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ON TWO-STAGE MINIMAX PROBLEMS

JOACHIM HARTUNG

Minimax problems are considered whose admissable sets
are given implicitly as the solution sets of another mini-
max problem. For the solution a parametric method is
proposed. Special cases of it are extensions of Courant's
exterior penalty method and Tihonov's regularization method
of Nonlinear Programming to minimax problems.

In solving quadratic problems explicitly, a representa-
tion of modified best approximate solutions of linear equa-
tions in Hubert spaces is given that extends results for the
usual case.

1* Introduction* Let X and Y be not empty subsets of real
linear topological Hausdorff spaces <%f and ^ , respectively,

/: X x Y > R, and g: X x Y > R

be two real valued functions on X x F, and denote Xf x Yf the
solution set of the minimax problem (X, Y, / ) , i.e.,

(x0, y0) e Xf x Yf\ <=> A A f(x, Vo) ̂  /(a?0, Vo) ̂  /(&o, v)
x eλ' y e Γ

Note that if (xί9 yλ) and (xi9 y2) are in Xf x Yf then also (xu y2) e
Xf x Yf, being thus a product set.

Under the assumption that Xf and Yf are not empty, we give
the following

DEFINITION 1. A two-stage minimax problem, in the notation
^gif, is the minimax problem

^€gff: = (Xf, Yf, g/Xf x Yf) .

Considering ^ ^ / / as a two-person zero-sum game, it describes the
following conflict situation: Two antagonists choose independently
from each other xeX, resp. y e Y, and the first one gets from the
second one the vector-payoff (f(x,y)f g(x, y))eR2. The preference
relation may be induced by the lexicographic order of JB2:

(xu yj is better than (a?2, y2) for the first (second) player, if
(/0&1, Vi)> 9&u Vi)) i s lexicographically greater (smaller) than (/(a?2, yj,
θ(x2, Vi))- If the players are cautious, they have to take as optimal
strategies the components of a solution of ^£glf, provided there
exists one.

Many games are of this nature; for example (see §§ 3, 4 and 5
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below) constrained games, where on the first stage the constraints
have to be satisfied, or games, in which you are interested in
optimal strategies of minimum (semi-) norm, like for instance in
certain differential games, where the (semi-) norm represents the
consumption of energy, which of course should be minimal among
all optimal strategies.

A method for solving ^gif that first produces the whole sets
Xf and Yf, meets with great numerical difficulties. Therefore the
following algorithm is of interest that solves ^^g/f without comput-
ing Xf and Yf: Take an arbitrary real positive nullsequence {rn}neNc:
R and find a solution (xn, yn) of the problem (X, Y, f + rng), (neN).
Under certain conditions the accumulation points of {xn}neN> {yJneN
(unique in some cases) build a solution of ^fg/f, as is shown below.

2* A solution algorithm for the general problem

DEFINITION 2.

(a) A function f\ X-*R is called
( i ) inf-compact, if {x\xeX, f(x) <̂  c}, eeR, is compact.
(ii) sup-compact, if (— /) is inf-compact.
(b) A function h: Xx Y—>R is called (xlf y^-supinf-compact,

for a fixed (xlf yλ) e X x Y, if h(xlf •) is inf-compact and h(-,yύ is
sup-compact.

We say that a real function h(x, y) on X x Y is u.s.c.-l.s.c,
if h(x, y) is upper semi-continuous in x for each y eY and lower
semi-continuous in y for each xe X.

For a real positive sequence

{rn}neNaR, with rn > + 0 for n > oo ,

let pn be defined by

X X Y > R

(x, y) i > f(x, y) + rng(x, y)

THEOREM 1. Under the conditions
( i ) X and Y are convex and closed.
(i i) / and g are u.s.c.-l.s.c., and g is bounded above in x for

each yeY and bounded below in y for each xe X.
(iii) There exists a (fixed) (x0, y0) e Xf x Yf such that g is (x0, y0)-

supinf-compact.
(iv) pn is quasi-concave-convex, (neN).

we have
(v) (X, Y, pn) has a solution (xn, yn), (neN).
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(vi) {xn}neiv and {yn}neN have cluster points x and y, respectively,
and each (x, y) solves ^€gif.

