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ESTIMATES FOR PARTIAL SUMS OF CONTINUED
FRACTION PARTIAL QUOTIENTS

HAROLD G. DIAMOND AND JEFFREY D. VAALER

Metric-type estimates are given for a class of partial sums involving
continued fraction partial quotients. These results extend a well known
theorem of Khinchin and yield an almost-everywhere estimate for the
quantity in the title.

1. Introduction. For a an irrational number in (0,1) let

a = = ( 0 , al9a2,...)

be the representation of a as a regular continued fraction ([4, Ch. X], [5]).

The numbers an = an{ά) are called the partial quotients of a.

A well-known theorem of Khinchin [5], [6] in the metric theory of

continued fractions asserts that if F is an arithmetic function satisfying

F(r) <£ r1/2~8 for some δ > 0 and if SN(F9 a) := F(aλ(a))

_l_ . . . +F(aN(a)) for each positive integer N, then

(1) Urn ±SN(F,a) = ̂  £ F(r)log

holds for almost all a in (0,1). This result has been extended by others ([2,

§4], [7, Theorem 4]). In particular, we note that the Birkhoff Ergodic

Theorem implies that (1) holds if its right-hand side is absolutely conver-

gent.

Here we shall establish analogues of (1) for arithmetic functions F

which grow more rapidly than is allowed by Khinchin's theorem. In

particular we shall consider the case F(r) = I(r) = r and estimate

5^(/,a) = fll(a)+ -•• +aN(a).

Khinchin noted at the end of his book Continued Fractions [5] that

SN(I9 a)/N could not have a finite limit for most values of a. Indeed, for

almost all a the inequality an(a) > nlogn holds for an infinite sequence

of integers n in consequence of the following result of Borel and Bernstein
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[4, Theorem 197], [5, Theorem 30], [1, Theorem 4.1]:

LEMMA 1. Let φ(l), φ(2),... be a sequence of positive numbers. For
almost all a e (0,1) the inequality an(ct) > φ(n) has a finite number of
solutions n if and only if Σ^il/φin) < oo.

Khinchin showed in [6] that

(2) ( * i + +bN)/(N]ogN) -> I/log2

in measure as N -> oo, where

x4/3
^ ( α ) = ίanf ifan<n(logn)A

\ 0, otherwise.

The limit (2) cannot hold a.e., since for almost all a e (0,1) the inequality
bn> n log n log log n holds for an infinite sequence of integers n by
Lemma 1.

The obstacle to a.e. convergence, as we shall see, is the occurrence of a
single large value of an. Here we shall establish an analogue of (1) by
excluding at most one summand.

THEOREM 1. Suppose that F is a positive valued arithmetic function
satisfying the bound

(3) { Σ F(j)2/jA/{ Σ HJ)/J2}2 ^ N(logN)-3/2-*

for some ε > 0. Then for almost all a e (0,1) and for all N exceeding a
number N0(a), we have

ψ max F(a,(a)).
l<n<N

Here 0 < # + = ̂ +(7V, α, F) < 1.

If we take F(r) = /(r) = r we obtain

COROLLARY 1. For almost all a e (0,1) there exists a number No =
N0(a)such that

^ »+ max an(a)

holds for all N > No.
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An immediate consequence of Lemma 1 and Corollary 1 is

COROLLARY 2. Let 0 < φ(l) < φ(2) < satisfy Σ£Lil/φ(π) < oo.
Then

holds for almost all a e (0,1) and all N > N0(a).

There are two main steps in the proof of the theorem. First, we show
that for most a there can be at most one "large" an(a). Next we estimate
the variance of a truncated form of SN. The theorem follows easily from
these estimates.

2. Auxiliary results. Let [x] denote the integer part of a real
number x and let {x} = x — [x] denote the fractional part. Define T:
(0,1) -» [ 0,1) by Tx = {I/*}. Then the partial quotients of (an irra-
tional number) a are given by the formulas

α 1 («)=[l/α], an+1(a) = ai(T"a), n > 1.

