**

FITTING STRUCTURES

KARSTEN JOHNSEN AND HARTMUT LAUE

Motivated by papers of H. Fitting, the problem arises whether there exists a ring which contains a given ring and a semigroup acting on each other. This problem is solved in the affirmative by the construction of a "universal envelopment". Furthermore, the situation investigated gives rise to a generalized wreath product which is used for a description of certain automorphism groups.

0. Introduction. The endomorphisms of an abelian group form a ring in a natural and well-known way, whereas in the case of a nonabelian group one has no general "addition" of endomorphisms. One easily proves that the "sum" of two endomorphisms α , β of a group G,

$$\alpha + \beta \colon g \mapsto g^{\alpha} g^{\beta}$$
 for all $g \in G$,

is an endomorphism of G if and only if $[G^{\alpha}, G^{\beta}] = 1$. Hence the endomorphisms that can be added to any endomorphism are exactly the homomorphisms of G into its center Z(G). In this sense, the ring Hom(G, Z(G)) is a "pleasant" substructure of End(G). Long ago, Fitting [2] described the structure of $\operatorname{End}_{G}(G)$ which, though not a ring, still has numerous ring properties; if we put $H := \operatorname{End}_{G}(G), S := \operatorname{Hom}(G, Z(G))$, then e.g.

 $(s_1h)s_2 = s_1(hs_2)$ for all $h \in H, s_1, s_2 \in S$, (1)

(2)
$$(h_1 + s)h_2 = h_1h_2 + sh_2, \quad h_1(h_2 + s) = h_1h_2 + h_1s$$

(3)
$$(h + s_1)s_2 = hs_2 + s_1s_2, \qquad s_1(h + s_2) = s_1h + s_1s_2 \\ for all h \in H, s_1, s_2 \in S.$$

Keeping these rules as axioms, we introduce so-called Fitting structures in the first chapter of this paper and show that firstly there does exist a ring R containing H and S such that (1), (2), (3) are special cases of its associative and distributive laws, and that secondly any ring with this property (if—which is a non-essential restriction—it is generated by H) is a homomorphic image of R. Emanating naturally from Fitting's notion of "Bereich" [2], the problem of the existence of enveloping rings for Fitting structures, which has been solved for $H = \text{End}_G(G)$ by Fitting in a special way, thus finds a general positive answer. Chapter 2 shows that even if there is not given an addition of elements of H and S, such an addition can be defined after a certain enlargement of H, and that this process of making H and S into a Fitting structure is essentially uniquely determined by the actions of H on S. In Chapter 3, we introduce to each Fitting structure a *generalized wreath product* containing the usual wreath product of (semi-)groups as a special case, and use this concept to give a simple description of certain automorphism groups, applying a result of another paper by Fitting [1].

1. Fitting structures. For every ring 1 S, we put

$$\operatorname{End}_{\Lambda}(S) := \left\{ \alpha | \alpha \in \operatorname{End}(S, +), (s_{1}s_{2})^{\alpha} = s_{1}(s_{2}^{\alpha}) \text{ for all } s_{1}, s_{2} \in S \right\},\$$

$$\operatorname{End}_{P}(S) := \left\{ \alpha | \alpha \in \operatorname{End}(S, +), (s_{1}s_{2})^{\alpha} = (s_{1}^{\alpha})s_{2} \text{ for all } s_{1}, s_{2} \in S \right\}.$$

Obviously,
$$\operatorname{End}_{\Lambda}(S) \text{ and } \operatorname{End}_{P}(S) \text{ are subrings of } \operatorname{End}(S, +).$$

1.1. DEFINITION. Let H be a semigroup, S a ring, φ a homomorphism of H into the multiplicative semigroup of $\operatorname{End}_{\Lambda}(S)$, ψ an antihomomorphism of H into the multiplicative semigroup of $\operatorname{End}_{P}(S)$ such that H^{φ} and H^{ψ} commute elementwise. Let σ be a homomorphism of (S, +) into the symmetric group \mathfrak{S}_{H} on H such that $h^{s^{\sigma}} = h$ implies s = 0 for all $h \in H$, $s \in S$ (i.e., (S, +) "acts freely" on H).

If $h \in H$, $s \in S$, we write sh for $s^{h^{\varphi}}$, hs for $s^{h^{\psi}}$, h + s for $h^{s^{\sigma}}$. The 5-tuple $(H, S, \varphi, \psi, \sigma)$ is called a *Fitting structure* if (1), (2), (3) hold.²

By definition, we have

(4)
$$(sh_1)h_2 = s(h_1h_2), \quad h_1(h_2s) = (h_1h_2)s$$

for all $h_1, h_2 \in H$, $s \in S$,

(5)
$$(h + s_1) + s_2 = h + (s_1 + s_2)$$
 for all $h \in H, s_1, s_2 \in S$,

(6)
$$(s_1s_2)h = s_1(s_2h), \quad h(s_1s_2) = (hs_1)s_2$$

for all $h \in H$, $s_1, s_2 \in S$,

(7)
$$(h_1s)h_2 = h_1(sh_2)$$
 for all $h_1, h_2 \in H, s \in S$

(8) $h + s = h \Leftrightarrow s = 0$ for all $h \in H$, $s \in S$.

112

¹All rings in this paper are associative, but do not necessarily have an identity element.

² If H is a "Bereich" in the sense of Fitting [2], let S be the set of all elements of H which can be added to any element of H. Then S is a ring, and we get a Fitting structure with the additional property that S is contained in H, and H has an identity element. Any further possibilities to add elements of H (which might exist in Fitting's "Bereich") are treated as non-existent in our Fitting structures.

If H has an identity element 1, then (2) and (8) imply $1^{\varphi} = id = 1^{\psi}$.

Fitting structures $\mathscr{F} = (H, S, \varphi, \psi, \sigma)$, $\mathscr{F}' = (H', S', \varphi', \psi', \sigma')$ are called *isomorphic* if there are isomorphisms α of H onto H', β of S onto S' with the properties $\beta\sigma' = \sigma\overline{\alpha}$, $\alpha\varphi' = \varphi\overline{\beta}$, $\alpha\psi' = \psi\overline{\beta}$, where $\overline{\alpha}$ is the isomorphism of \mathfrak{S}_H onto $\mathfrak{S}_{H'}$ induced by α (such that $\pi^{\overline{\alpha}} = \alpha^{-1}\pi\alpha$ for all $\pi \in \mathfrak{S}_H$), and $\overline{\beta}$ is the isomorphism of $\operatorname{End}(S)$ onto $\operatorname{End}(S')$ induced by β (such that $\zeta^{\overline{\beta}} = \beta^{-1}\zeta\beta$ for all $\zeta \in \operatorname{End}(S)$).

 \mathscr{F}' is called a *Fitting substructure* of \mathscr{F} if H' is a subsemigroup of H, S' is a subring of S, and $\varphi' = \varphi|_{H'}$, $\psi' = \psi|_{H'}$, $\sigma' = \sigma|_{S'}$. If H' is a subsemigroup of H, S' a subring of S, then $(H', S', \varphi|_{H'}, \psi|_{H'}, \sigma|_{S'})$ is a Fitting substructure of \mathscr{F} if and only if $S'H' \subseteq S'$, $H'S' \subseteq S'$, and H' + S' = H'.

