ON CLASS NUMBERS OF CYCLIC QUARTIC FIELDS

Tsuyoshi Uehara

Abstract

Let n be a given natural number and F a quadratic field contained in a cyclic quartic field. In this paper we shall construct infinitely many imaginary cyclic quartic fields containing F whose relative class numbers are divisible by n.

1. Introduction. Let K be an imaginary abelian number field, K^{+} its maximal real subfield, and let h and h^{+}be the respective class numbers. It is known that h^{+}divides h. The quotient $h^{-}=h / h^{+}$is called the relative class number of K. The purpose of this paper is to give a complement of a result in our previous paper [3]. Namely we shall prove the following

Theorem. Let F be a quadratic field contained in a cyclic quartic field. Then there exist infinitely many imaginary cyclic quartic fields containing F each with relative class number divisible by a given integer.

It is seen from Lemma 2 in the next section that for a square free rational integer m the quadratic field generated by $m^{1 / 2}$ is contained in a cyclic quartic field if and only if $m=s^{2}+t^{2}$ for some rational integers s, t.
2. Lemmas. By Z, Q we denote the ring of rational integers, the field of rational numbers respectively. For any number field L let $C(L)$ be the ideal class group of L.

Lemma 1 (for instance, cf. [2], Ch. 3, Theorem 4.3). Let K be an imaginary abelian number field, and K^{+}its maximal real subfield. Let ϕ be the norm mapping from $C(K)$ to $C\left(K^{+}\right)$and put $C^{-}(K)=\operatorname{Ker} \phi$. Then ϕ is surjective, and the relative class number of K is equal to the order of $C^{-}(K)$.

Lemma 2 (cf. [1]). Let $m \neq 1$ be a square free rational integer and a, b rational numbers. Put $\eta=a+b m^{1 / 2}$. Then $Q\left(\eta^{1 / 2}\right)$ is a cyclic quartic field if and only if $a^{2}-b^{2} m=c^{2} m$ for some c in Q.

We now take rational integers s, t for which $m=s^{2}+t^{2}$ is square free and put

$$
\eta=f\left(m+t m^{1 / 2}\right), \quad \theta=\eta^{1 / 2}
$$

f being a square free rational integer. By Lemma $2, K=Q(\theta)$ is a cyclic quartic field. Let σ be a generator of the Galois group $\operatorname{Gal}(K / Q)$. Then $\left(\theta^{\sigma}\right)^{2}=f\left(m-t m^{1 / 2}\right)$. We put $\omega=m^{1 / 2}$ if m is even and $\omega=$ $\left(1+m^{1 / 2}\right) / 2$ if m is odd. Note that $\theta^{\sigma^{2}}=-\theta$ and $\omega^{\sigma^{2}}=\omega$.

Lemma 3. Let the notation be as above. If p is an odd prime dividing f, then for any integer α in K and any $k>0$ in Z there is an integer β in $Q\left(m^{1 / 2}\right)$ such that

$$
\alpha^{p^{k}} \equiv \beta \quad\left(\bmod p^{k}\right)
$$

If $m^{\prime} \equiv 0(\bmod 2)$ or $f \equiv t(\bmod 2)$, the above assertion is also valid for $p=2$.

Proof. First we remark that if $\alpha^{p} \equiv \beta(\bmod p)$ is true for some β in $Z[\omega]$ then the assertion is easily shown by induction on k.

Let p be an odd prime dividing f. We can find integers a, b, c, d in Z such that

$$
\alpha \equiv\left(a+b \omega+c \theta+d \theta^{\sigma}\right) / p^{e}(\bmod p), \quad e \geq 0
$$

Since $\alpha+\alpha^{\sigma^{2}} \equiv 2(a+b \omega) / p^{e}(\bmod p)$ we have $a \equiv b \equiv 0\left(\bmod p^{e}\right)$. Hence $\pi=\left(c \theta+d \theta^{\sigma}\right) / p^{e}$ is an integer and $\alpha-\pi \equiv \beta_{1}(\bmod p)$ holds for some β_{1} in $Z[\omega]$. Observing $c \pi-d \pi^{\sigma}=\left(c^{2}+d^{2}\right) \theta / p^{e}$ we get $c^{2}+d^{2} \equiv 0\left(\bmod p^{e}\right)$. We compute

$$
p^{2 e} \pi^{2}=\left(c^{2}+d^{2}\right) f m+\left\{\left(c^{2}-d^{2}\right) t \pm 2 c d s\right\} f m^{1 / 2}
$$

