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FIXED POINT INDEX AND CHAIN APPROXIMATIONS

H. W. SlEGBERG AND G. SKORDEV

Localizing the Lef schetz number of certain chain approx-
imations of upper semi continuous multivalued mappings a
new approach to fixed point index is given. It turns out
that this fixed point index satisfies the commutativity pro-
perty as well as the mod-p property (known from the single-
valued case). In particular, in the single-valued case the
proof of the mod-p property is a natural consequence of a
corresponding property of (global) Lefschetz number.

Introduction* The aim of the present note is to provide a
unified approach to fixed point index theory for single-valued mappings
as well as for certain classes of multivalued mappings (e.g., acyclic
mappings) on compact polyhedra.

Fixed point index theory was initiated in 1926/1927 by S. Lefschetz
[27] with his celebrated fixed point formula on manifolds (with
triangulation), and it was generalized one year later by H. Hopf [23]
to compact polyhedra. (For a good survey of fixed point index
theory we recommend [14].) Later, after the classical paper of J.
Leray and J. Schauder [30] (1934) the problem of generalizing and
extending the Leray-Schauder theory resp. the fixed point index
theory arose in a natural way. In the forties J. Leray [28], [29]
succeeded in developing an index theory for the category of 'convexoid
spaces' which are in some sense homological generalizations of
simplicial complexes, see also [4]. The techniques introduced by
Leray are very general; indeed, his cohomology theory is the pre-
cursor of modern sheaf cohomology.

In 1953 B. O'Neill [34] rederived—for the category of compact
polyhedra—the principle results of Leray's theory (and Hopf's re-
sults), and, moreover, he proved that fixed point index is uniquely
determined by certain axioms (in the category of compact polyhedra).
In 1960 F. E. Browder [5] extended fixed point index theory to
'semi-complexes' by finding appropriate algebraic analogues of the
properties of fixed point index for chain mappings.

All these results use definitions of fixed point index based on
certain induced chain mappings. A purely homological approach to
fixed point index (on manifolds) was discovered in 1965 by A. Dold
[9], [10], see also [11] where Dold extends his technique to coincidence
problems.

There are essentially two ways to handle multivalued fixed point
problems. The first one is based on homological arguments and roots
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in the early work of L. Vietoris [44] (and of E. Begle [1]) where
the 'Vietoris-Begle mapping theorem' is proved, and where for acyclic
maps induced homomorphisms in (Vietoris-) homology are defined.
Using the Vietoris ( — Begle) mapping theorem S. Eilenberg and D.
Montgomery [12] in 1946 generalized the Lef schetz fixed point theorem
to acyclic mappings (on compact metric ANR's). The other way to
deal with multivalued fixed point problems is influenced by homotopic
considerations, and detects fixed points of the multivalued map Φ by
fixed points of single-valued 'approximations' of Φ. Early examples
of this procedure were given by J. von Neumann [33] and by S.
Kakutani [24]. For a survey of both methods we recommend [2].

The first approach to degree resp. fixed point index of multivalued
(convex or acyclic) mappings goes back to A. Granas [19] and to A.
Granas and J. W. Jaworowski [20] in 1959. Further approaches to
degree of multivalued mappings based on single-valued approximations
were introduced by A. Cellina and A. Lasota [8] and by Yu. G.
Borisovic et al. [3].

In 1970 B. D. Calvert [7] gave a homological definition of fixed
point index for acyclic maps which runs along lines similar to [9]:
Using the Vietoris-Begle mapping theorem Calvert applies Dold's
technique to the induced homomorphism of the acyclic map. In
[21] and [26] there are similar homological approaches. We refer
also to [15] where Calvert's index of 'repulsive' fixed points is
computed.

A common lack of all these approaches to fixed point index of
multivalued (e.g., acyclic) maps is that it is unclear whether the
commutativity property holds, see [7], [15], [18]. Beside some special
cases there is no proof for this property [7], [15]. Moreover, it is
not known whether the mod-p property in the sense of Zabreϊko-
KrasnoseΓskiϊ-Steinlein, i(X, f, U) = i(X, fp, U)modp, p prime, is
satisfied, see [15], [18], [37].

In this paper we will give an affirmative answer to these two
questions provided an alternative definition of fixed point index is
used. We shall define a fixed point index for a multivalued (acyclic)
mapping by associating to this map a chain map ("chain approxima-
tion"), and by computing the 'local' Lefschetz number (in the sense
of O'Neill and Browder) of that chain map.

The paper is organized as follows:
In Chapter I we describe algebraic analogues of properties of

the fixed point index for chain mappings (including commutativity
and the mod-p property). In Chapter II chain approximations and
corresponding fixed point indices are discussed, and in Chapters III
and IV the results of I and II are applied to acyclic mappings on
polyhedra. Finally, we remark that in the single-valued case proofs
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(e.g., the proof of the moά-p property) become considerably easier
provided classical simplicial approximation is used.

ACKNOWLEDGMENT. We would like to thank Prof. H. 0. Peitgen
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I. Index and chain mappings* Since the fundamental papers
of Leray [28], O'Neill [34], and, in particular, of Browder [5] one
knows that 'local Lef schetz numbers' of chain mappings have algebraic
properties which are in analogy to corresponding properties of the
fixed point index (Homotopy invariance, Normalization, Additivity,
Commutativity). In the following we will recapitulate this fact,
and, moreover, we will find a mod-p property which is easy to prove,
and which provides the corresponding mod-p property for the fixed
point index.

In what follows K — (K, τ) and L — (L, μ) will always denote
compact polyhedra with fixed triangulations τ resp. μ.

O* Preliminaries and notations. For I 6 N1 and a triangulation
τ we denote by τι the ith barycentric subdivision of r. A subset
UdK is called polyhedral provided there is an integer leN such
that τι induces a triangulation of the closure Ό of U. Let BaK
and ke N. The Jcih star of B in τ,

st\B, τ) ,

is defined recursively as follows:

st\B, τ): = st(B, τ): = U {σ e τ \ σ n B Φ 0}

st\B, τ): = st(stk~\B, τ), τ) , fc > 1 .

(Simplices are always assumed to be closed.)
For I e N and a field F denote by C*(Kf I) the oriented chain

complex C*(K, τι\ F), see [39, p. 159].
If C and C are two chain complexes (over F) denote by

horn (C, C) the space of all chain mappings φ\ C —> G. Let c e
C*(K, τ). The carrier of c, carr(c), is the smallest polyhedral subset
XdK such that ceC*(X,τ), see [10, p. 198].

DEFINITION. Let <p: C*(K, τ) -> C#(K, τ) be a chain mapping, and
let σ, σ' e Cn(K9 τ) be two simplices of dimension n.

σ' is contained in φ(o)f σ' eφ(σ), provided σ' is contained in the
irreducible representation of φ{σ) (with respect to the basis of Cn(K, τ)
which consists of all simplices of dimension n) with a nonzero coef-
ficient.