(vii) lim^co pn(xn, yn) = f(x, y).
(viii) lim^co (pn(xn, yn) - f(x0, yo))/rn = g(x, y).

Proof. The sum of two u.s.c, (l.s.c), functions on a closed set
is u.s.c, (l.s.c), and so by (ii) pn = f + rng, (neN), is u.s.c-l.s.c

For neN and c eR we have

{y\yeY, pn(x0, y) ^ c}
a{y\yeY, rng(x0, y) ^ c - inf f(x0, y)}

yeY

yeY, g(x0, y) <L (c — f(x0, yQ))
rn

the last set is compact by (iii), and so pn(x0, •) is inf-compact. Simi-
larly, pn( , y0) is sup-compact. Applying now Theorem 1 of Hartung
[5], we get the existence of a saddle point (xn, yn) of pn over J x Y,
(neN). For all xfeXf and yfe Yf we then get, with neN,

, 1 v if(χf, Vn) + rng(xf, yn)] - /(a?/, τ/J ^ pn(α;n, 7/n) - f(xf, yf)

^ [/(»», 2//) + rng(xn, yf)] - f(xn, yf) ,
or

( 2 ) rng(xf, yn) ^ ί>n(xn, yn) - /(a?/, ?//) ̂  rng(xn, yf) .

P u t t i n g a?/ = xQ, yf — yo> (2) gives because of (ii)

( 3 ) - oo < r , inf g(xOf y) ^ pn(xn, yn)-/(α?0, l/0) ̂  r n sup flf(a?, i/0)<

and so

( 4 ) p π (# n , 2/J > f(xQf y0), as r n —-> + 0 for ^ > oo .

Dividing in (2) by rn, we get

( 5 ) flr(a?o, !/„) ^ sup g(x, y0), inf βr(^0, y)
X Y

which by (iii) means that xn, yn are elements of compact sets inde-
pendent of n. Therefore {xn}neN, {yn}neN have cluster points xeX,
yeY. Let {xn]c} be a subnet of {xn}neN converging to ί. By (ii)
and (4) it follows that

f(x, y) ^ lim sup f(xnjc, y)

( 6 ) ^ lim sup (pnk(xnjc, ynk) - rnkg(xnk, y))

^ lim sup (pnk(xnk, ynk) - rnk sup g(x, y))

^ /(»o, 2/o)» for all ]/e Y, i.e., ί e l / ,
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and analogously, y e Yf. Let now y be a cluster point of the
subnet {yn]) of [yn}n&m existing by (5), and {ynkt) a subnet of it
converging to y. Then of course xnki —> %, and

( 7 ) (x,y)eXfx Yf .

From (2) we get, since f(xf, yf) = const = f(x0, y0) for (xff yf) e

Xf x Yf,

( 8 ) sup g(x, yn) ^ p»(a?"» y*> ~ f(χ°> Vo) ^ inf g(xn, y) .
xeXf rn yeYf

The functions x ι—> mίyeYf g(x, y) and y v-* sup^xj g(%f v) are u.s .c,
resp. l.s.c, and thus (8) yields

sup g(x, y) ̂  lim inf sup g(χ, ynk)
xeX f y n _ - + y xeXf %

( 9 ) ^ lim sup inf g(xnhi, y)

^ inf \

which gives

(10) g(βf y) ̂  sup g(x, y) ̂  inf g(x, y) ̂  ff(^, y) ,

i.e., (x, y) is a saddle point of g/Xf x Y). Similarly, y is a saddle
point component of g/Xf x Yf, and so (vi) is shown. The statement
(vii) now follows from (4). Let

bn: = sup g(x, yn) , cn: = inf flf(a?n, 2/) ,
xeXf yεYf

b: = lim inf &ra , and c: = lim sup cn ,

and {bns}seN, {cnt}teN be sequences converging to & and c, respectively.
The corresponding yns and xnt are contained in compact sets by (5),
and thus there exist subnets {yns} and {xnt} converging resp. to a
y* e Yf and an x * e l / . Then of course bn8. is converging to b and
cnt. to c, and we get from (8)

sup g(x, y*) ^ lim inf sup g(x, yns)
xeXf Vn8r*v* xeXf %

^ lim inf sup g(x, yn)

<Ξ lim inf •

(11)

^ lim sup •
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^ lim sup inf g(xn, y)

^ lim supinf g(xnt., y) g inf g(x*, y) ,

which gives (viii).