1.2. DEFINITION. Let \mathscr{F} be a Fitting structure, R a ring, $\tilde{}$ a homomorphism of H into the multiplicative semigroup of R, and $\tilde{}$ a homomorphism of S onto an ideal of R. The triple $(R, \tilde{,})$ is called an *envelopment* of \mathscr{F} if

(9)
$$\tilde{h} + \bar{s} = \widetilde{h + s}$$
 for all $h \in H, s \in S$

holds.

The envelopment $(R, \tilde{,})$ is called *faithful* if $\tilde{}$ and $\bar{}$ are injective. From (9), we conclude

(10)
$$\tilde{h}\bar{s} = \overline{hs}, \ \bar{s}\bar{h} = \overline{sh} \text{ for all } h \in H, \ s \in S,$$

since

$$\widetilde{h^2} + \overline{sh} = \widetilde{h^2 + sh} = (\widetilde{h + s})\widetilde{h} = \widetilde{h + sh} = (\widetilde{h} + \overline{s})\widetilde{h} = \widetilde{h^2} + \overline{s}\widetilde{h},$$

and the second part of (10) is proved similarly.

1.3. DEFINITION. Let \mathscr{F} be a Fitting structure and $(R, \tilde{,}), (R', \tilde{,})$ envelopments of \mathscr{F} . Then a mapping χ is called a *homomorphism* of $(R, \tilde{,})$ into $(R', \tilde{,})$ if χ is a homomorphism of R into R' such that $\tilde{h}^{\chi} = \tilde{h}, \ \bar{s}^{\chi} = \bar{s}$ for all $h \in H, s \in S$. If χ is an isomorphism of R onto R', we call our envelopments *isomorphic*. An envelopment \mathscr{U} of \mathscr{F} is called *universal* if for any envelopment \mathscr{V} of \mathscr{F} there is a homomorphism of \mathscr{U} into \mathscr{V} .

Universal envelopments of isomorphic Fitting structures are isomorphic. We now prove the following existence theorem:

1.4. THEOREM. Every Fitting structure has a faithful universal envelopment.

Proof. Let $\mathscr{F} = (H, S, \varphi, \psi, \sigma)$ be the Fitting structure given. We put $T := \mathbb{Z} H$ and write $\hat{+}$, $\hat{-}$ for the standard addition and multiplication in T. (Then $h_1 \hat{\cdot} h_2 = h_1 h_2$ for all $h_1, h_2 \in H$.) For $h \in H$, $s \in S$ define $\delta(h, s) := (h + s) \hat{-} h$

and let K be the additive subgroup of T generated by $\{\delta(h_1, s) - \delta(h_2, s) | h_1, h_2 \in H, s \in S\}$. Then

(11)
$$h_1 \circ \delta(h_2, s) - \delta(h_2, h_1 s), \, \delta(h_2, s) \circ h_1 - \delta(h_2, sh_1) \in K$$

for all $h_1, h_2 \in H, s \in S$,

as

$$h_1 \,\hat{\cdot} (h_2, s) \,\hat{-} \,\delta(h_2, h_1 s) = h_1 \,\hat{\cdot} ((h_2 + s) \,\hat{-} \,h_2) \,\hat{-} \,\delta(h_2, h_1 s)$$
$$= h_1 (h_2 + s) \,\hat{-} \,h_1 h_2 \,\hat{-} \,\delta(h_2, h_1 s)$$
$$= \delta(h_1 h_2, h_1 s) \,\hat{-} \,\delta(h_2, h_1 s) \in K,$$

the second part of (11) being proved analogously. Obviously, (11) yields (12) $h_1 \cdot (\delta(h_2, s) - \delta(h_3, s)), (\delta(h_2, s) - \delta(h_3, s)) \cdot h_1 \in K$ for all $h_1, h_2, h_3 \in H, s \in S$.

Thus K is an ideal of T, and, by definition of K, (13) $\delta(h_1, s) + K = \delta(h_2, s) + K$ for all $h_1, h_2 \in H$, $s \in S$. We now define

$$R := T/K,$$

$$: H \to R, h \mapsto h + K,$$

and for an arbitrary $h \in H$

$$\overline{:} S \to R, \quad s \mapsto \delta(h, s) \stackrel{\circ}{+} K.$$

(By (13), $\bar{}$ is independent of the choice of *h*.) Obviously, $\tilde{}$ is a homomorphism of *H* into the multiplicative semigroup of *R*, and

$$\widetilde{h+s} = (h+s) + K = h + (h+s) - h + K$$
$$= (h + K) + (\delta(h,s) + K) = \tilde{h} + \tilde{s} \text{ for all } h \in H, s \in S,$$

whence (9) holds. We want to show that is a ring homomorphism of S into an ideal of R, and start with

(14) $\delta(h, s_1 + s_2) \hat{-} \delta(h, s_1) \hat{-} \delta(h, s_2) \in K$ for all $h \in H, s_1, s_2 \in S$. For

$$\delta(h, s_1 + s_2) \stackrel{\sim}{\to} \delta(h, s_1) \stackrel{\sim}{\to} \delta(h, s_2)$$

= $(h + s_1 + s_2) \stackrel{\sim}{\to} h \stackrel{\sim}{\to} (h + s_1) \stackrel{\circ}{+} h \stackrel{\sim}{\to} \delta(h, s_2)$
= $\delta(h + s_1, s_2) \stackrel{\sim}{\to} \delta(h, s_2) \in K.$

Furthermore,

(15) $\delta(h, s_1 s_2) - \delta(h, s_1) \cdot \delta(h, s_2) \in K$ for all $h \in H$, $s_1, s_2 \in S$, since

$$\begin{split} \delta(h, s_1 s_2) &\stackrel{\frown}{\to} \delta(h, s_1) \stackrel{\circ}{\to} \delta(h, s_2) \\ &= \delta(h, s_1 s_2) \stackrel{\frown}{\to} ((h + s_1) \stackrel{\frown}{\to} h) \stackrel{\circ}{\to} ((h + s_2) \stackrel{\frown}{\to} h) \\ &= \delta(h, s_1 s_2) \stackrel{\frown}{\to} (h + s_1)(h + s_2) \stackrel{\circ}{\to} (h + s_1)h \stackrel{\circ}{\to} h(h + s_2) \stackrel{\frown}{\to} h^2 \\ &= \delta(h, s_1 s_2) \stackrel{\frown}{\to} \delta((h + s_1)h, (h + s_1)s_2) \stackrel{\circ}{\to} \delta(h^2, hs_2) \in K, \end{split}$$

by (13) and (14).

