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APPROXIMATING CODIMENSION TWO
EMBEDDINGS OF CELLS

GERARD A. VENEMA

It is shown that every topological embedding of a λ>cell into a
piecewise linear (k -f 2)-manifold can be arbitrarily closely approxi-
mated by locally flat piecewise linear embeddings. The new ingredient in
the proof is an ε-controlled piping lemma.

Introduction. The main result of this paper is the following.

THEOREM 1. Let h: Dk -» Mk+2 be a topological embedding of the
k-cell Dk into a piecewise linear (k + 2)-manifold Mk+2. Then for every
ε > 0 there exists a locally flat piecewise linear embedding g: Dk -> Mk+2

such that d(h(x), g(x)) < ε for each x e Dk.

Approximation theorems of this kind are already known for embed-
dings of cells in codimensions > 3 [2] and in case k = 2 [4]. In addition,
the case k = 3 was announced in [6]. Here the techniques of [2] and [4] are
combined to obtain Theorem 1. By [4, Corollary 1], it is enough to
consider only the case M = Rk+2 and so that is the only case which will
be mentioned in the remainder of this paper.

The proof given in this paper is modelled on Miller's proof in [2]. We
must add a new ingredient to push the technique up to codimension two,
but our proof does not give a new proof of Miller's result; it would reduce
to exactly his proof in codimension three. The new proof is somewhat
different from that in [4] in the case k = 2.

The new ingredient needed to win the extra dimension is an ε-con-
trolled piping lemma. It is commonly known that piping (in the sense of
Zeeman [7, Lemma 48]) requires a global rather than local move; e.g., see
the Remark in [7], Chapter VII, p. 45. However, in the presence of the
topological embedding Λ, we are able to achieve that global modification
by means of a homotopy which moves each point only a small distance.
That requires more elaborate geometric constructions than those used by
Zeeman. The geometry of the two kinds of piping is described at the
beginning of §2.
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There are actually two piping lemmas in this paper. The first is an
ε-controlled version of Zeeman's Lemmas 48 and 49. The second involves
piping more like that used by Zeeman in the proof of his unknotting
theorem (see [7], Chapter VIII, Lemma 65). Since the point of these
lemmas is that ε-control can be added to Zeeman's piping technique, we
spell out very carefully in the proof of Lemma 1 just how all the ε's and
δ 's work.

Recently Montejano [3] has generalized Miller's technique and stated
the approximation theorem in terms of liftings. The same could be done
here.

There are many open questions remaining in the study of topological
embeddings in codimension two. In particular, it is not known whether
Dk in Theorem 1 can be replaced by some other A:-manifold (such as Sk

or a ^-manifold with only handles of index < 1, etc.).
Finally, I would like to thank Mike Starbird for explaining [2] to me

in an unusually clear and beautiful way. I also wish to thank Luis
Montejano for listening patiently to the proofs of the piping lemmas and
for offering many helpful suggestions on how those proofs should be
written. Thanks also to the referee for pointing out several inconsistencies
in the first write-up of the proof of Lemma 3.

1. Preliminaries. We begin with some definitions and notation,
most of which are found in [2] and [7]. The reader is warned, however,
that there are minor differences between the terminology used here and
that in [2]. We use [7] as a general reference for PL topology.

For each positive integer k, let Rk denote ^-dimensional Euclidean
space and let d be the usual distance function for Rk. If X c Rk and
ε > 0, then Nε(X) = [y e Rk\d(y, X) < ε}. Let / = [0,1]. The fc-cell
Dk is defined by Dk = {(xl9 . . . , xk) e Rk \ xιr e I for each i}. For 1 <j
< k and 0 < a < b < 1, we define Dj°[a9 b] to be {(xl9..., xk) e Dk \ a
< Xj < b) and Dk[a] to be Df[a9 a).

In the rest of this paper, assume that k is a fixed positive integer and
that a topological embedding h: Dk -> Rk+2 has been given.

For each j , 1 < j < k, we define two homotopies. First θ/: Dk -> Dk,
0 < t < 1, is the deformation retraction defined by

_ j(x1,...,xk)iΐxj> /, and

\ (Xl9 . . . , * , _ ! , /, Xj+l9 . . . , X k ) i f Xj < t.

Notice that θ/ deforms Dh to its yth face, Dk[l], We use the notations
θ/(x) and θJ{x,t) interchangeably.
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As in [2], the fact that h(Dk) is an ANR can be used to find a
neighborhood N of h(Dk) and a retraction r: N -* h(Dk). We may
assume that N c ^ ( ^ ( D * ) ) . Define rt(x) to be the homotopy which
moves x at constant speed along the straight line from x to r(x) during
the time interval 0 < t < d(x, r(x)) and remains fixed for other values of
t. Now define a second homotopy, ψ/: N -> Rk+2,0 < t < 1, by

(rt(x) ifO < / < d(x9r(x))

The important feature of ψ/ is that ψ/ extends hθ/h'1 to all of N.
Suppose X and Y are polyhedra and that X simplically collapses to Y

via a collapse ξ. (Write ξ: X \ Y.) We think of ξ as specifying not only
which elementary simplicial collapses are to be done, but also the timing
of those collapses during the time interval 0 < t < 1. The collapse ξ then
induces a strong deformation retraction ξt of X to Y in a natural way (see
[2], p. 408). Given £: X \ Y and a subpolyhedron Z of X, we will
consider the following subpolyhedron of X: Trail^(Z) = £(Z X /) .

Let f:K-> Rn be a piecewise linear map. The singular set of / is
d e f i n e d b y S(f) = [ y ^ K \ f ~ ι f ( y ) Φ { y } } . O b s e r v e t h a t i f ξ: K \ L
is a collapse, then f(K) \f(L) U/(Trail^ 5(/)). The 5wp/?orr of a map /
is defined by supp(/) = {x \ f(x) Φ x).

2. The first piping lemma. In this section we prove an ε-controlled
version of Zeeman's Piping Lemma. Piping is a technique in which part of
the singular set of a homotopy is pushed off the edge of the track of the
homotopy. The important consequence is that a hole is punched in each
top dimensional simplex of the singular set, allowing us to collapse out
things below that simplex. Figure 0 illustrates the usual Zeeman Piping
procedure.

The usual procedure is not good enough for our purposes here
because the pipe must, in general, be very long and thus the modification
moves some points too far. We will describe a more elaborate procedure
which produces the same holes in the singular set but does so without
moving any point very far. The reader can refer ahead to Figures 4 and 5
for pictures of the kind of modification we will make. Since the horizontal
distance in Figure 4 can be made arbitrarily small, no point is moved very
far by the push pictured there.
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FIGURE 0

The reader is warned that the proof of Lemma 1 should be under-
stood thoroughly before the proofs of the subsequent lemmas are at-
tempted. All the details of the epsilonics are spelled out in the proof of
Lemma 1 but are left out of the proofs of the later lemmas whenever they
are essentially the same as those in earlier proofs.

We begin with two more definitions.
As stated above, the positive integer k and the topological embedding

h: Dk -> Rk+2 are fixed. For each x e h(Dk) and 1 <j < k, we define
the fiber through x in the jth direction to be Fj(x) = { J E h(Dk) \ h~ι{x)

and h'\y) differ in at most their yth coordinates).
Suppose Y is a polyhedron in N, Z and C are subpolyhedra of Y and

ε > 0. We say that a collapse ξ: Y \ Z U C is a (j, ε? Z)-collapse if

(a)CcJVβ(Λ(Z)/[lD),
(b) ξt(Y) c Ne(h(Df[t91])) U Z for all / e /,
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(c) supp {, c N£(h(Dk[0, /])) for all / e J, and
(d) for each y e Y there exists one x e h(Dk) such that ξt(y) e

))forallί <Ξ J.

LEMMA 1. For every ε > 0 α«d 1 <j < k there exists a 8 > 0
that if X is a compact polyhedron in Nδ(h(Dk[0])) with dim X = k - 1,
tfien ί/iere exists α PL map/: X X I -+ Nε(h(Dk)) and a subpolyhedron Jo

ofXX I such that
(1) /(x, 0) = x/or <?acλ x e X,
(2) /(x, 0 e NB(h(Df[tT)) n Ne(Fj(r(x))) for each (x, t) e X X I,
(3) dim Jo < k — 2, and
(4) ίftere » a ( , e, f{J0))-collapse {: /(X X /) \ / ( X X {1}) U/(/ o ).

