ON SOME REFLEXIVE OPERATOR ALGEBRAS CONSTRUCTED FROM TWO SETS OF CLOSED OPERATORS AND FROM A SET OF REFLEXIVE OPERATOR ALGEBRAS

E. V. Kissin

Abstract

In an earlier article by Kissin a new class of reflexive algebras possessing non-inner derivations implemented by bounded operators was introduced. Its method supplies us with many examples of reflexive algebras which have non-inner derivations implemented by bounded operators and for which effective analysis appears to be possible.

0. Introduction. It is generally well-known that all the derivations of W^{*}-algebras are inner. Christensen [1] and Wagner [5] have proved that the same is true of nest and quasitriangular algebras. Furthermore, although Gilfeather, Hopenwasser and Larson [2] have shown that some CSL-algebras may have non-inner derivations, none of these derivations are implemented by bounded operators. The present paper extends the approach adopted in the earlier article [3] and considers a new method of constructing reflexive operator algebras \mathscr{A} from two given sets of closed operators $\left\{F_{i}\right\}_{i=1}^{n-1},\left\{G_{i}\right\}_{i=1}^{n-1}$ and from a given set of reflexive operator algebras $\left\{\mathscr{T}_{i}\right\}_{i=1}^{n}$ (n can be a finite number or infinity).

The structure of these algebras and their properties are very interesting. For example, one can show that, if certain conditions are applied to the operators $\left\{F_{i}\right\}$ and $\left\{G_{i}\right\}$, then the algebras \mathscr{A} are semi-simple and totally symmetric without, however, becoming C^{*}-algebras [4]. These algebras also possess the following property: if A is reversible and belongs to \mathscr{A}, then A^{-1} also belongs to \mathscr{A}. But in this paper we shall confine our discussion to two subjects:
(i) Under what conditions on $\left\{F_{i}\right\}$ and $\left\{G_{i}\right\}$ are the algebras \mathscr{A} reflexive?
(ii) What is the structure of Lat \mathscr{A} ?

Usually, when studing CSL-algebras, one considers the pairs (\mathscr{A}, Lat \mathscr{A}) in the same way as one considers the pairs $\left(\mathscr{A}, \mathscr{A}^{\prime}\right)$ when studing W^{*}-algebras. However, it has been suggested [3] that in the general case of operator algebras \mathscr{A} it would be more useful to consider
the triplets $(\mathscr{A}$, Lat \mathscr{A}, Ad $\mathscr{A})$ where Ad \mathscr{A} consists of all bounded operators which generate derivations on \mathscr{A}. As well as the obvious connection between \mathscr{A} and Ad \mathscr{A}, there is also a close link between Lat \mathscr{A} and Ad \mathscr{A} :
(i) All operators A in Ad \mathscr{A} generate one-parameter groups of homeomorphisms of Lat $\mathscr{A}(M \rightarrow \exp (t A) M)$.
(ii) For every subspace M in Lat \mathscr{A}, the set $\operatorname{Ad} \mathscr{A}_{M}=\{B \in \operatorname{Ad} \mathscr{A}$: $B M \subseteq M\}$ is a Lie subalgebra of $\operatorname{Ad} \mathscr{A}$ and

$$
\mathscr{A}=\bigcap_{M \in \mathrm{Lat} \mathscr{A}} \operatorname{Ad} \mathscr{A}_{M}
$$

if \mathscr{A} is reflexive.
A knowledge of the structure of $\operatorname{Ad} \mathscr{A}$ enables us to obtain a clearer description of the nature of Lat \mathscr{A}. This can be done by establishing the structure of the orbits in Lat \mathscr{A} with respect to Ad \mathscr{A}.

In many cases, however, these triplets degenerate into pairs. For example, if \mathscr{A} is a W^{*}-algebra, then Lat \mathscr{A} is the set of all projections in \mathscr{A}^{\prime}, and $\operatorname{Ad} \mathscr{A}=\mathscr{A}+\mathscr{A}^{\prime}$; as a result the triplet turns into the pair ($\left.\mathscr{A}, \mathscr{A}^{\prime}\right)$. If \mathscr{A} is a CSL-algebra, then $\operatorname{Ad} \mathscr{A}=\mathscr{A}$ and the triplet becomes the pair $(\mathscr{A}$, Lat $\mathscr{A})$. But, in the case of an arbitrary operator algebra, Ad \mathscr{A} is not usually equal to $\mathscr{A}+\mathscr{A}^{\prime}$ and Ad \mathscr{A} does not contain Lat \mathscr{A}; in this case, therefore, the triplet does not degenerate into a pair.

One of the simplest classes of this type of algebras is \mathscr{R}_{1} [3]. This class consists of all the reflexive algebras \mathscr{A} which satisfy the following conditions:
(a) The quotient Lie algebra Ad $\mathscr{A} / \mathscr{A}$ is non-trivial;
(b) For every M in Lat \mathscr{A} the codimension of $\operatorname{Ad} \mathscr{A}_{M}$ in $\operatorname{Ad} \mathscr{A}$ is less than or equal to 1.
According to these conditions, no CSL- or W^{*}-algebras (except for the factors $B(H) \otimes I_{2}$) belong to \mathscr{R}_{1}. For algebras from \mathscr{R}_{1}, effective analysis appears to be possible. The structure of the quotient Lie algebra Ad $\mathscr{A} / \mathscr{A}$, for $\mathscr{A} \in \mathscr{R}_{1}$, is quite simple and enables us to obtain a description of Lat \mathscr{A} in terms of the orbits in Lat \mathscr{A} with respect to Ad \mathscr{A} [3].

The new method introduced in the article provides us with a wide variety of algebras from \mathscr{R}_{1}, although not all the algebras obtained by this method belong to \mathscr{R}_{1} (see Example 2). There is reason to think that this method may in fact provide us with all the algebras from \mathscr{R}_{1} which satisfy some extra conditions on Lat \mathscr{A}.

Theorem 2.4 investigates the structure of Lat \mathscr{A} and Theorem 2.5 considers some sufficient conditions for the algebras \mathscr{A} to be reflexive. Section 3 deals with a particular case when all $\mathscr{T}_{i}=B\left(H_{i}\right)$ and a detailed
description of Lat \mathscr{A} is obtained in Theorem 3.5. Two examples of algebras \mathscr{A} when $n=2$ are also considered. In Example 1, $\operatorname{dim}(\operatorname{Ad} \mathscr{A} / \mathscr{A})=2$ and all operators from $\operatorname{Ad} \mathscr{A}$ which do not belong to \mathscr{A} generate non-inner derivations on \mathscr{A}. In Example 2, Ad $\mathscr{A}=\mathscr{A}$, although the structure of Lat \mathscr{A} is the same as in Example 1.

I would like to thank the referee of this article for his helpful suggestions, and am grateful to Dr. J. A. Erdos for his useful advice.

1. Preliminaries and notation. Let n be an integer or infinity, let H_{i}, for $1 \leq i \leq n(1 \leq i<\infty$, if $n=\infty)$, be Hilbert spaces and let \mathscr{T}_{i} be reflexive operator algebras on H_{i}. (A subalgebra \mathscr{T} of $B(H)$ is reflexive if $\mathscr{T}=\operatorname{Alg}$ Lat \mathscr{T}, where Lat \mathscr{T} is the set of all closed subspaces invariant under operators from \mathscr{T}, and Alg Lat \mathscr{T} is the algebra of all operators in $B(H)$ which leave every member of Lat \mathscr{T} invariant.) Let F_{i} and G_{i}, for $1 \leq i<n$, be closed operators from H_{i+1} into H_{i}. By $D\left(F_{i}\right)$ and $D\left(G_{i}\right)$ we shall denote their domains in H_{i+1}. Let F_{i}^{*} and G_{i}^{*} be the adjoint operators from H_{i} into H_{i+1} and let $D\left(F_{i}^{*}\right)$ and $D\left(G_{i}^{*}\right)$ be their domains in H_{i}. Set $D_{1}=H_{1}, D_{n}^{*}=H_{n}($ if $n<\infty)$

$$
D_{i+1}=D\left(F_{i}\right) \cap D\left(G_{i}\right) \quad \text { and } \quad D_{i}^{*}=D\left(F_{i}^{*}\right) \cap D\left(G_{i}^{*}\right)
$$

for $1 \leq i<n$. Then $D_{i} \subseteq H_{i}$ and $D_{i}^{*} \subseteq H_{i}$.
Let us impose some restrictions on the operators $\left\{F_{i}\right\}$ and $\left\{G_{i}\right\}$.
$\left(\mathrm{R}_{1}\right) D_{i}$ and D_{i}^{*} are dense in H_{i} for all i.
$\left(\mathrm{R}_{2}\right) G_{i} \neq 0$ for all i.
By \mathscr{U} we shall denote the set of all sequences $T=\left\{T_{i}\right\}_{i=1}^{n}$ such that
$\left(\mathrm{A}_{1}\right) T_{i} \in \mathscr{T}_{i}, T_{i+1} D\left(G_{i}\right) \subseteq D\left(G_{i}\right)$ and $T_{i+1} D\left(F_{i}\right) \subseteq D\left(F_{i}\right) ;$
$\left.\left(\mathrm{A}_{2}\right) T_{i} G_{i}\right|_{D\left(G_{i}\right)}=\left.G_{i} T_{i+1}\right|_{D\left(G_{i}\right.} ;$
$\left(\mathrm{A}_{3}\right)$ the operators $\left.\left(F_{i} T_{i+1}-T_{i} F_{i}\right)\right|_{D\left(F_{i}\right)}$ extend to bounded operators $T_{F_{i}}$ from H_{i+1} into H_{i};
$\left(\mathrm{A}_{4}\right) \sup \left\|T_{i}\right\|<\infty$ and $\sup \left\|T_{F_{i}}\right\|<\infty$.
From $\left(\mathrm{R}_{1}\right)$ it follows that for every i there only exists one bounded operator $T_{F_{i}}$ which extends $\left.\left(F_{i} T_{i+1}-T_{i} F_{i}\right)\right|_{D\left(F_{i}\right)}$. For every i let \mathscr{U}_{i} be a subalgebra of \mathscr{T}_{i} such that an operator B belongs to \mathscr{U}_{i} if and only if there exists a sequence $\left\{T_{k}\right\} \in \mathscr{U}$ for which $B=T_{i}$.