As (14) and (15) show, $\overline{}$ is a ring homomorphism, and by (12), \overline{S} is an ideal of R. Therefore, $(R, \tilde{}, \bar{})$ is an envelopment of \mathcal{F} . We need some preliminaries to show that $\tilde{}$ and $\bar{}$ are injective:

Let D be the additive subgroup of T generated by $\{\delta(h, s) | h \in H, s \in S\}$. Then $K \leq D$, and $D/K = \overline{S}$. Since

(16)
$$\hat{-} \delta(h,s) = \delta(h+s,-s)$$
 for all $h \in H, s \in S$,

every element of D has the form $\sum_{j} \delta(h_j, s_j)$ for appropriate $h_j \in H$, $s_j \in S$. We claim:

(17)
$$\sum_{j=1}^{k} \delta(h_j, s_j) = 0 \Rightarrow \sum_{j=1}^{k} s_j = 0$$

for all $h_1, \ldots, h_k \in H$, $s_1, \ldots, s_k \in S$.

Suppose $\sum_{j=1}^{k} \delta(h_j, s_j) = 0$. Then we have $\sum_{j=1}^{k} (h_j + s_j) = \sum_{j=1}^{k} h_j$. Since $(T, \hat{+})$ is free over H, there is a permutation π of $\{1, \ldots, k\}$ such that $h_j + s_j = h_{j\pi}$ for all $j \in \{1, \ldots, k\}$. For $i \in \{1, \ldots, k\}$, let f_i be the smallest positive integer such that $i\pi^{f_i} = i$. Then $\{i, i\pi, \ldots, i\pi^{f_i-1}\}$ is the orbit of i under π , and $h_i + s_i + s_{i\pi} + \cdots + s_{i\pi^{f_i-1}} = h_i$, and $s_i + s_{i\pi} + \cdots + s_{i\pi^{f_i-1}} = h_i$, and $s_i + s_{i\pi} + \cdots + s_{i\pi^{f_i-1}} = 0$ by (8). Now if X denotes a full set of representatives of the orbits of π in $\{1, \ldots, k\}$,

$$\sum_{j=1}^{n} s_{j} = \sum_{i \in X} (s_{i} + s_{i\pi} + \cdots + s_{i\pi^{f_{i}-1}}) = 0,$$

proving (17).

As a consequence, we have

ŀ

(18)
$$\sum_{j=1}^{k} \delta(h_j, s_j) = \sum_{j=1}^{k'} \delta(h'_j, s'_j) \Rightarrow \sum_{j=1}^{k} s_j = \sum_{j=1}^{k'} s'_j$$

for all $h_1, \dots, h_k, h'_1, \dots, h'_{k'} \in H, s_1, \dots, s_k, s'_1, \dots, s'_{k'} \in S.$

Therefore, $\rho: \sum_{j=1}^{k} \delta(h_j, s_j) \mapsto \sum_{j=1}^{k} s_j$ defines a mapping of *D* into *S* which obviously is an additive homomorphism. We claim:

(19)
$$K = \ker \rho.$$

By (16) and the definition of K, we have $K \subseteq \ker \rho$. One generally has $\delta(h_j, s_j) \equiv \delta(h_1 + s_1 + \cdots + s_{j-1}, s_j) \mod K$ for $h_1, \ldots, h_j \in H$, $s_1, \ldots, s_j \in S$. If now $\sum_{j=1}^k \delta(h_j, s_j) \in \ker \rho$, then $\sum_{j=1}^k s_j = 0$, and consequently

$$\sum_{j=1}^{k} \delta(h_j, s_j) \equiv \sum_{j=1}^{k} \delta(h_1 + s_1 + \dots + s_{j-1}, s_j) \mod K$$

= $((h_1 + s_1) \hat{-} h_1) \hat{+} ((h_1 + s_1 + s_2) \hat{-} (h_1 + s_1))$
 $\hat{+} \dots \hat{+} ((h_1 + s_1 + \dots + s_k) \hat{-} (h_1 + s_1 + \dots + s_{k-1}))$
= $\hat{-} h_1 \hat{+} (h_1 + s_1 + \dots + s_k) = 0,$

i.e., $\sum_{j=1}^{k} \delta(h_j, s_j) \in K$. If $h \in H$ and $s \in S \setminus \{0\}$, then $\delta(h, s) \notin K$ by (19), and this means

We now want to show that [~] is injective which we shall conclude from

(21) $h \stackrel{\cdot}{-} h' \in D \Rightarrow h = h' + s$ with $s \in S$, for all $h, h' \in H$.

We reformulate (21) in the following form to make it accessible to an induction argument:

(22) Suppose $h, h' \in H$ and $r \in \mathbb{N}$. If there are $h_1, \ldots, h_r \in H$, (22) $s_1, \ldots, s_r \in S$ such that $h \stackrel{c}{-} h' = \sum_{j=1}^r \delta(h_j, s_j)$, then there is an element $s \in S$ such that h = h' + s.

If r = 1, then $h = h_1 + s_1 = h' + s_1$, as $(T, \hat{+})$ is free over H. Now suppose r > 1 and (22) is true for r - 1 instead of r. Since $h \hat{-} h' = \sum_{j=1}^{r} \delta(h_j, s_j)$, we may assume $h = h_1 + s_1$, $h' = h_r$. Furthermore, $h_1 = h_i + s_i$ with $i \in \{2, ..., r\}$. This yields

$$h \hat{-} h' = (h_i + s_i + s_1) \hat{-} (h_i + s_i) \hat{+} \sum_{j=2}^r \delta(h_j, s_j)$$

= $(h_i + s_i + s_1) \hat{-} h_i \hat{+} \sum_{\substack{j=2\\j \neq i}}^r \delta(h_j, s_j)$
= $\delta(h_i, s_i + s_1) \hat{+} \sum_{\substack{j=2\\j \neq i}}^r \delta(h_j, s_j),$

and an application of the induction hypothesis yields our claim. This proves (22) and the equivalent assertion (21) by means of which we conclude

For if $h, h' \in H$ and $h \stackrel{c}{-} h' \in K$, then a fortiori $h \stackrel{c}{-} h' \in D$ and therefore h = h' + s with $s \in S$. But then $h \stackrel{c}{-} h' = \delta(h', s)$, and (20) implies s = 0. Therefore we have h = h', and the proof of (23) is complete.

It remains to show that the envelopment $(R, \tilde{,})$ is universal. To this end let $(R', \tilde{,})$ be an envelopment of \mathscr{F} . Since (T, +) is free over H,

$$\chi_0: T \to R', \qquad \sum_j z_j h_j \mapsto \sum_j z_j \tilde{h}_j \quad (z_j \in \mathbb{Z})$$

defines a ring homomorphism. We show

(24)

$$K \subseteq \ker \chi_{0}.$$
Let $h_{1}, \dots, h_{k} \in H, s_{1}, \dots, s_{k} \in S$ and $\sum_{j=1}^{k} \delta(h_{j}, s_{j}) \in K$. Then

$$\left(\sum_{j=1}^{k} \delta(h_{j}, s_{j})\right)^{\chi_{0}} = \sum_{j=1}^{k} \left((h_{j} + s_{j})^{\chi_{0}} - h_{j}^{\chi_{0}}\right)$$

$$= \sum_{j=1}^{k} \left(\widetilde{h_{j}} + \widetilde{s_{j}} - \widetilde{h}_{j}\right) = \sum_{j=1}^{k} \left(\widetilde{h}_{j} + \overline{s}_{j} - \widetilde{h}_{j}\right)$$

$$= \sum_{j=1}^{k} \overline{s_{j}} = \overline{\sum_{j=1}^{k} s_{j}} = 0,$$

by (9) and (19).

