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FIXED POINT INDEX AND CHAIN APPROXIMATIONS

H. W. SIEGBERG AND G. SKORDEV

Localizing the Lefschetz number of certain chain approx-
imations of upper semi continuous multivalued mappings a
new approach to fixed point index is given. It turns out
that this fixed point index satisfies the commutativity pro-
perty as well as the mod-p property (known from the single-
valued case). In particular, in the single-valued case the
proof of the mod-p property is a natural consequence of a
corresponding property of (global) Lefschetz number.

Introduction. The aim of the present note is to provide a
unified approach to fixed point index theory for single-valued mappings
as well as for certain classes of multivalued mappings (e.g., acyclic
mappings) on compact polyhedra.

Fixed point index theory was initiated in 1926/1927 by S. Lefschetz
[27] with his celebrated fixed point formula on manifolds (with
triangulation), and it was generalized one year later by H. Hopf [23]
to compact polyhedra. (For a good survey of fixed point index
theory we recommend [14].) Later, after the classical paper of J.
Leray and J. Schauder [30] (1934) the problem of generalizing and
extending the Leray-Schauder theory resp. the fixed point index
theory arose in a natural way. In the forties J. Leray [28], [29]
succeeded in developing an index theory for the category of ‘convexoid
spaces’ which are in some sense homological generalizations of
simplicial complexes, see also [4]. The techniques introduced by
Leray are very general; indeed, his cohomology theory is the pre-
cursor of modern sheaf cohomology.

In 1953 B. O’Neill [34] rederived—for the category of compact
polyhedra—the principle results of Leray’s theory (and Hopf’s re-
sults), and, moreover, he proved that fixed point index is uniquely
determined by certain axioms (in the category of compact polyhedra).
In 1960 F. E. Browder [5] extended fixed point index theory to
‘semi-complexes’ by finding appropriate algebraic analogues of the
properties of fixed point index for chain mappings.

All these results use definitions of fixed point index based on
certain induced chain mappings. A purely homological approach to
fixed point index (on manifolds) was discovered in 1965 by A. Dold
[9], [10], see also [11] where Dold extends his technique to coincidence
problems.

There are essentially two ways to handle multivalued fixed point
problems. The first one is based on homological arguments and roots
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in the early work of L. Vietoris [44] (and of E. Begle [1]) where
the ‘Vietoris-Begle mapping theorem’ is proved, and where for acyclic
maps induced homomorphisms in (Vietoris-) homology are defined.
Using the Vietoris (—Begle) mapping theorem S. Eilenberg and D.
Montgomery [12] in 1946 generalized the Lefschetz fixed point theorem
to acyclic mappings (on compact metric ANR’s). The other way to
deal with multivalued fixed point problems is influenced by homotopic
considerations, and detects fixed points of the multivalued map @ by
fixed points of single-valued ‘approximations’ of @. Early examples
of this procedure were given by J. von Neumann [33] and by S.
Kakutani [24]. For a survey of both methods we recommend [2].

The first approach to degree resp. fixed point index of multivalued
(convex or acyclic) mappings goes back to A. Granas [19] and to A.
Granas and J. W. Jaworowski [20] in 1959. Further approaches to
degree of multivalued mappings based on single-valued approximations
were introduced by A. Cellina and A. Lasota [8] and by Yu. G.
Borisovi¢ et al. [3].

In 1970 B. D. Calvert [7] gave a homological definition of fixed
point index for acyclic maps which runs along lines similar to [9]:
Using the Vietoris-Begle mapping theorem Calvert applies Dold’s
technique to the induced homomorphism of the acyclic map. In
[21] and [26] there are similar homological approaches. We refer
also to [15] where Calvert’s index of ‘repulsive’ fixed points is
computed.

A common lack of all these approaches to fixed point index of
multivalued (e.g., acyclic) maps is that it is unclear whether the
commutativity property holds, see [7], [15], [18]. Beside some special
cases there is no proof for this property [7], [15]. Moreover, it is
not known whether the mod-p property in the sense of Zabrelko-
Krasnosel’skil-Steinlein, (X, f, U) = i(X, f?, U)mod p, » prime, is
satisfied, see [15], [18], [37].

In this paper we will give an affirmative answer to these two
questions provided an alternative definition of fixed point index is
used. We shall define a fixed point index for a multivalued (acyclic)
mapping by associating to this map a chain map (“chain approxima-
tion”), and by computing the ‘local’ Lefschetz number (in the sense
of O’Neill and Browder) of that chain map.

The paper is organized as follows:

In Chapter I we describe algebraic analogues of properties of
the fixed point index for chain mappings (including commutativity
and the mod-p property). In Chapter II chain approximations and
corresponding fixed point indices are discussed, and in Chapters III
and IV the results of I and II are applied to acyclic mappings on
polyhedra. Finally, we remark that in the single-valued case proofs
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(e.g., the proof of the mod-p property) become considerably easier
provided classical simplicial approximation is used.
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I. Index and chain mappings. Since the fundamental papers
of Leray [28], O’Neill [34], and, in particular, of Browder [5] one
knows that ’local Lefschetz numbers’ of chain mappings have algebraic
properties which are in analogy to corresponding properties of the
fixed point index (Homotopy invariance, Normalization, Additivity,
Commutativity). In the following we will recapitulate this fact,
and, moreover, we will find a mod-p property which is easy to prove,
and which provides the corresponding mod-p property for the fixed
point index.

In what follows K = (K, ) and L = (L, ) will always denote
compact polyhedra with fixed triangulations z resp. p.

0. Preliminaries and notations. For [ e N! and a triangulation
7 we denote by ' the Ith barycentric subdivision of z. A subset
Uc K is called polyhedral provided there is an integer le N such
that 7! induces a triangulation of the closure U of U. Let Bc K
and ke N. The kth star of B in 7,

st*(B, 7) ,
is defined recursively as follows:

st(B,7): =st(B,7): = U{oet|oN B # O}
st*(B, 7): = st(st* (B, 7),7), k>1.

(Simplices are always assumed to be closed.)

For Ie N and a field F denote by C.(K,!) the oriented chain
complex C (K, 7% F), see [39, p. 159].

If C and ¢’ are two chain complexes (over F) denote by
hom (C, C’) the space of all chain mappings @:C—C’. Let ce
C.(K, 7). The carrier of ¢, carr(c), is the smallest polyhedral subset
X c K such that ¢e C,(X, 7), see [10, p. 198].

DEFINITION. Let @: C.(K, ) — C.(K, ) be a chain mapping, and
let o, 0’ € C,(K, 7) be two simplices of dimension n.

¢’ is contained in ¢(0), 0’ € (o), provided ¢’ is contained in the
irreducible representation of ¢(o) (with respect to the basis of C (X, 7)
which consists of all simplices of dimension ») with a nonzero coef-
ficient.