Proof. The lemma is trivial for fc < 1? so we assume that k > 2. Begin
by choosing a number α > 0 such that if /l5 ί2 e / and |^ — /2|

 < α? then
*( 0/lΊD c N^hiDfitJb). Let 0 - ί0 < ίx < ί2 < - - </ r t = l b e a
partition of [0,1] with |/f - //_-L| < α for each i. Choose β > 0 such that if
A is any subset of N X I of diameter < β, then diam ψ7(^4) < ε/3.

The most important conclusion of the lemma is (3). To illustrate that
point, we quickly choose a number δ and use it to get conclusions (1), (2),
and (4) as stated. However, in this first attempt we are off by one
dimension from achieving conclusion (3). The remainder of the proof then
consists of showing how to choose 8 more carefully and how to modify
the easy first attempt to lower the dimension of Jo by 1 and get
conclusion (3) as well.

Choose 8 > 0 so small that ψ/(x) e Nε/3(h(Dk[t])) and d(x, r(x))
< ε/3 for every x e Nδ(h(Djk[0])) and for every * e /. Suppose I c
Nδ(h(Dk[0])) is a compact polyhedron of dimension k - 1. Let /: X X I
-+ Nε(h(Dk)) be a PL, general position (ε/3)-approximation to ψJ \X X
/, keeping X X {0} fixed. Conclusions (1) and (2) of the Lemma are then
obvious.

Triangulate X X I with a cylindrical triangulation which has mesh
less than β and includes each of the sets X X {tιJ, i = 0,1,. . . , n and
S(f) as subcomplexes. Let μ: X X I \ X X {1} be a cylindrical collapse
of that triangulation, timed so that all the simplices in X X [tt_v tt] are
collapsed out during the time interval ti_ι < t < tr Let / 0 = Trailμ(5'(/)).
Define ξ: f(X X I) \f(X X {l})U/(/0) to be the collapse induced by
μ.

We claim that £ is a (y, ε,/(/0))-collapse. It is necessary to check
conditions (a)-(d).
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( a ) C = / ( I X {1}) is contained in JVε(Λ(Z)/[l])) by the choice of 8.

(b) Let / e [0,1]. Then t e [ti_v /,.] for some /. Now /x,(JT X /) c

X X [ί, -i, H s o

(c) Let ί e [0,1]. Again ί e [tι_v tt] for some i. Since suppμ, c l x
[0, /,.], we must have

Nt(h(Df[0,t])).

(d) Let j e / ( l x /). Then y = f(x, s) for some (JC, j ) e j f x / .
There is a simplex β of I such that x e σ. Because μ is a cylindrical
collapse, ξt(y) e /(σ X /) for every ί. Thus

c: Nε/3{r(σ X I))

c jv2β/3(ψy({^} x 7 ) ) ( b y t h e c h o i c e o f i8)

cNe{Fj(r(x))).

Hence /, Jo satisfy all the conclusions of the Lemma except (3). The
best we can hope for is that, for Jo as defined above,

dim/ 0 < dim S(f) + 1

< 2[(k - 1) + 1] - (k + 2) + 1 = k - 1.

As is usual in a piping argument, we want to homotope / around in
such a way that a hole is punched in each top-dimensional simplex of
5(/), allowing us to collapse out what is below that simplex without
running into S(f). That will require a more complicated choice of δ.

The choice of 8.

We choose 8 inductively.
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First choose δ0 so that 0 < δ0 < ε/3 and Nδo(h(Dk[0, t^J)) Π
N8o(h(Dk[tiy 1])) = 0 for each i = 1,..., n.

Next choose 8V 0 < 8λ < δ0, such that if xl9 x2 e h(Dk) and
N^Mi)) n Λ^ίF/jc^) * 0, then N^Ffa)) c N^Ffa)). (The ex-
istence of δx follows from the uniform continuity of A and A"1.)

Now for the induction. Suppose δ0, δ l 5 . . . , δ, have been chosen,
1 < / < n - 1. Choose numbers s , $/+1,..., si

n_1 such that ti < s < tι+1

<sj+ι< '" <tn_ι<sι

n_ι<tn = l and such that h(Dk[tφ sq]) ^

N8(h(Dk[tq])) for g = z, / + 1,..., w - 1. Let η, < δ, be a positive num-
ber so small that the sets Nη(h(Df([0, *.])) and {N%{h{D^ tq+ι}))VqZ]
are pairwise disjoint. We also make ηt small enough so that
N^h(Df[tq, s'q})) c JVβ((A(/)/[/,D) for 9• = /, / + 1, . . . , n - 1.
By [5, Corollary 2.2], there exists a positive number γ- with the
following property: If K is any compact, 1-dimensional polyhedron in
Ny(h{Df[sι

q, tq+ι])) for some q > i, then there is a PL ambient isotopy Ht

such that
(i) Ho = id,

(ii) suppi/, c ^f(A(Z)/[4,VxD) - Nyi(h(Df[Q, sft),
^ 4

(iv) Ht(Ny(Fj(x))) c Λ^f(/)(jc)) for every / E / and JC e h{Dk).
Moreover, there exists a PL map g: K X / -> Λ̂  {h{Dk[sq, tqJtl])) such
that /ί̂  can be chosen to have its support in an arbitrarily small neighbor-
hood of g(KX I).

Now choose δ ί + 1 , 0 < δ / + 1 < y( such that if xl9 x2 ^ y(Dk) and
^ + 1 ( ^ (^i)) Π ̂ ι + 1 ( ^ (x2)) # 0, then N^JF^x,)) c NΎι(Fj(x2)).

After δ0 through δn have been chosen inductively, we finally choose
δ > 0 such that ψ/(x) e Λ^(A(D/[ί])) Π \(Fj(r(x))) for each JC e

( A(/>/[0])) and for every / e /.

The first approximation off.
Suppose X is as in the statement of the lemma. Let fn: X X / -> N

be a PL, general position map which satisfies /n(x,0) = JC for each x e X
and which so closely approximates ψy | X X / that fn(x, t) e
\(h(Djk[W n \(Fj(r(x))) for each (JC, ί) e X X /. Triangulate X X /
with a cylindrical triangulation of mesh < β which includes each of the
sets XX {*,.} and £(/„) as subcomplexes. Let μ: I X / \ l X { l } b e a
cylindrical collapse, timed as before. This time, let S = S(fn) and let
Jo = Ύΐ3άlμ(S{k~3)) where S{k~3) denotes the (k - 3)-dimensional skele-
ton of S. Notice that dim Jo < (k — 3) + l = Λ: — 2. We hope to homo-
tope fn, keeping the image of Jo U (X X {0,1}) fixed, to a map f0 with
the property that fo(X Xl)\fo(XX {1}) U/ o(/ o).
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Let π: X X / -> X denote projection onto the first coordinate. We
may assume that if σ is a top-dimensional simplex in S, then πσ Π
π(S - σ) c 7r(3σ) [7, Chapter VII, Sublemma 1]. It may also be assumed
that each top-dimensional simplex σ of S is horizontal i n l x / ; i.e., π | σ
is a homeomoφhism. (Those two assumptions will require slight modifica-
tions of the map /„. The modifications are explaned in [1, Theorem 2.5].)

The (k — 2)-dimensional simplices of S will come in pairs, (σ1? σ2},
with the property that each simplex in a pair is embedded and the two
have the same image. Thus fn{σy) =/w(σ2), but /w(int σf ) Π/W(int σ) = φ
for every (k — 2)-simplex σ in S with σ Φ σλ and σ Φ σ2.

basic constructions.

Let {σ1? σ2} be a matched pair of (k - 2)-simplices in S. The choice

of δ 0 guarantees that either there is an i such that σιu σ2 <^ X X [Λ-i, *J

or an i such that σx a X x [t._l9 tt] and σ2d XX [tt, ti+ι] (relabel if

necessary). There are two different modifications we might make, depend-
ing on which of the two cases occurs.