If $e=0$ then $\pi^{2} \equiv 0(\bmod p)$. When $e>0$ we may assume $(c, p)=$ $(d, p)=1$. We derive $c t \pm d s \equiv 0\left(\bmod p^{e}\right)$. This implies that $s \equiv \pm l c$ $\left(\bmod p^{e}\right), t \equiv-l d\left(\bmod P^{e}\right)$ for some l in Z. Hence $m \equiv l^{2}\left(c^{2}+d^{2}\right) \equiv 0$ $\left(\bmod p^{e}\right)$ and so $e=1$. Notice that $p \geq 5$ and $\pi^{4} \equiv 0(\bmod p)$ in this case. Thus $\pi^{p} \equiv 0(\bmod p)$ and $\alpha^{p} \equiv \beta_{1}^{p}(\bmod p)$ in all cases.

To verify the assertion in the case $p=2$ we put $\xi=\left(\theta+\theta^{\sigma}\right) / 2$, $\xi^{\prime}=\left(\theta-\theta^{\sigma}\right) / 2$ and suppose that for some u, v, x, y in $Z, \zeta=$ $\left(u+v \omega+x \xi+y \xi^{\prime}\right) / 2$ is an integer. We shall show that u, v, x and y are all even. We write $4 \zeta \zeta^{\sigma^{2}} \equiv M+N \omega$ with M, N in Z. Clearly $M \equiv N \equiv$ $0(\bmod 4)$. In the case that m is even, one sees

$$
\left\{\begin{array}{l}
M=u^{2}+v^{2} m-\left(x^{2}+y^{2}\right) f m / 2 \\
N=2 u v-\left\{x y t \pm\left(x^{2}-y^{2}\right) s / 2\right\} f
\end{array}\right.
$$

Since s and t are both odd and $f \equiv 0(\bmod 4)$, we get $x \equiv y(\bmod 2)$. This implies $u \equiv 0(\bmod 2)$ and hence $N \equiv-x y t \equiv 0(\bmod 2)$. The last congruence shows $x \equiv y \equiv 0(\bmod 2)$. Thus v is also even. Next let m be odd. Then

$$
\left\{\begin{array}{l}
M=u^{2}+v^{2}(m-1) / 4-\left\{\left(x^{2}+y^{2}\right) m \pm\left(x^{2}-y^{2}\right) s-2 x y t\right\} f / 2, \\
N=(2 u+v) v+\left\{ \pm\left(x^{2}-y^{2}\right) s-2 x y t\right\} f .
\end{array}\right.
$$

If f and t are both even, we have $v \equiv 0(\bmod 2)$ and $x \equiv y(\bmod 2)$ because $(2 u+v) v \pm\left(x^{2}-y^{2}\right) f s \equiv 0(\bmod 4)$ and s is odd. Hence it follows from $M \equiv 0(\bmod 4)$ that $u \equiv x \equiv y \equiv 0(\bmod 2)$. If f and t are both odd, since s is even, we first see $v \equiv 0(\bmod 2)$. Observing $2 M \equiv$ $\left(x^{2}+y^{2}\right) f m \equiv 0(\bmod 2)$ we have $x \equiv y(\bmod 2)$. From $N \equiv-2 x y f t$ $\equiv 0(\bmod 4)$ one can derive $x \equiv y \equiv 0(\bmod 2)$. Thus u is also even. The above argument shows that under the assumption $\alpha \equiv \beta_{1}+c \xi+d \xi^{\prime}$ $(\bmod 2)$ holds with β_{1} in $Z[\omega]$ and c, d in Z. Here $\xi_{1}=c \xi+d \xi^{\prime}$ is an integer and ξ_{1}^{2} is in $Z[\omega]$. This yields that $\alpha^{2} \equiv \beta(\bmod 2)$ with β in $Z[\omega]$. Hence the proof is complete.
3. Proof of the theorem. In the following, for any prime p and any rational integer g, ord ${ }_{p} g$ means the exponent of the exact power of p dividing g. Let $m=s^{2}+t^{2}$ be a square free rational integer with $s, t>0$ in Z. For a given natural number n we put