By (24),

$$\chi \colon R \to R', \qquad \sum_j z_j h_j \stackrel{\circ}{+} K \mapsto \sum_j z_j \tilde{h}_j \quad (z_j \in \mathbb{Z})$$

defines a homomorphism, and for all $h \in H$, $s \in S$ we have

$$\tilde{h}^{\chi} = (h + K)^{\chi} = \tilde{h},$$

$$\bar{s}^{\chi} = (\delta(h, s) + K)^{\chi} = \widetilde{h + s} - \tilde{h} = \tilde{h} + \bar{s} - \tilde{h} = \bar{s},$$

by (9). This completes the proof of our theorem.

2. Fitting pre-structures.

2.1. DEFINITION. Let H be a semigroup, S a ring, φ a homomorphism of H into the multiplicative semigroup of End_A(S), ψ an antihomomorphism of H into the multiplicative semigroup of End_P(S) such

that H^{φ} and H^{ψ} commute elementwise. (We use the notations introduced in 1.1.) The 4-tuple $\mathscr{F}_0 := (H, S, \varphi, \psi)$ is called a *Fitting pre-structure* if condition (1) holds.

Let $\mathscr{F} = (H^*, S^*, \varphi^*, \psi^*, \sigma^*)$ be a Fitting structure with $S = S^*$, and μ a monomorphism of H into H^* . The pair (\mathscr{F}, μ) is called a *continuation* of \mathscr{F}_0 if

(25)
$$\varphi = \mu \varphi^*, \quad \psi = \mu \psi^*$$

holds.

Isomorphisms of Fitting pre-structures and Fitting sub-pre-structures are defined in complete analogy to the corresponding notions for Fitting structures, the conditions on σ , σ' being omitted.

If (\mathscr{F}_1, μ_1) and (\mathscr{F}_2, μ_2) with $\mathscr{F}_1 = (H^*, S^*, \varphi^*, \psi^*, \sigma^*)$, $\mathscr{F}_2 = (H^{**}, S^{**}, \varphi^{**}, \psi^{**}, \sigma^{**})$ are continuations of \mathscr{F}_0 , then a homomorphism of (\mathscr{F}_1, μ_1) into (\mathscr{F}_2, μ_2) is defined to be a homomorphism ω of H^* into H^{**} with the property

(26)
$$\mu_2 = \mu_1 \omega.$$

If ω is a bijection of H^* onto H^{**} , our continuations are called *isomorphic*. A continuation \mathcal{F} of \mathcal{F}_0 is called *universal* if for any continuation \mathcal{F}' of \mathcal{F}_0 there is a homomorphism of \mathcal{F} into \mathcal{F}' .

Universal continuations of isomorphic Fitting pre-structures are isomorphic. We now prove the following existence theorem:

2.2. THEOREM. Every Fitting pre-structure has a universal continuation.

Proof. Let $\mathscr{F}_0 = (H, S, \varphi, \psi)$ be the Fitting pre-structure given. We put $H^{\mathscr{F}_0} := H \times S$ and define

$$(h_1, s_1)(h_2, s_2) := (h_1h_2, s_1h_2 + h_1s_2 + s_1s_2)$$

for all $h_1, h_2 \in H$, $s_1, s_2 \in S$. One readily verifies that $H^{\mathscr{F}_0}$ is a semigroup and the mapping

$$\mu \colon H \to H^{\mathscr{F}_0}, \quad h \mapsto (h, 0)$$

is a monomorphism. We call $H^{\mathscr{F}_0}$ the continuation semigroup of \mathscr{F}_0 . We put $S^* := S$, and define for all $h \in H$, $s \in S$

$$(h, s)^{\varphi^*}: S \to S, \quad r \mapsto rh + rs$$

 $(h, s)^{\psi^*}: S \to S, \quad r \mapsto hr + sr.$

Then $(h, s)^{\varphi^*} \in \text{End}_{\Lambda}(S), (h, s)^{\psi^*} \in \text{End}_{P}(S)$, since $(r_1r)h + (r_1r)s = r_1(rh) + r_1(rs) = r_1(rh + rs),$

$$h(rr_1) + s(rr_1) = (hr)r_1 + (sr)r_1 = (hr + sr)r_1$$

118

for all $h \in H$, $r, r_1, s \in S$. We show

(27) φ^* is a homomorphism of $H^{\mathscr{F}_0}$ into $\operatorname{End}_{\Lambda}(S)$, ψ^* is an antihomomorphism of $H^{\mathscr{F}_0}$ into $\operatorname{End}_{\mathcal{P}}(S)$, and (25) holds.

We confine ourselves to the assertions about φ, φ^* and leave the proof of the assertions about ψ, ψ^* to the reader. For all $h, h_1, h_2 \in H, r, s_1, s_2 \in S$ we have

$$r^{((h_1,s_1)(h_2,s_2))^{\varphi^*}} = r^{(h_1h_2,s_1h_2+h_1s_2+s_1s_2)^{\varphi^*}}$$
$$= (rh_1 + rs_1)h_2 + (rh_1 + rs_1)s_2 = r^{(h_1,s_1)^{\varphi^*}(h_2,s_2)^{\varphi^*}}$$

and

$$r^{h^{\varphi}} = rh + r \cdot 0 = r^{(h,0)^{\varphi^{*}}} = r^{h^{\mu\varphi^{*}}}$$

In the following we write (as in 1.1) r(h,s) for $r^{(h,s)^{\varphi^*}}$, (h,s)r for $r^{(h,s)^{\psi^*}}$ and verify

(28) H^{φ^*} and H^{ψ^*} commute elementwise,

as for all
$$h_1, h_2 \in H, r, s_1, s_2 \in S$$

 $((h_1, s_1)r)(h_2, s_2) = (h_1r + s_1r)(h_2, s_2)$
 $= (h_1r + s_1r)h_2 + (h_1r + s_1r)s_2$
 $= h_1(rh_2 + rs_2) + s_1(rh_2 + rs_2)$
 $= (h_1, s_1)(rh_2 + rs_2) = (h_1, s_1)(r(h_2, s_2)).$

A similar standard calculation yields

(29) $(r_1(h,s))r_2 = r_1((h,s)r_2)$ for all $h \in H, r_1, r_2, s \in S$,

i.e., condition (1) is satisfied.

For all $r \in S$ we put

$$r^{\sigma^*}$$
: $H^{\mathscr{F}_0} \to H^{\mathscr{F}_0}$, $(h, s) \mapsto (h, r+s)$.