! N = natural numbers.
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o is called a fixed simplex of ¢ iff o< (o).

Let le N. Then b:C.(K, 7)— C(K, 1) is the subdivision chain
map which maps each chain of C.(K, 7) into its Ith barycentric
subdivision [10, p. 40]. By X:C.(K, 1) — C.(K, t) we denote any
chain mapping which is induced by a simplicial approximation of
Id: (K, %) — (K, 7), [10, p. 119].

Let V={V,},.x be a graded F-vector space with dimV < oo,
and let 8 = {B,},cx be an endomorphism of V of degree zero.

Then

A(B): = ZI‘,V(—I)" tr(B,) (tr = trace)
g€
is called the Lefschetz number of B, [10, p. 208].

1. Index systems.

DerFINITION 1.1. Let Uc K be open and polyhedral. A graded set
MK, U) = {M(K, U)}lren

where M(K, U), Chom(C,(T, k), C.(K, k)), is called Index system
(I-system) on U provided the following properties are satisfied:
There is an integer k, = k(M(K, U)) such that for all [, ke N,
l=k =k, and for all ,¢ MK, U),, »,c M(K, U),
(i) o, and X@,b are admissible homotopic, i.e.,
the diagram

Co(U, k) — C.(K, k)

| ’ I
C.(U, D —;T C.K, D)

is homotopy commutative with a chain homotopy D which satisfies
the following boundary condition,
for any simplex o€ z* with st(o, k) N0U #+ @,

carr Do N st(o, k) = @ .

(st(-, z*) is abbreviated by si(-, k) in the following.)
(ii) o,bX |7 and @, are admissible homotopic.

Klz: = Xlaww) -

REMARK. In the definition above we did assume that U is already
polyhedral in 7, otherwise we have a graded set {M(K, U),}i>;,, Where
U is polyhedral in zh

To any I-system M(K, U) we associate a ‘local’ Lefschetz number
which will be called the index of M(K, U).
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LEMMA AND DEFINITION 1.2. Let M(K, U) be an I-system, and
let l =k = kMK, U)).

Let @, € M(K, U),, p.€ M(K, U),.

Then

Alzp,) = A7p,) »

where T = g Cyu(K, k) — C.(U, k)resp. C. (K, 1) — C.(U, 1) are the
natural projections.

IMK, U)): = Arp)e F, pe MK, U),, k= k(MK, U)),
is called the index of the I-system (M(K, U).

Proof. Since @, and X@,b are admissible homotopic we have
Alzp) = A(@Xpd), [5, p. 274]. Moreover, one computes A(@AP,b) =
AXz@,b). Since the trace is commutative, and since @,bX;7 and @,
are admissible homotopie, Browder’s lemma applies again,

ARz pd) = A(wP,) .
Hence, A(zp,) = A(wp,).
In the following we list some properties of I(M(K, U)):

PRrROPOSITION 1.3 (Additivity). Let M = M(K, U) be an I-system,
and let U, U,CU be open, disjoint subsets which are polyhedral.
Assume that

M;: = M(K, U)lg;: = {M(K, U)lz}en »

where M(K, U),l5: = {pl5,|pe M(K, U),}, are I-systems for i =1, 2.
Assume further that the following condition 1is satisfied:

There is an integer k' € N such that for all k = k' there is a
map @€ MK, U), with the following property,
for any simplex o €t* with st(e, k) N (O\(U,UD,) = @,

carr (o) N st(o, k) = @ .
Then
IM) = I(M,) + I(M,) .

DEeFINITION 1.4. Let M(K,U) and M'(K, U) be I-systems.
M(K, U) and M'(K, U) are called homotopic, provided there is an
integer k" € N such that for all ¥ = k" there are maps ¢ ¢ M(K, U),
and ¢’ € M'(K, U), which are admissible homotopiec.

ProrosiTION 1.5 (Homotopy Invariance). Let M(K, U) and
M'(K, U) be two I-systems which are homotopic. Then
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I(M(K, U)) = I(M'(K, U)) .

2. Commutativity and mod-p property. If C, C’, C"” are chain
complexes (over F), and if A c hom(C, C'), BChom(C’, C"), define

BoA: = {yrop|re B, € A} C hom(C, C") .

PROPOSITION 1.6 (Commutativity). Let Uc K, VC L be open and
polyhedral subsets of K resp. L, and let

A(K, L) = {A(K, L)i}iew » A(L, K) = {A(L, K)i}ten
be graded sets where

A(K, L), c hom (C.(K, k), C.(L, k))
A(L, K), chom(C (L, k), C. (K, k)) .
Assume
A(K, L)°A(L, K): = {A(K, L)o A(L, K)i}iex
and
A(L, K)-A(K, L): = {A(L, K)o A(K, L)i}ien

are I-systems on U resp. V, and denote them by M(K, U) resp.
ML, V).
Assume further that the following condition is satisfied,
there is an integer ke N such that for all k= k lthere are maps
®e AK, L), v+ € A(L, K), with the following properties:

(i) For any simplex gep*, o CV,

0, €y(0), 0, U — 0 ¢ 9(0,)
(ii) For any simplex oet*, o U,
0,€9(0), 0,V — g ¢ ¥(0)) .

Then
IM(K, U)) = I(M(L, V)) .

Proof. Choose k sufficiently large such that
IIM(K, U)) = A(wgopod), IM(L, V)) = Awgopos) ,

where pe A(K, L), v € A(L, K),, $: = @|5, ¥: = |7, and where @
and + satisfy properties (i) and (ii). Choose bases of C,(K, k) and
C/L, k) consisting of simplices of dimension ¢, 0 < 4 < dim K, dim L,
and compute the matrix representations of

wgonrod: Cy(U, k) — C(U, k)
wropoqr: C(V, k) — C(V, k)
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with respect to those bases.
It follows immediately that the traces of zwgoyro® and zwyo@oqr
coincide, and, hence, we obtain

I(MK, U)) = IM(L, V)) .

ProproSITION 1.7 (Mod-p Property). Let F = Z, p prime. Let
UcC K be open and polyhedral.
Let A(K, K) = {A(K, K)i}sex be a graded set where

A(K, K), chom(C (K, k), C.(K, k)) .