Case 1. oλ U σ2 c X x [tt_v /J. Following the proof of Zeeman [7,
Lemma 48] exactly, pipe the image of σλ off the ti_ι end of the image of
X X [*,._!, ί j . As long as i > 1, the result is a new singular set which is the
same as the old one except that σ2 is replaced by a (k — 2)-cell σ2 which
curves up over the ί-level as indicated in Figure 1.

0.

' i -- 1

t,

1

X / (τrσ2) X 7)
Before

(πσx) X /
After

(τrσ2) X 7

FIGURE 1

If / = 1, we would actually push the image of the barycenter of ox

completely off the end of fn(X X I). The picture would then be as
indicated in Figure 2; we would have succeeded in punching the desired
holes in σλ and σ2.
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Before
(πσ2)Xl X / (τrσ2) X

After

FIGURE 2

We will refer to the modification done in Case 1 as a "Type I Piping."
A Type I piping is simply a Zeeman piping done to a small slice,

Case 2. σx c X x [tt_v ί j , σ2 c X x [/., / / + 1 ] . Let A be the vertical
arc in X X / joining the barycenter of σ2 to the level XX {/,}. Notice
that both ends of fn(A) lie in N8^h(Dk[tί_1, ίj)). The objective is to push
all of fn{A) near h(D*[tt_l9 ίj) keeping the ends of fn{A) fixed. Suppose
for the moment that that can be done and that /„' is the map fn followed
by such a push. A new map is defined which is composed of a vertical
push straight down along A in X X / followed by /„'. The new map has
exactly the same image set as /„'; the only difference is in how that image
is parametrized. Figure 3 shows what happens to the singular set. We will
call this kind of modification a "Type II Piping."

The details of how we push fn(A) to fή(A) while still maintaining
ε-control over where individual points go are exactly the same as those in
the proofs of [4, Lemma 3] and [5, Lemma 3.2], but we give a condensed
version here as well.

Let AT be a compact subplyhedron of fn(A) such that

fm(A) - N8Jh(Df[ti, si})) c K

By the choice of γ,, there exists a PL map g: K X / -> N^hiD^sl tι+1]))
such that fn(A) can be pushed into Nη(h(DJ

k[tι_v ίj)) with an ambient
isotopy having support in an arbitrarily small neighborhood of g(K X /) .
What we have to watch out for is that the isotopy may pull some part of
fn(X X [ti+ι, ti+2]) out of a neighborhood of h(Dk[ti+v ti+2\). Put g in
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1
X X /

Before After
(πσ2)XI

FIGURE 3

general position and consider g(K X /) Πfn(X X [ti+1, ti+2]) That inter-
section consists of a finite number of points. Let Aλ be the union of a
finite number of vertical arcs i n l x / joining those points t o l x {t i+λ}.
Associated with Ax there is a compact 1-dimensional polyhedron Kx c

fn{Λγ) and a PL map g l : ^ X / ^ ^ ^ L U ) such that
fn{Aλ) can be pulled near h{D^[ti9 //+1]) along gx{Kλ X /). Next consider
g1(K1 X /) c fn(X x [/i+2, /l+3])—again a finite number of points. There
will be a collection A2 of vertical arcs associated with those points, a
subset K2a fn(A2) and a PL map g2 of ΛΓ2 X /, etc. The procedure is
contained inductively down to fn(X X [tn_v tn]).

There will be arcs An_(_v a subset Kn_i_ι c fn(An_i_1) and a PL
map gH^ι: Kn^x X / -> N%{h(Df[tn_l9 tn])). Push /.(^t^^i) across
^ - / - i ( ^ - / - i X I) into a neighborhood of h(DJ

k[tn_2, tn_λ]). Then push
the /n_x-level of X X / straight down near An_i_ι so that An_ι_1 c X x

[tn-2>*n-ll N e X t P U S h / n ( ^ Λ - , - 2 ) a C Γ O S S gn-i-l(Kn-i-2Xl) i n ^ ̂

neighborhood of h(DJ

k[tn_3, tn_2]) and then push the ^_2-level of X X /
down near ^4w_/_2

 u n t i l ^«-ι-2 c X x [^-3? «̂-2Ϊ This is continued
back up the levels until eventually A c X x [/,_!, ί j and the Type II
piping is complete.

Because the various ambient pushes have support on disjoint sets (by
the choice of ηέ) and because the fibers of fn(X X /) are left setwise fixed
by the vertical pushes in X X /, the fibers {fn({x} X /)} are still where
they should be. In addition, each slice fn(XX [tq_vtq]) is still near
h(DJ

k[tq_ι, /J), so we have the desired control over where individual
points go. The details of those epsilonics are worked out in the proof of
the claim below.
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Construction of one pipe.

Suppose again that σv σ2 are two (k — 2)-simplices of S which are

identified under /„. Assume for the moment also that σx U σ2 c X x

[/;_!, ff ], i > 1. One Type I piping results in a new singular set which

includes σx but has a new (k — 2)-cell σ2 in place of σ2. The boundary of

σ2 is in X X [/,_!, /,-], but the center lies in X X [/z_2, tt_x]. If we restrict

our attention to small simplices oλ and σ2 interior to oι and σ2, we have a

pair which fits Case 2, above. We can do a Type II piping to that pair. In

the centers of the resulting (k — 2)-cells we could find another pair of

cells, both of which are contained in X X [ίJ _2> */-i] Go ahead and do a

Type I piping to them, then a Type II, etc. Eventually we will find

ourselves doing a Type I piping in X X [t0, tx]. Stop after doing that

move; the pipe is now constructed.

Figure 4 indicates the overall result of all of those moves in the range.

Figure 5 shows the overall result in the domain, XXL

If we have started in the situation σλ c X X [/z_l5 tέ]9 σ2<z X x

[ti9 ti+ι]9 we would just have had one extra Type II piping to do, but could

still have achieved the same end result.

Since all the modifications involved in the moves described above are

done in neighborhoods of 2-dimensional sets and fn(SUJ0UXX (0,1})

has codimension 3, we can do all that and leave fn \{S - σx U σ2) U Jo U

XX {0,1} unchanged.

Construction of all the pipes simultaneously.

Rather than working on one pipe at a time, we actually construct

them all at once as follows: First do all the Type I pipings in XX [tn_v tn],

then all the Type II pipings in X X [tn_2, tn], next all the Type Γs in

Before After

FIGURE 4
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t,

1
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(πσ2)XI X

After
X

FIGURE 5

X X [tn_2, tn_ι] and so on, alternating Type I and Type II pipings and
ending with all the Type I pipings in X X [t0, tλ].

Let /„' denote the map which results from doing all the Type I pipings
in X X [tn_l9 tn] to fn and let fn_x denote the map which results from
doing all the Type II pipings in X X [tn_2, tn] to /„'. In general, f( will
denote the map which we have after all the Type I pipings in X X [^_l9 tt]
have been done and fi_ι will denote the map which results from doing all
the Type II pipings in X X [/J _2, tέ] to //. In each case fi is a PL map of

Claim, We can do the construction so carefully that each ft satisfies
} X /) c N8ι(Fj(r(x))) for every x G X and f(X X [tq_l9 tq)) c

^tq_vtq])) for every q = 1,...,«.

The proof of the claim is by downward induction on i. The case i = n
is obvious from the definition of fn. So suppose the claim is true for some
/•. We get from f to fi_ι in two steps: we first do all the Type I pipings
in X X [*,-_!, /,] to get // and then the Type II pipings in X X [^_2, tt] to

get/;.!.
Now // agrees with /) everywhere except near a finite number of

points in X X {tt_v tt). Each of those points is piped off the image of a
vertical arc in X X [*,_!, ί,-]. Thus we can easily make sure that // still
satisfies

fiίx X t V-i.',]) C ^(*( Λ /[Vu 'J c M A ( Λ / [ Vi' ÎD-
Further, the choice of δ, ensures that //({*} X /) c Nγ.^(^(/-(x))).
Hence we see that // satisfies the conclusions of the claim with δi

replaced by yi_v
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The change from // to fi_1 involves a finite number of Type II
pipings in X X [ί,_2> */]• What actually happens is that the image set is
moved by an ambient isotopy, then reparametrized, then moved by an
ambient isotopy, then reparametrized again, and so forth. The numbers
sι

q~
ι and ηi_1 have been chosen in such a way that no point is moved by

more than one of those ambient isotopies. (They are supported on disjoint
sets.) But the reparametizations leave the images of the fibers {x} X I
setwise fixed. Thus property (iv) of the isotopy Ht ensures that

/,_!({*} X /) c N^jFj(r{x))) c NsjFj(r(x)))

for every x e X,
Also, the complicated construction of the Type II piping was specifi-

cally designed to avoid moving any part of the image of X X [tq_v tq) out
of Nδ{ ι(h(DJ

k[tq_1, tq])). If a point was ever in danger of being pulled out
of its correct neighborhood by one of the isotopies, we first moved it out
of the way. Therefore ft_x{X X [tq_v tq]) c N^{h{Df[tq_l9 tq])) for each
q. This completes the proof of the claim.