Let \mathscr{H} be the direct sum of all H_{i}. For every sequence $T=\left\{T_{i}\right\}$ from \mathscr{U} let $A^{T}=\left(A_{i j}\right)$ be the operator on \mathscr{H} such that

$$
\begin{equation*}
A_{i i}=T_{i}, \quad A_{i i+1}=T_{F_{i}} \quad \text { and all other } \quad A_{i j}=0 \tag{1}
\end{equation*}
$$

By $\left(\mathrm{A}_{4}\right), A^{T}$ is bounded. Put

$$
\begin{gathered}
\mathscr{U}(\mathscr{H})=\left\{A^{T}: T \in \mathscr{U}\right\} \\
I(\mathscr{H})=\left\{A=\left(A_{i j}\right) \in B(\mathscr{H}): A_{i j}=0 \text { if } i \geq j-1\right\} .
\end{gathered}
$$

By \mathscr{A} we shall denote the set of operators on \mathscr{H} generated by all sums of operators from $\mathscr{U}(\mathscr{H})$ and from $I(\mathscr{H})$.

For example, if $n=2$, then F and G are closed operators from H_{2} into $H_{1}, \mathscr{H}=H_{1} \oplus H_{2}, \mathscr{T}_{i}$, for $i=1,2$, are reflexive subalgebras of $B\left(H_{i}\right), I(\mathscr{H})=\{0\}$ and

$$
\begin{aligned}
\mathscr{A}=\mathscr{U}(\mathscr{H})=\{ & \left\{\left(\begin{array}{cc}
T_{1} & T_{F} \\
0 & T_{2}
\end{array}\right) \in B(\mathscr{H}):(1) T_{i} \in \mathscr{T}_{i}, T_{2} D(G) \subseteq D(G)\right. \\
& \text { and } T_{2} D(F) \subseteq D(F) ;\left.(2) T_{1} G\right|_{D(G)}=\left.G T_{2}\right|_{D(G)}
\end{aligned}
$$

$$
\text { (3) } \left.\left.T_{F}\right|_{D(F)}=\left.\left(F T_{2}-T_{1} F\right)\right|_{D(F)} \cdot\right\}
$$

Let \mathscr{A} be a subalgebra of $B(H)$. Then
Ad $\mathscr{A}=\{B \in B(H):[B, A]=B A-A B \in \mathscr{A}$ for all $A \in \mathscr{A}\}$.
Operators from Ad \mathscr{A} generate bounded derivations on \mathscr{A}. It can be easily checked that Ad \mathscr{A} is a Lie algebra and that \mathscr{A} and its commutant \mathscr{A}^{\prime} are Lie ideals in Ad \mathscr{A}.

The rank one operator $z \mapsto(z, x) y$ will be denoted by $x \otimes y$.
2. Reflexivity of \mathscr{A}. In this section, in Theorem 2.4 we shall obtain some information about Lat \mathscr{A} and in Theorem 2.5 we shall state some sufficient conditions for an algebra \mathscr{A} to be reflexive.

Lemma 2.1. \mathscr{A} is an algebra and $I(\mathscr{H})$ is a weakly closed ideal in \mathscr{A}.

Proof. It is obvious that $I(\mathscr{H})$ is a weakly closed ideal in \mathscr{A}. Let $T=\left\{T_{i}\right\}$ and $T^{\prime}=\left\{T_{i}^{\prime}\right\}$ belong to \mathscr{U}. It is easy to see that their linear combinations also belong to \mathscr{U}. Therefore linear combinations of operators A^{T} and $A^{T^{\prime}}$ belong to $\mathscr{U}(\mathscr{H})$. Let $B=\left\{B_{i}\right\}$ where $B_{i}=T_{i} T_{i}^{\prime}$. Then B satisfies conditions $\left(\mathrm{A}_{1}\right)$ and $\left(\mathrm{A}_{2}\right)$. Since the operators

$$
\begin{aligned}
\left(F_{i} B_{i+1}-B_{i} F_{i}\right) & \left.\right|_{D\left(F_{i}\right)} \\
& =\left.\left(F_{i} T_{i+1}-T_{i} F_{i}\right) T_{i+1}^{\prime}\right|_{D\left(F_{i}\right)}+\left.T_{i}\left(F_{i} T_{i+1}^{\prime}-T_{i}^{\prime} F_{i}\right)\right|_{D\left(F_{i}\right)}
\end{aligned}
$$

extend to the bounded operators $T_{F_{i}} T_{i+1}^{\prime}+T_{i} T_{F_{i}}^{\prime}$, we get that B satisfies $\left(\mathrm{A}_{3}\right)$ and that

$$
\begin{equation*}
B_{F_{i}}=T_{F_{i}} T_{i+1}^{\prime}+T_{i} T_{F_{i}}^{\prime} . \tag{2}
\end{equation*}
$$

From (2) it follows immediately that B satisfies (\mathbf{A}_{4}) and hence $B \in \mathscr{U}$. From simple computations and from (1) and (2) it follows that

$$
A^{T} A^{T^{\prime}} \equiv A^{B} \quad \bmod I(\mathscr{H})
$$

Therefore \mathscr{A} is an algebra and the lemma is proved.

Lemma 2.2. (i) The operators $F_{i}+t G_{i}$ and $F_{i}{ }^{*}+\bar{t} G_{i}^{*}$ are closable for every complex t.
(ii) For every $\left\{T_{i}\right\} \in \mathscr{U}$
$\left(\mathrm{A}_{1}^{*}\right) T_{i}^{*} D\left(F_{i}^{*}\right) \subseteq D\left(F_{i}^{*}\right)$ and $T_{i}^{*} D\left(G_{i}^{*}\right) \subseteq D\left(G_{i}^{*}\right)$;
$\left.\left(\mathrm{A}_{2}^{*}\right) G_{i}^{*} T_{i}^{*}\right|_{D\left(G_{i}^{*}\right)}=\left.T_{i+1}^{*} G_{i}^{*}\right|_{D\left(G_{i}^{*}\right)}$;
$\left.\left(\mathrm{A}_{3}^{*}\right)\left(T_{i+1}^{*} F_{i}^{*}-F_{i}^{*} T_{i}^{*}\right)\right|_{D\left(F_{i}^{*}\right)}=\left.T_{F_{i}}^{*}\right|_{D\left(F_{i}^{*}\right)}$.
Proof.. For every complex t the domain of the operator $F_{i}{ }^{*}+\bar{t} G_{i}^{*}$ is D_{i}^{*}. Since D_{i}^{*} is dense in H_{i}, there exists the adjoint operator $\left(F_{i}{ }^{*}+\bar{t} G_{i}^{*}\right)^{*}$. We also have that

$$
\left.\left(F_{i}^{*}+\bar{t} G_{i}^{*}\right)^{*}\right|_{D_{i+1}}=\left.\left(F_{i}+t G_{i}\right)\right|_{D_{i+1}} .
$$

Since $\left(F_{i}^{*}+\bar{t} G_{i}^{*}\right)^{*}$ is closed, the operator $F_{i}+t G_{i}$ is closable. Similarly we can prove that the operator $F_{i}^{*}+\bar{t} G_{i}^{*}$ is closable. Thus (i) is proved.