Assume that AK, K) and A(K, K) A(K, K)o --- 0 A(K, K)(p» times)
are I-systems on U, and denote them by M(K, U) and M*(K, U).
Assume further that the following condition is satisfied,

there is an integer ke N such that for all k =k there is a map
pe A(K, K), with the following property:

For any simplex oct*, o cU, with oc@’(o),

o € p'i(0), 0,¢U,0,et* = 0epi(a) forall j1<j<0p.
Then

IM(K, U)) = IM*(K, U))in Z,) .
Proof. We give a proof for p =2, for p > 2 the proof runs

along the same lines.
Choose k sufficiently large such that

MK, U) = A=), (MK, U)) = Azpp) ,

where 9 ¢ A(K, K),, » = ®|5, and where @ satisfies the assumption
of the proposition. Using the lemma in [36, p. 441] (“Fermat’s
theorem”) we have

Axprp) = Axp) (in Z,) .
But the assumption of the proposition implies that
tr 2B oy @ = 0 TPP |0y 7.1

for 7,0 £ ¢ < dim K. Hence the mod-p property follows.

II. Approximation systems and fixed point indices. In this
chapter we will study chain mappings and their approximation pro-
perties. It turns out that in order to define a fixed point index a la
O’Neill [34] or Browder [5] one does not need a chain mapping which
is induced by simplicial approximation but a chain map which has
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certain approximation properties. We will show how such “approxi-
mation systems” lead to fixed point index theories even for mul-
tivalued mappings in a natural way. In the following (K, 7), (L, t)
and (M, v) will always denote compact polyhedra with fixed triangula-
tions 7, ¢# and v.

Let @: K— K be an upper semi continuous (u.s.c.) multivalued
map' i.e., the graph {(z, ¥)e K x K|y<c ®(x)} is closed, and let UcC
K be an open subset of K. We will say that the triple (K, @, U)
is admissible iff x ¢ @(x) for all xeaU.

1. Approximation systems.
DErFINITION 2.1. Let @: K— L be u.s.c., and let k, n € N.
A chain mapping

Pi: Cu(K, 1) — Cu(L, k) (1= k)

is called n — k-approximation of @, provided the following condition
is satisfied:
For any simplex o e 7' there is a point y(¢) € K such that

o C st™(y(0), k)
carr @,0 C st™(@(y(o)), k) .

ExAMPLE 2.2. Let f: K— L be continuous and single-valued.
Then any chain map f':C.(K, 1) — C.(L, k) which is induced by a
simplicial approximation f of f, f: (K, 7%) — (L, #*)(I = k), is a 2 — k-
approximation of f.

DEFINITION 2.3. Let @: K — L be u.s.c. A graded set

A(9) = {A(D)}jen »

where A(0);chom(C,(K, 7), Ci(L, 7)), is called approximation system
(A-system) for @, provided there is an integer n = n(A(9)) such that
the following properties are satisfied:

(1) pe A(@); = ® = p,b, Where @, is a

n — j-approximation of @ (b = subdivision map) .

(2) For all je N there is an integer j, = 5,(A(®P)) such that for
all I, m = j(m = 1) and for all @ = pbe A(D), & = ynbe A(D),

@, X and X+, are homotopic with a small homotopy ,

i.e., the diagram

1 We assume always ¢(x) % & and closed for all xe K.
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C(K, 1,) 2 C (L, 1)
x[ '[x (m, = 1,)
C*(K, ml) 7) C*(Ly m)

is homotopy commutative with a chain homotopy D which satisfies

the following smallness condition:
For any simplex o€ t™ there is a point z(¢) € K such that

o C st"(2(0), J)
carr Do C st™(@(z(0)), J) .

ExAMPLE 2.4. Let f: K— L be continuous and single-valued.
Then, an approximation system for f is obtained in a natural way
by simplicial approximation:

A*(f) = {A*(f)ilien » with
A*(f);: ={p = fb]| f: Cu(K, 1) — C(L, 5}

where s’ is induced by simplicial approximation, see 2.2.
A*(f) is called the approximation system induced by f.

Proof. Set n = n(A*(f)): =2, and for je N set 5, = j,(A*(f)): = 7.

Then, it is well known [22, p. 36/37] that f’X and Xf" are
(contiguous) homotopic with a small homotopy, provided f'be A*(f),,
f’be A*(f),., where m =1 = j.

The following lemma detects an important relation between I-
systems and A-systems.

LEMMA AND DEFINITION 2.5. Let UC K be open and polyhedral,
and let A(D) be an A-system for @: K — K.

Then A(®) is an I-system om U provided (K, @, U) is admissible.

This I-system is called the I-system induced by A(®) and denoted
by M(K, U; A(9)).

Proof. Without loss of generality we assume n(A(®)) =1; for
n(A(@)) > 1 the same arguments apply. Choose ke N sufficiently
large such that the following boundary condition is satisfied:

ye K, st (y, k) NoU += @ — st’(y, k) N st(D(y), k) = @ .

Since A(®) is an A-system we obtain for j=F% an integer j, =
7:(A(D)).

We claim that A(@®) is an I-system on U with £k, =
k(M(K, U; A(D)): = j:
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Therefore let I, me N,m =1 = k,, and let
P = pbe A(D),, P = "l"lbe A(Q)m .

We have to show that @ and Xyb are admissible homotopic, see
1.1.

C(T, 1) = €, (T, 1) -2 CL(K, 1)

bi b(D Ix (I L‘

Diagram (I) is commutative, and diagram (II) is homotopy commuta-

tive with a small homotopy D. Thus, # and Xyb are homotopic

with the homotopy D,: = Db.

We prove that D, satisfies the boundary condition of an I-system:
Assuming that D, does not satisfy the boundary condition we

have that there exists a simplex o€ 7' such that

st(o, )N oU # @ and
st(o,l)Ncarr Do + @ .

Hence, there is a simplex o, €' such that
o,Cst(o,l) and o,cCcarrDgo .
Let o, be a simplex in 7™ such that
o,eboc and o, Ccarr Do, .
Since the homotopy D is small, there is a point z(g,) € K such that

0, C st(z(a,), k) and
carr Do, C st(@(z(0,)), k) .

Hence,
st(o, 1) N st(P(z(0,), k) = @ .
Because of g, C o, and, thus, st*(z(g,), k) Do, we see that
st¥(z(a,), k) N st(P(z(a,)), k) = @
and
st¥(z(0,), k) N oU = ©

which is impossible because of the choice of k. Thus, D, is admis-
sible.
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That ~bX|; and + are admissible homotopic is proved in a
similar way.

2. Fixed point index for multivalued mappings.

DEFINITION 2.6. Let Uc K be open and polyhedral, and let
0: K— K be u.s.c.. Let (K, @, U) be admissible, and let A = A(9)
be an A-system for @&. Then

I(K, @, U): = IM)K, U; A@) e F
is called the fixed point index of @ in U (with resp. to A).

In the following proposition we list some properties of the fixed
point index.

LEMMA 2.7. Let & K— L and @, L— K be u.s.c.,, and let
A(D,), A(D,) be A-systems for @, and @,. Let CC K be a closed
subset of K such that for all x€C, x ¢ 0,0,(x).