1 N — natural numbers.
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σ is called a fixed simplex of φ iff σeφ(σ).

Let 16 N. Then b: C*(Kf τ) -> CJJK, I) is the subdivision chain
map which maps each chain of C*{K, τ) into its Zth barycentric
subdivision [10, p. 40]. By X: C*(K, ί)-> C*(K, τ) we denote any
chain mapping which is induced by a simplicial approximation of
ld:(K,τι)-^(K,τ), [10, p. 119].

Let V — {Vq}qeN be a graded F-vector space with d i m F < oo,
and let β = {βg}qβN be an endomorphism of V of degree zero.

Then

Λ(β): = Σ (~1)9 tr(/3g) (tr = trace)
N

Σ ) (/3g)
qeN

is called the Lefschetz number of β, [10, p. 208].

1* Index systems*

DEFINITION 1.1. Let UaK be open and polyhedral. A graded set

M(K, U) = {M(K, U)k}keN

where M(K, U)k(Zhorn(C*(U, k), C*(K, k)), is called Index system
(I-system) on U provided the following properties are satisfied:

There is an integer k0 = ko(M(K, U)) such that for all I, keN,
l^k^k0, and for all φx e M(K, U)k, φ2 e M(K, U\

( i ) φι and Xφ2b are admissible homotopic, i.e.,
the diagram

C+(JJ,k) >C*(K,k)

I Ψl ΐb\ \x

is homotopy commutative with a chain homotopy D which satisfies
the following boundary condition,
for any simplex σeτk with st(σ, k) Π dU Φ 0 ,

carr Dσ Π st(σ, k) — 0 .

(st( ,τk) is abbreviated by st(-,k) in the following.)
(ii) φ2bX\ϋ and φ2 are admissible homotopic.

(Z \ΰ\ = Z \c*Cΰ,i))

REMARK. In the definition above we did assume that U is already
polyhedral in τ, otherwise we have a graded set {M(K, U)k}k^h where
U is polyhedral in τι°

To any I-system M(K, U) we associate a ΊocaΓ Lefschetz number
which will be called the index of M(K, U).
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LEMMA AND DEFINITION 1.2. Let M{K, U) be an I-system, and
let l^k^ ko(M(K, U)).

Let φx 6 M(K, U)k, φ2 6 M(K, U)lm

Then

Λ(πφλ) = Λ(πφ2) ,

where π = π~u. C*(K, k) -> C*(U, k) resp. G*(Kf ΐ) -+ C*(U, I) are the
natural projections.

I(M(K, U)): = Λ(πφ) eF, φeM(K, U)k , k ^ ko(M(K, U)) ,

is called the index of the I-system (M(K, U).

Proof Since φx and Xφ2b are admissible homotopic we have
Λ(πφj) = Λ{πlφ2b), [5, p. 274]. Moreover, one computes Λ{πlφ2b) =
Λ(Xπφ2b). Since the trace is commutative, and since φ2bΊL\u and φ2

are admissible homotopic, Browder's lemma applies again,

Λ(Xπφ2b) = Λ(πφ2) .

Hence, Λ{πφx) = -4(τr9>2).

In the following we list some properties of I(M(K, U)):

PROPOSITION 1.3 (Addίtίvity). LetM = M(Kf U) be an 1-systeτn,
and let Ul9 U2aU be open, disjoint subsets which are polyhedral.
Assume that

M<: - M(K, U)\Vi: = {M(K, U)k\τ^N ,

where M(K, U)k\u.: = {φ\j.\φeM(K, U)k], are I-systems for i = 1, 2.
Assume further that the following condition is satisfied:

There is an integer k' eN such that for all k ^ kf there is a
map φ 6 M(K, U)k with the following property,
for any simplex a e τk with st(σ, k) Π (U\( Ux U U2)) Φ 0,

carr <p(σ) Π st(σ, k) = 0 .

Then

DEFINITION 1.4. Let M(K, U) and M\K, U) be I-systems.
M(K, U) and M\K, U) are called homotopic, provided there is an
integer kft e N such that for all k ^ k" there are maps φ e M(K, U)k

and φ' e M'{K, U)k which are admissible homotopic.

PROPOSITION 1.5 (Homotopy Invariance). Let M(K, U) and
M'(K, U) be two I-systems which are homotopic. Then
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I(M(K, IT)) = HM\K, U)) .

2. Commutativity and mod-p property* If C, C, C" are chain
complexes (over F), and if Achom(C, C), Bchom(C, C"), define

βo A: = {fo^ I ψ e £, 9 6 A} c hom(C, C") .

PROPOSITION 1.6 {Commutativity). Let UaK,VciLbe open and
polyhedral subsets of K resp. L, and let

A(K, L) = {A{K, L)k}keN , A(L, K) =

δe graded sets where

A(K, L)k a horn (C,(Z, fc), C^L, fc))
A(L, JΓ)fc chomίC^L, Λ), C»(iΓ, k)) .

Assume

A{K, L)oA{L, K): = {A(K, L)k<>A(L, K)k}keN

and

A(L, K)oA{K, L): = {A(L, K)k°A{K, L)k}keN

are I-systems on U resp. V, and denote them by M{K, U) resp.
M(L, V).
Assume further that the following condition is satisfied,
there is an integer keN such that for all k ^ k \there are maps
φ e A{K, L)k, ψ 6 A(L9 K)k with the following properties:

( i ) For any simplex σeμk, σaV,

σίeψ(σ), σ^ϋ-=> σ<£φ(σλ)

(ii) For any simplex a Gτk, σ aϋf

<*i e φ(σ), σx Φ V ==> σ

Then
I{M{K, U)) = I(M(L, V)) .

Proof. Choose k sufficiently large such that

, U)) = Λ(πdoψoφ) , l(M(L, V)) =

where φe A(K, L)k, ψeA(L, K)k, φ: — φ\jj, ψ: = φ\ψ, and where ψ
and ψ satisfy properties (i) and (ii). Choose bases of Ci(K, k) and
Ci(L, k) consisting of simplices of dimension i, 0 ^ i ^ dim K, dim L,
and compute the matrix representations of

, k) > Ct(U9 k)
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with respect to those bases.
It follows immediately that the traces of πΰ°<f°φ and πγ°φ°ψ

coincide, and, hence, we obtain

I{M(K, U)) = I(M(L, V)) .

PROPOSITION 1.7 (Mod-p Property). Let F = ZP9 p prime. Let
UczK be open and polyhedral.

Let A(K, K) = {A(K, K)k}keN be a graded set where

A(K, K)k c hom(C,(ίΓ, k), C*(K, k)) .

Assume that A(K, K) and A(K, K) o A(K, K) o . . . o A(K, K){p times)
are I-systems on U, and denote them by M(K, U) and MP(K, U).
Assume further that the following condition is satisfied,
there is an integer k eN such that for all k ^ k there is a map
φ 6 A(K, K)k with the following property:
For any simplex σ e τk, σ c U, with σ e φp(σ),

σt 6 φv-j{σ), σλ φ ϋ^σ, e τk = * σ e φ'XσJ for all j , l ^ , j < p .