COROLLARY 1. If we have for some (xif y%) e Xf x Yf, (i = 1, 2),
and for c e R2 that the level sets

{x\xe X, f(x, yx) ^ d, g(x, y2) ^ c2} ,

{y\yeY, f(xlf y) ^ c19 g{x2, y) ^ c2}

are compact and g satisfies the boundedness condition of (ii), we can
take instead of g the function

which is (x2, 2/2)-sup Ίnf-compact, and

g/Xf x Yf = g/Xf x Γ/ + const .

Proof. We show that g{-,y2) is sup-compact. For ceJ? and
x e X we have:

, y2) ^ c - f(xu y2) - max

and

(», y d ^ c - f(xlf y2) - sup
X

DEFINITION 3. Let U be a convex subset of a real normed
linear space, then a function fe: U—> R is called uniformly quasi-
convex, if there exists a continuous isotonic function δ: [0, oo)—>
[0, oo) with δ(0) = 0, δ(ί) > 0 for ί > 0, such that for all ul9 u2e U

feW, h(u2)} - δ ( | | ^ - u 2 | | ) .

Similarly, h is uniformly quasi-concave, if ( — ft) is uniformly quasi-
convex.

THEOREM 2. 1/ in addition to (i), (ii), (iv) of Theorem 1, <̂ Γ
cmd ^ are reflexive Banach spaces, Xf and Yf are not empty, and
g is uniformly quasi-concave-convex, then

(X, Y, pn) has a solution (xn,yn), (neN), {xn}neN and
{Vn}neN converge (strongly) to an xeX and a yeY,
resp., and (x, y) is the solution of ̂ /fg/f.
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Proof. Let xf e Xf be fixed, then by Definition 3 there exists
a continuous isotonic function δXf: [0, °o)-^[0, °°) with δXf(t) = 0 <=>
ί = 0, such that for all y e Y and ?// e Yf

δ*/(ll 2/ - 1// ID ^ m a x M % , 1/),

- g(χf, —(y +

F o r ceR we have

/, 1/) ^ c = > II2/ - 1// II ^ δ~; ( m a x {c,

and so the level set

Tlf: = {y\yeY, g(xff y) ^ c} is bounded .

#(#/, •) is l.s.c. and quasi-convex, and thus Tϊf is convex and closed,
hence weakly compact, and so g(x/, •) is weakly inf-compact, for all
xfeXf. Similarly, g{-,y) is weakly sup-compact, for all yeYf.
Herewith all conditions of Theorem 1 are fulfilled in the weak
topology, and we get the existence of a solution (xn, yn) of (X, Y,
Vn)> (neN). Since g is uniformly quasi-concave-convex, there exists
a unique solution (β, y) of ^^//, and so the whole sequences {xn}neNf

{yJneN are converging weakly to x and y, respectively.
Putting in (12) xf = x9 y = yn and yf = y, we get with (8)

δ,(\\yn - y\\) ^ max

(13)
/ 1 \

- 9{%, — (Vn + V) ) •

l/2(yn + y)-+y, for n—> ©o, #(#, •) is weakly l.s.c, and so (13) yields
by using (viii) of Theorem 1

(14) lim sup ί s(|| yn - y ||) ^ flr(ί, y) - »(», ^) ,
n—>oo

which gives the strong convergence of {yn}neN to #. Analogously
the strong convergence of {xn}neN to x follows.

3* The exterior penalty method for constrained minimax
problems* Let A and B be subsets of X and Y} resp., then we
consider the constrained minimax problem

{A, B, g) .
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In [5] we give for this problem an interior penalty method, which
works only if A and B have interior points, but if this is the case,
it needs for convergence some sup inf-compactness of g only over
the sets A and Bf which especially is given, if A and B are compact.