There is an integer l,€ N such that for all | =1, and for all
@ e A(D),, ¥ € A(D,); the following property holds:

For any simplex oet' with o Csi(C,l,) and for any simplex
g e ¢(0)

o & y(0) .

Proof. Without loss of generality we assume =n(A(®)) =
n(A(D,)) = 1.

Since @, and @, are u.s.c., and since C is compact, there is ke N
such that

st(Dy(st*(D,(st(a, k)), k), k) N st(o, k) = @

for all simplices o C st(C, k).
For j=Fk we find integers j, = 7,(A(D), 51 = J.(A(D,)). Then
the lemma follows with [,;: = max{j, 7.}

PROPOSITION 2.8 (Additivity). Let UCK be open and polyhedral,
and let @: K— K be u.s.c..

Let U, U,CU be open, disjoint subsets of U which are poly-
hedral.
Assume that the fixed point set of @|z is contained in U, U U,

Fix(@|lz) cU,UU,.
Let A = A(®) be an A-system for @.
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Then
IA<K9 Q, U) = A(K; ¢! Ul) + IA(K’ @r UZ) .

Proof. The proof follows immediately from 2.7 and 1.3.

Beside the ADDITIVITY we obtain (with the same arguments) an
excision property which allows to define the fixed point index on
arbitrary open sets.

PRrROPOSITION 2.9 (Excision). Let U, CcUCK be open and poly-
hedral, and let @: K— K be u.s.c.. Let A = A(®) be an A-system
for ®. If Fix(®@|z) c U, then

IA(K9 d), U) = A(K, ¢! Ul) .

DEFINITION 2.10. Let V< K be open, and let @: K — K be u.s.c..
Let (K, @, V) be admissible, and let U < V be open and polyhedral
such that Fix(®@|;) cU. Let A = A(®) be an A-system for 0.

L(K, @, V): = I(K, 0, U).

Observe that ADDITIVITY and EXCISION generalize immediately to this
fixed point index on open sets.

ExAMPLE 2.11. Let f: K — K be continuous and single-valued,
and let A*(f) be the A-system induced by f, see 2.4. Then Defini-
tion 2.10 of fixed point index coincides with the definition given
by O’Neill in [34]:

IA*(K; f; V) = ’L(K) f; Vl) .
3. Homotopy of A-systems.

DEFINITION 2.12. Let Uc K be open and polyhedral, and let
@, &, K— L be us.e.. Let H:U x I— L be an u.s.c. homotopy
joining @,|7 and @,|z. (I =1[0,1]) Let A(®)), A(®,) be A-systems
for @, @,. A(@,) and A(®,) are called H-homotopic provided there is
an integer m e N such that the following property is satisfied:

For all je N there is an integer j,e¢ N such that for all [ = j,
there are maps

P =pbec A(D,),, ¥ = beAD),
where

Py, 9t Cu(K, 1) — Cu(K, 1) (L= D)
such that
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P =P IC*(E;h) and “—p\l: = "lrllc*(l_”ll)

are homotopic with an homotopy D satisfying the following condition,
for any simplex ¢ e 7% there is a point d(¢)e K such that

o Cst™(d(0), J)
carr Do C st™(H(d(o) x I), 7).

ExAMPLE 2.18. Let f,, f;: K — L be continuous and single-valued,
and let A*(f), A*(f;) be the A-systems induced by f;, f.. Let UC K
be open and polyhedral, and let H:U x I — L be a homotopy joining
filz and f,]3. Then, A*(f,) and A*(f,) are H-homotopic.

Proof. Define

K:=Kx{0uUxIUK x {1}
o=t Xx{0lU(E x Ut x {1}.

(By 7 x I we mean a product triangulation ¢ x p, where p is a
triangulation of I.)
Let H;: K, — L be the extension of H with

H1|Kx{0) =f1 ’ Hl[KX{l) =f2 .

Let je N. Set j,: = 4.
Choose H/be A*(H),(I = j,), and set

. o— ’ . —_ !’
P = H{bloyxxon » ¥ = Hb|oxxun s

and Do: = H/b (6 XI) (6 xI chain in (¢ XI)"). Thus, A*(f) and A*(f))
are H-homotopic with m = 2.

LEMMA 2.14. Let UC K be open and polyhedral, and let @, @,:
K— K be u.s.c.. Let AD,), A(D,) be A-systems for @, @, which are
H-homotopic.

If (K, H, U) is admissible for all tel, then the induced I-
systems M(K, U; A(®)) and MK, U; A(®,)) are homotopic (H,(x): =
H(z, t)).

Proof. We assume without loss of generality =n(A(9)) =
n(A(P,)) = 1. Choose ke N sufficiently large such that for all
(2, t)e U x I,

stz k) N oU = @ — st¥(z, k) N st(H(z, t), k) = @ .

For j = k we obtain from 2.12 an integer j, such that for all [ =
j, there are maps
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P = ¢1b € A<@1)l y Y= "ﬁ'lbe A(Qz)l

such that the restrictions &, and 4, are homotopic with an homotopy
D satisfying the properties described in 2.12.

Thus, the restrictions @ and 4 are homotopic with Db.

The proof that @ and + are admissible homotopic is similar to
the proof of 2.5, and is therefore omitted.

ProrosiTiON 2.15 (Homotopy Invariance). Let VC K be open,
and let @, P;:K— K be us.c.. Let H:V xI—K be an u.s.c.
homotopy joining @,|7 and @,|7, such that (K, H, V) is admissible
Sor all tel. Let A = A(D), A, = A(D,) be A-systems for @, @,
which are H-homotopic on U, where UCV 1is an open, polyhedral
subset such that V\U contains no fized points of H, te I

Then,

IL,(K,0,V)=1,K9,7V).
Proof. The proof follows immediately from 2.14 and 1.5.

4. Commutativity and mod-p property.

LemmA 2.16. Let @,: K— L, ®,: L —» M be u.s.c., and let A(D,),
A(®D,) be A-systems for @, @,. Then A: = A(D,)°A(D,) is an A-system
for 0,9,.

Proof. We assume without loss of generality
n(A(9) = n(A(P,) =1.
Let je N. Then for every ye K there is j(y)e N such that
Dy(st*(D:(y), I(¥))) C st(D,D,(¥), J) -

Since @, is u.s.c. and K is compact we find an integer j'e N, 7' = 7,
such that for every ye K there is a point u = u(y) € K such that

Y € st(u, J)
sti(@,(y), 7') C st (@,(w), j(w)) ,

and therefore,
Oy (st¥(D,(y), 7)) C st(D.D,(u), J) -

For j° we obtain by 2.8 an integer j, = 7(4(®,)) and an integer
J2 = 5(A(®,)). Let I, m = max{j, j.}.
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CuK, 1) -2 CuL, 1) — CuL, 1) -2 C,(M, 1)

{:{ @ [Z (¢80)] ,[X (I11) TZ

Cu(K, ms) —— CulLy m) —— Cy (L, my) —p G, m)

P =@becAD,),, ¢ = pbeAd,),
= anbe AD), , " = ibe A(D,), .