(Rational numbers have terminating continued fraction expansions and
require slight alteration of the formulas. This is not needed here, since the
rationals form a set of measure zero.)

The so called Gauss measure μ is defined on Borel subsets of (0,1) by

\ c dt

This measure satisfies the inυariance relation

E) = μ(E), E 2L Borel set.

Note that μ and Lebesgue measure have the same null sets.
For r and kv k2,...,kr positive integers, set

Er is called a fundamental interval of rank r. If r and s are positive
integers, B is any Borel set, and Er any fundamental interval of rank r,
then μ satisfies the mixing relation [1, Chapter 1, §4]

μ(Er Π T-r~sB) = μ(Er)μ(B){\ + O(qs)}

uniformly in r, s, B, and Er. Here q is some number in (0,1). Together
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the preceding relations imply that

μ{a: ar{a) = m and ar+s(a) = n)

= μ{a: aλ(a) = m and a1+s(a) = n)

LEMMA 2. Lέtf c > 1/2, and for given N <Ξ Z+ set N' = N(logN)c.
For almost all a e (0,1) there exist at most finitely many positive integers N
for which the inequalities

(4) aja) > N', an(a) > N'

hold for two distinct indices m, n < N.

Proof. Fix m < n. By a weak form of the mixing condition we have

μ{a € (0,1): am{a)>N', an{a)> N'}

« μ{a: aja) > N'} μ{a: an{«) > N'}

= μ{a: ax(a) > N'f «c (Λ^T2 = ^-2(log7V)"2c.

It follows that the measure of the set on which (4) holds for some
distinct indices m, n < 2N is of order at most (log N)~2c. For K = 1,2,...
let

Uk- U {« e (0,1): aja) > (2k)', an(a) > (2*)'
k>K

for some distinct m, « < 2k+1}.

Then

< < Σ ^" 2 c -> o as ί: -> oo.

For a & Uk and N > 2K there exists at most one index n < N for which

an(a)>N(logN)c. D

3. Proof of the theorem. Given ε > 0 and N e N, set

0 otherwise.
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Define F(0) = 0,

O 3k / \ O sk / T~* \ \ Λ T^l ale / \ \
i l CX I ~*~ N I Γ (V I / Γ I fl { ί¥ I I

and

VN= f\s*(a)-JN)2dμ(a).

We have

Λ"

(We say that / x g if / < Kλg and g < K2f for suitable ^ and K2.)
Next we show that VN <^ NΣj<N>F(j)2/j2. We begin by writing

VN + JZ = fl\S*(a)\2dμ(a)
0

= Σ j1F{a*m(a))F(a*n{a))dμ(a)= Σ ^ ,

say. For l ^ m < n < N w e have

- Σ

The diagonal terms satisfy

o) = C F{aί{a)f dμ{a)

= Σ (̂7)V{«: ̂ (αj-yj « Σ
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Thus we have

JΫ/J2vN= Σ bmn-jt«JtN-2 Σ q"-m + N Σ HJΫ/J
m,n = l m<n<N j<N

+ N

N( Σ
n<N'

F(J)2/j2

The last relation follows from the Cauchy-Schwarz inequality.
Now we apply the estimate of VN to show that

S*(a) = (1 + o(ί))JN

for most values of a. Let

c(k)= [expfc 1-^ 4], £ = 1 , 2 , . . . .

We have

-1

L c(k) Σ
r

dμ(a)

«

It follows that the integrand in the last integral is finite a.e. and hence

I j<c(kγ J I

for almost all a. The hypothesis of Theorem 1 and a small calculation

show that

c(k) Σ Jc\k)/(\ogc(k)y/n = o(jc\k)),

provided that ε < 1. Thus

% ( « ) = (1 + o(l))JcW a.e.