If A and B have no interior points, we propose a sequential
method approximating a solution of (A, B, g) from the exterior in
X and Y of the admissable sets, which is profitable, if the boundaries
of X and Y are numerically less complicated than the boundaries
of A and B, which is especially the case, when X and Y are the
whole spaces.

The penalty functions

A. Λ. > It, JrB. I > It

are assumed to have the properties

0 xeA ί 0 yeB

> 0 °r xeX\A ' BV ~ { > 0 ye Y\B

Putting
f:=PB-PA,

we get

Xf - A, Y) = B, f/Xf x Y, = 0 ,

and

pn = PB — PA + rng, with rn > + 0, for n >c*>, (%eN) .

THEOREM 3. If A and B are convex and closed, and the condi-
tions (i), (ii), (iii), (iv) of Theorem 1 are fulfilled, then (X, Y, pn)
has a solution (xnf yn), (neN), {θ5n}nβ*, {yn}neN have cluster points x, y,
resp., solving (A, B, g),

lim PA(xn) = 0, lim PB{yn) = 0 ,

and

lim g(xn, yn) + -L(PB(yn) ~ PA{xn)) = g(x, y) .
rn

Proof. By Theorem 1 we get the existence of a solution (xn, yn)
of (X, Yf pn), (neN), and for xeA, yeB

rng(x, yn) + PB{yn) ^ ί>n(»n, Vn) ^ rng(xn, y) - PA(xn) ,
or

— oo <rn inf g(x, y) + PB(yn) ^ pn(xn, yn)
yer

^ rn sup g(x, y) — PA(xn) < + °° ,



362 JOACHIM HARTUNG

which yields with (4)

0 ^ lim sup PB(yn) ^ lim pn(xnf yn) = 0 ^ lim inf (~PA(xn))
n—>oo n—>oo n—>°o

^ - l im sup P4(αjn) <: 0 .
n—*oo

Since P a ^ 0, PA ^ 0, that gives

The remaining assertions follow from Theorem 1.
Corollary 1 and Theorem 2 then give a refined method.

If for example A is given by

A = {x\xeX, Gt{x) = 0, (i = 1, , mx), Gά(x) ^ 0,

for some real valued functions Gt on X, (i = 1, , m), we can take
as a penalty function for instance

+ Σ max [0, G4

which is differentiate, when the Gt are.

4* A regularization algorithm for finding saddle points* To
solve a minimax problem (X, Y9 f) you often have to take algorithms
which need for convergency the solution to be unique, as for
example the Arrow-Hurwicz-Uzawa gradient methods [1] (like the
Lagrangeian method for convex programming) or the successive
approximation method of Dem'janov [3]. Therefore, if this is not
the case, we approximate / by a sequence of regularized functions,
which have this missing property. Theorem 2 offers many possi-
bilities for doing this. In the method we choose, the unique saddle
points of the sequential functions are converging to the saddle point
of / with minimum norm, which is of particular interest in certain
problems. We don't need compactness conditions and thus / can be
a Lagrange function of an ordinary convex program. Let <^f and
%s be real Hubert spaces, < , •) denoting the inner product define
the norm, || ||: = < , )1/2, resp., and ^ x ?/ may be provided with
the induced norm.

Then we define for a real positive nullsequence {rn}neN the
regularized functionals

Pn&, VY- = f(x, y) + rn«y, y) - (x, x)), (neN) .

THEOREM 4. Let X and Y be convex and closed, (X, Y, f) solv-
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able, and f be u.s.cA.s.c. and concave-convex, then

(X, Y, pn) has a unique solution (xn, yn), (nsN),
x: = lim^oo xn and y: = lim^ββ yn exist, and (x, y) is
the solution of (X, Y, f) with minimum norm.

Proof. By the parallelogram law the function

g{x, y): = (y, y) - (x, x)

is strictly concave-convex and uniformly quasi-concave-convex.
Then pn(x, y) has these properties, too, and the saddle points of pn

are uniquely determined. The rest of the assertions follow from
Theorem 2.