We show that @b, X and X+ribyr, are homotopic with a small homotopy.
Diagram (I) is homotopic commutative with a small homotopy D..
Diagram (III) is homotopic commutative with a small homotopy

D..

Diagram (II) is homotopic commutative with a homotopy D,
satisfying: carr D,o C carr X(o), for oe p™.
Hence, ¢'¢,X and X'y, are homotopic with the homotopy

D: =4, + 4, + 4,, where 4, = @bD,, 4, = @, Dyjr,
and 4, = Dby, .

We prove the smallness condition for 4, (the others being similar):
For a simplex ocez™ by 2.3 there is a point z,(c)e K such
that

o C st(2,(0), J')
carr D,o C st(®,(z,(0)), 7).

By choice of 5/ for the point z,(6) we can find a point u = u(z,(0))
such that

z,(0) € st(u, J)
0.(st*(9,(2,(0)), J')° C st(D,D,(w), 7) .

Define z(0): = u(z,(0)).
Then a straightforward calculation gives

o Cst’(z(a), 7)
carr 4,(¢) C st¥(@,0,(z()), j) .

Thus, D satisfies the smallness condition, and A4 is an A-system for
0,0, with n(4) = 2.

PrROPOSITION 2.17 (Commutativity). Let Wc K be open, and
let 9:K—L,®,:L—K be us.c.. Let A, = A@D), A, = A(®D,) be A-
systems for @, @,. Assume that (K, 0,0, W) and (L, .0, O;7(W))
are admissible, and that the following condition is satisfied:
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y € Fix(0,0,)\0; (W) = 0,(y) N Fix(0,0,|y) = @ .
Then

IAIAZ(L; 0,0, o, (W) = IAZAI(Ky @2@1, w).

Proof. We assume without loss of generality n(4,) = n(4,) = 1.
Define

B,: = &;( W) N Fix(2,9,)
B,: = Fix(@1¢2)\¢2_1( w)
B;: = Fix(0.0)NW .

There is an integer %k, ¢ N such that st*(@.B), k) CW.
Let ©& c L be an open set such that

B.cz, 0()C Sl @By, k) .

There is an integer I,e N such that st*(B, l,) C 2.
Define

V: = int st(B,, 1,) .

Since @,(B,) N B; = @&, there is k, = k, such that

stA(@y(B,), k,) N st(By, ko) = O .
Define

U: = intst(B, k) C W .
There is an open set ¢, D B, such that
PNOTH(W) = @, O() CsUDu(By), k) -
Therefore, there exists [, N, [, = [, such that
st’(B,, ) C & -

Define V,: = st(B,, 1), Vo = L\V,.

Since for all zeC: =W\U, x¢ ®,0,(x) we obtain from 2.7 an
integer l,, and since for all xeC": =TV\V, x & 0,0,(x), we obtain from
2.7 an integer I (I, = k., ls = 1,).

Set j: = max{l, I}, and define k: = max{j.(A), j;(4,)}. Thus, the
assumption of 1.6 is satisfied, and we obtain

IAzAl(K} qu@l’ U) = IAlAz(Lr @1¢29 V) .

EXAMPLE 2.18. Let WcC K be open, and let f: K—L,g:L—K
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be continuous and single-valued such that (K, gf, W) is admissible.
Then

(K, gf, W) = i(L, fg, g7(W)) .

Proof. Let A, = A*(f), A, = A*(g) be the A-systems induced by
f and g. Then by 2.17

Lyu(K, 9f, U) = Lia(L, fg, V) .

(U and V are chosen as in the proof of 2.17.) Since A*(gf). N
(4,04), = @ and A*(fg), N (A;04,), # @ for all ke N, this implies

'L(Kr gf9 W) = @(Ly fgy g_l(W» .

ProrosITION 2.19 (Mod-p Property). Let F=Z, p prime. Let
Wc K be open, and let @: K— K be u.s.c., such that (K, ®, W)
and (K, @*, W) are admissible. Assume the following condilion is
satisfied:

y € Fix(0*\W — 0*(y) N Fix(??|5) = @ for L=<k <p.
Let A = A(®) be an A-system for @. Then
I(K, &, W)= LK, 0, W) (in F)

(A? = Ao --- 0 A, p times).

Proof. Without loss of generality we assume n(A) = 1. More-
over, we give a proof only for p =2, for »p > 2 the proof runs

along the same lines.
Define B,: = Fix(®*) N W, B,: = Fix(®*)\W.
Since @(B,) N B, = @, there exists k, € N such that

st(P(B,), k) Nst(B, k) = @ .
Define
U: = int st(B,, k,)

Since @ is u.s.c. there is an open set & DB, & c K\W, such
that

() Cst(d(B,), k) .
There exists k, = &, such that st*(B,, k,) © 2. Define
Vi = st(By, k) .
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Since for all € C: = K\V\U, x ¢ ®*(x), we obtain from 2.7 an integer
l,=k. Set j=1, and define

k: = j,(4).
Then the assumptions of 1.7 are satisfied, and we obtain

IA(K, (pi U) = AQ(Ky sz U) (in Z2) .

EXAMPLE 2.20. Let WcCK be open, and let f: K— K be continu-
ous and single-valued. Let (K, f, W) and (K, f?, W) be admissible,
p prime, and assume that for all z e Fix(f?|y),

Zr, f(x)y Tty fp—l(x)e w.
Then

UK, f, W) =K, f*, W) (in Z,).

Proof. Let A = A*(f) be the A-system induced by f. Then,
by 2.19

IA(K’ j; W) = A”(K’ fp, W) .
Since

(A*(MAe N A*(f"), # @ for all keN,
this implies

oK, f, W) =K, f7, W) (in Z,).

REMARK 2.21. (1) The mod-p result of 2.20 was announced in
1971 by Zabretko and Krasnosel’skil, however they gave only a
sketeh of proof [45]. A first complete proof (independent of [45])
was presented by Steinlein in [40]. Steinleins proof is of analytic
nature and rather complicated. In the meantime, several proofs for
the mod-p result (for single-valued maps) appeared [16], [25], [41],
[42], [43], but all these proofs are based on certain transversality
arguments. Thus, they can not be generalized to multivalued
mappings.

(2) The essential ingredients for our proofs in Chapter II are
a “simplicial structure” of the spaces and barycentric subdivision.
These ingredients were axiomatized by Browder [5] in order to define
‘semi-complexes’. Thus, our results should generalize to Browder’s
category of semi-complexes.

