surjective for all s.

Proof. Since h is surjective, there is an isomorphism h: GJK-+
G2, where K is the kernel of h. The quotient homomorphism
q: Gx -> GJK induces a surjection of real homology, so the commuta-
tivity of
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h*s

HsiGJK)

proves that h*8 is a surjection.
Let QH*(G) denote the graded vector space of indecomposables

in the real homology of a Lie group G. A homomorphism h: Gλ—>G2

induces Qh*8: QHB{G^) —> QH8(G2) by restricting h* to the indecom-
posables in HXGj).

If a Lie group G is abelian, then QH8(G) = 0 for all s > 1. Con-
sequently, if h: (?! -» G2 such that h(G0 is abelian, then certainly
Qh*8 = 0 for all s > 1 because the homomorphism factors through
QH^(h(Gj)). But the converse holds as well; in fact our main result
requires that we consider only s = 3.

THEOREM 1.2. 1/ fc: G, -> G2 sucfe ίftαί Qh*z: QH^G,) ^ QHZ(G2)
is the zero homomorphism, then the group h(Gj) is abelian.

Proof. We prove the contrapositive: assuming that h(Gj) is not
abelian we show that Qh*z Φ 0. Let hr: Gx —> h(G^ be the same as
h except for range and let j : h(fiι) —> G2 be inclusion. Consider the
diagram

QH3(Gι)- - ^ QH3(Gz)

Qh'

The homomorphism Qti*z is surjective by Lemma 1.1 and the fact
that the real homology of a Lie group is generated by indecompo-
sables. Therefore, the diagram implies that Qh*3 = 0 if and only
if Q.^ = 0. So we will prove that if h(G^) is nonabelian then
QiHc8 φ 0. Because h(G^) is assumed nonabelian, it is possible to
exploit the relationship between compact and complex semisimple
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Lie groups to conclude that there is a closed subgroup S of h(Gt)
that is semisimple and three-dimensional. Let i:S-^G2 and i':S->

x) be inclusions, so we have the diagram

QH3(G2)

By [6], because S is a semisimple and three-dimensional subgroup
of G2, then the homomorphism ί*: H*(S) —> H*(G2) is injective.
Furthermore, the semisimplicity of S implies QHB(S) Φ 0, so Qj\3 Φ
0 by the diagram and that completes the proof.

Two immediate consequences of the main result are:

COROLLARY 1.3. Suppose h: GX—>G2 where Gx is semisimple.
If Qh^s = 0 then h is the constant homomorphism.

COROLLARY 1.4. // Qh^ = 0 then Qh*s = 0 for all s > 1.

Note that it is not sufficient in Corollary 1.3 merely to assume
that Gx is nonabelian. For instance, if we let h: S1 x S3 —> S3 x S3

be the cartesian product of inclusion and the constant homomor-
phism, we obtain a nonconstant homomorphism for which Qh^ — 0.

The homological characterization of homomorphisms with abelian
images in Theorem 1.2 was of course suggested by the homological
characterization: a compact Lie group G is abelian if and only if
QH3(G) = 0. The characterization: a compact Lie group G is semi-
simple if and only if HX(G) — 0 does not seem to lead to any char-
acterization of homomorphisms with semisimple images. That is,
the obvious condition h*x = 0 is not sufficient for a semisimple image,
as we can see by including abelian closed subgroups in simply-
connected Lie groups. (In contrast, the homological characterizations
are precisely what we use to give sufficient conditions for h to
have an abelian or semisimple kernel in Corollaries 3.2 and 3.3
below.)

PROBLEM. Find necessary and sufficient conditions on h* so



36 ROBERT F. BROWN

that h(G^) is semisίmple.

2. The dimension of an abelian image* Now that we have
identified the homomorphisms with abelian images by means of their
induced homology homomorphisms, we are led to investigate what
homology can tell us about the only significant characteristic of such
an image: its dimension.

It is convenient to recall the following concept from [5]. Let
A be a closed, connnected subgroup of a compact Lie group G, then
A is totally nonhomologous to zero in G, written A φ 0 in G, if
and only if the homomorphism j * induced by the inclusion j : A—>G
is injective.

We have already made use of the concept in the proof of
Theorem 1.2 because that proof depended on the fact that if A is
semisimple and three-dimensional, then A rh 0 in G.

We continue to use the notation K for the kernel of h: G1-^G2

and denote by Ko its maximal connected subgroup. We abbreviate
dimension, of either a vector space or a Lie group, by dim, and
image by im.

THEOREM 2.1. // the image of h: GX—>G2 is abelian, then

dim im h^ <; dim h{βύ ^ dim

with equality as follows:
( i ) dim h(Gt) — dim im h*λ if and only if hiG^ φ 0 in G2

(ii) dim h^GJ = dim iί^Gi) if and only if Ko is semisimple.