Suppose that c(k - 1) < N ^ c(k). Then

^ - D ( « ) < 5*(α) < S*k)(a),
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and so, off a set of measure 0,

(1 + o(l))/ c ( ,_ 1 } < Sg(a) < (1 + o(l))Jc(ky

Now we show that Jc{lc) ~ Jc{k-ιy Recall that

Another small calculation shows that

so c(k — 1) ~ c(k) as k -> oo. It remains to show that

We shall show (5) and the final approximation of S$ by using

LEMMA 3. Let Fsatisfy the hypotheses of Theorem 1. Then, as N -> oo,

*-4 2 ° \ *—* 2
N<r<NlogN r \r<N r

Proof. The Cauchy Schwarz inequality and condition (3) yield

/ 2 \ 1 / 2 1 / o

N<r<N\ogN ' \r<N\ogN ' J \r>Nr

* Σ
r<N\ogN r

Thus, as N -> oo,

(i - 0(i)) EΣ ^ i ; ^
N<r<NlogN r r<N r

and the lemma follows. D

Returning to the proof of Theorem 1, we see first that (5) holds, and
hence

( ( ) ) N a . e .

The lemma also implies that

a.e.
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since

N<j<N'

is negligible.
Finally, we have by Lemma 2, for almost all a and all sufficiently

large N,

0 < SN(a) - S*(a) < Fί max an(aj) < max F(an(a)).
v l < n < N ' l<n<N

This inequality and the last estimate of S£ establish the theorem. D

It would be interesting to learn whether Theorem 1 could be estab-
lished by ergodic methods.

4. Further results. In this section we consider cases in which
SN(I, a) can be estimated by 7V(log7V)/(log2) alone and when by φ(N)
alone, where Σn=ιl/ψ(n) < oo.

First we note that for any ε > 0 and fixed iVG Z+we have

(6) μ α e ( 0 , l ) :
SN(I,a)

NlogN log 2

(The implied constant here is absolute.)
This bound is achieved by setting

εlogN *

0, otherwise.

We compute the variance of the sum function S^* as before and apply
Chebyshev's estimate to obtain

ε log N'

Also, for each n < N,
Λ

μ{a: an{a) > εNlogN} <£ -

and estimate (6) follows.
Next, we show directly a sharp one sided estimate of Pruitt [9,

Theorem 5.2].

COROLLARY 3. ForN > 3 set β(N) = exρ(klog2k)k log2k for

(7) exp((fc - I)log2(fc - 1)) < N < cxp(klog2k).
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Then, for almost all a e (0,1)

SN(I,a) 1

Proof. In Corollary 2 set

= β(N)/(log\oglOk).

An easy calculation shows that Σ l/φ(N) < oo. If N satisfies (7), then by
Corollary 2

N(I>a) < ̂ ffl-βW + β(N)/logloglOk a.e.,

so lim sup SN(I, a)/β(N) < I/log 2 a.e. On the sequence Nk =
exp(k log2 k), the ratio SN(I, a)/β(N) converges to I/log2 a.e. D

In another direction, we show that in Corollary 2, φ(N) dominates
N logN for "most" values of N.

LEMMA 4. Suppose that 0 < φ(l) < φ(2) < and Σ™=1l/φ(n) <
oo. Let

S = [n e Z + : φ(/ι) < /ilog/i}.

ΓΛ^« 5 Λα5 logarithmic density zero.

Proof. Let Γ = {*> e Z + : (2"-\ 2 y ] Π S # 0 } . Suppose ^ e Γ. Then
there exists an integer w such that 2v~ι < n < 2V and φ(«) < n log«, so

y 1

 >

 n ~

Thus

(8) ,?r'2

Also, we have

Σ l < ί l o g 2 '

With y = (Iogx)/log2 we have

K •= ^ V1 i < 1 y y j _

2v~ι<k<2v

1 T(y + l)
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We have from (8) that

j:(T(N) - T(N/2)) * Σ 7 - 0
n/2<v<N

as N -» oo. Thus T(y) = o(y) as j> -> oo. Finally,

lim sup 5X < lim sup — = 0. D

COROLLARY 4. Suppose that φ satisfies the hypotheses of Lemma 4.

Then for almost all a e (0,1)

holds for all integers N outside a set of logarithmic density zero.
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