III. Existence of A-systems. In this chapter we construct A-
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systems for certain classes of multivalued mappings @: K — L. It
turns out that the existence of an A-system for acyclic maps is—
implicitly—contained in Vietoris’ (and Begle’s) proof for the Vietoris-
Begle mapping theorem [1], [44]. Also Eilenberg and Montgomery
used chain approximations in their proof of the Eilenberg-Montgomery
fixed point theorem [12].

In [35] O’Neill gave a construction of chain approximations for
continuous (=upper- and lower semi continuous) multivalued mappings
@ such that @(x) is acyclic or consists of » acyclic components (n
fixed) for all . Moreover, he proved an “abstract” Lefschetz fixed
point theorem for this class of mappings. Our approach of con-
structing A-systems is similar to O’Neills approach in [35]. How-
ever, we do not need continuity but upper semi continuity for the
mapping. The basic ingredients for constructing A-systems are based
more or less on Vietoris’ work.

0. Preliminaries. In this paragraph H, will denote Cech ho-
mology with coefficients in a field F, [13].
Let X, Y be compact Hausdorff spaces.

DEFINITION 3.1. Let @: X —Y be a multivalued map. @ is called
acyclic (more precisely, F-acylic) provided

(i) @ is u.s.c..

(ii) H,(@@) =0 for all xe X (H = reduced homology).

DEFINITION 8.2. Let p: X —Y be continuous. p is called Vietoris
mapping (more precisely, F-Vietoris mapping) provided

(i) o is onto

(ii) p™(y) is acyclic for all ye Y.

REMARK 3.8. Let @: X—Y Dbe acyclic, let

I'@): ={x, yeXxY|yed()}
be the graph of @, and let
x 2 re-Lv
r—i(®, y)—y

be the natural projections.
Then, I'(®) is compact, and p is a Vietoris map.

DEFINITION 3.4. Let @: X —Y be acyclic, and let p, ¢ be the
natural projections.

Because of the Vietoris-Begle mapping theorem [1], [44] the map
vy H(I'(®)) — H(X) is an isomorphism.
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The map
@*: = Q*p;1: H*(X) —_ H*(Y)

is called the induced homomorphism of @.

1. Acyclic mappings and A-systems. In the following (K, 7)
and (L, ) will always denote compact polyhedra with triangulations

7 and .

LEMMA AND DEFINITION 3.5. Let @: K— L be acyclic, and let
le N. Then, there exists an integer 1,=1 and a chain map (“l-chain
approximation of @)

Pyl C*(K, ly) — C*(L, D)

with the following properties:
(1) o, is augmentation preserving, i.e., @, maps a vertex into

a vertex.
(2) For any simplex oeth there is a point p(c) € K such that

o C st*(p(o), 1)
carr @,0 C st(@(p(a)), 1) .
Any chain map satisfying (1) and (2) is called an l-chain approx-
imation of Q.

A proof of 8.5 will be given in the appendix.

REMARK 3.6. In analogy with simplicial approximations of single-
valued mappings chain approximations of @ are not unique.

DEFINITION 8.7. Let @: K — L be acyclic. Then
AX(®@): = {A*(D)j}jen

with A*(®),: = { = ¢,b| P, j-chain approximation of @} is called the

A-system induced by O.
The following lemma justifies the definition above, i.e., it proves

that A*(®) is actually an A-system.

LEMMA 3.8. Let @: K— L be acyclic. For all je N there is
an integer j, such that for all I, m = ji(m =1) and for all ¢ =
Pbe A¥(D), ¥ = be A¥(D),

X and X4, are homotopic with a small homotopy ,

i.e.,
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the diagram

C(K, 1) 25 C (L, 1)

k I

C*(Ky m,) “1/,—) C*(L’ m)

18 homotopy commutative with a chain homotopy D satisfying the
SJollowing smallness condition,

Sfor any simplex g™ there is a point c¢(o) € K such that
g C st¥(c(a), 7)

carr Do C st(9(c(a)), 7) -

Lemma 3.8 will be proved in the appendix.
The following lemma is proved in the same way as 3.8.

LEMMA 3.8". Let @: K— L be acyclic. For all je N there is an
integer j, such that for all I, m = j,(m = 1) the following holds:

If ¢, is an n — l-approximation (see (2.1)) of @, and if 4, is an
bk — m-approximation of @, and if @, and 4 are augmentation
preserving, then

@ X and X+, are homotopic with a small homotopy D ,

i.e., there is an integer 1€ N such that for any simplex o € v™ there
18 @ point c(o)e€ K such that

o C st¥(c(a), 7)

carr Do < st{(@(c(o)), J7) -

In view of the normalization property the following corollary is
important.

COROLLARY 3.9. Let @: K — L be acyclic. There is an integer
k.e N such that for all k =k, and for all k-chain approximations
P, of @:

(@1)* =0, H*(K) — H*(L) .
Proof. The proof follows from [1] and 3.8.

In the following we list some classes of multivalued mappings
which have A-systems.
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ExAaMPLE 1. The class .7~ [38] of all multivalued mappings
@: K — L which can be “factorized”,

O =00 00,

where @,: X, — X,,, are acyclic maps of compact polyhedra (X, = K,
X, = L) has an A-system. (One can replace X, ---, X, by compact
Hausdorff spaces.)

ExAmpLE 2. The class &7 of all ‘admissible’ [17] multivalued
maps @: K — L has an A-system.

ExAMPLE 3. The class of all u.s.c. multivalued maps ¢: K — L
for which there exists a “single-valued” approximation, i.e., for all
ke N there is a continuous single-valued mapping f,: K— L such
that

fu(®) e st(@(x), k) , for all ze K,

has an A-system, see e.g., [2], [8], [31], [32].

ExAMPLE 4. It can be shown that the class of all continuous
(u.s.c. and l.s.c.) mappings @: K — L, where @(x) is acyclic or has n
acyclic components (n fixed) [34], has an A-system.

REMARK 3.10. Any u.s.c. multivalued mapping for which there
exists an A-system has an induced homomorphism in homology in
the sense of O’Neill [34]. Because there are multivalued mappings
which do not have an induced homomorphism, see [34], there are
multivalued mappings which do not have an A-system.

IV. Fixed point index for acyclic maps. In this chapter we
apply the results of Chapters II and III to define a fixed point index
for acyclic maps. In the following (K, r) and (L, ) will always
denote compact polyhedra with triangulations = and .

1. Definition of fixed point index. Call an A-system for an
u.s.c. mapping @: K — L regular if all p e A(®),, k€ N, are augmenta-
tion preserving.

ProprOSITION 4.1. Let UcC K be open and polyhedral, and let
@: K — K be acyclic. Let (K, @, U) be admissible. Let further A, =
A(D), A, = A,(D) be two regular A-systems for O.