Then r^{σ^*} is a permutation of $H^{\mathscr{F}_0}$. As before, we write (h, s) + r for $(h, s)^{r^{\sigma^*}}$ and observe

(30) σ^* is a homomorphism of (S, +) into $\mathfrak{S}_{H^{\mathscr{F}_0}}$

(31)
$$(h,s) + r = (h,s) \Leftrightarrow r = 0$$
, for all $h \in H$, $r, s \in S$.

We put $\mathscr{F} := (H^{\mathscr{F}_0}, S^*, \varphi^*, \psi^*, \sigma^*)$. In order to show that \mathscr{F} is a Fitting structure it remains to check conditions (2) and (3) which here turn into

(32)
$$((h_1, s_1) + r)(h_2, s_2) = (h_1, s_1)(h_2, s_2) + r(h_2, s_2), (h_1, s_1)((h_2, s_2) + r) = (h_1, s_1)(h_2, s_2) + (h_1, s_1)r for all $h_1, h_2 \in H, r, s_1, s_2 \in S,$$$

(33)
$$((h,s)+r_1)r_2 = (h,s)r_2 + r_1r_2, r_1((h,s)+r_2) = r_1(h,s) + r_1r_2,$$

for all
$$h \in H$$
, $s, r_1, r_2 \in S$.

both being immediate consequences of our definitions. Now (27) and (30) show that (\mathcal{F}, μ) is a continuation of \mathcal{F}_0 , and we claim:

 $(34) <math>\mathcal{F} ext{ is universal.}$

For if (\mathcal{F}', μ') with $\mathcal{F}' = (H^{**}, S^{**}, \varphi^{**}, \psi^{**}, \sigma^{**})$ is a continuation of \mathcal{F}_0 , we put

$$\omega: H^{\mathscr{Y}_{0}} \to H^{**}, \quad (h, s) \mapsto h^{\mu'} + s$$

and calculate for $h_{1}, h_{2} \in H, s_{1}, s_{2} \in S$ by means of (25):
 $((h_{1}, s_{1})(h_{2}, s_{2}))^{\omega} = (h_{1}h_{2}, s_{2}^{h_{1}^{\mu}} + s_{1}^{h_{2}^{\mu}} + s_{1}s_{2})^{\omega}$
 $= (h_{1}h_{2})^{\mu'} + s_{2}^{h_{1}^{\mu'}} + s_{1}^{h_{2}^{\psi^{**}}} + s_{1}s_{2}$
 $= h_{1}^{\mu'}h_{2}^{\mu'} + s_{2}^{h_{1}^{\mu'\psi^{**}}} + s_{1}^{h_{2}^{\psi^{**}}} + s_{1}s_{2}$
 $= (h_{1}^{\mu'} + s_{1})(h_{2}^{\mu'} + s_{2}) = (h_{1}, s_{1})^{\omega}(h_{2}, s_{2})^{\omega}$

whence ω is a homomorphism. Since for all $h \in H$ we have $h^{\mu\omega} = (h, 0)^{\omega} = h^{\mu'}$, we put $\mu' = \mu\omega$ so that (26) holds. Thus the proof of our theorem is complete.

We add some remarks on the continuation semigroup $H^{\mathscr{F}_0}$ of a Fitting pre-structure \mathscr{F}_0 . For any ring S,

 $s_1 \circ s_2 := s_1 + s_2 + s_1 s_2 \qquad (s_1, s_2 \in S)$

defines an associative composition with identity element 0. As is well known, S is a radical ring if and only if (S, \circ) is a group. We have:

(35) If H has an identity element 1, then

$$\nu\colon S\to H^{\mathscr{F}_0},\,s\mapsto(1,s)$$

is a monomorphism of (S, \circ) into $H^{\mathscr{F}_0}$.

(36) If H has a zero element 0, then

$$\lambda: S \to H^{\mathscr{F}_0}, s \mapsto (0, s)$$

is a monomorphism of (S, \cdot) into $H^{\mathscr{F}_0}$.

(37) An element
$$(h_0, s_0) \in H^{\mathscr{F}_0}$$
 is an identity element of $H^{\mathscr{F}_0}$ if and only if h_0 is an identity element of H , $s_0H = 0 = Hs_0$ and $(h_0 + s_0)^{\varphi} = \mathrm{id}_S = (h_0 + s_0)^{\psi}$,

since (h_0, s_0) is an identity element of $H^{\mathscr{F}_0}$ if and only if $h_0 h = h = h h_0$ and $h_0 s + s_0 h + s_0 s = s = h s_0 + s h_0 + s_0 s$ for all $h \in H$, $s \in S$.

120

We obviously have

- (38) If $H^{\mathscr{F}_0}$ is a group, then so is *H*.
- (39) If *H* has an identity element 1 such that $1^{\varphi} = \text{id}_{S} = 1^{\psi}$, then (1,0) is an identity element of $H^{\mathscr{F}_{0}}$, and $H^{\mathscr{F}_{0}}$ is a group if and only if *H* is a group and *S* is a radical ring. In this case $H^{\mathscr{F}_{0}}$ is a semdirect product of *H* and (*S*, \circ).

Herein the statement about (1,0) follows from (37). Now let H be a group and S a radical ring. If for $h \in H$, $s \in S$ the \circ -inverse element of sh^{-1} is denoted by $(sh^{-1})^-$, we have

$$(h,s)(h^{-1},h^{-1}(sh^{-1})^{-}) = (1,1(sh^{-1})^{-}+sh^{-1}+sh^{-1}(sh^{-1})^{-}) = (1,0).$$

Therefore $H^{\mathscr{F}_0}$ is a group. As to the converse, observing (38), it suffices to show that S is a radical ring. But if $s \in S$ and $(h_1, s_1) \in H^{\mathscr{F}_0}$ is the inverse of (1, s), then

$$(1,0) = (1,s)(h_1,s_1) = (h_1, 1 \cdot s_1 + sh_1 + ss_1),$$

$$(1,0) = (h_1,s_1)(1,s) = (h_1, h_1s + s_1 \cdot 1 + s_1s),$$

hence $h_1 = 1$ and $s_1 \circ s = 0 = s \circ s_1$. Thus s is \circ -invertible. Let finally μ be the embedding of H into $H^{\mathscr{F}_0}$ as in the proof of 2.2 and ν as in (35). Then S^{ν} is a normal subgroup of $H^{\mathscr{F}_0}$ and isomorphic to (S, \circ) , H^{μ} is a subgroup of $H^{\mathscr{F}_0}$ which is isomorphic to H such that $S^{\nu} \cap H^{\nu} = \{(1,0)\}$, and for all $h \in H$, $s \in S$ we have

$$(h, s) = (1, sh^{-1})(h, 0) = (sh^{-1})^{\nu}h^{\mu},$$

whence $H^{\mathscr{F}_0} = S^{\nu} H^{\mu}$.