The constructions above have now produced a map fv We finally
obtain the map / that we are looking for by doing all the Type I pipings
in X X [t0, tλ] to fv The choice of δx then guarantees that / satis-
fies f({x}Xl)GN8o(FJ(r(x)))c:Nε/3(FJ(r(x))) for each . G l a n d
f(X X [tq_v tq]) c ^ ( A ί D / I V , g » c Nβ/3(h(Dj%_l9 tq))) for
each q.

We now complete the proof of the Lemma by checking that / satisfies
all of the conclusion.

(1) We never change ft \ X X {0}, so /(JC,O) = fn(x,0) = JC for every
x G X

(2) As noted above, /(JC, 0 e Nε/3(Fj(r(x))) for every (JC, t) e X x /.
The choice of a together with the fact that /(JC, t) e N^hiD^t^^ tq]))
whenever tq_x <t<tq shows that f(x, t) e Nε(h(Djk[t])).

(3) Since all the modifications to fn were done in the complement of
/„(Jo), we still have /„( Jo) = /(/ 0) af(XxI) and dim Jo < k - 2.

(4) Consider So = S(f). Then S^k~3) D S(k~3\ The difference is that
each (A: - 2) simplex σ c S has been replaced by an annulus Σ » ( 3 σ ) X /
with Σ c (7rσ) X / (refer to Figure 5). Notice that for each i and each σ,

{ma) X [*,._!, /,.] \ (πσ) X {/,.} U (τ7θσ) X [t^, tt]

u(2nn[<M,/|

\(τrσ)x{ti}u(πdσ)x [t^t;].
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Now /1 Σ is an embedding and each such Σ is matched with another
Σ' c SO just like it such that f(Σ) = f(Σ'). Also, the only place where Σ
attaches to S{k~3) is in 3σ. Therefore there is a collapse ξ: f(X X I) \
/ ( I X { 1 } ) U / ( J O ) . Further, we can time £ so that any simplex in
X X [ί, -i, *, ] which is collapsed by | is collapsed during the time interval
ti_ι < t < tt. If B is any simplex of X then \t{f{B X /)) c f(B X /) for
all /. We claim that £ is a (y, ε, /(/0))-collapse. The argument is the same
as that given at the beginning of the proof of Lemma 1. D

3. Building (y, ε, 0 )-collapses. In this section we will continue the
construction begun in §2. By attaching certain polyhedra to f(X X I)
along f(J0), we will engulf the (k — l)-dimensional polyhedron X in a
λ>dimensional polyhedron for which there is a (y, ε, 0)-collapse. We first
state a definition. It should be noted that this definition is one of those
which differs slightly from the corresponding one in [2].

DEFINITION. Let A be a polyhedron and ε > 0. A homotopy g:
A X / -> Rk + 2 is a (y, ε)'homotopy if

(a) g f M)cΛ;(A(/)/[MD)foreachί,
(b) ft I gE\Nβ(h(Djk[t91]))) = g0 I &\K(KD?[U 1]))) for each /, and
(c) g,(x) e NB(Fj(r(g0(x)))) for every x e ^ a n d / G / .
To begin the construction, let X, /, and Jo be as in Lemma 1. Define

Y to be the abstract union

γ = f(xxi)ufiJo)f(jo)xi

where each x e / ( / 0 ) c/(Jf x /) is identified with (JC,O) e / ( / 0 ) x /.
Let g: Y -> i?/ c + 2 be the map defined by

LEMMA 2. For ^ery εr > 0 /Λ r̂e is a δ' > 0 swc/z /Λα/ if X a
N8,(h(Djk[0])) is a compact (k — lydimensionalpolyhedron and Y is con-
structed as in the paragraph above, then there is a collapse λ: Y \ C with
g © λ, a (y, z'yhomotopy.

Proof. This is just a formal statement of a result which is proved on p.
410 of [2] and which is also stated as Lemma 4.1 of [3]. The collapse
consists of two parts. Use £ (the collapse defined in Lemma 1) to collapse
f(X X I) to f(JQ) U / ( I X {1}) and at the same time, as bits of/(/0) are
exposed, start to collapse them down the product structure of f(J0) X
I—always keeping the second part of the collapse a little behind ξ.
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More precisely, λ is constructed as follows. Choose a small positive
number β. First collapse f(X X /) to f(X X [β, 1]) U/(/ o Π l X [ 0 , β])
using ξ. Then collapse f(J0) X I to

{f(j0 nxx[β,l]) x/) u {f(j0 nxx[o,β]) x [β,l])

by collapsing straight down the product structure. Next continue the
collapse of f(XXI) to f(X X [2β,l]) U/(/o) and follow that by a
further collapse down the product structure of /(/ 0) X / to

(/(/0 n Xx [2)8,1]) x /) u (/(/0 nxx [0,2,6]) x [20,1]).

Continue to alternate back and forth in that manner.
If δ' is small enough, ψ-7 | f(J0) will have the property that ψ y ( j , t)

e NE,(h(Df[t, 1])) for each (y9 t) e /(/ 0) x /. Therefore g <> λt will be a
(y, ε')-homotopy.

Our next job will be to work on the singular set of g and do some
piping to modify it. Before doing so, however, we must change the way in
which g(Y) is parametrized. The problem is that for (z, t) e / ( / 0 ) X /,
we cannot be certain that g(z, t) e Nε,(h(Djk[t])), but only that g(z, t) e

//
Suppose β in the proof above is of the form β = 1/m where m is an

integer. Define F c f(J0) x I by

m

F=U {f(Jo n X X [0, i/m])) X [(/ - l)/m, ί/m].
ί = l

Notice that the image of any vertical segment from f(J0) X I - F has
small diameter and that if (z, t) e F then g(z, *) e iVε,(Λ(i)/[r])). Let JP0

be a small neighborhood of JF in /(/ 0) X / with the property that there is
a PL homeomorphism H: Fo -> /(/ 0) X /. The homeomorphism // should
be chosen to have two further properties: H preserves first coordinates,
and supp( H) is contained in a small neighborhood of the frontier of Fo in

Now define Y* =f(XX I)U FQ where each x e /(/ 0 ) is identified
with i/'H^cO) G Fo and define g*: 7* -> Rk+2 by

ίx ifxG/(Xx/), and
g*{x)~\g(H(x)) ifx*F0.

If H is chosen carefully enough, g* will have the property that for every
(z, /) e Fo, g*(z, 0 e iVε,(F7(r(z))) Π N,,(h(Df[t])).
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Put g* in general position, keeping f(X X I) fixed, and let S =
S(g*). Since g* | / (J fX/) is an embedding,

dim S < dimf(X X /) + dim FQ - (k + 2)

<k+ (k- 1) — (Λ + 2) = A: — 3.

Define Jλ to be Trailλ(5(/c~4)). Then dim Jx < k - 3. As in the proof of
Lemma 1, we wish to use a piping argument to punch a hole in each
top-dimensional simplex of S so that there is a (j9 ε, g*(Jr

1))-collapse of
g*(Y*). That is the first step in an inductive argument which will
eventually produce a (j\ ε, 0)-collapse.