Then, the induced I-systems M(K, U; A) and MK, U; A,) are
homotopic.
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Proof. Follows from 3.8'.

DEFINITION 4.2. Let Uc K be open, and let @: K — K be acyclic
such that (K, @, U) is admissible. Then

WK, 0, U): = I(K,0, U)ecF,

where A = A(Q) is any regular A-system for @, is called the fixed
point index of @ on U. Because of 4.1 and 1.5 the definition of
(K, @, U) is independent of the choice of A(®D).

2. Properties of the fixed point index. In order to obtain
homotopy invariance for our fixed point index we need a lemma.

LEMMA 4.3. Let UC K be open and polyhedral. Let @, @, K—
L be acyclic, and assume that .|z and O,|7 are homotopic with an
acyelic homotopy F:U x I — L. Then, for all le N there is l,6 N
such that for all k=1, there are maps @ = @bec A*(D);, & =
yib € AX(D,),,

Py Pt C*(K, k) — C*(L, k)

such that @,: = @log.uy and ¥: = Yu|c.@ny are homotopic with a
chain homotopy D satisfying the following property,
for any simplex g, c CU there is a point d(c)e K such that

o Csti(d(a), 1)
carr Do C st*(F(d(g) x I), 1) .

Proof. Let le N. For we U there is an open neighborhood <,
such that F(&, x I)cCst(F(x X I),1). We can assume that the
covering {Z,}..7 is a refinement of the star covering sit(z'). Let
,: = {7, )i-, be a finite subcovering of U.

Then there is [, N such that

{int st*(a, 1,)| o € %}

is a refinement of w,.
Set
K=Kx{0)uUxIUK x {1}
to=7tX{0Ur x IU7 x {1},
and let F: K,— L be the extension of F such that F,|x.o = @,

FIIKX{I} = @,.
Choose k = I,.
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Because of 3.5 there is a k-chain approximation of F,
Iy C(K,y, k) — C (L, k) .

Define @.: = & |axxionty Vi = Hilovkxinig, (P can be constructed in

such a way that o, +, are k-chain approximations of @, @,) and

define Do: = #,(0 x I), where ¢ X I is a chain in (z x I)*.

Now let oet®, 6 cU. Write ¢ x I =Y, 0; (Chain in (¢ x I)%).
Since ¢, is a k-chain approximation, for any o, there is a point

() e U x I such that

o; C st¥(p(0)), k)
carr ¢,0, C st(F(p(o,)), k) .
(p(o;) = (p;, 1), tie 1)

Denote by & the simplex in z' such that ¢ c&. There is an
open set &, e w, such that st*(d, l,) © &7,. Therefore,

F(st(o, k) x I) C st(F(x x I),1).

Because of p; e st(o, k), carr 9,0,Cst* (F(xxI),1). Thus, carr DoC
st'(F(x x I),1).
Set d(o): = x, and the proof is finished.

THEOREM 4.4. The fixed point index ‘i(K, @, U) for acyclic
maps has the following properties:

I. HOMOTOPY INVARIANCE: Let F:U x I— K be an acyclic ho-
motopy joining @.|z and @,|7 such that (K, F,, U) is admissible,
tel. Then

i(K, 0, U)=1iK, 0, U).
II. AppitivitY. Let U, U,c U be open, disjoint subsets of U.
If Fix(@|5) c U, U U, then
i(K’ ¢9 U) = 'L(K, ¢, Ul) + Z(K’ @7 U2) .

III. NORMALIZATION. (K, @, K) = A(®,: H . (K) — H.(K)).

DerFINITION 4.5. Let X, =K, X, ---, X,;; = K be compact poly-
hedra, and let ¢;: X, > X;,,,7 =0, ---, n be acyclic. Let Uc K be
open, and let (K, @, U) be admissible where @ = @,0 - °@,.

Then

(K, 0, U): =I,(K,0,U),
where A = A(D,)o -+ cA(®,) for regular A-systems A(®;) of @,, is
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called the fixed point index of @ in U.

Because of 4.1 the definition is independent of the choice of
A-systems A(®)).

COMMUTATIVITY 4.6. Let @,: K — L, ®,: L — K be acyclic, and let
(K, @.0,, U) and (L, 0,0, &;%(U)) be admissible. Assume that for all
y € Fix(9,0,)\0;*(U),

@2(?1) n Fix(@z@JE) = .
Then
(K, 0,0, U) = i(L, 0,9,, D;( ).

COROLLARY 4.7 (Reduction property) [15]. Let Uc K be open,
and let L C K be a polyhedron such that ®(K)c L. Let (K, ®, U)
be admaissible. Then

'L<K’ @y U) = /L(L: @IL; L N U) .

MOD-P PROPERTY 4.8. Let pe N be prime, and let (K, @, U) and
(K, @7, U) be admissible.
Assume that for all y ¢ Fix(@?)\U

Oy)NFix(@*|3) =0, 1=k<p.
Then
WK, 0, U) = iK, 0, U) in Z,.

Proofs of 4.4-4.8. The homotopy invariance follows from 4.3,
2.14 and from 1.5. The additivity follows from 2.8. The nor-
malization follows from 3.9 and the Hopf trace formula, e.g., [6,
p. 6].

The commutativity follows from 2.17. and the mod-p property
follows from 2.19.

Concluding remarks. (1) The results of the paper were proved
for mappings on compact polyhedra. But, it should be possible to
extend our fixed point index (including all properties) to compact
metric ANR’s by using retraction arguments, see [6], or by gener-
alizing the theory to Browder’s semi-complexes.*

(2) There are two natural questions which remain unsolved:

Problem 1. How is the fixed point index introduced by Calvert

* Added in proof: See G. Skordev, Fixed point index for ANR’s preprint, University
of Bremen, July 1981.
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[7] related to the fixed point index presented here?

Since regularization techniques (e.g., the ‘Hopf construction’ [23],
[6]) do not apply to acyclic maps, the problem can not be solved in
the way known from single-valued maps.

Because of the same reason it is unclear whether fixed point

index for acyclic mappings is uniquely determined by certain ax-
ioms:

Problem II. Is a fixed point index for acyclic maps (say on
polyhedra) uniquely determined by the properties Homotopy invar-
tance, Additivity, Normalization and Reduction property?

APPENDIX. In this appendix we give proofs of Lemma 3.5 and

of Lemma 3.8. In order to prove Lemma 8.5 we need two further
lemmas.

LEMMA A. Let K be a compact polyhedron with triangulation T,
and let Cc K be a closed subset of K which is acyclic, H,(C; F) =0
(H, = reduced Cech-homology; F = field).

For I Z k let 4,,: C,= C, be the inclusion, where

Ci: =st(C,j), jeN.
Then for all ke N there is k€ N such that
(Legi)s: Hy(Cr) — H,(Cy)
18 trivial.