Then

I(M{K, U)) = I(M*(K, U))(in Zp) .

Proof. We give a proof for p = 2, for p > 2 the proof runs
along the same lines.

Choose k sufficiently large such that

I(M(K, U)) - Λ{πφ) , I{M\K, U)) = Λ{πφφ) ,

where φe A(K, K)k, φ = φ\ΰ, and where φ satisfies the assumption
of the proposition. Using the lemma in [36, p. 441] ("Fermat's
theorem") we have

Λ(πφπφ) — Λ(πφ) (in Z2) .

But the assumption of the proposition implies that

for i, 0 ^ i ^ dim K. Hence the mod-p property follows.

II. Approximation systems and fixed point indices* In this
chapter we will study chain mappings and their approximation pro-
perties. It turns out that in order to define a fixed point index a la
O'Neill [34] or Browder [5] one does not need a chain mapping which
is induced by simplicial approximation but a chain map which has
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certain approximation properties. We will show how such "approxi-
mation systems" lead to fixed point index theories even for mul-
tivalued mappings in a natural way. In the following (K, τ), (L, μ)
and (Λf, v) will always denote compact polyhedra with fixed triangula-
tions τ9 μ and v.

Let Φ:K->K\)e an upper semi continuous (u.s.c.) multivalued
map1 i.e., the graph {(x, y) eK x K\ ye Φ(x)} is closed, and let Z7c
K be an open subset of K. We will say that the triple (K, Φ, U)
i s admissible i ff x $ Φ(x) f o r a l l xedU.

1* Approximation systems*

DEFINITION 2.1. Let Φ:K->L be u.s.c, and let k,neN.
A chain mapping

0V C*(K, I) > C*(L, k) (I ^ k)

is called n — k-approximation of Φ, provided the following condition
is satisfied:

For any simplex σ e τι there is a point y{σ) e K such that

a c stn(y(σ)f k)

carr ψxa c stn(Φ(y(σ)), k) .

EXAMPLE 2.2. Let f:K->L be continuous and single-valued.
Then any chain map /': C*(K, I) -> C*(L, k) which is induced by a
simplicial approximation / of /, /: (Z, τι) -> (L, μk)(l ^ k), is a 2 — &-
approximation of /.

DEFINITION 2.3. Let Φ:K—>L be u.s.c. A graded set

A(Φ) =

where A(Φ)ichom(C:lί(ίL, i), ^ ( L , i)), is called approximation system
(A-system) for Φ, provided there is an integer n = n(A(Φ)) such that
the following properties are satisfied:

(1) <pe A{Φ)ά =* φ = φjb, where φ1 is a

n — ̂ '-approximation of Φ (b = subdivision map) .

(2) For all j1 e N there is an integer j1 = j\(A(Φ)) such that for
all Z, m ^ ii(m ^ Z) and for all φ = φjb e A(Φ)h ψ = f,be A(Φ)m

φt% and Xψt are homotopic with a small homotopy

i.e., the diagram
1 We assume always φ(x) =¥ 0 and closed for all xβK.
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* (mx ^ I,)

^ , m)

is homotopy commutative with a chain homotopy Z> which satisfies
the following smallness condition:

For any simplex σ e τm i there is a point z(σ) e K such that

σ c 8ίn(s(σ), i)

carr Dσ c stn(Φ(z(σ)), j) .

EXAMPLE 2.4. Let f:K-+L be continuous and single-valued.
Then, an approximation system for / is obtained in a natural way
by simplicial approximation:

A*(f) = {A*(AW > with

A*(A: = {?> = f'b I / ' : C*(#, ί) > C+(L, j)}

where / ' is induced by simplicial approximation, see 2.2.
A*(f) is called the approximation system induced by f.

Proof. Set n = n(A*(f)): = 2, and for jeN set ^ - j1{A*{f))\ = i .
Then, it is well known [22, p. 36/37] that f'X and %/" are

(contiguous) homotopic with a small homotopy, provided f'he A*(f)u

f " b e A * { f ) m , w h e r e m ^ l ^ j .
The following lemma detects an important relation between /-

systems and A-systems.

LEMMA AND DEFINITION 2.5. Let UaK be open and polyhedral,
and let A{Φ) be an A-system for Φ:K—>K.

Then A(Φ) is an I-system on U provided (K, Φ, U) is admissible.
This I-system is called the I-system induced by A(Φ) and denoted

by M{K, U; A{Φ))

Proof. Without loss of generality we assume n(A(Φ)) = 1; for
n{A{Φ)) > 1 the same arguments apply. Choose k e N sufficiently
large such that the following boundary condition is satisfied:

y e K, 8t\y, k)f]dUφ 0 = * st\y, k) ΓΊ 8t(Φ(y), fc) = 0 .

Since A(Φ) is an A-system we obtain for j = k an integer j± —
UA(Φ)).

We claim that A{Φ) is an /-system on U with k0 =
ko(M(K, U; A(Φ)): = 3\:
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Therefore let I, me N, m ^ I ̂  k0, and let

φ = φj>e A(Φ)ι , ψ = ψj>e A(Φ)m .

We have to show that ψ and Xψ* are admissible homotopic, see
1.1.

b\ X fi (ID jz
', m) • C*(U, mt) > C*(K, m)

Diagram (I) is commutative, and diagram (II) is homotopy commuta-
tive with a small homotopy D. Thus, ψ and Xψb are homotopic
with the homotopy Dt: = D6.
We prove that Dx satisfies the boundary condition of an I-system:

Assuming that Dt does not satisfy the boundary condition we
have that there exists a simplex a e τι such that

st(σ, l)f]dUφ 0 and

st(σ, I) Π carr Ό& Φ 0 .

Hence, there is a simplex σx 6 τι such that

σx c sί(σ, ϊ) and σ1 c carr A ^

Let σ2 be a simplex in τ m i such that

σ2 6 δσ and σx c carr Dσ2 .

Since the homotopy D is small, there is a point «(σ2) e ίΓ such that

carr Dσ2 c 8t(Φ(z(σ2))9 k) .

Hence,

8ί(σ, ί) Π st(Φ(z(σ2)), k) Φ 0 .

Because of <72 c σ, and, thus, sf(z(σ2), k) Z) σ, we see that

s?(z(σ2), k) n st(Φ{z(σ2)), k) Φ 0

and

sf(z(σ2),k)ndUΦ 0

which is impossible because of the choice of k. Thus, Dt is admis-
sible.
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That ψbl \ϋ and ψ are admissible homotopic is proved in a
similar way.

2* Fixed point index for multivalued mappings*

DEFINITION 2.6. Let UaK be open and polyhedral, and let
Φ: K->K be u.s.c. Let (K, Φ, U) be admissible, and let A = A{Φ)
be an A-system for Φ. Then

IA(K, Φ, U): = I(M){K, U; A{Φ)) e F

is called the fixed point index of Φ in U (with resp. to A).

In the following proposition we list some properties of the fixed
point index.