LEMMA 3. (Second Piping Lemma.) For every ε > 0 there is a δ > 0
such that if X a N8(h(Djk[0])) is a compact (k - l)-dimensional poly-
hedron, then f, 7*, g*, λ, andJx can be constructed in such a way that f is
homotopic rel X X {0,1} U / ' V i ) to a P L maP f' x x I "* Rk+2 and

g* I Fo is homotopic rel H\J0 X {0}) U Jλ to a PL map g: Fo -* Rk+2

such that there is a (j, ε, g(Λ))"collapse θ: / ( I X / ) U g(F0) \ g{Jλ) U

. Let a, β > 0 and 0 = ί0 < tλ < < ίn = 1 be exactly as at
the beginning of the proof of Lemma 1. Choose 8 to be the δ' of Lemma
2 corresponding to

e' = .=min

Now suppose Z c Nδ(h(Df[Qΰ) and that /, 7*, g*, λ, 5, and ^ are all
defined as above. Put g* in general position.

As usual, the fact that g* is in general position implies that the
top-dimensional simplices of S come in pairs, each of which is identified
under g*. Let {σ1? σ2} be a matched pair of (k - 3)-simplices in S with
σλ c f(X x /) and σ2 c Fo. The situation is not symmetric as it was in
the proof of Lemma 1, so there are now three cases to consider.

Case 1. σλ af(X X [t^l9 ίj) and σ2 c /(/ 0) x [t._l9 *.] for some /.

2. σx c f(X x [/., ί.+1]) and σ2 c /(/ 0) x [/._1? /.] for some i.

3. σx c / ( Z X [ί,^, ίj) and σ2 c f(J0) x [*., ί.+1] for some i.
One of these three cases must occur by the choice of ε'.
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Construction of one pipe.

Suppose {σ1? σ2} is a pair which fits either Case 1 or Case 2. (Pairs
which fit Case 3 can present a special difficulty. Later in the proof we will
use a small trick to change each Case 3 pair into a Case 1 pair and thus
avoid that problem.) We will pipe the singularity over the edge of g*(7*)
in two steps. Step 1 will push it off the fin (but into / ( I x /)) and is just
like the construction of one pipe in Lemma 1. Step 2 is then used to push
things off f(X X /) and involves some new complications.

If Case 1 is the case which occurs initially, do a Type I piping by
pushing g*(σx) along the image of a vertical arc in Fo above the
barycenter of σ2. The result is a new pair which fits Case 2.

If Case 2 is the one which occurs, we do a Type II piping. This time
we push g*(σ2) along the image of an arc above the barycenter of σv By
general position there will be no points of S(f) above the barycenter of σλ

and so we can do this without obstruction. The result of this piping is a
new pair which fits Case 1 again.

By alternating back and forth between Type I and Type II moves, we
will eventually reach the top edge of Fo. Since Fo consists of only part of
f(J0) X /, we are likely to push the singularity off the edge of the fin
before we reach the 0-level. This completes Step 1.

REMARK. Notice that we were forced by the lack of symmetry to do
things in a very particular way. We make certain that we do the Type I
pipings in such a way that Case 1 changes to Case 2. If we were to do the
Type I pipings in the other obvious way, then a pair which fits Case 3
would result and we would be stuck. The reason is simply that an arc
above σ2 might not reach all the way to the /,_Γlevel of f(J0) X /.

Assume that Step 1 has been completed. The result is a hole punched
in that part of the intersection between Fo and f(X X /) represented by
{σv σ2}. Unfortunately the top of the fin is attached to f(X X /), so we
pay for this improvement in the form of a new self-intersection in
/ ( I X /) . Figure 6 shows a picture of what has happened so far in the
domain.

As stated above, the way in which we plan to deal with the new
singularities is by continuing to pipe, but now doing so along two sheets
of /(X X / ) . So we focus our attention on exactly what the preimages of
the singularities look like all the way back in X X /.

Let a be the point of f(J0) directly above the barycenter of σ2 and let
σx* denote the preimage of the adjusted σλ under /. Notice that σf will
consist of an annulus (Sk~* X [0,1]) together with a (k - 2)-comρlex
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attached to that annulus. If π(f ι(a)) is in the interior of a (k — 1)-
simplex and if we do Step 1 carefully, then that (k ~ 2)-complex will be
exactly a (k — 2)-sphere attached to the free boundary component of the
annulus as pictured in Figure 7. In general, the (k - 2)-complex will be
the union of a finite number of (k — 2)-cells, one for each (k — l)-simplex
of X which contains π{f~ι{a)). These cells are joined together along their
common boundary. Let C denote their union. Now f(C) Π/(/o) will
consist exactly of a (k — 4)-sphere, A, which contains a in its interior
relative to f(J0). We can write C as the join of f'ι(A) and a 1-complex
Kι. Let B2 denote the cone on K1. We can assume that B2 is contained
in a small neighborhood of σf as indicated in Figure 7 and that B2 Π σf
= K\

Step 2 now consists of pushing B2 straight along / ( I x /) towards
/(X X {0}). This is done by means of the same back-and-forth alternation
between Type I and Type II pipings as always, but there are some new
complications.

Whereas earlier we pushed only the barycenter of a simplex, we now
push the entire image of B up, keeping f(A) fixed. We use Type I pipings
to push f(B) up along f(JQ). This works just like the Type I pipings in
the proof of Lemma 1. But the Type II pipings are different. We take an
arc a above J5, push its image up near the ίΓlevel, and then reparametrize
in such a way that not only is the arc incorporated into the slice
XX [tι_l9tι]9 but so is all of B. Figure 8 shows the result in X X /.

There is now another obstacle to be faced. As we push f(B) up along
/(J o ), everything is simply a product until we reach the top of f(J0).
There we will see part of /(S(/)). Attached to this part of f(S(f)) may
be (k — 2)-dimensional annuli of f(S(f)) as shown in Figure 7. We must
avoid pushing f(Kι) into those annuli because that would create still
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more self-intersections in f(XXI). (Other sheets of f(XX I) are at-
tached there.) But (π(Kι) X /) Π S(f) will consist of a finite set of
points, one for each (k - 2)-annulus of f(S(f)) attached to the (k - 3)-
simplex above a. To avoid pushing Kι into f(S(f)), simply push that
point out radially and then continue up through the hole in f(S(f))
which was created in the proof of Lemma 1.

Figure 9 shows the results of these changes in the domain, X X J.
Notice that σ* has been replaced by a complex σx which collapses and
that part of σx is identified, under gf, with the sets labeled /^(/(άi)) in
the right-hand panel. It is not possible to draw a dimensionally accurate
picture of what occurs in the range, but Figure 10 gives the general idea.

There is one last problem to be faced. In Step 2 we push f(B2) near
to parts of f(S(f)). But there are other sheets of /(X X /) (not shown in
the figures above) which cross there. Thus we have probably created new
intersections with those sheets of f(X X /) . The way in which we intend
to avoid this problem is simple: the singularities we are worrying about in
Step 2 are ones which were created (by us) in the course of doing Step 1
and so we will just go back and do Steps 1 and 2 in such a way that the
problem does not arise.

Consider what happened in Step 1 when aλ was pushed off the edge
of the fin. Instead of pushing σx all the way through / ( I x /), we could
just push it into f(X X I) and stop there. Then, at the end of Step 1, the
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FIGURE 10

fin would look the same as before but the two sheets of f(X X /) would
have a /:-dimensional set in common. This ^-dimensional set is the join of
B and f~ι(A). If we now proceed to do Step 2, the construction will be
the same except that we will end up with the two sheets still intersecting in
a /^-dimensional set. We push B2 off the top of f(XX /), so now the
intersection of the two sheets is homeomorphic with the join of B2 and
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f~\A) minus a neighborhood of 2?2, which collapses via a collapse which
induces a (j, ε)-homotopy.

This means that when we are finished with Step 2, the singular set of /
will be A>dimensional. The picture will be a little different from that
presented first. In Figure 10, the part of Sheet 1 which pokes through
Sheet 2 in the second and third pictures is projected to the left so that it
lies flat in Sheet 2.

Construction of all the pipes simultaneously.

So far we have explained how an individual pipe is constructed. In
order to complete the proof of the Lemma, we must deal with two
remaining points: first, how to avoid pairs which fit Case 3, and second,
how to do all this and maintain the desired ε-control so that the collapse θ
exists.