From $\left(\mathrm{A}_{2}\right)$ it follows that for every $\left\{T_{k}\right\} \in \mathscr{U}$, for every $y \in D\left(G_{i}\right)$ and for every $x \in D\left(G_{i}^{*}\right)$

$$
\begin{equation*}
\left(G_{i} y, T_{i}^{*} x\right)=\left(T_{i} G_{i} y, x\right)=\left(G_{i} T_{i+1} y, x\right)=\left(y, T_{i+1}^{*} G_{i}^{*} x\right) \tag{3}
\end{equation*}
$$

Hence for every $x \in D\left(G_{i}^{*}\right)$

$$
\begin{equation*}
T_{i}^{*} x \in D\left(G_{i}^{*}\right) \quad \text { and }\left.\quad G_{i}^{*} T_{i}^{*}\right|_{D\left(G_{i}^{*}\right)}=\left.T_{i+1}^{*} G_{i}^{*}\right|_{D\left(G_{i}^{*}\right)} \tag{4}
\end{equation*}
$$

Thus (A_{2}^{*}) is proved.
From $\left(\mathrm{A}_{3}\right)$ it follows that for every $y \in D\left(F_{i}\right)$ and every $x \in D\left(F_{i}^{*}\right)$

$$
\begin{align*}
\left(F_{i} y, T_{i}^{*} x\right) & =\left(T_{i} F_{i} y, x\right) \tag{5}\\
& =\left(\left(F_{i} T_{i+1}-T_{F_{i}}\right) y, x\right)=\left(y,\left(T_{i+1}^{*} F_{i}^{*}-T_{F_{i}}^{*}\right) x\right)
\end{align*}
$$

Therefore for every $x \in D\left(F_{i}^{*}\right)$

$$
\begin{equation*}
T_{i}^{*} x \in D\left(F_{i}^{*}\right) \quad \text { and }\left.\quad T_{F_{i}}^{*}\right|_{D\left(F_{i}^{*}\right)}=\left.\left(T_{i+1}^{*} F_{i}^{*}-F_{i}^{*} T_{i}^{*}\right)\right|_{D\left(F_{i}^{*}\right)} \tag{6}
\end{equation*}
$$

Thus (A_{3}^{*}) is proved. From (4) and (6) it follows that (A_{1}^{*}) holds which concludes the proof of the lemma.

Definition. By S_{t}^{i} we shall denote the closure of the operator $F_{i}+t G_{i}$ which is defined on D_{i+1} and by R_{t}^{i} we shall denote the closure of the operator $F_{i}^{*}+\bar{t} G_{i}^{*}$ which is defined on D_{i}^{*}. By $D\left(S_{t}^{i}\right)$ and by $D\left(R_{t}^{i}\right)$ we shall denote their domains.

It is easy to see that $\left.\left(R_{t}^{i}\right)^{*}\right|_{D_{i}+1}=F_{i}+t G_{i}$. Since $\left(R_{t}^{i}\right)^{*}$ is closed, we get that

$$
\begin{equation*}
S_{t}^{i} \subseteq\left(R_{t}^{i}\right)^{*} \tag{7}
\end{equation*}
$$

Since S_{0}^{i} is the closure of $\left.F_{i}\right|_{D_{i+1}}$ and $\left(R_{0}^{i}\right)^{*}=\left(\left.F_{i}^{*}\right|_{D_{i}^{*}}\right)^{*}$, it follows that

$$
\begin{equation*}
S_{0}^{i} \subseteq F_{i} \subseteq\left(R_{0}^{i}\right)^{*} \tag{8}
\end{equation*}
$$

By \mathscr{H}_{0} we shall denote the null subspace in \mathscr{H}. For every $0<i<n$ let \mathscr{H}_{i} be the direct sum of H_{1}, \ldots, H_{i}. We shall consider \mathscr{H}_{i} as a subspace in \mathscr{H}. It is easy to see that $\mathscr{H}_{i} \in$ Lat \mathscr{A}.

For every $K \in$ Lat \mathscr{T}_{i} let \mathscr{K} be the direct sum of \mathscr{H}_{i-1} and K. Then \mathscr{K} can be considered as a subspace in \mathscr{H}, so that $\mathscr{K} \subseteq \mathscr{H}_{i}$ and $\mathscr{K} \in$ Lat \mathscr{A}.

Let S be a closed operator from H_{i+1} into H_{i}. Put

$$
M_{S}^{i}=\left\{\binom{y}{x}: x \in D(S) \text { and } y=S x\right\}
$$

Then M_{S}^{i} is a closed subspace in $H_{i} \oplus H_{i+1}$ which can be considered as a closed subspace in \mathscr{H}. Therefore M_{S}^{i} is a closed subspace in \mathscr{H}. By \mathscr{M}_{S}^{i} we shall denote the direct sum of \mathscr{H}_{i-1} and M_{S}^{i}, and we shall consider \mathscr{M}_{S}^{i} as a closed subspace in \mathscr{H}.

Lemma 2.3. (i) Let S be a closed operator from H_{i+1} into H_{i} and let D be a linear manifold in $D(S)$ such that

1) S is the closure of the oprator $\left.S\right|_{D}$;
2) $T D \subseteq D$ for every $T \in \mathscr{U}_{i+1}$;
3) $\left.T_{F_{i}}\right|_{D}=\left.\left(S T_{i+1}-T_{i} S\right)\right|_{D}$ for every $\left\{T_{k}\right\} \in \mathscr{U}$.

Then $\mathscr{M}_{S}^{i} \in$ Lat \mathscr{A}.
(ii) Let S be a closed operator from H_{i} into H_{i+1} and let D be a linear manifold in $D(S)$ such that

1) D is dense in H_{i};
2) S is the closure of the operator $\left.S\right|_{D}$;
3) $T^{*} D \subseteq D$ for every $T \in \mathscr{U}_{i}$.
4) $\left.\left(T_{i+1}^{*} S-S T_{i}^{*}\right)\right|_{D}=\left.T_{F_{i}}^{*}\right|_{D}$ for every $\left\{T_{k}\right\} \in \mathscr{U}$.

Then $\mathscr{M}_{S^{*}}^{i} \in$ Lat \mathscr{A}.

Proof. If an operator A belongs to $I(\mathscr{H})$, then it is easy to see that $A \xi \in \mathscr{H}_{i-1}$ for every $\xi \in \mathscr{M}_{S}^{i}$.

Let $T=\left\{T_{k}\right\} \in \mathscr{U}$ and $A^{T} \in \mathscr{U}(\mathscr{H})$. Then $A^{T} \xi \in \mathscr{H}_{i-1} \quad$ for every $\xi \in \mathscr{H}_{i-1}$. Suppose that $\xi=\binom{y}{x} \in M_{S}^{i}$. Then

$$
A^{T} \xi \equiv \xi^{\prime} \quad \bmod \mathscr{H}_{i-1}
$$

where

$$
\xi^{\prime}=\binom{y^{\prime}}{x^{\prime}} \in H_{i} \oplus H_{i+1}, \quad x^{\prime}=T_{i+1} x \quad \text { and } \quad y^{\prime}=T_{i} y+T_{F_{i}} x
$$

Let $x \in D$. Then, by 2$), x^{\prime} \in D$. Since $y=S x$, we get, by 3), that

$$
y^{\prime}=T_{i} S x+\left(S T_{i+1}-T_{i} S\right) x=S T_{i+1} x
$$

Hence $\xi^{\prime} \in M_{S}^{i}$. Thus, if $\xi=\binom{y}{x} \in M_{S^{\prime}}^{i}$ and if $x \in D$, then $A^{T} \xi \in \mathscr{M}_{S}^{i}$. But, by 1), the elements $\xi=\binom{y}{x}$, where $x \in D$, are dense in M_{S}^{i}. Therefore $A^{T} \xi \in \mathscr{M}_{S}^{i}$ for every $\xi \in M_{S}^{i}$ which completes the proof of (i).

Now let S be a closed operator from H_{i} into H_{i+1}. We only need condition 3) for condition 4) to be defined correctly. By 1), S^{*} is a closed operator from H_{i+1} into H_{i}. Let $x \in D$ and $y \in D\left(S^{*}\right)$. Then for every $\left\{T_{k}\right\} \in \mathscr{U}$, by 4$)$,

$$
\begin{aligned}
\left(T_{i+1} y, S x\right) & =\left(y, T_{i+1}^{*} S x\right) \\
& =\left(y,\left[S T_{i}^{*}+T_{F_{t}}^{*}\right] x\right)=\left(\left[T_{i} S^{*}+T_{F_{t}}\right] y, x\right)
\end{aligned}
$$

By 2),

$$
T_{i+1} y \in D\left(S^{*}\right) \quad \text { and }\left.\quad S^{*} T_{i+1}\right|_{D\left(S^{*}\right)}=\left.\left(T_{i} S^{*}+T_{F_{i}}\right)\right|_{D\left(S^{*}\right)}
$$

Applying (i) to S^{*} we obtain that $\mathscr{M}_{S^{*}}^{i} \in$ Lat \mathscr{A}. The proof is complete.
Theorem 2.4. Subspaces $\mathscr{M}_{S_{t}^{\prime}}^{i}, \mathscr{M}_{\left(R_{t}^{i}\right)^{*}}^{i}$ and $\mathscr{M}_{F_{t}}^{i}$ belong to Lat \mathscr{A} for $1 \leq i<n$ and for all complex t.