In order to give examples of Fitting structures, it is sufficient, by 2.2, to construct Fitting pre-structures:

2.3. EXAMPLE. Let M be a set and A a subset of M which is an abelian group with respect to some composition +. Then the set

$$S(M, A) := \{ s | s \colon M \to A, s |_A \in \operatorname{End}(A) \}$$

is a ring with respect to the compositions

$$s_1 + s_2: \quad M \to A$$

$$m \mapsto m^{s_1} + m^{s_2}$$

$$s_1 s_2: \quad M \to A$$

$$m \mapsto r(m^{s_1})^{s_2},$$

and the set

$$H(M, A) := \{ h | h \colon M \to M, h |_A \in \operatorname{End}(A) \}$$

is a semigroup with respect to the composition

$$\begin{array}{ll} h_1 h_2 \colon & M \to M \\ & m \mapsto (m^{h_1})^{h_2} \end{array}$$

For all $h \in H(M, A)$, $s \in S(M, A)$ let $s^{h^{\Phi}}$ (resp. $s^{h^{\Psi}}$) be the usual composition (of mappings) sh (resp. hs).

Then $(H(M, A), S(M, A), \Phi, \Psi)$ is a Fitting pre-structure.

We show that all "well-behaved" Fitting pre-structures can be subsumed under this type of example:

2.4. THEOREM. Let H be a semigroup with identity element 1, $\mathscr{F} = (H, S, \varphi, \psi)$ a Fitting pre-structure such that $1^{\psi} = \mathrm{id}_{S}$. Then there are M, A as in 2.3 such that \mathscr{F} is isomorphic to a Fitting sub-pre-structure of $(H(M, A), S(M, A), \Phi, \Psi)$.

Proof. W.l.o.g. we may assume $H \cap S = \emptyset$. Then we put $M := H \cup S, (A, +) := (S, +)$. For all $h \in H, s \in S$ we define

$$h^{\alpha}: M \to M, \quad m \mapsto mh = \begin{cases} mh & \text{for } m \in H \\ m^{h^{\varphi}} & \text{for } m \in S \end{cases}$$
$$s^{\beta}: M \to A, \quad m \mapsto ms = \begin{cases} s^{m^{\psi}} & \text{for } m \in H \\ ms & \text{for } m \in S. \end{cases}$$

Obviously, α is a homomorphism of H into H(M, A), and β is a homomorphism of S into S(M, A). For $h \in \ker \alpha$ we have $1 = 1^{h^{\alpha}} = 1 \cdot h = h$; thus α is injective. Similarly, $s \in \ker \beta$ implies $0 = 1^{s^{\beta}} = 1 \cdot s = s$, hence β is injective, too. For all $m \in M$, $h \in H$, $s \in S$ we have

$$m^{h^{\alpha}s^{\beta}} = (mh)s = m(hs) = m^{(hs)^{\beta}},$$

$$m^{s^{\beta}h^{\alpha}} = (ms)h = m(sh) = m^{(sh)^{\beta}},$$

$$m^{(s^{\beta})^{(h^{\alpha})^{\Phi}}} = m^{s^{\beta}h^{\alpha}} = (ms)h = m(sh)$$

$$= m^{(sh)^{\beta}} = m^{s^{(h^{\phi}\beta)}} = m^{(s^{\beta})^{\beta^{-1}h^{\phi}\beta}} = m^{(s^{\beta})^{(h^{\phi})^{\beta}}},$$

$$m^{(s^{\beta})^{(h^{\alpha})^{\Psi}}} = m^{h^{\alpha}s^{\beta}} = (mh)s = m(hs)$$

$$= m^{(hs)^{\beta}} = m^{s^{(h^{\phi}\beta)}} = m^{(s^{\beta})^{\beta^{-1}h^{\phi}\beta}} = m^{(s^{\beta})^{(h^{\phi})^{\beta}}}.$$

Hence $H^{\alpha}S^{\beta} \subseteq S^{\beta}$, $S^{\beta}H^{\alpha} \subseteq S^{\beta}$, $\alpha \Phi = \varphi \overline{\beta}$, $\alpha \Psi = \psi \overline{\beta}$. Therefore $(H^{\alpha}, S^{\beta}, \Phi|_{H^{\alpha}}, \Psi|_{H^{\alpha}})$ is a Fitting sub-pre-structure of $(H(M, A), S(M, A), \Phi, \Psi)$ and isomorphic to (H, S, φ, ψ) . The hypothesis that H has an identity element 1 such that $1^{\psi} = \mathrm{id}_{S}$ has only been used to prove that α and β are injective. As is easily seen, for that purpose even weaker hypotheses on H are sufficient.

Let G be a group and A a characteristic abelian normal subgroup of G. Then $\mathscr{F}:=(H(G, A), S(G, A), \Phi, \Psi)$ is a Fitting pre-structure. If we put $H:=\operatorname{Aut}(G), S:=\operatorname{Hom}(G, A)$, then we obviously have $HS \subseteq S$, $SH \subseteq S$, whence (H, S, φ, ψ) with $\varphi = \Phi|_H, \psi = \Psi|_H$ is a Fitting subpre-structure of \mathscr{F} . If we put for $h \in H(G, A), s \in S(G, A)$

$$h^{s^2}: G \to G, \quad g \mapsto g^h g^s,$$

then $s^{\Sigma} \in \mathfrak{S}_{H(G,A)}$, and Σ is a homomorphism of (S(G,A), +) into $\mathfrak{S}_{H(G,A)}$ such that $h^{s^{\Sigma}} = h \Leftrightarrow s = 0$ for all $h \in H(G,A)$, $s \in S(G,A)$. It is easy to see that (2) and (3) hold; thus $(H(G,A), S(G,A), \Phi, \Psi, \Sigma)$ is a Fitting structure. We put $\sigma := \Sigma|_{H}$. In general, $(H, S, \varphi, \psi, \sigma)$ need not be a Fitting structure. But we have:

2.5. THEOREM. Let G be a group which has no nontrivial direct abelian factor. Assume Z(G) is finite. Then $(Aut(G), Hom(G, Z(G)), \varphi, \psi, \sigma)$ is a Fitting structure.

(*Here* φ, ψ, σ *have the meaning introduced above.*)

Proof. By our preparatory considerations it suffices to show: (40) $\alpha^{\zeta^{\sigma}} \in \operatorname{Aut}(G)$ for all $\alpha \in \operatorname{Aut}(G)$, $\zeta \in \operatorname{Hom}(G, Z(G))$. Since $\alpha^{\zeta^{\sigma}} \in \operatorname{Aut}(G)$ if and only if $\operatorname{id}_{G}^{(\alpha^{-1}\zeta)^{\sigma}} \in \operatorname{Aut}(G)$, for our proof of (40) we may assume $\alpha = \operatorname{id}_{G}$. Surely, $\operatorname{id}_{G}^{\zeta^{\sigma}}$ is a homomorphism. By our hypotheses on G and Z(G), we have (see [1]) $\zeta^{n} = 0$ for an appropriate $n \in \mathbb{N}$. Since

 $\mathrm{id}_{G}^{\zeta^{\sigma}}\cdot\mathrm{id}_{G}^{(-\zeta+\zeta^{2}-\cdots\pm\zeta^{n-1})^{\sigma}}=\mathrm{id}_{G}=\mathrm{id}_{G}^{(-\zeta+\zeta^{2}-\cdots\pm\zeta^{n-1})^{\sigma}}\cdot\mathrm{id}_{G}^{\zeta^{\sigma}},$

 $\mathrm{id}_{G}^{\zeta^{\sigma}}$ is bijective, proving (40).