5* An explicit solution of quadratic minimax problems. Let
<%f and <%/ be real Hubert spaces as in § 4, and X = J2f, Y = 2/.
Then we consider the quadratic functionals

F{x, y): = {x, Px) - 2(x, c) + 2(x, Ly) + (y, Qy) - 2(d, y) ,

G(x, y): - (x, Sx) + (y, Ty) ,

where c e X, deY; P and S are self-adjoint negative semidefinite
linear operators on X, Q and T are self-adjoint positive semidefinite
linear operators on Y, L is a linear operator of Y into X and all
operators are bounded, and the two stage minimax problem

( 1 ) <Λ€GIF = ^GIF{C, d) .

(x, —Sx) and (y, Ty) are seminorms to the power two, repre-
senting for instance in differential games often the consumption of
energy, which should be minimal among the optimal strategies of
(X, Y, F).

( P L\p /Λ) = : A by

Xx Y >Xx Y

* (α, v) > > (Pχ + Ly, L*x + Qy)> (L* denotes the adjoint) ,

we assume that (c, d)eR(A), and (as it can be seen by putting the
derivatives of F(x, y) with respect to x and y equal to zero) this is
a necessary and sufficient condition for the solution set of (X, Y, F)
to be not empty, which then is given by

XF x YF = {(x, y)\{x, y)eXx Y, A(x, y) - (c, d)} .

Let A be normally solvable (R(A) is closed), then the element of
XF x YF with minimum norm is
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(x\ y'): = A+(c, d)

where A+ denotes the pseudoinverse (e.g., Holmes [6], p. 220). Note
that A+w = A+ FrojBU]w, for w e X x Y, and E(A+) _L N(A). With

Pn(%, v)' = F{x9 y) + rnG(x, y), rne R, rn > + 0, for n > co ,

(neN),
ίS 0\

B: = I J , and An: = Λ + r n B

the solution set of (X, Y, pn) is

{(a?, ») e l x Y\An(x, y) = (c, d)}, (neN) .

If S and T are definite and normally solvable, then (y, Ty)1/2 and
(x, ~Sx)1/2 are representing norms equivalent to the given ones on
Y and X, respectively. So by Theorem 4 (X, Y, pn) has a unique
solution

and

(2) A+{S>τ)(c, d): =\i

exists and is the solution of ^€GtF. Since (2) holds for all (c, d) 6
R(A), we have

( 3 ) A-1 > A+{S>T) (strongly), as n > oo ,

where A+{SyT), the solution operator of ^£GIF> is a linear and bounded
operator, because of Banach's inverse mapping theorem.

If / denotes the identity on the spaces, resp., then A+{I'n=A+.
If S and T are not invertible, then {X, Yf pn) and ^QJF are

not uniquely solvable, in general. Then we are interested in the
solutions of minimum norm.

The solution set XF x YF of A(x, y) — (c, d) is given by

A+(c, d) + N(A), with A+{c, d) _L N(A) .

Now if (x,y)eN(A), then

ζx, Px) + (x, Ly) = 0

<», Qy> + <x, Ly} = 0,

(x, Pχ}^0=* (x, Ly) ̂  0, <y, Qy> ^ 0 —» (x, Ly) ̂  0 ,

and so <α?, Ly> = 0 and x e N(P), y e N(Q). Thus

(4) XFx YF = (xfy) + N(P) x JV(Q), for any (a?, I / ) G I , X Γ , ,

and
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( 5 ) P/XF = const and Q/ YF — const .

Let P be a self-adjoint negative semidefinite bounded linear operator
on X with

( 6 ) N(P) n N(S) = N(P) n N(S), P/XF = const; (e.g., P - P) ,

and Q be a self-adjoint positive semidefinite bounded linear operator
on Y with

( 7) 2SΓ(Q) Π N(S) = N(Q) Π JV(S), Q/FF = const; (e.g., Q = Q) .

Putting

S: = P + S, f: = Q + T ,

we have

(8) MS) = #(P) n JV(S), iV(Γ) - isr(θ) n iV(Γ).