Proof. Since h(Gλ) is a torus, dim^(Gx) = dim H^hiGj)). Defining
hf: Gx —> h(GJ and j : h(G^) —>G2 as before, we find that dimim h^^
dim im/i'*! with equality if and only if j ^ is injective. Again using
the fact that h(Gx) is a torus, we conclude that j * x is injective if
and only if h{Gx) ̂ 0 in G2. Since

+ dim H^hifi,))

then dim h{G^) <Ξ dim H^Gj) with equality if and only if H^KQ) — 0.

COROLLARY 2.2. If the image of h: Gλ —> G2 is abelian and hή:1

is injective, then dim h(Gx) = dim Z{G^), where Z(G±) is the center

Proof. Since h^ is injective, then dim im h^ — dim H^G^ so
dim h(Gx) = dim H^G,) by Theorem 2.1. The fact that dim H^GJ =
dim Z(Gj) completes the proof.
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3* The kernel of a homomorphism* Since we have seen
that Qh* contains information about the image of h: G1 —> G2, at
least when the image is abelian, we may hope that Qh* will also
reflect some of the properties of the kernel of h. We will show
that to a certain extent this is indeed the case. Our results depend
on the following useful inequality.

THEOREM 3.1. Let h:G1-^G2, then

dim QHS(KO) ^ dim ker Qh*.

for all s > 0, where ker denotes kernel.

Proof. Let i: Ko -> Gx be inclusion and let di: 3?* —> ®t be its
differential, where JsΓ and ©x are the Lie algebras of Ko and Gx

respectively. There is a projection π: ®λ —> ί£ that is a Lie algebra
homomorphism. Since ττ(di) is the identity on $, the composition

— HM -

is the identity for each s. We conclude that (di)*, is an injection.
Then the Universal Coefficient Theorem and de Rham's Theorem
imply that i*,: HS(KO) —> J3,(Gi) is injective; as is the restriction Qί*8.
Since /̂ i is the constant homomorphism, the composition

QHS(KQ) ^ QHJLGX) fe QHS(G2)

is the zero homomorphism for each s>0. Therefore Qi#a(QHe(K0))Q
ker Qh*s and because we have proved that Qi*s is injective

dim QHS(KO) — dim im Qi*s ^ dim ker Qh*s .

For an example where dim QH8(K0) Φ dim ker Qh*s, let h: SO(8)~>
SO(9) be inclusion. The Wang sequence of the fibration

( ) > S 8

shows that dim ker Qh*7 ̂  1.

COROLLARY 3.2. // h^ is injective, then Ko is semisimple.

Proof. Since Qh^ = h*ί9 then dim ker Qh^ = 0 so H^K*) = 0
by Theorem 3.1 and therefore KQ is semisimple.

The injectivity of h*x is sufficient for Ko to be semisimple, but
it is obvious that it is not a necessary condition.

COROLLARY 3.3. // Qh*z is injective, then KQ is abelian.
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Once again, injectivity is a sufficient but not necessary condi-
tion. Define h: Sp(6) x Sp(6) -> Sp(12) as follows. Given A and B
in Sp(6), let h(A, B) be the matrix

A 0

.0 B

Then h has trivial kernel, but Qh*5 cannot be injective because
dim QHZ (Sp(6) x Sp(6)) = 2 and dim QHZ (Sp(12)) = 1.

Combining the previous corollaries, we see that if h^ and k*z

are both injective, then Ko is trivial so

COROLLARY 3.4. // h*s is injective for s :£ 3, then the kernel
of h is finite.

In common with the previous corollaries, the converse to Corol-
lary 3.4 is not true in general. However

THEOREM 3.5. Suppose h: Gx —> G2 has finite kernel. Then h*
is injective if and only if h(Gj) φ 0 in G2.

Proof. Let hf\Gι-^ h(Gλ) be the same as h except for range.
Since h' has finite kernel, its differential dh': ®t -»ξ> is an isomor-
phism (©j. and φ are the Lie algebras of Gx and h(G^), respectively).
Therefore, (dh')*: £Γ*(©i) —> Jϊ*(§) is an isomorphism and it follows
that fc'*: H+iGi) —> H*(h(G^) is an isomorphism also. For j:
the inclusion, the commutativity of

//•(GO ! *» H*(G2)

implies that fc^ is injective if and only if j\ is, that is, if and only
if HGJ Φ 0 in G2.

4* Rank and dimension of the kernel* We have seen in the
previous section that Qh* does contain information about the kernel
K oΐ h\Gι-^G29 at least to the extent of producing sufficient condi-
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tions for K to be semisimple or abelian. In this section, we improve
a result from [1] to obtain upper bounds on the rank and dimension
of K. Furthermore, we find a necessary and sufficient condition for
the bounds to provide exact calculations.

The rank of a compact Lie group will be denoted by rk(G).
(If G is disconnected, its rank is defined to be the rank of the
maximal connected subgroup of G.) The dimension of a graded
vector space, still denoted by dim, is the sum of the dimensions of
the individual vector spaces.