LEMMA 2.7. Let ΦX\K-*L and Φ2:L->K be u.s.c, and let
A(Φi), A{Φ2) be A-systems for Φ1 and Φ2. Let CczK be a closed
subset of K such that for all xeC, xί Φ2Φ1(x).

There is an integer loe N such that for all I ^ l0 and for all
φ β A(Φ^)h ψ G A{Φ2)ι the following property holds:

For any simplex σ e τι with σ c st(C, l0) and for any simplex
σ e φ(σ)

σ g ψ(σ) .

Proof. Without loss of generality we assume n(A(Φ$) =
n(A(Φ2)) = 1.

S i n c e Φx a n d Φ 2 a r e u . s . c , a n d s i n c e C i s c o m p a c t , t h e r e i s k e N
s u c h t h a t

sί(Φ2(sf(Φ1(sί(σ, k)), k)), k) f] st(σ, k) = 0

for all simplices σast(C, k).
For § = k we find integers j1 = ji(A(&i)), fi = iiCA(Φ2)). Then

the lemma follows with ϊ0: = max{ix, j[}.

PROPOSITION 2.8 (Additivity). Let UaK be open and polyhedral,
and let Φ:K->K be u.s.c.

Let Ulf U2(zU be open, disjoint subsets of U which are poly-
hedral.
Assume that the fixed point set of Φ\u is contained in U1 U U2,

Let A — A(Φ) be an A-system for Φ.
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Then

UK, Φ, U) = UK, Φ, Ux) + UK, Φ, U2) .

Proof. The proof follows immediately from 2.7 and 1.3.

Beside the ADDITIVITY we obtain (with the same arguments) an
excision property which allows to define the fixed point index on
arbitrary open sets.

PROPOSITION 2.9 (Excision). Let Uι(zUdK be open and poly-
hedral, and let Φ:K->K be u.s.c. Let A = A(Φ) be an A-system
for Φ. If Fix(Φ \Ϊ) c U19 then

UK, Φ, U) = UK, Φ, uj.

DEFINITION 2.10. Let F c Z b e open, and let Φ: K-> K be u.s.c.
Let (K, Φ, V) be admissible, and let UaVbe open and polyhedral

such that Fix(Φ \Ϋ) c U. Let A = A(Φ) be an A-system for Φ.

UK, Φ, V): = UK, Φ, U) .

Observe that ADDITIVITY and EXCISION generalize immediately to this
fixed point index on open sets.

EXAMPLE 2.11. Let f:K^K be continuous and single-valued,
and let A*(f) be the A-system induced by /, see 2.4. Then Defini-
tion 2.10 of fixed point index coincides with the definition given
by O'Neill in [34]:

IAK, f, V) = i(K, f, Vd .

3* Homotopy of A-systems*

DEFINITION 2.12. Let UaK be open and polyhedral, and let
ΦUΦ2:K—>L be u.s .c . Let H:UxI->L be an u.s.c. homotopy
joining Φx \ϋ and Φ2\d- (I = [0, 1]) Let A(ΦJ, A(Φ2) be A-systems
for Φlf Φ2. A(Φi) and A(Φ2) are called H-homotopic provided there is
an integer meN such that the following property is satisfied:

For all j e N there is an integer j2 e N such that for all I ^ j2

there are maps

where

such that

CD = φjb e AiΦJt

*(K, Id -—»c +

= ψfie

(K,l)

A(Φdι

Λll

9

I)
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Ψi' = <Pi\c*(u,h)

are homotopic with an homotopy D satisfying the following condition,
for any simplex σ e τh there is a point d(σ) e K such that

σast™(d(σ),j)

carr Dσ c stm(H(d(σ) x /), j) .

EXAMPLE 2.13. Let fl9 f2: K-> L be continuous and single-valued,
and let A*(/1), A*(/2) be the A-systems induced hγ fuf2. Let UcK
be open and polyhedral, and let H:U x I —> L be a homotopy joining
/ilϊF and f2\ϋ. Then, A*^) and A*(/2) are iϊ-homotopic.

Proof. Define

Γ l : = τ x {0} U (τ x I) U τ x {1} .

(By τ x I we mean a product triangulation τ x ρf where jθ is a
triangulation of I.)
Let H{: Kγ->L be the extension of H with

Let j e N. Set i2: = j .
Choose HlbeA^iH^l ^ j2), and set

and Dσ: = JHT/6 (σxl) (σx I chain in (rxl) 1). Thus, A*(/x) and A*(/2)
are iϊ-homotopic with m = 2.

LEMMA 2.14. Lei UaK be open and polyhedral, and let Φl9 Φ2:
K—> K be u . s .c Let A(Φ1)f A(Φ2) be A-systems for Φu Φ2 which are
H-homotopic.

If (K, Htf U) is admissible for all te I, then the induced I-
systems M(K, U; A(ΦJ) and M(K, U; A(Φ2)) are homotopic (Ht(x): =
H(x, t)).

Proof. We assume without loss of generality n(A(Φ$) =
n(A(Φ2)) = 1. Choose keN sufficiently large such that for all
(z, t)eϋx I,

sf(z, k) Π dU Φ 0 —> st\z, k) Π st(H(z, t), k) = 0 .

For j = k we obtain from 2.12 an integer i2 such that for all I ^
j2 there are maps
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Ψ = φfie A{Φ1)ι , ψ = ψxbe A(Φ2)ι

such that the restrictions φx and ψ3 are homotopic with an homotopy
D satisfying the properties described in 2.12.
Thus, the restrictions φ and ψ are homotopic with Db.
The proof that φ and ψ are admissible homotopic is similar to
the proof of 2.5, and is therefore omitted.

PROPOSITION 2.15 {Homotopy Invariance). Let VaK be open,
and let ΦX,Φ2:K-*K be u.s.c. Let H:VxI->K be an u.s.c.
homotopy joining Φx\γ and Φ2|F> such that (K, Ht, V) is admissible
for all te I. Let Ax = A(ΦX), A2 = A(Φ2) be A-systems for Φl9 Φ2,
which are H-homotopic on U, where UaV is an open, polyhedral
subset such that V\U contains no fixed points of Ht, tel.

Then,

IA&ΦU V) = IA2(K,Φ2, V).

Proof. The proof follows immediately from 2.14 and 1.5.

4* Commutativity and mod-p property*

LEMMA 2.16. Let Φλ\ K-* L9Φ2: L-> M be u.s .c, and let A(Φχ),
A(Φ2) be A-systems for Φlf Φ2. Then A: = A(Φ2)oA(Φ1) is an A-system
for Φ2ΦX.

Proof. We assume without loss of generality

nWiΦJ) - n{A{Φ2)) = 1 .

Let j 6 N. Then for every y e K there is j(y) e N such that

smMy), j) .