Let S and T be normally solvable, then (cf. Petryshyn [8])

inf {\\Sx|| \x eN(S)\ \\x\\ - 1} > 0 ,

inί {\\Ty\\\yeN(Ty, | |y | | = l } > 0 ,

and so (χ9 -Sx)1/2/N(S)1, (y, Ty)1/2/N(f)L are equivalent norms to
the given ones, resp., restricted correspondingly. With G(x, y): —

(x, Sx) + (y, fy>, pn: = F + rβ, B: - (jj> | ) and Άn: - A + rnBr

the solution set of (X, Y, pn) is

Aί(c, d) + N(Άn), (neN).

Now Άi(c, d) 1 N(Άn) and iV(AJ - N(S) x JVίf), thus A+(c, d) solves
(Nφ)1, iV(T)1, pn), (neN). Applying Theorem 4 to this problem,
we get

( 9 ) Ά+iS>T)(c, d): = lim Άi(c, d)

solves uniquely

(10) ^£o,h where JF: - F/N(§y x

Denote by Z the solution set of ^faiF, and let (xl9 y^, (x2, y2) e Z;
then we have by (4) for all (u, v)eN(P) x N(Q):

(u, S*S(^ - x2)) - 0, {v, T*f(Vl - y2)) = 0 .

With (4) again (x1 - x2) e N(P), (yλ - y2)eN(Q)f and so (^ - a;2) e
N(S)f (yι — y2)eN(T), hence we have, with (8), the representation

Z = (a?, y) + N(S) x iV(Q), for any (x, y)eZ.
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Thus the element of Z with minimum norm is given by the solution
of Λ€QIF- Because of (6), (7) there are

G/XF x YF = G/XF x YF + const ,

and Z the solution set of ^tβ/Ff too. Then (9), (10) yield,

(11) A+{S>T)(c, d) is the solution of ^GIF with minimum norm.

Since (9) holds for all (c, d) in the range of A, we have just proved
the

THEOREM 5. Let with the definitions above A, S, T be normally
solvable, then there exists a linear and bounded operator

+is,τ).
χ

such that for all (c, d) 6 R(A)

A+{SfT)(c, d) is the minimum norm solution of the two
stage minimax problem (1) ^?G/F(C, d), and permits
the representation

\(12) A™-T\c, d) - lim IP + r S L )\c, d) .

If N(S) = {0}, N(T) = {0}, then on the right hand side in (12) we
have ordinary inversion.

Conveniently one takes

S, if N(S) - {0} f = j Γ, if N(T) = {0}

p + S, otherwise ' [Q + T, otherwise

6* A note on best approximate solutions of linear equations*
Let W, X, Y be real Hubert spaces as above and

C: X > Y, D: X > W

Tbe continuous linear operators. We are given an element yeY and
the problem of finding an element xe X which solves the equation

< 1) Cx = y.

If y<£R(C), there exists no solution of (1). Then we consider the
problem of finding an element x{y) e X of minimum seminorm \\Dx\\
which gives a minimum value for the discrepancy \\Cx — y\\, xeX.
An element x(y) with this property may be called a 'D-best approxi-
mate solution1 of (1). In the case D — I ( = identity) usually x(y)
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is called a 'best approximate solution' (e.g., Holmes [6], p. 214) or
'pseudo-solution' (e.g., Morozov [7]) of (1). In order to find a D-
faest approximate solution of (1) we have to solve the problem

{ 2 ) minimize {(x, D*Dx) \ (x, C*Cx) - 2(x, C*y) = min!, x e X} .

Applying now Theorem 5 to this special two stage problem (2) we
get

THEOREM 6. If C, C*C + D*D are normally solvable, then there
exists a continuous linear operator

such that

for all y e Y C+ny is the D-best approximate solution
to Cx = y of minimum norm, ( X G I ) ,

and

{ 3 ) C+n = lim (C*C + rD)+C* ,

where

ΰ = \D*D, if N(D) = {0}

[C*C + D*D, otherwise

If N(D) = {0}, then on the right hand side of (3) τve have ordinary
inversion, and especially for D = I we get

( 4 ) G~VI Ξ C+ = lim (C*C + riyιC* ,
r->-\ 0

α representation given for instance by Morozov [7].
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