Here is a trick which will exchange each pair which fits Case 3 for one
which fits Case 1. Given the partition 0 = t0 < tx < < tn = 1, choose
a refinement 0 = t'o < t'Q < '** < *m = 1 °f much smaller mesh. Now
suppose that 8 was chosen to be small compared with the mesh of the new
partition. Then each pair of (k — 3)-simplices in S would fit one of the
three cases listed above, but this time relative to the finer partition. Let
{σvσ2} be a pair such that oλ a f(X X [/;_1? /;]) and σ 2 c / ( / 0 ) x
[t't, t'i+ι\. Simply reparametrize the map / so that the barycenter of σx lies
in / ( I x [/(, //+1]). This changes the pointwise control on g* by very
little and does not cause trouble since we do this one time only. Now each
pair fits either Case 1 or Case 2 relative to the first partition.

The collapse θ is constructed from the composition of four different
collapses.

fixxi) \fixx {l}) u/(/0) u/x u/(£(/)) u [fixxi)ngiFQ)]

\fixx {l}) u/(/0) uΛ u [fixx I) n g(F0)].
But

Jx U /(/ 0 ) U giF0) \f(S(g))uJ1 U g{J0 X {1}) \ Λ U g(/0 X {1}).

The way in which θ is constructed from those four collapses is just like the
construction of λ in the proof of Lemma 2. Achieving the desired
ε-control of course requires a much more careful choice of δ. The details
are just like those in the proof of Lemma 1 and so we omit them.

This completes the proof of Lemma 3. D

We now come to the large inductive construction which is the
culmination of Sections 2 and 3.
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LEMMA 4. For every ε > 0 there exists δ > 0 such that if X is a
compact, (k — l)-dimensional polyhedron in Nδ(h(Dk[0])), then X c Y c
Nε(h(Dk)) where Y is a k-dimensional polyhedron for which there is a
(y, ε, 0)-collapse ξ: Y\C.

Proof. In Lemma 1 we showed that δ could be chosen so that X is
contained in a polyhedron f(X X I) for which there is a (y, ε, /0)-col-
lapse with dim Jo < k - 2. Then in Lemma 3 we showed that δ could be
further refined and f(X X /) modified and enlarged to a polyhedron for
which there is a (y, ε, /^-collapse with dim Jx < k — 3. These are obvi-
ously the first two steps of an inductive proof of Lemma 4; we keep
reducing the dimension of the image of the collapse until eventually it is
empty. Rather than get bogged down in the notation of a full inductive
proof of the lemma, we will concentrate instead on just the third step and
then the inductive construction will be clear.

The construction described below is built on that of Lemma 3. We
claim that for any given ε there is an ε' > 0 such that if the construction
of Lemma 3 is done to within a tolerance ε', then we can do the
construction below so carefully that when we are done we have a
(y, ε, /2)-collapse with dim J2 < k — 4. Proving the claim requires an
understanding of the construction below and then the details are just like
those in the choice of δ in Lemma 1, so we omit them.

Choose δ' to be the δ' of Lemma 3 corresponding to the ε' of the
claim above. Suppose X c N8,(h(Dk[0])) is a compact (k - 1)-
dimensional polyhedron. Let f0: XX I -> Rk+2 be the map given by
Lemma 1. There exists Jo c fQ(X x I) and a (y, εr, /0)-collapse of
fo(X X /) to Jo U / 0 ( I X {1}). Now let Fo be the fin constructed in
Lemma 3, let Yλ = X X I U Fo and let fγ\ Yx -> Rk+1 be the PL map of
Lemma 3. There is a (k — 3)-dimensional polyhedron Jλ c f^YJ and a
(y, ε', /^-collapse θ: fx(Yx) \JλU Cv

Define Y{ to be Λ(ί^) U (Jx X I) where x <Ξ Jλ c fλ{Yλ) is identified
with (JC, 0) e Jx X I. Use ψy to extend the identity on fλ(Yι) to a map //:
Y{ -* Rk+2. As in the proof of Lemma 3, there exists a subpolyhedorn Fλ

of Jx X I and a PL homeomorphism H: Fx-> JλX I which preserves
first coordinates and has the following property: if (z, /) e Fl9 then
fi(H(z9 0) e NAh(Djk[φ Π JVε,(/}(r(z))). Define 72 to be / i ^ ) U Fλ

where JC e /x c /^y^ is identified with H~\x,ϋ) e Fx. Define /2: Γ2 ->
Rk+1 to be the identity on fx{Yx) and ψjo H~x on /;. Then /^z, /) e
Nε,(h(Dj[t])) Π iVε,(f;.(r(z))) for every (z, /) e Fx. (We need this kind of
pointwise control to make our controlled piping arguments work.) By the
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proof of Lemma 2, there is a collapse λ: y2 \ C2 such that f2 * λt is a
(j, ε)-homotopy.

Shift f2 into general position. Since f2 | fι{Yλ) is an embedding,

dim S(f2) < dim f^Yj + dim Fx - (k + 2)

< k + (* - 2) - (k + 2) = k - 4.

Define S to be the (k — 5)-dimensional skeleton of 5(/2) and /2 to ̂ >e

/2 (Trail λ(S)). As usual, the proof is completed by homotoping /2, rel /2,
so that f2(Y2) collapses to J2 U /2(C2).

The (k — 4)-simplices of S(/2) come in pairs {ovσ2} such that

Λ( σ i) — Λ(σ2)> σ i c /o(^ x )̂> a n < i σ2 c ^i By Λe same trick as in the
proof of Lemma 3, we may assume that there exists an i such that one of
the following two cases occurs:

Case 1. aλ c / o ( l x [tέ_l9 /.]) and σ2 c Jλ X [//βl, ί j ,

2. σ2 c / o ( l x [/., ί/+1]) and σ2aJ1X [t^l91^

For each such pair, we will now construct a pipe. The pipe is
constructed in three stages. We first push /2(σx) off the new fmf2(F1),
then off the original fin/^Fo), and finally off fo(X X /) . There is only
one new aspect to this construction. In the proof of Lemma 3, at the
second stage of the construction of one pipe, it was necessary to spread
things out to avoid part of S(/o) above Jo. We do now want that
spreading out to compound on us, so we now argue that, for each pipe, we
will have to do that at most once.

Consider σ2 c Fv Above the barycenter b of σ2 there is a point
a e Jv Now looking in Yv we find a point c e fγ{S{f^) above a. This
point c is necessarily a double point of fv by general position. (The set of
triple points has codimension two in Sif^.) The double point c will
either be a place where FQ crosses itself or a place where Fo crosses
fo(X X /) . If the latter is the case, we bend the path we pipe along just a
little (as shown in Figure 11) so that the pipe goes directly from Fx to
fo(X X /) . That means that the construction of this particular pipe skips
the second stage of the construction and is exactly the same as the
construction of one pipe in Lemma 3. Otherwise we push /2(σx) off f2{Fx)
and into /i(F0), then off /i(F0) into fo(X X /) and finally off fo(X X /) .
In Fo, the picture will be as in Figure 12(a) and so no spreading out will
be needed in the second stage because there is no part of SifJ above c.
Figure 12(b) is what we have avoided.
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This completes the proof of Lemma 4. D

REMARK. Even in later steps of the inductive proof of Lemma 4, it will
only be necessary to do the "spreading out" once. This is because the
double points we are concerned with at later stages will always arise as
points where the new fin hits fo(X X I). We always push directly into

4. Enlarging (j, ε, 0)-collapses. In this section we show that a
(Λ ε> 0)-collapse like that built in the preceding section can be enlarged
to contain certain specified (k — l)-dimensional polyhedra. We first give
a name to such a collapse.
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DEFINITION. Suppose ε > 0 and X is a compact, (k — l)-dimensional
polyhedron in Nε(h(DJ

k[0])). We say that a collapse σ: Y \ C is a
standard (j\ ε, 0 ycollapse for X if 7 is a Λ -dimensional polyhedron
constructed according to the proof of Lemma 4 and £ is the collapse
described there.

The most important features of a standard (j\ ε, 0)-collapse are that
Y consists of the track of a (j, ε)-homotopy of X with tracks of homo-
topies of lower dimensional polyhedra attached and that ξ follows those
tracks. The next lemma corresponds to Miller's Lemma 9 [2].