Since Φγ is u.s.c. and K is compact we find an integer j'eN, f ^ j ,
such that for every y e K there is a point u = u{y) e K such that

y e st(u, j)

st\Φx{y), j')ast*mu), j(u)) ,

and therefore,

For f we obtain by 2.3 an integer j \ = j[(A(Φ^)) and an integer
j2 = j[(A(Φ2)). Let I, m ^ maxf^, j2}.
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t (i) Y (Π) \x (Hi) \x

^ 2 ) —r* C*(L, m) > C* (L, mt) —j* C*(M, m)

φ = φj)e A(φύι , ?>' = ?# 6

We show that φ[bφjί and Xψ[bψ1 are homotopic with a small homotopy.
Diagram (I) is homotopic commutative with a small homotopy A-
Diagram (III) is homotopic commutative with a small homotopy

A.
Diagram (II) is homotopic commutative with a homotopy D2

satisfying: carr D2σ c carr Z(σ), for σeμm.
Hence, φ'φjί and Xψrψx are homotopic with the homotopy

D: = Λ + 4 + Λ, where 4X = φ[bDlf A2 = 9?IAΨΊ

and 4J = Aδψi .

We prove the smallness condition for Δx (the others being similar):
For a simplex σ e τ™2 by 2.3 there is a point zx(a) e K such

that

σ c βίfofa), i')

carr A^ c: stiΦ&^σ)), f) .

By choice of f for the point zx{σ) we can find a point u =
such that

άσ)), JΎasmΦ^u), j) .

Define z(σ): — ufaίσ)).
Then a straightforward calculation gives

σastχz(σ),j)

carr Δ^σ) c stXΦiΦ&ίσ)), j) .

Thus, Z> satisfies the smallness condition, and A is an A-system for
Φ1Φι with w(A) = 2.

PROPOSITION 2.17 (Commutativity). Let WaK be open, and
let Φ,: K-^ L, Φ2:L->K be u.s.c. Let A1 = A{Φx)f A2 = A{Φ2) be A-
systems for Φlf Φ2. Assume that (K, Φ2Φl9 W) and {L, ΦXΦ2, Φl\W))
are admissible, and that the following condition is satisfied:
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yeFixiΦ&jψϊHJV) — Φ2{y) n FixζΦAIwO = 0

Then

IAlA2(L, ΦXΦU Φ2\W)) = IA2Al{K, Φ2Φlf W) .

Proof. We assume without loss of generality n(Ad = w(A2) = 1.
Define

B2: = Fi
B3: = FixflPA) Π W .

There is an integer hx e N such that st\Φ2{Bύ, kx) c W.
Let <^cLl)e an open set such that

Bx<z^9 Φz(<?) c StmBJ, kd

There is an integer I, e N such that st\B19 lλ) c έ?.
Define

V: = int st(Blf lt) .

Since Φ2(B2) Γ\ Bz = 0 , there is k2 ̂  AJX such that

sf(Φ2(B2), k2) n 8ί(J58, fc) = 0 .

Define

U: = intβί(J58, k2)aW.

There is an open set ^Z)J5 2 such that

^ n ΦΛW) = 0, Φ2(^) cst(Φ2(B2), k2).

Therefore, there exists l2 eN,l2^ k such that

st\B2t l2) c ^ .

Define Vx: = βfc(B8, l2), F2: = L\ V^
Since for all xeC: =W\U, xίΦβ^x) we obtain from 2.7 an

integer l0, and since for all xeC: =V2\V, x^Φ1Φ2(x)t we obtain from
2.7 an integer IΌ (Zo ̂  2̂, ίί ^ ϋ
Set i : = maxtfo, K}, and define &: - maxb'ΛA), ii(Λ)} τ h u s » t h e

assumption of 1.6 is satisfied, and we obtain

h^K, Φ2Φlf U) = IAlA2(L, Φ&, V) .

EXAMPLE 2.18. Let WaK be open, and let /: K^L, g:L-+K
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be continuous and single-valued such that (K, gf, W) is admissible.
Then

i{K,gf, W) = i(L, fg, g~\W)) .

Proof. Let Ax = A*(f), A2 = A*(g) be the ^.-systems induced by
/ and g. Then by 2.17

IAzAl(K, gf, U) = IAlA2{L, fg, V) .

(U and V are chosen as in the proof of 2.17.) Since A*(gf)k Π
(AzoAJk Φ 0 and A*(fg)k Π (AxoA2)k ^ 0 for all A eiV, this implies

i(K,gf, W) = i(L, fg, g~XW)) .

PROPOSITION 2.19 (Mod-p Property). Let F = Zp, p prime. Let
WdK be open, and let Φ:K->K be u.s.c, such that {K,Φ, W)
and (K, Φp, W) are admissible. Assume the following condition is
satisfied:

y e Fix(Φp)\W ==> Φ\y) Π Fix(Φ^ | Tv) = 0 for 1 ̂  ft < p .

Let A — A{Φ) be an A-system for Φ. Then

UK, Φ, W) = IAK, Φ>, W) {in F)

(Ap = A° oA, p times).

Proof. Without loss of generality we assume n(A) = 1. More-
over, we give a proof only for p = 2, for ί> > 2 the proof runs
along the same lines.
Define Bλ: = Fix(Φ2) Π TΓf 52: = Fix(Φ2)\ΐF.
Since Φ(B2) Γ\B1= 0 , there exists kλeN such that

st\Φ(B2), ftx) n 8ί(J5lf ftj = 0 .

Define

*7: = int

Since Φ is u.s.c. there is an open set ^ D β 2 , ^CZK\W9 such
that

There exists ft2 ^ fti such that st2(52, ft2) c ^ . Define
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Since for all x e C: = K\V\U, x ί Φ2(x), we obtain from 2.7 an integer
ϊo ̂  2̂ Set i = lQ and define

Then the assumptions of 1.7 are satisfied, and we obtain

IA(K, Φ, U) = IAK, Φ\ U) (in Z2) .

EXAMPLE 2.20. Let WdK be open, and let/: J5Γ—>Kbe continu-
ous and single-valued. Let (JSΓ, /, TΓ) and (if, /p, T7) be admissible,
p prime, and assume that for all xeFix(fp\w),

Then

<(JBΓ,/, TF) = i ( ^ , A TΓ) (in Z9) .

Proof. Let A = A*(f) be the A-system induced by /. Then,
by 2.19

IA(K, f, W) = IAK, Γ, W) .

Since

(A*(/))J Π A*(/*)* ̂ 0 for all ft e JV,

this implies

i(K,f,W) = i(K,Γ, W) (in Z,).

REMARK 2.21. (1) The mod-p result of 2.20 was announced in
1971 by Zabreϊko and KrasnoseΓskiϊ, however they gave only a
sketch of proof [45]. A first complete proof (independent of [45])
was presented by Steinlein in [40]. Steinleins proof is of analytic
nature and rather complicated. In the meantime, several proofs for
the mod-p result (for single-valued maps) appeared [16], [25], [41],
[42], [43], but all these proofs are based on certain transversality
arguments. Thus, they can not be generalized to multivalued
mappings.

(2) The essential ingredients for our proofs in Chapter II are
a "simplicial structure" of the spaces and barycentric subdivision.
These ingredients were axiomatized by Browder [5] in order to define
'semi-complexes'. Thus, our results should generalize to Browder?s
category of semi-complexes.