Since the bounds on the rank and dimension of K are most
naturally stated in the language of cohomology rather than homo-
logy, we consider the homomorphisms h*8: H8(G2) -+ H8(G^, for each
s, induced by h:G1-+G2 on cohomology with real coefficients.
Restricting to primitives, we have homomorphisms Ph*8: PH8{G2) ~>

THEOREM 4.1. Let K be the kernel of h: G± -> Gif then
( i ) rk (K) ^ dim ker Ph* + (rk (GJ - rk (G2))
(ii) dim (K) ^ Σ* s(dim ker Ph*8) + (dim (Gx) - dim ((?,)).

The inequalities (i) and (ii) are equalities if and only if h{G^) φ 0
in G2.

Proof. Since if is a normal subgroup of G19 the quotient homo-
morphism q: Gλ --> GJK induces an injective homomorphism of real
cohomology, so Pq*8 is injective for all s. From the commutative
diagram below, where h is an isomorphism and h' is the same as h
except for range, we see that Ph'*8 is injective because Pq*8 is.

h'

GJK-

Therefore, the diagram

Crj ^ (jr2

where j is inclusion, implies that ker Ph*8 = ker Pj*8 and thus since

dim PHS(G2) = dim ker Pj*8 + dim im Pj*8
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that

( * ) dim ker Ph*s - dim PH*(G2) + dim im Pj*s = 0 .

Now, for the proof of part (i), we know from [4] that for any
compact Lie group, rk (G) = dim PiP(G). Since

PH*(GX) = PH*(K) 0

we see that

rk (Gx) = rk (K) + rk

Using (*) and rearranging terms, we have

rk (K) = [dim ker Ph* + (rk (Gx) - rk (G2))]

- [rk(Λ(GO)-dimimPi*] .

Inequality (i) follows because im Pj* £ PH*(h(G$). We have equality
in (i) if and only if Pj* is surjective which, by the Universal Coeffi-
cient Theorem, is equivalent to the condition h(Gt) rh 0 in G2. For
part (ii) we use the fact that for any compact, connected Lie group

dim (G) = Σ *(dim PHS{G)) .
s

Since

dim (GJ = dim (K) + dim (HG,))

we again use (*) and rearrange terms to conclude that

dim (K) = [ Σ s(dim ker Ph*°) + (dim (Gx) - dim (G,))]
s

- [dim (Λ(Gt)) - Σ s(dim im Pj*')] .
s

Just as in the proof of part (i), inequality (ii) follows from this
last equation, with equality in (ii) if and only if fe(Gx) φ 0 in G2.

The less precise form of Theorem 4.1(i) in [1] was used there to
study homomorphisms h for which h* is an isomorphism.

COROLLARY 4.2. // the image of h: Gx —> G2 is abelian, then
( i ) rk (if) ^ rk (Gx) - dim im h*1

(ii) dim (K) ^ dim (Gλ) - dim im ft*1

with equality if and only if h(Gλ) ̂ 0 in G2.

Proof We will prove inequality (i); the proof of (ii) is almost
identical. Since ft(Gx) abelian implies h*8 = 0 for s > 1 the Universal
Coefficient Theorem implies that ft*8 = 0 for s > 1 also and thus

dim ker Ph* = dim ker Ph*1 + Σ dim PH\G2) .
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Because

rk (G2) = dim H\G2) + Σ dim PHS(G2)
s>l

we may substitute into inequality (i) of Theorem 4.1 to conclude
that

rk (K) £ rk (GJ - (dim H\G2) - dim ker &*1) .

We can apply Corollary 4.2 quite effectively when G2 is abelian.
For instance

COROLLARY 4.3. Suppose h: G1-^G2 is a homomorphism and G2

is abelian, then

dim (K) = (dim (GJ - dim (G2)) + dim ker &*1 .

5* Surjective homomorphisms. The following homological
characterization of surjective homomorphisms is easy to verify, but
we include it for completeness.

PROPOSITION 5.1. A homomorphism h:G1-^G2 is surjective if
and only if h*n: Hn{G^) —> Hn(G2) is a nonzero homomorphism, where
n = dim (G2).

Proof. Necessity is immediate from Lemma 1.1 and the fact
that since G2 is a closed orientable ^-manifold, Hn(G2) Φ 0. Suffici-
ency is a consequence of the classical result that if a map of closed
orientable manifolds has nonzero degree, then it is surjective.
Alternatively, we may prove sufficiency using Theorem 4.1(ii) as
follows. If h%n Φ 0 then h*n: Hn(G2) -> Hn(Gύ is nonzero. Let
zl9 z2, - —, zr generate the exterior algebra H*(G2), then μ = z±z2- - -zr

generates the vector space Hn{G2). We are assuming h*(μ) Φ 0
which implies Pfe* is injective. By inequality (ii) of Theorem 4.1,
dim (JSΓ) <: dim (Gx) — dim (G2). But then we have

dim (Gx) - dim (fe(Gx)) ^ dim (Gx) ~ dim (G2) .

Since h(Gλ) is a closed submanifold of G2, it must be that h(G1) = G2,
that is, h is surjective.
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