LEMMA 5. For every ε > 0 and for every a > 0, there exists δ > 0 with
the following property. If IcJV f i(A(ΰ|[0])) is a compact (k — 1)-
dimensional polyhedron and σ: Y \ C is a standard (j\ 8, 0)-collapse for X
and ifZcz Nδ(h(Dk[a])) is also a compact polyhedron of dimension < k —
1, then there is a (j, ε, 0)-collapse ξx: Yλ \ Cλ such that Y U Z c Yv

Furthermore, Yx Π N8{h{Dk[Q\)) = Y Π N8{h{Dk[Q\)).

Proof. Let r = dim Z. By induction it suffices to consider the special
case in which Z Π Y z> Z ( r - 1 ) . Again we will just describe the construc-
tion of Yλ and £x and leave the details of the choice of δ to the reader.

Let X, Y and ξ: Y \ C be as in the statement of the Lemma. Then
there exists a map /: X X I -* Rk+2 which represents the first stage of
the construction of Y. Use Lemma 4 to put Z in a standard (y, ε, 0 ^col-
lapse Z* with θ: Z* \ C* denoting the actual collapse. Being a standard
collapse for Z, Z* contains / * ( Z X [α, 1]) for some (j, ε)-homotopy / *
of Z. When doing the construction of Lemma 4, choose / * ( Z ( r - 1 ) X [α, 1])
to equal Trail^Z^"^) so that Y and Z* match up nicely. Define
Γ* to be the abstract union of Y and Z*, sewn together along
f*(Z(r~l) X [α,l]). Then there is a (j, ε, 0)-collapse μ: Y* \ C* by
Lemma 2. Define g: Γ* -> iϊ*+ 2 to be the inclusion on each of the two
pieces of Y*.

Now put g in general position, keeping Y fixed. Our plan is simply to
attach fins to g(Y*) along Trail^S^g)) and build up a (j\ ε, 0)-collaρse
from g(F*). Consider S(g).

dim S(g) < dim Y + dim Z* - (A: + 2)

<& + £ - ( £ + 2 ) = & - 2 .

As usual, the top-dimensional simplices of S(g) comes in pairs {σ1? σ2}
where σλ c /(X X /) c 7, σ2 c / * ( Z X [α, 1]) c Z*, and g ^ ) = g(σ2).
For each pair, construct a pipe (exactly as in the proof of Lemma 1) off
the end of Z*. Notice that, since Z* lies near h(Dk[a, 1]), we can do that
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without moving any points of Y near h(Dk[0]); this is now we achieve the
last conclusion of the Lemma.

Let Lo = g(Trailμ(ιS(g)(*~3))). After all the pipes have been built,
there will be a (j, ε, L0)-collapse of g(Y*). As in the proof of Lemma 3,
we can attach a fin Fo to g(y*) along Lo. Put Fo in general position with
respect to g( Y *). Then

d i m [ i ^ 0 Π g ( Y * ) ] < ( k - l ) + k - ( k + 2) = k - 3 .

Once again we construct a pipe for each top-dimensional simplex of
Fo Π g(Y*). But we must be careful how we do so because if we push a
simplex of g(Y*) off Fo and into f(X X /), we will be forced to continue
piping all the way along Y to f(X X {0}) and will not be able to claim
that points near h(Djk[0]) are left fixed. Just as in the proof of Lemma 4,
we have some flexibility about which side of Fo we push off. Each double
point of g arises from a place where f*(Z X [α, 1]) intersects / ( I x /) .
Just make sure that when the pipe is pushed off Jo it is pushed off into

/ * ( Z X [α, 1]). After these pipes have been built there will be (j, ε, Jλ)-
collapse of g(Y*) U Fθ9 where dim Jx < k - 3.

The next step is to attach a fin Fλ to g(Γ*) U Fo along Jx and then to
pipe top-dimensional simplices of Fx Π (Fo U g(Y*)). This procedure is
continued inductively as in Lemma 4. At later stages of the construction,
building one pipe will involve pushing something off a whole sequence of
fins. But it is always the case that a fin is attached where a fin which was
new at the previous stage intersects g(Y*), so we can always avoid piping
off the edge of the new fin into / ( I x /) . D

When we apply Lemma 5, we will actually need to do so in a PL
submanifold of Rk+1 which lies near h(Dk), rather than in Rk+2 itself.
The key ingredient which made all the proofs go through was not so much
the particular structure of Rk+2, but rather the existence of the ( j , ε)-ho-
motopies we needed. (Recall that we constructed them by using the fact
that h(Dk) is an ANR to squeeze things down to h{Dk) and then sliding
along the product structure of Dk) We could just as well have proved the
following Lemma. The only thing which prevented us from doing so
immediately was the additional notation which would have been required.
The relationship betweens Lemmas 5 and 6 is exactly the same as the
relationship between Lemma 9 and Corollary 10 of [2].

LEMMA 6. Fix j < k. Let {Σs \ 8 > 0} denote a set of collections of

closed, S'dimensional PL submanifolds of Rk+2 with each element of Σδ

contained in Nδ(h(Dk)). Suppose {Σs} has the property that for every



192 GERARD A. VENEMA

ε' > 0 there exists δ' > 0 such that if Sλ e Σδ, and Z is a compact
subpolyhedron of Sλ of dimension < s — 3, then there is S2 Ξ Σ£, such that
S2 contains a (j, εf)-homotopy of Z and S2 Π N^hiD^^O])) = Sx Π

Then for every ε > 0 #w<i ei ery α > 0 there exists 8 > 0 swcft
S e Σ δ , y/ίfl standard (j\ δ, 0)-collapse of dimension < s — 2 in S, and
X c £ Π iVδ(/*(/)*[«])) ώ Λ compact polyhedron with dim ^ < ̂  — 3, then
there exists S * e Σ e with these properties.

1. 5* Π iV,(Λ(Z)/+1[O])) = S Π iVδ(λ(2>;+1[0])).
2. S* contains a standard (j, ε, 0)-collapse Y* which in turn contains

rui
3.dim(7* - 7) < dim X 4- 1.
4. Y* Π iV,(A(Z)/[O])) = 7 Π ΛΓδ(Λ(i)/[O])).

5. (j\ ε)-collapses. In this section we relate the (j\ ε, 0)-collapses
we have been working with to the (j, ε)-collaρses of Miller. We show that
every (j\ δ, 0)-collapse is also a (/, ε)-collapse in the terminology of [2].
Once that has been established, we will really be finished with the proof
for Theorem 1, since our Lemma 6 is a codimension two version of
Miller's Corollary 10 and Miller's Lemmas 11, 12, and 13 are essentially
dimension free—depending only on his Corollary 10. However, for the
sake of completeness and for the sake of the reader who is not familiar
with [2], we will include a final section in which we sketch the remainder
of the proof of Theorem 1.

DEFINITION [2, pp. 407 and 408]. Let Y and C be subpolyhedra of N.
A collapse σ: Y \ C is called a (y, ε)-collapse if d(ξt(x), Ψ/(JC)) < ε for
every y e Y and / G /.

LEMMA 7. For every ε > 0 and 1 < j < k there exists 8 > 0 such that
each (j, δ, &y collapse is also a (j, ε)-collapse.

Proof. Let ε > 0 be given. We give the details of the choice of δ. First
choose γ > 0 such that Ny(Fj(y)) n Ny{h(D*[t])) c Nε/2(Fj(y) Π
h(Djk[t])) for every (y, t) e h(Dk) X /. We next choose a sequence of five
δ's.

Choose δx > 0 such that if N^Fjiy-J) Π NSι(Fj(y2)) Φ φ then
\(Fj(yi)) c Ny(Fj(y2)) for every yv y\ e h(Dk).

Choose δ2 > 0 such that ΛΓδ2(Λ(D/[0, t])) n \(h(Df[t, 1])) c
Ny(h(Djk[t])) for every / e /.
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Choose δ3 > 0 such that \p] \Nδ3(h(Dk[t,l])) is within ε of the
identity for every t.

Choose δ4 > 0 such that ψj(\(h(Df[O9 /]))) c Ny(h(Dk[t])) for
every / e /.