III. Existence of A-systems. In this chapter we construct A-
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systems for certain classes of multivalued mappings Φ:K—>L. It
turns out that the existence of an A-system for acyclic maps is—
implicitly—contained in Vietoris' (and Begle's) proof for the Vietoris-
Begle mapping theorem [1], [44]. Also Eilenberg and Montgomery
used chain approximations in their proof of the Eilenberg-Montgomery
fixed point theorem [12].

In [35] O'Neill gave a construction of chain approximations for
continuous (= upper- and lower semi continuous) multivalued mappings
Φ such that Φ(x) is acyclic or consists of n acyclic components (n
fixed) for all x. Moreover, he proved an "abstract" Lefschetz fixed
point theorem for this class of mappings. Our approach of con-
structing A-sy stems is similar to O'Neills approach in [35]. How-
ever, we do not need continuity but upper semi continuity for the
mapping. The basic ingredients for constructing A-systems are based
more or less on Vietoris' work.

V

0* Preliminaries* In this paragraph H* will denote Cech ho-
mology with coefficients in a field F, [13].

Let X, Y be compact Hausdorff spaces.

DEFINITION 3.1. Let Φ: X-+Y be a multivalued map. Φ is called
acyclic (more precisely, F-acylic) provided

( i ) Φ is u.s.c.
(ii) H*(Φ(x)) = 0 for all xe X (H — reduced homology).

DEFINITION 3.2. Let p: X—>Ybe continuous, p is called Vietoris
mapping (more precisely, F-Vietoris mapping) provided

( i ) p is onto
(ii) p~\y) is acyclic for all y e Y.

REMARK 3.3. Let Φ:X->Γ be acyclic, let

Γ{Φ): =={(x,y)eXxY\yeΦ(x)}

be the graph of Φ, and let

x < 1 (a?, y) i > y

be the natural projections.
Then, Γ{Φ) is compact, and p is a Vietoris map.

DEFINITION 3.4. Let Φ:X->Y be acyclic, and let p, q be the
natural projections.

Because of the Vietoris-Begle mapping theorem [1], [44] the map
p*: H*(Γ(Φ))-> H*(X) is an isomorphism.



474 H. W. SIEGBERG AND G. SKORDEV

The map

is called the induced homomorphism of Φ.

1* Acyclic mappings and A-systems* In the following (K, τ)
and (I/, μ) will always denote compact polyhedra with triangulations
τ and μ.

LEMMA AND DEFINITION 3.5. Let Φ:K->L be acyclic, and let
leN. Then, there exists an integer loϊ>l and a chain map ("l-chain
approximation of Φ")

with the following properties:
(1) ψi is augmentation preserving, i.e., <p± maps a vertex into

a vertex.
(2) For any simplex σ e zι° there is a point p(σ) e K such that

σczsf(p(σ),l)

can ψyσ c st(Φ(p(σ))9 I) .

Any chain map satisfying (1) and (2) is called an l-chain approx-
imation of Φ.

A proof of 3.5 will be given in the appendix.

REMARK 3.6. In analogy with simplicial approximations of single-
valued mappings chain approximations of Φ are not unique.

DEFINITION 3.7. Let Φ:K->L be acyclic. Then

A*{Φ): - {A*(*),W

with A*(Φ)3>: = {φ — φjb \ φx i-chain approximation of Φ) is called the
A-system induced by Φ.

The following lemma justifies the definition above, i.e., it proves
that A*(Φ) is actually an ^.-system.

L E M M A 3.8. Let Φ:K->L be acyclic. For all jeN there is

an integer j x such that for all I, m ^ jx{m ^ I) and for all ψ =

<PJ> e A*(Φ)lf ψ = ψj>e A*(Φ)m

φλX and Xψλ are homotopic with a small homotopy ,

i.e.,
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the diagram

C*(L, m)

is homotopy commutative with a chain homotopy D satisfying the
following smallness condition,
for any simplex σ e τmι there is a point c(σ) e K such that

σ c st\c(σ), j)

carr Dσ c st(Φ(c(σ)), j) .

Lemma 3.8 will be proved in the appendix.
The following lemma is proved in the same way as 3.8.

LEMMA 3.8'. Let Φ: K-+ L be acyclic. For all jeN there is an
integer jx such that for all I, m ^ j^m ^ I) the following holds:

If Ψx is an n — ̂ approximation (see (2.1)) of Φ, and if ψλ is an
k — m-approximation of Φ, and if φx and ψλ are augmentation
preserving, then

φjί and %ψ\ are homotopic with a small homotopy D ,

i.e., there is an integer ie N such that for any simplex σe τmι there
is a point c(σ) e K such that

σ c st\c(σ), j)

carr Dσ c st\Φ(c(σ)), j) .

In view of the normalization property the following corollary is
important.

COROLLARY 3.9. Let Φ:K->L be acyclic. There is an integer
kQe N such that for all k^ kQ and for all k-chain approximations
Ψx of Φ:

Proof. The proof follows from [1] and 3.8.

In the following we list some classes of multivalued mappings
which have ^.-systems.
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EXAMPLE 1. The class ^ [38] of all multivalued mappings
Φ:K~>L which can be "factorized",

φ = φno . . . oφ 0 ,

where Φ{. Xt —> Xi+1 are acyclic maps of compact polyhedra (Xo = K,
Xn+1 = L) has an A-system. (One can replace Xlf , Xn by compact
Hausdorff spaces.)

EXAMPLE 2. The class sf of all 'admissible' [17] multivalued
maps Φ:K->L has an A-system.

EXAMPLE 3. The class of all u.s.c. multivalued maps Φ:K->L
for which there exists a "single-valued" approximation, i.e., for all
keN there is a continuous single-valued mapping fk:K-^L such
that

fk{x) e st(Φ(x), k) , for all x e K ,

has an A-system, see e.g., [2], [8], [31], [32].

EXAMPLE 4. It can be shown that the class of all continuous
(u.s.c. and l.s.c.) mappings Φ:K-+L, where Φ(x) is acyclic or has n
acyclic components (n fixed) [34], has an A-system.

REMARK 3.10. Any u.s.c. multivalued mapping for which there
exists an A-system has an induced homomorphism in homology in
the sense of O'Neill [34]. Because there are multivalued mappings
which do not have an induced homomorphism, see [34], there are
multivalued mappings which do not have an A-system.

IV. Fixed point index for acyclic maps* In this chapter we
apply the results of Chapters II and III to define a fixed point index
for acyclic maps. In the following (K, τ) and (L, μ) will always
denote compact polyhedra with triangulations τ and μ.

1* Definition of fixed point index* Call an A-system for an
u.s.c. mapping Φ: i£—> L regular if all ψ e A{Φ)k, keN, are augmenta-
tion preserving.

PROPOSITION 4.1. Let UaK be open and polyhedral, and let
Φ: K —» K be acyclic. Let (K, Φ, U) be admissible. Let further AL =
Ai(Φ), A2 = A2(Φ) be two regular A-systems for Φ.

Then, the induced I-systems M(K, U; A:) and M(K, U; A2) are
homotopic.