3. Wreath products over Fitting structures.

3.1. DEFINITION. Let $\mathscr{F} = (H, S, \varphi, \psi, \sigma)$ be a Fitting structure and $n \in \mathbb{N}$. For $\pi \in \mathfrak{S}_n$, a $(n \times n)$ -matrix $A = (a_{ij})$ is called a π -matrix over $H \cup S$ if

$$a_{ij} \in \begin{cases} H & \text{for } j = i\pi \\ S & \text{for } j \neq i\pi. \end{cases}$$

If $\pi, \pi' \in \mathfrak{S}_n$ and (a_{ij}) is a π -matrix, (a'_{ij}) is a π' -matrix over $H \cup S$, we define, using the product and sum notations introduced in 1.1,

$$(a_{ij})(a'_{ij}) := (b_{ij})$$
 with $b_{ij} = \sum_{k=1}^{n} a_{ik} a'_{kj}$ for $1 \le i, j \le n$.

We observe:

(41) If $\pi, \pi' \in \mathfrak{S}_n$ and A is a π -matrix, A' is a π' -matrix over $H \cup S$, then AA' is a $(\pi\pi')$ -matrix over $H \cup S$.

3.2. DEFINITION. Let $\mathscr{F} = (H, S, \varphi, \psi, \sigma)$ be a Fitting structure and $n \in \mathbb{N}$. Let X be a subgroup of \mathfrak{S}_n . We put

$$H \underset{c}{\wr} X := \{ (A, \pi) | \pi \in X, A \text{ is a } \pi \text{-matrix over } H \cup S \},\$$

and define for $(A, \pi), (A', \pi') \in H \underset{S}{\underset{S}{\wr}} X$

$$(A,\pi)(A',\pi') := (AA',\pi\pi').$$

By (41), this is a composition in $H \gtrsim X$. We observe: (42) $H \gtrsim X$ is a semigroup.

We call $H \, \wr \, X$ the wreath product of H and X over S. If $H \cap S = \emptyset$ and $(A, \pi) \in H \stackrel{S}{\wr} \mathfrak{S}_n$, then π is uniquely determined by A. In this case the elements $(A, \frac{S}{\pi})$ of the wreath product can be identified with their first components, the matrices A.

We add a few simple remarks:

- (43) If H = S and X is the trivial subgroup of \mathfrak{S}_n , then $H \underset{S}{\mathfrak{S}} X$ is isomorphic to the multiplicative semigroup of the ring $(S)_n$ of all $(n \times n)$ -matrices over S.
- (44) If $\mathscr{F}' = (H', S', \varphi', \psi', \sigma')$ is a Fitting substructure of \mathscr{F} and X' is a subgroup of X, then $H' \wr X'$ is a subsemigroup of $H \wr X$.
- (45) The standard wreath product $H \wr X$ is isomorphic to $H \wr X$ (writing S_0 for the trivial ring); thus it is contained in every wreath product $H \wr X$ as a subsemigroup.

For $(H, \{0\}, \varphi_0, \psi_0, \sigma|_{\{0\}})$ is a Fitting substructure of $(H, S, \varphi, \psi, \sigma)$ where we write φ_0, ψ_0 for the (unique) actions of H on $\{0\}$, whence the second part of (45) is a consequence of (44).

Matrix multiplications yield actions of
$$H \underset{\{0\}}{\wr} X$$
 on $(S)_n$: We put
 $B^{A^{\hat{\psi}}} := BA$, $B^{A^{\hat{\psi}}} = AB$ for $(A, \pi) \in H \underset{\{0\}}{\wr} X$, $B \in (S)_n$,

where these products are defined analogously to the matrix product introduced above. Then one readily verifies that $\mathscr{F}_0 := (H \ X, (S)_n, \hat{\varphi}, \hat{\psi})$ is a Fitting pre-structure. The mapping κ of the continuation semigroup $(H \ X)^{\mathscr{F}_0}$ into $H \ X$ such that $(A, B)^{\kappa} = A + B$ for all $(A, \pi) \in (H \ X)^{\mathscr{F}_0}, B \in (S)_n$ is an epimorphism. (The addition of Aand B means, as usual, addition of corresponding components, using the notations of 1.1 with regard to σ .) If H has an identity element 1, then

$$\ker \kappa = \left\{ \begin{pmatrix} 1 + s_1 & 0 \\ & \ddots & \\ 0 & 1 + s_n \end{pmatrix} | s_j \in S \right\} \cong \left(S \bigoplus \dots \bigoplus S, \circ \right).$$

We claim

(46) Let
$$\mathscr{F} = (H, S, \varphi, \psi, \sigma)$$
 be a Fitting structure, $n \in \mathbb{N}$ and
X a subgroup of \mathfrak{S}_n . Suppose H has an identity element
1. Then $H \wr X$ is a group if and only if H is a group and S
is a radical ring.

For, if *H* is a group and *S* is a radical ring, then, by (45), $H \, \stackrel{\circ}{\underset{\{0\}}{}} X$ is a group and, by [3, I, 7. Th. 3], $(S)_n$ is a radical ring. Therefore, (39) yields that $(H \, \stackrel{\circ}{\underset{\{0\}}{}} X)^{\mathscr{F}_0}$ is a group, and so is a fortiori the semigroup $H \, \stackrel{\circ}{\underset{S}{}} X$, being isomorphic to $(H \, \stackrel{\circ}{\underset{\{0\}}{}} X)^{\mathscr{F}_0}$ /ker κ . Conversely, suppose $H \, \stackrel{\circ}{\underset{S}{}} X$ is a group. Its identity element being denoted by (I, id) , where *I* is the identity matrix, we have $(I + B, \operatorname{id}) \in H \, \stackrel{\circ}{\underset{S}{}} X$ for every $B \in (S)_n$. If we put $C := (I + B)^{-1}$, then $BC \in (S)_n$, and

$$B \circ (-BC) = B - BC - B^2C = B - B(I + B)C = B - BI = 0,$$

$$(-BC) \circ B = -BC + B - BCB = B - BC(I + B) = B - BI = 0.$$

Therefore $(S)_n$, hence S, is a radical ring. Now let $h \in H$ and set

$$A := \begin{pmatrix} h & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1 \end{pmatrix}.$$

As before, we have $(A, id) \in H \setminus X$, and the entry c in the upper left corner of A^{-1} satisfies hc = 1 = ch. The assumption $c \in S$ would imply $1 \in S$ and, regarding the equations $1^{\varphi} = id_{S} = 1^{\psi}$, 1 were an identity

element of S. As S is a radical ring, this would yield $S = \{1\} \subseteq \{1\} \cdot H \subseteq S$, whence $S = \{1\} = H$, and everything would be trivial. But if $c \notin S$, then $c \in H$, and h is an invertible element of H, as desired.