Choose δ5 > 0 such that d(x, r(x)) < 8λ for every x e Nδs(h(Dk)).
Define δ = min{ 8V δ2, δ3, δ4, δ5}.
Suppose σ: Y\C is a (y, δ, 0)-collapse. We must show that

*/(£,(*), ψ/( *)) < ε for every (x, / ) G 7 X / ,

Fix (x,t)<ΞYxI. Notice that 7 c Nδ(h(Dk)), so either JC e
Nδ(h(Dk[0,1])) or x e Nδ(h(Dk[t, 1])) - Nδ(h(Djk[Q91])).

Case 1. JceΛi(*(£/[0,*D) Then ψj(x) e Nγ(h(Df[t])) by the
choice of δ4 and ψ/(jc) e Nδ(Fj(r(x))) by the choice of δ5. Therefore
Ψ/(JC) e JVε/2(Fy.(r(x)) n λ(#fr/])) by the choice of γ.

On the other hand, parts (b) and (c) of the definition of (j, ε, Z)-col-
lapse together with the choice of δ2 imply that ζt(x) e Nγ(h(Djk[t])). Part
(d) of the definition of (j\ ε, Z)-collapse plus the choice of δx give
ξ,(x) e NΎ(Fj(r(x))). The choice of γ again gives £,(*) G K/i^{Dk[t])
Π Fj(r(x))). Since Λ(/)/[r]) Π i^(r(x)) is just one point, we have that
d(ξt(x)9 Ψ/(JC)) < ε by the triangle inequality.

Case l x € Nδ(h(Dk[t,l])) - Nδ(h(Dk[09 φ. Then d(x, ψ/(jc)) < e
by the choice of δ3 and £,(x) = x by part (c) of the definition of
(j\ ε, Z)-collapse. D

6. Proof of Theorem 1. In this section we give a brief outline of the
remainder of the proof of Theorem 1. All the ideas are also found on pp.
413-416 of [2]. If Γ is a triangulation, we use T' to denote the first
barycentric subdivision of Γ. If j < k, we will think of Dj as being a
subset of Dk by identifying (xl9..., Xj) e Dj with (xl9..., xJ9 0,..., 0)
G Dk. We begin with a definition.

DEFINITION. Suppose ε > 0 and 1 <j < k. A sequence Ck

9..., Cj\
Bk,..., BJ oi subpolyhedra of Rk+1 is called a (j\ ε)-sequence if

(1) each Cr is an (r, ε)-collapse in N£(H(Dr)) with dimC r < r, and
(2) there is a triangulation Tkof Rk+2 and there are triangulations Γr

of Θ5 r + 1 , 1 < r < k, all of mesh < ε such that Cr is a subcomplex of Tr

and J?r = N(Cr, Tr).

Note. Br is an (r + 2)-dimensional PL manifold-with-boundary.
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LEMMA 8. For every ε > 0, a > 0, and 1 < j < k there exists 8 > 0

with the following property. If Ck,..., Cj; Bk,..., Bj is a (y, δ)-sequence

and Xa dBJ+1 Π N8(h(Djk[a])) is a polyhedron of dimension <y - 1,

then there is a (y, ε)-sequence C£, . . . , CJ

X\ Bx,..., BJ

X such that

(1) C ^ U K C&

(2) Br

x Π N8(h(Dr-1)) = BrΠ N8(h(Dr~1)) for each r, and

(3) // dim X <j — 1, /Λew C^ contains a (y — 1, εyhomotopy of X.

Proof. The proof is by downward induction on 7. The case j = A:,

άimX = j — 1 is just Lemma 5. Otherwise, if j = A: and dim X <j — 1,

apply Lemma 5 to the track of a (y — 1, δ)-homotopy of X

So assume that j < k and that the Lemma is true for j' + 1. Under

those assumptions we will prove the Sublemma below. Lemma 8 then

follows from the Sublemma together with Lemma 6. The Sublemma

supplies the (j, δ)-homotopies we need to apply Lemma 6 with Σδ =

{dB J + 11 there exists a (j + 1, δ)-sequence C \ . . . , CJ+ι; Bk,..., BJ+1}.

SUBLEMMA. For every ε' > 0 there exists δ' > 0 5wc/z that ifCk,..., Cj;

Bk,..., Bj is a (j\ δf)-sequence and Z c dBJ+ι Π N8,(h(DJ)) is a com-

pact polyhedron of dimension <j— 1, then there exists a (j, ε')-sequence

C j , . . . , Q + \ CJ; Bk,..., BJz

+\ BJ such that dBJ,+ l contains a (j, ε')-ho-

motopy ofZ.

Proof. Use the fact that BJ+ι is a small regular neighborhood of CJ+ι

to homotope Z to Cj+ι and then use the (j + 1, δO-collapse of C y + 1 to

push Z a little further to N8,(h(Dk

+1[y])), where; γ is a small positive

number. Let β(Z) denote the image of Z there. Apply Lemma 8 to the

(j + 1, δO-sequence C * , . . . , C " + 1 ; Bk,...,BJ+ι with X = β(Z). That

gives a (7 + 1, εr)-sequence C£,..., Q + 1 ; 5 | , . . . , BJ

z

+ι such that Q + 1

contains a (y, β^-homotopy of β(Z). Furthermore, B^+1 is the same as

BJ+ι near h{DJ\ so we still have Bj c 35^ + 1 . Thus we can append Cj

and 5^ to form the (y, β^-sequence C^...9 Q + 1 , C^; 5 | , . . . , B^\ Bj.

To finish the proof we must verify that ΰBJ

z

+1 contains a (y, ε r^ho-

motopy of Z. We already know that CJ

z

+ι contains such a homotopy near

h(Dk

+ι[y]). To get it out into dBJ

z

+1, we collapse Q + 1 a little past the

track of the homotopy. Once it lies in B^+ι - ξ(CJ

z

+ι), we use the

product structure given by the fact that B^+ιj is a regular neighborhood

of £( CJ

Z+
ι) to push the track of the homotopy out into dBJ

z

+1. D

LEMMA 9. For every ε > 0 and every j < k, there exists a (y, ε)-se-

quence Ck,..., Cj\ Bk,...y Bj such that there is a PL map gJ~λ: D j l ->

CJ with d{h(x\ gj~\x)) < ε for every x e Dj~ι.
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Proof. The proof is by downward induction on j . If j = k, we apply
Lemma 4. Let X = gk~1(Dk~ι) for some PL map which is a close
approximation to h \ Dkl. By Lemmas 4 and 7 there is a (fc? ε)-collaρse
C* which contains X. Take J5* to be a small regular neighborhood of Ck.

Suppose that the Lemma is true for j + 1. Choose S to be the δ of
Lemma 8 and let Ck,..., C J + 1 ; Bk,..., i ^ + 1 be a (7 + 1, δ)-sequence as
in the statement of the Lemma. Consider gj\ DJ -» Cj+ι. By the same
construction as in the proof of Lemma 8, there is a map p: gj{DJ) ->
3 J S 7 + 1 which is close to the identity and projects gJ(DJ) into dBJ+1.
Define gJ~ι to be p ° gJ \DJ~ι. Now apply Lemma 8 to the (y, δ)-se-
quence C*,.. ., CJ+\ φ; Bk,...,BJ+\ φ with X = gJ-\DJ~ι). The
sequence C£,. . . , CJ

X\ Bχ,..., BJ

X satisfies the conclusion of Lemma 9. D

Proof of Theorem 1. By Lemma 9 there exists a (1, ε)-sequence for
every ε7 > 0. Consider g°: Z>° -> C1. Since g°(D°) is just one point, we
can find a point G°(D°) in Θ51 such that d(G°(D°)9 h(D0)) < 2ε\
Extend G° to a PL embedding Gι: Dι -> 5 1 using the product structure
on 9J91. Then use the (1, ε^-collapse of C1 to stretch G1 out to a PL
embedding which approximates h \ D1. Now B1 c 3JS2, SO we can use the
product structure on 91?2 to extend Gι to a PL embedding G2: D2 -* B2

and then use the (2, ε')-collapse of C 2 to stretch G2 out to a PL
embedding which approximates h\D2. Then G2 is extended to G3:
D3 -* B3 and so on until we arrive at a PL embedding Gk = g which
approximates h on all of Dk. Π
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