Proof. Put $D=D_{i+1}$. Then $D \subseteq D\left(S_{t}^{i}\right)$ and it follows from the definition of S_{t}^{i} that S_{t}^{i} is the closure of $\left.S_{t}^{i}\right|_{D}$. It follows from $\left(\mathrm{A}_{1}\right)$ that $T D_{i+1} \subseteq D_{i+1}$ for every $T \in \mathscr{U}_{i+1}$. Finally, by $\left(\mathrm{A}_{2}\right)$, and by $\left(\mathrm{A}_{3}\right)$, we get

$$
\begin{aligned}
\left.\left(S_{t}^{i} T_{i+1}-T_{i} S_{t}^{i}\right)\right|_{D_{t+1}} & =\left.\left(F_{i} T_{i+1}-T_{i} F_{i}+t\left(G_{i} T_{i+1}-T_{i} G_{i}\right)\right)\right|_{D_{i+1}} \\
& =\left.\left(F_{i} T_{i+1}-T_{i} F_{i}\right)\right|_{D_{i+1}}=\left.T_{F_{t}}\right|_{D_{i+1}}
\end{aligned}
$$

Therefore, by Lemma 2.3, $\mathscr{M}_{S_{t}^{i}}^{i} \in$ Lat \mathscr{A}.

Now put $D=D_{i}^{*}$. By the definition of R_{t}^{i}, we have that $D \subseteq D\left(R_{t}^{i}\right)$ and that the closure of $\left.R_{t}^{i}\right|_{D}$ is R_{t}^{i}. By $\left(\mathrm{R}_{1}\right), D$ is dense in H_{i}. It follows from Lemma 2.2 (A_{1}^{*}) that $T^{*} D \subseteq D$ for every $T \in \mathscr{U}_{i}$. Thus, conditions $1), 2$) and 3) of Lemma 2.3 (ii) hold. By Lemma $2.2\left(\mathrm{~A}_{2}\right)$ and $\left(\mathrm{A}_{3}\right)$,

$$
\begin{aligned}
\left(T_{i+1}^{*} R_{t}^{i}-\right. & \left.R_{t}^{i} T_{i}^{*}\right)\left.\right|_{D_{i}^{*}} \\
& =\left.\left(T_{i+1}^{*} F_{i}^{*}-F_{i}^{*} T_{i}^{*}+\bar{t}\left(T_{i+1}^{*} G_{i}^{*}-G_{i}^{*} T_{i}^{*}\right)\right)\right|_{D_{i}^{*}}=\left.T_{F_{i}}^{*}\right|_{D_{i}^{*}}
\end{aligned}
$$

Therefore condition 4) of Lemma 2.3(ii) holds and $\mathscr{M}_{\left(R_{i}^{i}\right)^{*}}^{i} \in$ Lat \mathscr{A}.
At last, if $S=F_{i}$ and $D=D\left(F_{i}\right)$, then it can be easily seen that conditions 2) and 3) of Lemma 2.3(i) follows from (A_{1}) and (A_{3}). Therefore $\mathscr{M}_{F_{i}}^{i} \in$ Lat \mathscr{A} and this completes the proof of the theorem.

Now we shall prove the main result of the section.
Theorem 2.5. If for every $i, 1 \leq i<n$, either
(a) $\cap_{t \in \mathbb{C}} D\left(S_{t}^{i}\right)=D_{i+1}$ and the closure of $\left.G_{i}\right|_{D_{i+1}}$ is G_{i}, or
(b) $\cap_{t \in \mathrm{C}} D\left(R_{t}^{i}\right)=D_{i}^{*}$ and the closure of $\left.G_{i}^{*}\right|_{D_{i}^{*}}$ is G_{i}^{*}, then \mathscr{A} is reflexive.

Proof. Let $B=\left(B_{i j}\right) \in \operatorname{Alg}$ Lat \mathscr{A}. Since $\mathscr{H}_{i} \in$ Lat \mathscr{A}, we obtain that $B_{i j}=0$ if $i>j$. For every $K \in \operatorname{Lat} \mathscr{T}_{i}$ the subspace $\mathscr{K}=\mathscr{H}_{i-1} \oplus K$ is contained in \mathscr{H}_{i} and belongs to Lat \mathscr{A}. Since all algebras \mathscr{T}_{i} are reflexive, we obtain that

$$
\begin{equation*}
B_{i i} \in \mathscr{T}_{i} . \tag{9}
\end{equation*}
$$

Now let

$$
z=\binom{y}{x}=\binom{F_{i} x}{x} \in M_{F_{i}}^{i}
$$

where $x \in D\left(F_{i}\right)$. Considering $M_{F_{i}}^{i}$ as a subspace in \mathscr{H} we obtain that $B z \equiv z^{\prime} \bmod \mathscr{H}_{i-1} \quad$ where

$$
z^{\prime}=\binom{y^{\prime}}{x^{\prime}} \in H_{i} \oplus H_{i+1}, \quad x^{\prime}=B_{i+1 i+1} x
$$

and $y^{\prime}=B_{i i} y+B_{i i+1} x$.
Since $M_{F_{i}}^{i} \subseteq \mathscr{M}_{F_{i}}^{i}$ and since, by Theorem 2.4, $\mathscr{M}_{F_{i}}^{i} \in$ Lat \mathscr{A}, we have that $z^{\prime} \in M_{F_{i}}^{i}$. Therefore

$$
\begin{gather*}
x^{\prime}=B_{i+1 i+1} x \in D\left(F_{i}\right), \tag{10}\\
y^{\prime}=B_{i i} F_{i} x+B_{i i+1} x=F_{i} x^{\prime}=F_{i} B_{i+1 i+1} x .
\end{gather*}
$$

Thus

$$
\begin{equation*}
\left.B_{i i+1}\right|_{D\left(F_{i}\right)}=\left.\left(F_{i} B_{i+1 i+1}-B_{i i} F_{i}\right)\right|_{D\left(F_{i}\right)} \tag{11}
\end{equation*}
$$

Now let (a) hold for some i and let

$$
z=\binom{S_{t}^{i} x}{x} \in M_{S_{t}^{i}}^{i} \quad \text { where } x \in D\left(S_{t}^{i}\right)
$$

Then repeating the argument above we obtain that

$$
\begin{gathered}
B_{i+1 i+1} x \in D\left(S_{t}^{i}\right) \\
B_{i i} S_{t}^{i} x+B_{i i+1} x=S_{t}^{i} B_{i+1 i+1} x
\end{gathered}
$$

If $x \in D_{i+1}$, then $x \in D\left(S_{t}^{i}\right)$ and, by (a),

$$
B_{i+1 i+1} x \in \bigcap_{t \in \mathbb{C}} D\left(S_{t}^{i}\right)=D_{i+1}
$$

Therefore

$$
B_{i i}\left(F_{i}+t G_{i}\right) x+B_{i i+1} x=\left(F_{i}+t G_{i}\right) B_{i+1 i+1} x
$$

From this and from (11) we immediately obtain that

$$
\begin{equation*}
\left.B_{i i} G_{i}\right|_{D_{i+1}}=\left.G_{i} B_{i+1 i+1}\right|_{D_{i+1}} \tag{12}
\end{equation*}
$$

Let $x \in D\left(G_{i}\right)$. Since, by (a), the closure of $\left.G_{i}\right|_{D_{i+1}}$ is G_{i}, there exists a sequence $\left\{x_{n}\right\}$ such that $x_{n} \in D_{i+1},\left\{x_{n}\right\}$ converges to x and $\left\{G_{i} x_{n}\right\}$ converges to $G_{i} x$. Then, by (12),

$$
B_{i i} G_{i} x=\lim B_{i i} G_{i} x_{n}=\lim G_{i} B_{i+1 i+1} x_{n} .
$$

Since the sequence $\left\{B_{i+1 i+1} x_{n}\right\}$ converges to $B_{i+1 i+1} x$ and since G_{i} is closed, we obtain that

$$
\begin{equation*}
B_{i+1 i+1} x \in D\left(G_{i}\right) \quad \text { and } \quad B_{i i} G_{i} x=G_{i} B_{i+1 i+1} x \tag{13}
\end{equation*}
$$

Now let (b) hold for some i and let

$$
z=\left(\begin{array}{cc}
\left(R_{t}^{i}\right)^{*} & x \\
x &
\end{array}\right) \quad \text { where } x \in D\left(\left(R_{t}^{i}\right)^{*}\right)
$$

Repeating the same argument as for F_{i} we obtain that

$$
\begin{gathered}
B_{i+1 i+1} x \in D\left(\left(R_{t}^{i}\right)^{*}\right) \\
B_{i i}\left(R_{t}^{i}\right)^{*} x+B_{i i+1} x=\left(R_{t}^{i}\right)^{*} B_{i+1 i+1} x
\end{gathered}
$$

Therefore for every $y \in D_{i}^{*}$

$$
\begin{aligned}
\left(B_{i i}^{*} y\right. & \left.\left(R_{t}^{i}\right)^{*} x\right)=\left(y, B_{i i}\left(R_{t}^{i}\right)^{*} x\right) \\
& =\left(y,\left[-B_{i i+1}+\left(R_{t}^{i}\right)^{*} B_{i+1 i+1}\right] x\right)=\left(\left[-B_{i i+1}^{*}+B_{i+1 i+1}^{*} R_{t}^{i}\right] y, x\right) \\
& =\left(\left[-B_{i i+1}^{*}+B_{i+1 i+1}^{*}\left(F_{i}^{*}+\bar{t} G_{i}^{*}\right)\right] y, x\right) .
\end{aligned}
$$