FIXED POINT INDEX AND CHAIN APPROXIMATIONS 477

Proof. Follows from 3.8'.

DEFINITION 4.2. Let UaK be open, and let Φ: K -> K be acyclic
such that (K, Φ, U) is admissible. Then

i(K,Φ, U): = IA(K,Φ, U)eF,

where A = A(Φ) is any regular A-system for Φ, is called the fixed
point index of Φ on U. Because of 4.1 and 1.5 the definition of
i(K, Φ, U) is independent of the choice of A{Φ).

2* Properties of the fixed point index* In order to obtain
homotopy in variance for our fixed point index we need a lemma.

LEMMA 4.3. Let UaK be open and polyhedral. Let Φlf Φ2:K-+
L be acyclic, and assume that Φι\~ΰ and Φ2\ΰ are homotopic with an
acyclic homotopy F:U x I-+L. Then, for all le N there is loe N
such that for all k^l0 there are maps ψ — φj>e A*(Φ^)k, ψ —

φlf fa: C*(K, kQ) > C*(L, k)

such that φt: = Φι\c*(ϋ,k0) and fa' — fa\c*(ϋ,kQ) a^e homotopic with a
chain homotopy D satisfying the following property,
for any simplex σ e τk°, σ <zϋ there is a point d(σ) 6 K such that

σ c s?(d(σ), I)

carr Dσ a sf(F(d(σ) x I), I) .

Proof. Let I e N. For x e U there is an open neighborhood ^x

such that F{j&9 x I)ast(F(x x I), I). We can assume that the
covering {̂ β}ββcF is a refinement of the star covering st{τι). Let
ωx: = {^.J =1 be a finite subcovering of Ό.

Then there is lQ e N such that

{int stf(σ, lo)\σe

is a refinement of ωt.
Set

K, = K x {0} U U x IU K x {1}

τy. = τ x {0} U τ x I U τ x {1} ,

and let F^.K^-^L be the extension of F such that Fx\κ^m — Φlf

Choose k^ l0.
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Because of 3.5 there is a Zc-chain approximation of F19

Λ: C*(K19 Ao) > C*(L, k) .

Define φx: = #ι\c.iκχ{ouko), Ψi'. = #il<Mxχ<i}ffco>, (#1 can be constructed in
such a way that φl9 <fλ are &-chain approximations of Φl9 Φ2) and
define Dσ: — &x(σ x I ) , where σ x / is a chain in (τ x J)fc°.
Now let σ e τh\ σczϋ. Write σ x I = Σ ^ (Chain in (τ x I)*0).

Since #x is a A-chain approximation, for any σ4 there is a point
p(σt) e U x I such that

σ, c st\p{σ%), Jc)

carr -^^ c 8t(F(p(σt)), h) .

(P(^) = (Pi, it), it € I.)
Denote by σ the simplex in τι° such that σaσ. There is an

open set #>

9eωί such that st\σ9 Z 0 ) c ^ . . Therefore,

F(st\σ, k) x I) a st(F(x x I), I) .

Because of Piβstfiσ, k), ca.ττd1σic:8t2(F(xxI)ί I). Thus, carrDσc
sf(F(x x I), I).
Set d(σ): — x, and the proof is finished.

THEOREM 4.4. The fixed point index 'i(K,Φ, U)y for acyclic
maps has the following properties:

I. HOMOTOPY INVARIANCE: Let F: U x I -> K be an acyclic ho-
motopy joining Φι \ ϋ and Φ2 \ ΰ such that (K, Ft, U) is admissible,
t e I. Then

i{K, Φl9 U) = i(K, Φu U) .

II. ADDITIVITY. Let Uu U2czU be open, disjoint subsets of Z7.
If Fix(Φ I ϋ) c U, U U2, then

i(K, Φ, U) = i(K, Φ, Ux) + i(K9 Φ, U2) .

III. NORMALIZATION. i(K, Φ, K) = Λ(Φ*: H*(K) -+ H*(K)).

DEFINITION 4.5. Let Xo = K, Xlf , Xn+1 = K be compact poly-
hedra, and let Φt\ Xi —> Xi+lf i = 0, , n be acyclic. Let Ua K be
open, and let (K, Φ, U) be admissible where Φ = Φno oφ0.

Then

i(K, Φ, U): = J^iΓ, Φ, U) ,

where A = A(ΦJo oA(Φ0) for regular A-systems A(Φt) of Φίf is
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called the fixed point index of Φ in U.

Because of 4.1 the definition is independent of the choice of
A-sy stems A(Φt).

COMMUTATIVITY 4.6. Let Φx: K-> L, Φ2: L -> K be acyclic, and let
(K, Φ2Φlf U) and (L, ΦXΦ2, Φϊ\U)) be admissible. Assume that for all

Φ2(y) ΠFixiΦ&lΰ) - 0
Then

i(K, Φ2ΦU U) = i(L, ΦtΦ2, ΦΛ

COROLLARY 4.7 {Reduction property) [15]. Let UaK be open,
and let La K be a polyhedron such that Φ{K) c L. Let (K, Φ, U)
be admissible. Then

i(K,Φ, U) = i(L,Φ\L,LΓίU).

MOD-p PROPERTY 4.8. Let p e N be prime, and let (K, Φy U) and
(K, Φp, U) be admissible.

Assume that for all y e Fix(Φp)\ U

Φ\y) n Fix(Φ*\ϋ) = 0 , l ^ k < p .

Then

i(K, Φ, U) = i(K, Φ\ U) in Zp .

Proofs of 4.4-4.8. The homotopy invariance follows from 4.3,
2.14 and from 1.5. The additivity follows from 2.8. The nor-
malization follows from 3.9 and the Hopf trace formula, e.g., [6,
p. 6].

The commutativity follows from 2.17. and the mod-p property
follows from 2.19.

Concluding remarks* (1) The results of the paper were proved
for mappings on compact polyhedra. But, it should be possible tp
extend our fixed point index (including all properties) to compact
metric ANR's by using retraction arguments, see [6], or by gener-
alizing the theory to Browder's semi-complexes.*

(2) There are two natural questions which remain unsolved:

Problem I. How is the fixed point index introduced by Calvert

* Added in proof: See G. Skordev, Fixed point index for ANR's preprint, University
of Bremen, July 1981.
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[7] related to the fixed point index presented here?
Since regularization techniques (e.g., the Ήopf construction' [23],

[6]) do not apply to acyclic maps, the problem can not be solved in
the way known from single-valued maps.

Because of the same reason it is unclear whether fixed point
index for acyclic mappings is uniquely determined by certain ax-
ioms:

Problem II. Is a fixed point index for acyclic maps (say on
polyhedra) uniquely determined by the properties Homotopy invar-
iance, Additivity, Normalization and Reduction property!

APPENDIX. In this appendix we give proofs of Lemma 3.5 and
of Lemma 3.8. In order to prove Lemma 3.5 we need two further
lemmas.