Proof. The proof follows from the continuity of éech—homology,
see [13].

LeMMA B. Let (K, 7), (L, ) be compact polyhedra with triangula-
tions © and p, and let @: K — L be acyclic. Let k), ne N.

There are numbers k,, ---, k.., € N such that for any simplex
otk there exists an integer k,(0),0 =1 = mn, and there exists a
point a(o) e K such that

(1) ko<k1< <kn+l

k; > k,_,(0) for all oceth.
(2) For any simplex o€tk

o C st¥(a(o), k;_,)
O(st¥(z, k) C st(@(al0)), k;_,(0))
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(3) iy H,(s8(®(a(0), ki (0)) = H,(st(®(a(0)), k:_)) is trivial
(1 = inclusion).

Proof. The proof proceeds by induction on n. We give a proof
only for » = 0.

Because of Lemma A for any ye K there is k,(y) € N such that
iyt Ho (st°(0(1)), ko(y) — H,(st(D(y), kv))

is trivial (¢ = inclusion).

Moreover, for y€ K there is a neighborhood &, K of y such
that @o(2,) C st(@(y), k(y)) and such that 7, is contained in some
element of si(c*). Let w, = {Z,}i-, be a finite subcovering of w =
{Z},.x- Choose k,€ N such that k, > max{k, k,(v.), -- -, ki(y.)} and
such that

{int st¥(a, k,) | 0 € T}

is a refinement of w,.
For oet™ define a(o): = y,, where st'(o, k,) C &,,, and ky(o): =
ko(y.).

Proof of Lemma 3.5. Let le N, and let @: K— L be acyclic.
Applying Lemma B with k, =1 and #» = dim K we obtain a se-
quence of numbers k, < k, < -+ < k..
Define I,;: = k,.4.
We will construct successively a chain map

P, C*(K, ly) — C*(L, lo)

with the following properties:

(1) &, is augmentation preserving

(2) For any simplex cet with dimo = ¢ there is a point
p(0) € K such that

o C st((p(0), k._.)
carr $,0 C st(@(p(0)), k,_.) .

Composing @, with X: C.(L, 1,) —» C,(L,1) we obtain the desired
chain approximation of @:

Construction of &,:
1 =0: Let g, be a vertex of z%. Because of Lemma B there

is a point a(g,)e K. Set &(0,) = a, where a is a vertex of ¢ which
is contained in st(@(a(oy)), k,). Define p(o,): = a(o,).
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1> 0: Assume @, is defined on simplices ¢ of dimension ¢ — 1,
and satisfies the conditions (1) and (2).
Let oez with dimo = 4.
Let & e t*»+1-¢ such that dimé = ¢ and & D X(0).
Because of Lemma B there is a point a(é) and a number k,_,(G).
Write oo = >, 0,(dim g, = 1 — 1).
By assumption there are points p(o,) such that

Gs C Stz(p(gs)y kn+1—i)
carr ¢,0, C st(@(p(0,)), Kori-i) -

Since @(p(0,)) C st(@(a(a)), k,_(T))
carr p,00 C st*(@(a(d)), k._:(6)) .
By our inductive assumption, the following is a cycle
@,00 € C,_,(st(D(a(d)), k,_.(5)), L,) .

Hence, by Lemma B there is a chain ¢ e C(st(@(a(d)), k._:), l,) such
that oc = $,90.
Thus, define @,(0): = ¢, p(0): = a(d).

Proof of Lemma 8.8. Let je N, and let @: K— L be acyeclic.
Applying Lemma B with %k, = 7 and » = dim K we obtain a sequence
of numbers k, < k, < -+ < koy,-

Define j;: = k, ...
Let m =1 = j, and let @ = pbe A*(@),, + = b A*(D),,

P C*(K’ l)— C*<Ly D)
";’flz C*<K; ml) — C*(L, m) .

We will construct successively a homotopy D,
D;: Cz(K, m,) — CH—I(L’ D)

such that

(1) X’II’& - §D1x = aDi + Di—la

(2) For any simplex o€ ™, dim = 7, there is a point ¢(o)e K
such that

gC St3<0(a), kn—i)
carr D,o C st(®(c(0)), k._;) -

Construction of D:

i =0: Let o, be a vertex of ™, and set ¢: = X(o,) e Th, 6: =
A(o,) e t?1. Since @, is a chain approximation we find a point p(5)
satisfying the conditions of 3.5, and since + is a chain approximation
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we find a point p(o,) satisfying the conditions of 3.5. Moreover,
from Lemma B we find a point a(&). 2(G), p(g,) and a(é¢) have the
following properties:

p(d), p(0,) C st*(d, j,)
o(p(a)) U @(p(ay)) C st(@(ald)), k.(5))
carr X0, U carr ¢,Xa, C st*(@(a(d)), k,(5)) .

Because of Lemma B,
iyt H, (st%(D(a(8), k.(6))) — H,(st(P(a(d)), k.))

is trivial (4 = inclusion).
Since @, 4, are augmentation preserving, and since [ > k,, there
is a chain ¢, € C,(st(®(a(d)), k,), ) such that

oc, = Xaroy — P X0, .

Set Dyo,: = ¢, c(o,): = a(F).

¢ > 0: Assume D; is defined for j < ¢ and satisfies the desired

properties.

Let cet™, dimo = 1.

Let et be the simplex with X(o) ©é, dimd = 4, let &€ Fr+1-t be
the simplex with (o) C G, dim & = 7.

Since @, is a chain approximation we find a point p(G), and since
or, is a chain approximation we find a point p(s). Moreover, from
Lemma B we find a point a(§). »(d), »(o), and a(F) satisfy the fol-
lowing properties:

p(O'), p(&.) c Stg(azy kn+1—i)
?(p(0)) U @(p(a)) C st(P(a(5)), k._i(d))
carr X0 U carr ¢, Xo C sti(D(a(d)), k,_.(F)) .

Write o6 = 3,0, dimo, =1 — 1.
By assumption there is a point ¢(o,) such that

C(Gs) o 3t3(&, kn+1—i) .
Therefore,

?(c(0,)) C st(P(a(d)), k,-.(8))
carr D;_,o, C st¥(@(a(d)), k,_(5)) .

Thus,
carr D,_,00 C st{(@(a(5)), k,_.(5)) .
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Set ¢: = X0 — p Ao — D,_jd0.
Then carr (¢) C st*(@(a(d)), k,_.(5)) and oc = 0.
Because of Lemma B there is a chain

Ci11 € Ciyy(st(D(a(0)), k,-3), 1)
with
ac,;+1 =C.

Set D,o: = ¢;,4, ¢(0): = a(F).

Note added in proof. This single-valued case was treated in-
dependently (using essentially O’Neills definition) by G. Fournier in
[46].
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