We finally show that our notion of a generalized wreath product is useful for the description of automorphism groups of groups:

To this end let G be a direct indecomposable nonabelian group satisfying the minimum condition on central subgroups, and let $n \in \mathbb{N}$. We put S := Hom(G, Z(G)). Then S is a nil ring, hence a radical ring. By 2.5, $(\text{Aut}(G), S, \varphi, \psi, \sigma)$ is a Fitting structure, and the associated wreath product $(\text{Aut}(G)) \setminus \mathfrak{S}_n$ is a group, by (46). Since $\text{Aut}(G) \cap S = \emptyset$, we may identify its elements (A, π) with their first components, the matrices A. For $A = (\alpha_{ij}) \in (\text{Aut}(G)) \setminus \mathfrak{S}_n$ we define

(47)
$$(g_1,\ldots,g_n)A := \left(\prod_{i=1}^n g_i^{\alpha_{i1}},\ldots,\prod_{i=1}^n g_i^{\alpha_{in}}\right)$$
 for $g_1,\ldots,g_n \in G$.

This gives a mapping α_A of $G \times \cdots \times G$ (*n* factors) into itself which can formally be regarded as the multiplication of the row (g_1, \ldots, g_n) and the matrix A. The properties of A imply:

(48) For $g_1, \ldots, g_n \in G$, $j \in \{1, \ldots, n\}$, there is at most one $i \in \{1, \ldots, n\}$ such that $g_i^{\alpha_{ij}} \notin Z(G)$, viz. $i = j\pi^{-1}$, where π is the permutation determined by A.

Therefore for $g_1, \ldots, g_n, h_1, \ldots, h_n \in G, j \in \{1, \ldots, n\}$ we have

$$\prod_{i=1}^{n} (g_{i}h_{i})^{\alpha_{ij}} = \prod_{i=1}^{n} g_{i}^{\alpha_{ij}}h_{i}^{\alpha_{ij}} = \prod_{i=1}^{n} g_{i}^{\alpha_{ij}}\prod_{i=1}^{n} h_{i}^{\alpha_{ij}},$$

yielding

(49) For all
$$A \in (Aut(G)) \underset{S}{\wr} \mathfrak{S}_n$$
, α_A is an endomorphism of $G \times \cdots \times G$.

For $A = (\alpha_{ij})$, $B = (\beta_{ij}) \in (Aut(G)) \underset{S}{\wr} \mathfrak{S}_n$, $g_1, \ldots, g_n \in G$ and $j \in \{1, \ldots, n\}$, we have, by (48)

$$\prod_{i=1}^{n} g_i^{\sum_{k=1}^{n} \alpha_{ik} \beta_{kj}} = \prod_{i=1}^{n} \left(\prod_{k=1}^{n} g_i^{\alpha_{ik}} \right)^{\beta_{kj}} = \prod_{k=1}^{n} \left(\prod_{i=1}^{n} g_i^{\alpha_{ik}} \right)^{\beta_{kj}}$$

which implies

(50)
$$\alpha_A \alpha_B = \alpha_{AB} \text{ for all } A, B \in (\operatorname{Aut}(G)) \underset{S}{\wr} \mathfrak{S}_n.$$

This and the obvious statement

(51) $\alpha_I = \text{id}$, where *I* is the identity element of $(\text{Aut}(G)) \underset{S}{\circ} \mathfrak{S}_n$

imply:

(52) Associating to each
$$A \in (Aut(G)) \underset{S}{\wr} \mathfrak{S}_n$$
 the automorphism α_A yields a homomorphism ι of $(Aut(G)) \underset{S}{\wr} \mathfrak{S}_n$ into $Aut(G \times \cdots \times G)$ (*n* factors).

If $A \in (\operatorname{Aut}(G)) \wr \mathfrak{S}_n$ such that $\alpha_A = \operatorname{id}_{G \times \cdots \times G} (n \text{ factors})$, then for all $i \in \{1, \ldots, n\}, g \in G$

 $(1,\ldots,1,g,1,\ldots,1)=(1,\ldots,1,g,1,\ldots,1)A=(g^{\alpha_{i1}},\ldots,g^{\alpha_{in}}),$

where g is in the *i*th place. Hence
$$A = I$$
. Thus we have

(53)
$$\iota$$
 is injective.

Finally we claim

(54)
$$\iota$$
 is surjective.

To this end we define for all $j \in \{1, ..., n\}$

$$\varepsilon_j: \quad G \to G \times \cdots \times G$$

$$g \mapsto (1, \dots, 1, g, 1, \dots, 1),$$

(where g is in the jth place)

$$\begin{split} \delta_j: \quad G \times \cdots \times G \to G \\ (g_1, \dots, g_n) \mapsto g_j, \end{split}$$

and put for all $\alpha \in \operatorname{Aut}(G \times \cdots \times G)$

$$A_{\alpha} := (\alpha_{ij}) \text{ with } \alpha_{ij} = \varepsilon_i \alpha \delta_j \text{ for } i, j \in \{1, \dots, n\}.$$

Then α_{ij} is an endomorphism of G, and by [1, Satz 2] there is exactly one $\pi \in \mathfrak{S}_n$ such that, for $i \in \{1, \ldots, n\}$, $\alpha_{i,i\pi} \in \operatorname{Aut}(G)$ and $\alpha_{ij} \in S$ for $j \neq i\pi$. Hence $A_{\alpha} \in (\operatorname{Aut}(G)) \underset{S}{\subset}_n$. By (47), $A'_{\alpha} = \alpha$, proving (54).

Summarizing, we have proved:

3.3. THEOREM. Let G be a direct indecomposable nonabelian group and suppose Z(G) is finite. Let $n \in \mathbb{N}$ and put S := Hom(G, Z(G)). Then

$$\operatorname{Aut}(G \times \cdots \times G) \cong (\operatorname{Aut}(G)) \underset{S}{\wr} \mathfrak{S}_{n}.$$

If G satisfies the additional condition Hom(G, Z(G)) = 0 (which is in the finite case equivalent to (|G/G'|, |Z(G)|) = 1), our Theorem yields via (45) the well-known statement:

$$\operatorname{Aut}(G \times \cdots \times G) \cong (\operatorname{Aut}(G)) \wr \mathfrak{S}_n.$$

KARSTEN JOHNSEN AND HARTMUT LAUE

References

- [1] H. Fitting, Über die direkten Produktzerlegungen einer Gruppe in direkt unzerlegbare Faktoren, Math. Z., 39 (1935), 16–30.
- [2] H. Fitting, Über den Automorphismenbereich einer Gruppe, Math. Ann., 114 (1937), 84-98.
- [3] N. Jacobson, Structure of Rings, AMS Coll. Publ. vol. XXXVII (1956).

Received March 8, 1984.

UNIVERSITÄT KIEL Olshausenstr. 40-60 2300 Kiel 1, W. Germany