Repeating the same argument as in Lemma 2.2 we obtain from (11) that

$$
B_{i i}^{*} D\left(F_{i}^{*}\right) \subseteq D\left(F_{t}^{*}\right)
$$

and that

$$
\left.B_{l i+1}^{*}\right|_{D\left(F_{i}^{*}\right)}=\left.\left(B_{i+1 i+1}^{*} F_{i}^{*}-F_{i}^{*} B_{i l}^{*}\right)\right|_{D\left(F_{t}^{*}\right)} .
$$

Taking this into account and since $D_{i}^{*} \subseteq D\left(F_{i}^{*}\right)$, we obtain

$$
\left(B_{i i}^{*} y,\left(R_{t}^{i}\right)^{*} x\right)=\left(\left[F_{i}^{*} B_{i i}^{*}+\bar{t} B_{i+1 i+1}^{*} G_{i}^{*}\right] y, x\right) .
$$

From this formula it follows that

$$
B_{i i}^{*} y \in D\left(R_{t}^{\iota}\right) \quad \text { and } \quad R_{t}^{i} B_{i i}^{*} y=\left(F_{i}^{*} B_{i t}^{*}+\bar{t} B_{i+1 t+1}^{*} G_{i}^{*}\right) y
$$

Therefore, by (b), for every $y \in D_{l}^{*}$

$$
B_{i \iota}^{*} y \in \bigcap_{t \in \mathbb{C}} D\left(R_{t}^{i}\right)=D_{\imath}^{*}
$$

and

$$
\left(F_{i}^{*}+\bar{t} G_{i}^{*}\right) B_{i i}^{*} y=\left(F_{i}^{*} B_{i i}^{*}+\bar{t} B_{i+1 i+1}^{*} G_{i}^{*}\right) y .
$$

Thus

$$
\left.G_{i}^{*} B_{1 i}^{*}\right|_{D_{i}^{*}}=\left.B_{i+1 i+1}^{*} G_{i}^{*}\right|_{D_{i}^{*}}
$$

Let $y \in D_{i}^{*}$ and $z \in D\left(G_{l}\right)$. Then

$$
\left(G_{i}^{*} y, B_{i+1 i+1} z\right)=\left(B_{i+1 i+1}^{*} G_{i}^{*} y, z\right)=\left(G_{i}^{*} B_{i i}^{*} y, z\right)=\left(y, B_{i i} G_{i} z\right)
$$

Since, by (b), the closure of $\left.G_{i}^{*}\right|_{D_{i}^{*}}$ is G_{i}^{*}, we obtain from this formula that

$$
B_{i+1 i+1} D\left(G_{\imath}\right) \subseteq D\left(G_{i}\right) \quad \text { and }\left.\quad B_{i t} G_{i}\right|_{D\left(G_{t}\right)}=\left.G_{i} B_{i+1 i+1}\right|_{D\left(G_{t}\right)}
$$

Put $T_{i}=B_{u}$. It follows from (9), (10), (11), (13) and (13') that conditions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ and $\left(\mathrm{A}_{3}\right)$ hold for the sequence $T=\left\{T_{i}\right\}$ and that $B_{i i+1}=T_{F_{i}}$. Since B is bounded, T also satisfies condition $\left(\mathrm{A}_{4}\right)$. Therefore the sequence $T=\left\{T_{i}\right\}$ belongs to \mathscr{U} and $B-A^{T} \in I(\mathscr{H})$. Thus $B \in \mathscr{A}$ which concludes the proof of the theorem.

Corollary 2.6. If for every i at least one of the operators F_{\imath} or G_{i} is bounded, then \mathscr{A} is reflexive.

Proof. We obtain easily that $D_{i+1}=D\left(S_{t}^{i}\right)$ for every i and for $t \neq 0$. Therefore, by Theorem 2.5(a), \mathscr{A} is reflexive.
3. Structure of Lat \mathscr{A}. In Lemma 2.3 and Theorem 2.4 we obtained some information about the structure of Lat \mathscr{A}. But further investigation of its structure in the general case of arbitrary reflexive algebras $\left\{\mathscr{T}_{i}\right\}$ is very difficult. Therefore in this section we shall consider the simplest case when all $\mathscr{T}_{i}=B\left(H_{i}\right)$. In Lemma 3.1 we shall show that if all \mathscr{U}_{i} are weakly dense in $B\left(H_{i}\right)$, then the sufficient conditions of Lemma 2.3 for a subspace \mathscr{M} to belong to Lat \mathscr{A} are also necessary. Imposing some further restriction $\left(\mathrm{R}_{3}\right)$ on the operators $\left\{F_{i}\right\}$ and $\left\{G_{i}\right\}$ we shall obtain the main result of the section (Theorem 3.5) which describes the structure of Lat \mathscr{A}.

Lemma 3.1. Let all $\mathscr{T}_{i}=B\left(H_{i}\right)$ and let all \mathscr{U}_{i} be weakly dense in $B\left(H_{i}\right)$. If $\mathscr{M} \in$ Lat \mathscr{A}, then \mathscr{M} is either \mathscr{H} or one of the subspaces \mathscr{H}_{i} for $0 \leq i<n$, or there exist an integer $1 \leq i<n$ and a closed operator S from H_{i+1} into H_{i} such that
(1) $D(S)$ is dense in H_{i+1};
(2) $T D(S) \subseteq D(S)$ for every $T \in \mathscr{U}_{i+1}$;
(3) $\left.T_{F_{i}}\right|_{D(S)}=\left.\left(S T_{i+1}-T_{i} S\right)\right|_{D(S)}$ for every sequence $\left\{T_{K}\right\} \in \mathscr{U}$; and that $\mathscr{M}=\mathscr{M}_{S}^{i}$.

Proof. Let $z \in \mathscr{M}$. If $z \in \mathscr{H}_{i+1}$ but $z \notin \mathscr{H}_{i}$, then $\mathscr{H}_{i-1} \subset \mathscr{M}$, since $I(\mathscr{H}) \subset \mathscr{A}$. Therefore if $n=\infty$ and if for every i there exists $z_{i} \in \mathscr{M}$ such that $z_{i} \in \mathscr{H}_{i+1}$ but $z_{i} \notin \mathscr{H}_{i}$, then $\mathscr{M}=\mathscr{H}$.

Suppose that $\mathscr{M} \neq \mathscr{H}$. Then there exists an integer i such that $\mathscr{M} \subseteq \mathscr{H}_{i+1}$ but $\mathscr{M} \varsubsetneqq \mathscr{H}_{i}$. (If $n<\infty$, then it is obvious. If $n=\infty$, then it follows from the argument above.) Hence $\mathscr{H}_{i-1} \subseteq \mathscr{M}$ and we get that $\mathscr{M}=\mathscr{H}_{i-1} \oplus M$, where M is a closed subspace in $H_{i} \oplus H_{i+1}$ which is considered as a subspace in \mathscr{H}.

Suppose that $\mathscr{M} \neq \mathscr{H}_{i+1}$. Let us show that $M \cap H_{i}=\{0\}$. Let $z \neq 0$ belong to $M \cap H_{i}$. Then for every $T=\left\{T_{k}\right\} \in \mathscr{U}$ we have that

$$
A^{T} z \equiv T_{i} z \quad \bmod \mathscr{H}_{i-1} \in \mathscr{M}
$$

Since $\mathscr{H}_{i-1} \subseteq \mathscr{M}$, we obtain that $T_{i} z \in \mathscr{M}$. Hence $T z \in \mathscr{M}$ for every $T \in \mathscr{U}_{i}$. Since \mathscr{U}_{i} is weakly dense in $B\left(H_{i}\right)$, the set $\left\{T z: T \in \mathscr{U}_{i}\right\}$ is dense in H_{i}. Therefore, since \mathscr{M} is closed, we obtain that $H_{i} \subseteq \mathscr{M}$. Hence $\mathscr{H}_{i}=\mathscr{H}_{i-1} \oplus H_{i}$ is contained in \mathscr{M}. Since $\mathscr{M} \neq \mathscr{H}_{i}$, there exists $x \in \mathscr{M}$ such that $x \in H_{i+1}$. Using that \mathscr{U}_{i+1} is weakly dense in $B\left(H_{i+1}\right)$ and repeating the above argument we obtain that $H_{i+1} \subseteq \mathscr{M}$. Hence $\mathscr{M}=\mathscr{H}_{i+1}$ which contradicts the assumption that $\mathscr{M} \neq \mathscr{H}_{i+1}$. Thus $M \cap H_{i}=\{0\}$.

Since M is closed, there exists a closed operator S from H_{i+1} into H_{i} such that

$$
M=M_{S}^{i}=\left\{z=\binom{y}{x}: x \in D(S) \subseteq H_{\imath+1} \text { and } y=S x \in H_{\imath}\right\}
$$

Therefore $\mathscr{M}=\mathscr{M}_{S}^{i}$.
Now for every $T=\left\{T_{k}\right\} \in \mathscr{U}$ and for every $z=\binom{y}{x} \in M_{S}^{i}$ we have that $A^{T} z \equiv z^{\prime} \bmod \mathscr{H}_{i-1}$, where

$$
z^{\prime}=\binom{y^{\prime}}{x^{\prime}}, \quad x^{\prime}=T_{i+1} x \quad \text { and } \quad y^{\prime}=T_{i} y+T_{F_{i}} x
$$

Since $\mathscr{M} \in$ Lat \mathscr{A} and since $\mathscr{H}_{i-1} \subset \mathscr{M}$, we have that $z^{\prime} \in M_{S}^{i}$. Hence

$$
\begin{equation*}
T_{i+1} x \in D(S) \quad \text { and } \quad T_{i} S x+T_{F_{i}} x=S T_{i+1} x \tag{14}
\end{equation*}
$$

for every $x \in D(S)$. Thus conditions (2) and (3) of the lemma hold. From weak density of \mathscr{U}_{i+1} in $B\left(H_{i+1}\right)$ and from (14) it follows that $D(S)$ is dense in H_{i+1}. Hence condition (1) holds and the lemma is proved.