LEMMA A. Let K be a compact polyhedron with triangulation τ,
and let CcK be a closed subset of K which is acyclic, H*(C; F) = 0
(H* — reduced Cech-homology; F = field).
For I ̂  k let iltk: Ct ̂  Ck be the inclusion, where

C3 :=st(CJ), jeN.

Then for all ke N there is kQe N such that

is trivial.

Proof. The proof follows from the continuity of Cech-homology,
see [13].

LEMMA B. Let (K, τ), (L, μ) be compact polyhedra with triangula-
tions τ and μ, and let Φ:K-+L be acyclic. Let k0, neN.

There are numbers kl9 , kn+ι e N such that for any simplex
σ 6 τki there exists an integer k^σ), 0 ̂  i ^ n, and there exists a
point a(σ) e K such that

( 1 ) fto < k, < - • - < kn+ι

ki > ki^iσ) for all σ eτkί .

(2 ) For any simplex σ e τhί

σ c st\a(σ), k^)

Φ{st\τ9kι))dst{Φ{a{σ))9kί_1{σ))
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(3) i*: H*(sf(Φ(a(σ)), k^σ))-> H^st(Φ(a(σ)\ k^)) is trivial
(i — inclusion).

Proof. The proof proceeds by induction on n. We give a proof
only for n — 0.

Because of Lemma A for any y e K there is ko(y) e N such that

i*: &*{st\Φ{y)\ Uv) > 3*(8t(Φ(y), k0))

is trivial (i — inclusion).
Moreover, for y e K there is a neighborhood tf^czK of y such

that Φ(^y) c st(Φ(y), ko(y)) and such that ^y is contained in some
element of st(τk°). Let ω1 = {^jLi be a finite subcovering of ω =
{̂ irJifeί. Choose ^eiV such that kλ > max{Λ0, ko(yl)9 - ,ko(ys)} and
such that

{ i n t 8t*(σ, k^lσe τkή

is a refinement of α)^
For σeτkl define a(σ): = ^ , where sf(σ, k^cz^^ and fto((τ): =

Proof of Lemma 3.5. Let ieiNΓ, and let Φ\K-*L be acyclic.
Applying Lemma B with kQ = Z and w = dim ίΓ we obtain a se-

quence of numbers k0 < &x < < ftn+1.
Define io = kn+1.
We will construct successively a chain map

with the following properties:
(1) ft is augmentation preserving
(2) For any simplex σ e τι° with dim σ = ϊ there is a point
e ίC such that

carr ftσ c st(Φ(p(σ)), k^

Composing ft with X: C*{L, l0) —> C#(L, ί) we obtain the desired
chain approximation of Φ:

Construction of ft:
ί = 0: Let σ0 be a vertex of τι°. Because of Lemma B there

is a point α(σ0) e E'. Set ft(σ0) = a, where a is a vertex of μ*° which
is contained in st(Φ(a(σ0)), kn). Define p(σ0): = a(σ0).
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i > 0: Assume φ1 is defined on simplices σ of dimension % — 1,
and satisfies the conditions (1) and (2).
Let σ 6 τι° with dim σ = ί.
Let σeτkn+1-ί such that dimσ = i and σZ)X(σ).
Because of Lemma B there is a point a(σ) and a number kn_t(σ).
Write dσ = Σ <7s(dim crβ = i — 1).
By assumption there are points p(σs) such that

c7s c st\p(σs), kn+1_τ)

carr &</. c st(Φ(p(σs)), Jfcn+1_<) .

Since Φ(p(σs))dst(Φ(a(σ))f kn^(σ))

carr ^δσ c st\Φ(a{σ)), kn^(σ)) .

By our inductive assumption, the following is a cycle

Mσ)), kn^{σ)\ Zo) .

Hence, by Lemma B there is a chain c 6 Gi{st{Φ{a{σ))> kn_i), lQ) such
that 3c = ^3(7.

Thus, define φ^σ): = c, p(σ): — a(σ).

Proof of Lemma 3.8. Let jeNf and let Φ:K-^L be acyclic.
Applying Lemma B with k0 = i and n — dim iΓ we obtain a sequence
of numbers k0 < kλ < < ftn+1.
Define ix: = Λn+1.
Let m ^ l ^ j l f and let <p = φfie A*(φ)h ψ = ψ,be A*(Φ)nf

ψλ: C*(K, mj > C*(L, m) .

We will construct successively a homotopy D,

such that

( 2) For any simplex σ e r™1, dim = i, there is a point c{σ) 6 K
such that

carr Dta c st(Φ(c(σ)), kn_i) .

Construction of D:
ί = 0: Let σ0 be a vertex of rmi, and set σ: = X(σQ) e τι\ σ: =

X(σ0) e τjl. Since φι is a chain approximation we find a point p(σ)
satisfying the conditions of 3.5, and since ψ1 is a chain approximation
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we find a point p(σ0) satisfying the conditions of 3.5. Moreover,
from Lemma B we find a point α(σ). p(β\ p(σ0) and a(σ) have the
following properties:

stf(σ, jx)

Φ(p(σ)) U Φ(p(σ0)) ast(Φ(a(σ)), kn{σ))

carr Xf,a0 U carr φλXσ0 c stf(Φ(a(σ)), kn(σ)) .

Because of Lemma B,

\ kn))

is trivial (i — inclusion).
Since φίf ψx are augmentation preserving, and since I > kn, there

is a chain cx e C1{st{Φ{a{σ))9 kn), I) such that

Set A^o = cl9 c(σ0): = α(σ).

i > 0: Assume ^ is defined for j < i and satisfies the desired
properties.
Let σ 6 τOTl, dim σ = i.
Let σ e τ^1 be the simplex with X{σ) c σ, dim σ = ί, let σ e rfc%+1~i be
the simplex with X(σ) c <7, dim σ = i.

Since ^ is a chain approximation we find a point p(σ), and since
ψt is a chain approximation we find a point ί>.((j). Moreover, from
Lemma B we find a point a(σ). p{σ), p(σ), and a(σ) satisfy the fol-
lowing properties:

p(σ), pψ) c st\σ, kn+ι_t)

Φ(p(σ)) U Φ(p(σ))ast(Φ(a(σ)), K^σ))

carr Xψxσ U carr φJLσ c st\Φ(a(σ)), kn_i(σ)) .

Write dσ = Σ σ*9 dim σβ = ί — 1.
By assumption there is a point c(σβ) such that

c(σs) c 8ί8(σ, £„+!_,) .

Therefore,

carr A - Λ c stf(Φ(a(σ)), kn^(ff

Thus,

carr D^dσ cst\Φ(a(σ)), k
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Set c: = X^σ — φJCσ — Di^dσ.
Then carr (c) c st\Φ(a(σ)), kn_t(σ)) and dc = 0.
Because of Lemma B there is a chain

c ί + 1 e Ci+1(st(Φ(a(σ)), ftΛ_,), I)

with
3cί+1 = c .

Set D4σ: — cί+1, c(σ): = a(σ).

Note added in proof. This single-valued case was treated in-
dependently (using essentially O'Neills definition) by G. Fournier in
[46].
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