$$
n^{\prime}= \begin{cases}2^{3} n^{2} & \text { if } n \text { is even and } m t \text { is odd, } \\ 2^{2} n^{2} & \text { if } n \text { and } m t \text { are both even, } \\ n^{2} & \text { if } n \text { is odd. }\end{cases}
$$

Proposition. Let the notation be as above. Take rational integers a, $b>0$ satisfying
(i) $(a, b t)=1$,
(ii) $\left(a^{2}-b^{2} t^{2} m, 2 m s\right)=1$,
(iii) ord $_{p} b=1$ for every prime p dividing n,
(iv) $A-B m>0$,
where $A+\operatorname{Btm}^{1 / 2}=\left(a+b t m^{1 / 2}\right)^{n^{\prime}}$ with A, B in Z. Moreover put

$$
\eta=\left(2 B m-A+B t m^{1 / 2}\right)^{2}-\left(A+B t m^{1 / 2}\right)^{2} .
$$

Then $K=Q\left(\eta^{1 / 2}\right)$ is an imaginary cyclic quartic field, and the relative class number of K is divisible by n unless K is the fifth cyclotomic field.

Proof. Computing $\eta=4 B(B m-A)\left(m+t m^{1 / 2}\right)$ we obtain the first assertion from Lemma 2 and (iv). We put

$$
\alpha=a+b t m^{1 / 2}, \quad \beta=2 B m-A+B t m^{1 / 2}, \quad \theta=\eta^{1 / 2} .
$$

Then $(\beta+\theta)(\beta-\theta)=\alpha^{2 n^{\prime}}$. Suppose that there is a prime ideal P of K dividing both the integers $\beta \pm \theta$. Let p be the prime lying below P. Then p divides $a^{2}-b^{2} t^{2} m$ because α is in P. By (ii) we have $(p, 2 m s)=1$. The congruence $a \equiv-b t m^{1 / 2}(\bmod P)$ implies $B t m^{1 / 2} \equiv-2^{n^{\prime}-1} a^{n^{\prime}}$ $(\bmod P)$. Hence from (i) we can derive $(p, B)=1$. On the other hand $2 \alpha^{n^{\prime}}+2 \beta=4 B\left(m+t m^{1 / 2}\right)$ is contained in P and hence p must divide $2 B m s$. This gives a contradiction. Thus $(\beta+\theta, \beta-\theta)=1$ and $(\beta+\theta)$ $=I^{2 n^{\prime}}$ holds for some ideal I of K. The ideal class represented by I belongs to $C^{-}(K)$, which was defined in Lemma 1 , because $I I^{\tau}=(\alpha)$, where τ is the generator of the Galois group $\operatorname{Gal}\left(K / Q\left(m^{1 / 2}\right)\right)$.

Let p be any prime dividing n. From (iii) it is easy to see $\operatorname{ord}_{p}\left(\begin{array}{c}n^{\prime}\end{array}\right) b^{t}$ $>1+\operatorname{ord}_{p} n^{\prime}$ for any odd integer $i, 3 \leq i \leq n^{\prime}$. By (i) we get $(a, p)=1$. Hence it follows that $(A, p)=1$ and ord $p=1+\operatorname{ord}_{p} n^{\prime}$. We write $4 B(B m-A)=r^{2} f$, where r, f are in Z and f is square free. Let $l=\operatorname{ord}_{p} n$. Then we obtan

$$
\operatorname{ord}_{p} r= \begin{cases}l+3 & \text { if } p=2 \text { and } m t \text { is odd } \\ l+2 & \text { if } p=2 \text { and } m t \text { is even } \\ l & \text { if } p>2\end{cases}
$$

Moreover f is divisible by every odd prime dividing n, and $f \equiv t(\bmod 2)$ is valid if n is even and m is odd.