From this lemma and from Lemma 2.3 we obtain the following corollary.

Corollary 3.2. Let all $\mathscr{T}_{i}=B\left(H_{i}\right)$ and let all \mathscr{U}_{i} be weakly dense in $B\left(H_{i}\right)$. Then Lat \mathscr{A} consists of \mathscr{H}, of all subspaces \mathscr{H}_{i} for $0 \leq i<n$, and of all subspaces \mathscr{M}_{S}^{i} for $1 \leq i<n$, where S are closed operators from H_{i+1} into H_{i} which satisfy the conditions of Lemma 3.1.

Now let $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{i}\right\}_{i=1}^{n}$ be sequences such that
$\left(\mathrm{B}_{1}\right) y_{i} \in D_{i} \subseteq H_{i}, \quad\left(\mathrm{~B}_{1}^{*}\right) x_{i} \in D_{i}^{*} \subseteq H_{i}$,
$\left(\mathrm{B}_{2}\right) y_{i}=G_{i} y_{i+1}$,
$\left(\mathrm{B}_{2}^{*}\right) x_{i+1}=G_{i}^{*} x_{i}$,
$\left(\mathrm{B}_{3}\right) \sup \left\|y_{i}\right\|<\infty, \sup \left\|F_{i} y_{i+1}\right\|<\infty$;
$\left(\mathrm{B}_{3}^{*}\right) \sup \left\|x_{i}\right\|<\infty, \sup \left\|F_{i}^{*} x_{i}\right\|<\infty$.
By X we shall denote the set of sequences $\left\{x_{i}\right\}$ which satisfy conditions $\left(\mathrm{B}_{1}^{*}\right)-\left(\mathrm{B}_{3}^{*}\right)$, and by Y we shall denote the set of sequences $\left\{y_{i}\right\}$ which satisfy conditions $\left(\mathrm{B}_{1}\right)-\left(\mathrm{B}_{3}\right)$. It is obvious that X and Y are linear manifolds.

Lemma 3.3. Let all $\mathscr{T}_{i}=B\left(H_{i}\right)$. If $\left\{x_{i}\right\} \in X$ and $\left\{y_{i}\right\} \in Y$, then the sequence of operators $\left\{x_{i} \otimes y_{i}\right\}$ belongs to \mathscr{U}.

Proof. Put $T_{i}=x_{i} \otimes y_{i}$. For every $x \in H_{i}$, by $\left(\mathrm{B}_{1}\right)$, we have that

$$
T_{i} x=\left(x, x_{i}\right) y_{i} \in D_{i}
$$

Hence condition $\left(\mathrm{A}_{1}\right)$ holds. By $\left(\mathrm{B}_{2}\right)$ and by $\left(\mathrm{B}_{2}^{*}\right)$, for every $x \in D\left(G_{\imath}\right)$

$$
\begin{aligned}
T_{i} G_{i} x & =\left(G_{i} x, x_{i}\right) y_{i}=\left(x, G_{i}^{*} x_{i}\right) G_{i} y_{i+1} \\
& =\left(x, x_{i+1}\right) G_{i} y_{i+1}=G_{i} T_{i+1} x .
\end{aligned}
$$

Hence condition (A_{2}) holds. Next, for every $x \in D\left(F_{i}\right)$ we have that

$$
\begin{aligned}
\left(F_{t} T_{i+1}-T_{i} F_{i}\right) x & =\left(x, x_{i+1}\right) F_{i} y_{i+1}-\left(F_{i} x, x_{t}\right) y_{t} \\
& =\left(x, x_{i+1}\right) F_{i} y_{i+1}-\left(x, F_{i}^{*} x_{i}\right) y_{i}=T_{F_{i}} x
\end{aligned}
$$

where the operator

$$
\begin{equation*}
T_{F_{i}}=x_{i+1} \otimes F_{i} y_{i+1}-F_{i}^{*} x_{i} \otimes y_{i} \tag{15}
\end{equation*}
$$

is bounded. Hence condition $\left(\mathrm{A}_{3}\right)$ holds. Finally, by $\left(\mathrm{B}_{3}\right),\left(\mathrm{B}_{3}^{*}\right)$ and (15),

$$
\sup \left\|T_{i}\right\|=\sup \left\|x_{i} \otimes y_{i}\right\| \leq \sup \left\|x_{i}\right\| \sup \left\|y_{i}\right\|<\infty
$$

and

$$
\begin{aligned}
\sup \left\|T_{F_{l}}\right\| & =\sup \left\|x_{i+1} \otimes F_{i} y_{i+1}-F_{l}^{*} x_{i} \otimes y_{i}\right\| \\
& \leq \sup \left\|x_{i+1}\right\| \sup \left\|F_{i} y_{i+1}\right\|+\sup \left\|y_{i}\right\| \sup \left\|F_{i}^{*} x_{l}\right\|<\infty
\end{aligned}
$$

Thus condition $\left(\mathrm{A}_{4}\right)$ holds and therefore the sequence $\left\{x_{i} \otimes y_{i}\right\}$ belongs to \mathscr{U}. The lemma is proved.

Definition. For every k let $Y_{k}\left(X_{k}\right)$ be the set of elements in $D_{k}\left(D_{k}^{*}\right)$ such that $y \in Y_{k}\left(x \in X_{k}\right)$ if there exists a sequence $\left\{y_{l}\right\} \in Y\left(\left\{x_{i}\right\} \in X\right)$ for which $y=y_{k}\left(x=x_{k}\right)$.

Since X and Y are linear manifolds, X_{k} and Y_{k} are also linear manifolds.

Lemma 3.4. (i) If $\left\{x_{i}\right\} \in X$ and $\left\{y_{i}\right\} \in Y$ and if $\left\{T_{i}\right\} \in \mathscr{U}$, then $\left\{T_{i}^{*} x_{i}\right\} \in X$ and $\left\{T_{i} y_{i}\right\} \in Y$.
(ii) If all \mathscr{U}_{i} are weakly dense in $B\left(H_{i}\right)$ and if $X \neq\{0\}$ and $Y \neq\{0\}$, then all X_{i} and Y_{i} are dense in H_{i}.

Proof. Let us prove that $\left\{T_{i} y_{i}\right\} \in Y$. Since $y_{i} \in D_{i}$, we have, by $\left(\mathrm{A}_{1}\right)$, that $T_{t} y_{i} \in D_{i}$. Hence $\left(\mathrm{B}_{1}\right)$ holds. By $\left(\mathrm{A}_{2}\right)$ and by $\left(\mathrm{B}_{2}\right)$,

$$
G_{l}\left(T_{i+1} y_{i+1}\right)=T_{l}\left(G_{i} y_{i+1}\right)=T_{l} y_{i}
$$

Thus $\left(\mathrm{B}_{2}\right)$ holds for $\left\{T_{i} y_{i}\right\}$. By $\left(\mathrm{A}_{3}\right)$, by $\left(\mathrm{A}_{4}\right)$ and by $\left(\mathrm{B}_{3}\right)$,

$$
\sup \left\|T_{i} y_{i}\right\| \leq \sup \left\|T_{i}\right\| \sup \left\|y_{l}\right\|<\infty
$$

and

$$
\begin{aligned}
\sup \left\|F_{i} T_{i+1} y_{i+1}\right\| & =\sup \left\|\left(T_{i} F_{i}+T_{F_{i}}\right) y_{i+1}\right\| \\
& \leq \sup \left\|T_{i}\right\| \sup \left\|F_{i} y_{i+1}\right\|+\sup \left\|T_{F_{i}}\right\| \sup \left\|y_{i+1}\right\|<\infty
\end{aligned}
$$

Hence $\left(\mathrm{B}_{3}\right)$ holds for $\left\{T_{i} y_{i}\right\}$. Thus the sequence $\left\{T_{i} y_{i}\right\}$ satisfies conditions $\left(\mathrm{B}_{1}\right)-\left(\mathrm{B}_{3}\right)$ and therefore $\left\{T_{i} y_{i}\right\} \in Y$. In the same way, using conditions $\left(\mathrm{A}_{1}^{*}\right)-\left(\mathrm{A}_{3}^{*}\right)$ and $\left(\mathrm{B}_{1}^{*}\right)-\left(\mathrm{B}_{3}^{*}\right)$, we obtain that $\left\{T_{i} x_{i}\right\} \in X$, and (i) is proved.

Now suppose that $Y \neq\{0\}$. Then there exists a sequence $\left\{y_{i}\right\} \in Y$ and the smallest k such that $y_{k} \neq 0$. It follows from $\left(\mathrm{B}_{2}\right)$ that $y_{i} \neq 0$ for $i \geq k$. By (i), $\left\{T_{i} y_{i}\right\} \in Y$ for every $\left\{T_{i}\right\} \in \mathscr{U}$. Since \mathscr{U}_{i} are weakly dense in $B\left(H_{i}\right)$ and since $y_{i} \neq 0$ for $i \geq k$, the linear manifolds Y_{i} are dense in H_{i} for $i \geq k$. Suppose that $1<k$. Then $y_{k-1}=G_{k-1} y_{k}=0$. Hence, by (A_{2}),

$$
G_{k-1} T_{k} y_{k}=T_{k-1} G_{k-1} y_{k}=0
$$

and therefore $T_{k} y_{k} \in \operatorname{Ker} G_{k-1}$ for every $\left\{T_{i}\right\} \in \mathscr{U}$. Since \mathscr{U}_{k} is weakly dense in $B\left(H_{k}\right), \operatorname{Ker} G_{k-1}$ is dense in $B\left(H_{k}\right)$. Hence $G_{k-1}=0$ which contradicts $\left(\mathrm{R}_{2}\right)$. Therefore $y_{k-1} \neq 0$ which contradicts the assumption that $1<k$ is the smallest number such that $y_{k} \neq 0$. Hence $k=1$ and all Y_{i} are dense in H_{i}. In the same we obtain that if $X \neq\{0\}$, then all X_{i} are dense in H_{i}, and the lemma is proved.

Let us impose further restrictions on the operators $\left\{F_{i}\right\}$ and $\left\{G_{i}\right\}$.
$\left(\mathrm{R}_{3}\right)$ Let all X_{i} and Y_{i} are dense in H_{i}.
Since the operators S_{t}^{l} are closed, the operators $\left.S_{t}^{i}\right|_{Y_{t+1}}$ are closable.
Definition. By Q_{t}^{i} we shall denote the closed operator $\left(\left.R_{t}^{t}\right|_{X_{t}}\right)^{*}$ and by P_{t}^{i} we shall denote the closure of $\left.S_{t}^{i}\right|_{Y_{t+1}}$.

Then $P_{t}^{i} \subseteq S_{t}^{i}$ and, since $\left.R_{t}^{i}\right|_{X_{t}} \subseteq R_{t}^{i}$, we have that $\left(R_{t}^{i}\right)^{*} \subseteq Q_{t}^{i}$. Taking (7) into account we obtain that

$$
\begin{equation*}
P_{t}^{i} \subseteq S_{t}^{i} \subseteq\left(R_{t}^{i}\right)^{*} \subseteq Q_{t}^{i} \tag{16}
\end{equation*}
$$

Theorem 3.5. Let $\left(\mathrm{R}_{3}\right)$ hold. Then Lat \mathscr{A} consists of \mathscr{H}, of all subspaces \mathscr{H}_{i} for $0 \leq i<n$, and of all subspaces \mathscr{M}_{S}^{i} for $1 \leq i<n$, where S can be $P_{t}^{i}, S_{t}^{i}, F_{i},\left(R_{t}^{i}\right)^{*}, Q_{t}^{i}$ or any closed operator from H_{i+1} into H_{l} such that
(1) $P_{t}^{i} \subseteq S \subseteq Q_{t}^{i}$ for some t;
(2) $T D(S) \subseteq D(S)$ for every $T \in \mathscr{U}_{i+1}$.

Proof. It was already proved in Theorem 2.4 that subspaces $\mathscr{M}_{S_{i}}^{i}$, $\mathscr{M}_{\left(R_{t}\right)^{*}}^{i}$ and $\mathscr{M}_{F_{i}}^{i}$ belong to Lat \mathscr{A}. Repeating the same argument and using Lemma 2.3 we obtain that the subspaces $\mathscr{M}_{P_{t}^{i}}^{i}$ and $\mathscr{M}_{Q_{t}^{i}}^{i}$ also belong to Lat \mathscr{A}. Now let S be a closed operator which satisfies the conditions of the theorem. Since $Y_{i+1} \subseteq D\left(P_{t}^{i}\right) \subseteq D(S)$, condition (1) of Lemma 3.1 holds. Condition (2) of Lemma 3.1 follows from condition (2) of the theorem. Since $\mathscr{M}_{Q_{i}^{i}}^{i}$ belongs to Lat \mathscr{A}, Q_{t}^{i} satisfies condition (3) of Lemma 3.1. Therefore taking into account that $S=\left.Q_{t}^{i}\right|_{D(S)}$, we obtain

$$
\begin{aligned}
\left.\left(T_{i} S+T_{F_{i}}\right)\right|_{D(S)} & =\left.\left(T_{i} Q_{t}^{i}+T_{F_{i}}\right)\right|_{D(S)} \\
& =\left.Q_{t}^{i} T_{i+1}\right|_{D(S)}=\left.S T_{i+1}\right|_{D(S)}
\end{aligned}
$$

so that condition (3) of Lemma 3.1 holds. Therefore $\mathscr{M}_{S}^{i} \in$ Lat \mathscr{A}.
Now let S be a closed operator from H_{i+1} into H_{i} which satisfies the conditions of Lemma 3.1 and let us prove that it satisfies the conditions of this theorem. It obviously satisfies condition (2) of the theorem.

Let $\left\{x_{k}\right\} \in X$ and $\left\{y_{k}\right\} \in Y$. Then, by Lemma 3.3, the operator $x_{i+1} \otimes y_{i+1}$ belongs to \mathscr{U}_{i+1}. It follows from condition (2) of Lemma 3.1 that for every $z \in D(S)$

$$
\left(x_{i+1} \otimes y_{i+1}\right) z=\left(z, x_{i+1}\right) y_{i+1} \in D(S) .
$$

Since, by condition (1) of Lemma 3.1, $D(S)$ is dense in H_{i+1}, we get that $Y_{i+1} \subseteq D(S)$. It follows from condition (3) of Lemma 3.1 and from (15) that for every $z \in D(S)$

$$
\left(x_{i} \otimes y_{i}\right) S z+\left(x_{i+1} \otimes F_{i} y_{i+1}\right) z-\left(F_{i}^{*} x_{i} \otimes y_{i}\right) z=S\left(x_{i+1} \otimes y_{i+1}\right) z
$$

Hence

$$
\begin{equation*}
\left(S z, x_{i}\right) y_{i}+\left(z, x_{i+1}\right) F_{i} y_{i+1}-\left(z, F_{i}^{*} x_{i}\right) y_{i}=\left(z, x_{i+1}\right) S y_{i+1} \tag{17}
\end{equation*}
$$

Let $z \in Y_{i+1}$. Then $\left(z, F_{i}^{*} x_{i}\right)=\left(F_{i} z, x_{i}\right)$. Put $V=S-F_{i}$. We obtain from (17) that

$$
\begin{equation*}
\left(V z, x_{i}\right) y_{i}=\left(z, x_{i+1}\right) V y_{i+1} \tag{18}
\end{equation*}
$$

By $\left(\mathrm{B}_{2}\right), y_{i}=G_{i} y_{i+1}$. Since X_{i+1} is dense in H_{i+1}, we can choose x_{i+1} such that $\left(z, x_{i+1}\right) \neq 0$. Then it follows from (18) that for every $y \in Y_{i+1}$

$$
V y=t G_{i} y
$$

where $t=\left(V z, x_{i}\right) /\left(z, x_{i+1}\right)$. Therefore we obtain that

$$
\begin{equation*}
\left.S\right|_{Y_{i+1}}=\left.\left(F_{i}+t G_{i}\right)\right|_{Y_{i+1}}=\left.S_{t}^{i}\right|_{Y_{t+1}} . \tag{19}
\end{equation*}
$$

Thus $P_{t}^{i} \subseteq S$. Using (19) we obtain from (17) that for every $z \in D(S)$

$$
\left(S z, x_{i}\right) y_{i}-\left(z, F_{i}^{*} x_{i}\right) y_{i}=\left(z, x_{i+1}\right) t G_{i} y_{i+1} .
$$

By $\left(\mathrm{B}_{2}\right), y_{i}=G_{i} y_{i+1}$ and, by $\left(\mathrm{B}_{2}^{*}\right), x_{i+1}=G_{i}^{*} x_{i}$. Hence

$$
\left(S z, x_{i}\right)-\left(z, F_{i}^{*} x_{i}\right)=t\left(z, G_{i}^{*} x_{i}\right)
$$

Therefore $\left(S z, x_{i}\right)=\left(z, R_{t}^{t} x_{i}\right)$ which means that

$$
S \subseteq\left(\left.R_{t}^{i}\right|_{X_{t}}\right)^{*}=Q_{t}^{i}
$$

Thus $P_{t}^{i} \subseteq S \subseteq Q_{t}^{i}$ and S satisfies condition (1) of this theorem which completes the proof.