We now assume $\operatorname{ord}_{p} C^{-}(K)<l$. We put $k=\operatorname{ord}_{p} 2 n^{\prime}$ and consider the ideal $J=I^{2 n^{\prime} / p^{k}}$. Then $J^{p^{I-1}}=(\zeta)$ for some integer ζ in K. Hence $\beta+\theta=\varepsilon \zeta^{p^{k-l+1}}$ holds, ε being a unit of K. We know that $\varepsilon_{1}=\varepsilon / \varepsilon^{\tau}$ is a root of unity. Since $Q\left(\varepsilon_{1}\right) \subset K$, it is seen from Lemma 2 that $\varepsilon_{1}= \pm 1$ if K is not equal to the fifth cyclotomic field. By means of Lemma 3 we have

$$
\zeta^{p^{k-l+1}} \equiv\left(\zeta^{\tau}\right)^{p^{k-l+1}} \equiv \xi \quad\left(\bmod p^{k-l+1}\right)
$$

for some ξ in $Z[\omega]$. Thus $\beta+\theta \equiv \pm(\beta-\theta)\left(\bmod p^{k-l+1}\right)$. Since $\beta \equiv$ $-A \not \equiv 0(\bmod p)$, it holds that

$$
2 \theta= \pm 2 r\left(f \eta^{\prime}\right)^{1 / 2} \equiv 0 \quad\left(\bmod p^{k-l+1}\right)
$$

with $\eta^{\prime}=m+t m^{1 / 2}$. On the other hand ord ${ }_{p} 2 r<k-l+1$. Therefore $f \eta^{\prime}$ must be divisible by p^{2}. But this is impossible. Hence the order of $C^{-}(K)$ is a multiple of p^{\prime}. This proves the second assertion.

Proof of Theorem. Let $K_{i}(i=1, \ldots, g)$ be a finite number of quartic fields each generated by $\left(f_{l} \eta^{\prime}\right)^{1 / 2}$ with f_{i} in Z and $\eta^{\prime}=m+t m^{1 / 2}$. To prove the theorem it suffices to find an imaginary cyclic quartic field different from any K_{i} such that $h^{-} \equiv 0(\bmod n)$. Take a prime q not dividing $10 f_{1} \cdots f_{g} m n$ and choose a positive rational integer b satisfying
the condition (iii) and ord ${ }_{q} b=1$. The condition (iv) is equivalent to the inequality

$$
\left(m^{1 / 2}+t\right)\left(a-b t m^{1 / 2}\right)^{n^{\prime}}>\left(m^{1 / 2}-t\right)\left(a+b t m^{1 / 2}\right)^{n^{\prime}}
$$

By simple computation we see that if $t>s$ and $a>3 b n^{\prime} t m^{1 / 2}$ then (iv) is valid. Hence we can find an integer $a>0$ in Z satisfying (i), (ii) and (iv). Let K be the field generated by $\left(f^{\prime} \eta\right)^{1 / 2}$ over Q with $f^{\prime}=4 B(B m-A)$, where A, B are defined as in Proposition. It is clear that ord ${ }_{q} f^{\prime}=1$ and K is not equal to the fifth cyclotomic field. Further $K \neq K_{i}$ for any i, $1 \leq i \leq g$. Indeed, if $K=K_{i}$ for some i, then $\left(f^{\prime} / f_{i}\right)^{1 / 2}$ is contained in the quadratic field $Q\left(m^{1 / 2}\right)$. This contradicts the choice of q. Hence K is a desired field, and the proof is complete.

References

[1] H. Edgar and B. Peterson, Some contributions to the theory of cyclic quartic extensions of the rationals, J. Number Theory, 12 (1980), 77-83.
[2] S. Lang, Cyclotomic Fields, Springer-Verlag, New York, 1978.
[3] T. Uehara, On class numbers of imaginary quadratic and quartic fields, Arch. Math. (Basel), 41 (1983), 256-260.

Received November 15, 1984.

Saga University
SAGA, JAPAN