Now suppose that $n<\infty$, that all $H_{i}=H$, that all $G_{i}=I$ and that all $\mathscr{T}_{i}=B(H)$. Then

$$
D_{i+1}=D\left(F_{i}\right), \quad D_{i}^{*}=D\left(F_{i}^{*}\right)
$$

all $Y_{i}=D=\bigcap_{i=1}^{n-1} D_{i+1}$ and all $X_{i}=D^{*}=\bigcap_{i=1}^{n-1} D_{i}^{*}$. If D and D^{*} are dense in H, then \mathscr{U} consists of all sequences $\left\{T_{i}\right\}_{i=1}^{n}$ such that $T_{1}=\cdots$ $=T_{n}=T$, where T belongs to
$\mathbf{A}=\left\{T \in B(H):(\mathrm{a}) T D_{i} \subseteq D_{i} ;\right.$
(b) the operators $\left.\left(F_{i} T-T F_{i}\right)\right|_{D_{i+1}}$ extend to bounded operators $\left.T_{F_{i}}\right\}$.

From Corollary 2.6 it follows that \mathscr{A} is reflexive. We also have that the operators P_{t}^{i} are the closures of the operators $\left(F_{i}+t I\right)_{D}=\left.F_{i}\right|_{D}+t I$, that $S_{t}^{i}=F_{i}+t I$, that $R_{t}^{i}=F_{i}^{*}+\bar{t} I$ and that

$$
Q_{t}^{i}=\left(\left.\left(F_{i}^{*}+\bar{t} I\right)\right|_{D^{*}}\right)^{*}=\left(\left.F_{i}^{*}\right|_{D^{*}}\right)^{*}+t I .
$$

Therefore $\left(R_{t}^{i}\right)^{*}=S_{t}^{i}, S_{0}^{i}=F_{i}$ and it follows from Theorem 3.5 that Lat \mathscr{A} consists of \mathscr{H}_{i} for $i=0, \ldots, n$, and of all subspaces \mathscr{M}_{S}^{i} for $i=1, \ldots, n-1$, where S can be $P_{t}^{i}, S_{t}^{i}, Q_{t}^{i}$ or any closed operator such that
(1) $P_{t}^{i} \subset S \subset Q_{t}^{i}$ for some t;
(2) $T D(S) \subseteq D(S)$ for every $T \in \mathbf{A}$.

If the operators $\left\{F_{i}\right\}$ are such that for every i the closure of $\left.F_{i}\right|_{D}$ is F_{i} and the closure of $\left.F_{i}^{*}\right|_{D^{*}}$ is F_{i}^{*}, then

$$
P_{t}^{i}=F_{i}+t I=S_{t}^{i}
$$

and

$$
Q_{t}^{i}=\left(\left.F_{i}^{*}\right|_{D^{*}}\right)^{*}+t I=\left(F_{i}^{*}\right)^{*}+t I=F_{l}+t I=S_{t}^{i} .
$$

Therefore we obtain the following theorem which was proved in [3] (Theorem 4.4(ii)) (the theorem was erroneously stated without condition (b)).

Theorem 3.6. If (a) D and D^{*} are dense in H; (b) for every i the closure of $\left.F_{i}\right|_{D}$ is F_{i} and the closure of $\left.F_{i}^{*}\right|_{D^{*}}$ is F_{i}^{*}, then Lat \mathscr{A} consists of \mathscr{H}_{i} for $i=0, \ldots, n$, and of all subspaces $\mathscr{M}_{S_{i}^{i}}^{i}$ for $i=1, \ldots, n-1$ and for $t \in \mathbb{C}$.

If the conditions of Theorem 3.6 do not hold, then the structure of Lat \mathscr{A} is more complicated, and even in comparatively simple cases it is difficult to describe it fully.

Example. Let $F_{1} \subset F_{2} \subset \cdots \subset F_{n-1}$. Then $D=D\left(F_{1}\right)$ and $D^{*}=$ $D\left(F_{n-1}^{*}\right)$. Hence all $P_{t}^{i}=F_{1}+t I$ and all

$$
Q_{t}^{i}=\left(\left.F_{i}^{*}\right|_{D^{*}}\right)^{*}+t I=\left(F_{n-1}^{*}\right)^{*}+t I=F_{n-1}+t I
$$

Then for every $1<k<n-1$ and for every $t \in \mathbb{C}$ we have that

$$
F_{1}+t I \subset F_{k}+t I \subset F_{n-1}+t I
$$

By property (a) of $\mathbf{A}, T D\left(F_{k}\right) \subseteq D\left(F_{k}\right)$ for every $T \in \mathbf{A}$. Therefore Lat \mathscr{A} contains all subspaces \mathscr{H}_{i} for $i=0, \ldots, n$, and all subspaces \mathscr{M}_{S}^{i} for $i=1, \ldots, n-1$, where S can be any of the operators $F_{k}+t I$ for $1 \leq k$ $\leq n-1$ and for $t \in \mathbb{C}$. The following question arises: do other operators R exist, apart from $F_{k}, k=2, \ldots, n-2$, such that
(1) $F_{1} \subset R \subset F_{n-1}$;
(2) $T D(R) \subseteq D(R)$ for every $T \in \mathbf{A}$.

If such operators do not exist, then we have a full description of Lat \mathscr{A}. If they do exist, then each of them generates a set of subspaces $\mathscr{M}_{R+t I}^{i}$ for $i=1, \ldots, n-1$ and for $t \in \mathbb{C}$, which belong to Lat \mathscr{A}.

Finally, we shall briefly consider two examples of algebras \mathscr{A} for $n=2$ and provide full descriptions of Lat \mathscr{A} and of Ad \mathscr{A}. The case when the operator G is the identity was investigated in [3]. In Theorem 4.3 it was shown that Ad $\mathscr{A} \neq \mathscr{A}$. In Example 2 a closed operator F was considered such that $\operatorname{Ad} \mathscr{A}=\mathscr{A}+\{N\}+\{B\}$, where N and B do not belong to \mathscr{A}, so that $\operatorname{dim}(\operatorname{Ad} \mathscr{A} / \mathscr{A})=2$. It was also proved that $\mathscr{A}^{\prime}=$ $\{I\}+\{N\}$ so that B generates a non-inner derivation on \mathscr{A}. Now we shall consider an example of a reflexive algebra \mathscr{A} constructed from two closed operators F and G such that $\operatorname{Ad} \mathscr{A}=\mathscr{A}+\{N\}+\{B\}$. But for this algebra $\mathscr{A}^{\prime}=\{I\}$, so that all operators from Ad \mathscr{A} which do not belong to \mathscr{A} generate non-inner derivations on \mathscr{A}.

Example 1. Let $H_{1}=H_{2}=H=K \oplus K$, where K is an infinite-dimensional Hilbert space and let $\mathscr{H}=H \oplus H$. Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthogonal basis in K and let W be an unbounded operator on K such that

$$
W e_{n}=n e_{n}
$$

For a complex a set

$$
F=\left(\begin{array}{cc}
a W^{2} & W^{2} \\
0 & a W
\end{array}\right) \quad \text { and } \quad G=\left(\begin{array}{cc}
W^{2} & 0 \\
0 & W
\end{array}\right) .
$$

Then

$$
\begin{gathered}
D(F)=D\left(W^{2}\right) \oplus D\left(W^{2}\right), \quad D(G)=D\left(W^{2}\right) \oplus D(W), \\
D_{2}=D(F), \quad D_{1}^{*}=D(G) .
\end{gathered}
$$

Therefore restrictions $\left(\mathbf{R}_{1}\right),\left(\mathbf{R}_{2}\right)$ and $\left(\mathrm{R}_{3}\right)$ on operators F and G hold. Obviously G is the closure of $\left.G\right|_{D_{2}}$ and F is the closure of $\left.F\right|_{D_{2}}$. Also

$$
P_{t}=S_{t}=F+t G=\left(\begin{array}{cc}
(a+t) W^{2} & W^{2} \\
0 & (a+t) W
\end{array}\right) \quad \text { for } t \neq-a
$$

and

$$
S_{-a}=\left(\begin{array}{cc}
0 & W^{2} \\
0 & 0
\end{array}\right)=P_{-a} .
$$

We also have that $D\left(S_{t}\right)=D_{2}$, if $t \neq-a$ and $D\left(S_{-a}\right)=K \oplus D\left(W^{2}\right)$. So $\cap_{t \in \mathbb{C}} D\left(S_{t}\right)=D_{2}$ and, by Theorem 2.5, \mathscr{A} is reflexive.

We have that

$$
R_{t}=F^{*}+\bar{t} G^{*}=\left(\begin{array}{cc}
(\bar{a}+\bar{t}) W^{2} & 0 \\
W^{2} & (\bar{a}+\bar{t}) W^{2}
\end{array}\right) \quad \text { for } t \neq-a
$$

and

$$
R_{-a}=\left(\begin{array}{cc}
0 & 0 \\
W^{2} & 0
\end{array}\right) .
$$

It is easy to check that $S_{t}=R_{t}^{*}=Q_{t}$. Therefore, by Theorem 3.5, Lat \mathscr{A} consists of $\mathscr{H}_{0}, \mathscr{H}_{1}, \mathscr{H}$ and of all $M_{S_{t}}$, for $t \in \mathbb{C}$.

Set

$$
N=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
W^{-2} & 0 & 0 & -2 I \\
0 & W^{-1} & 0 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & -I & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Then $B, N \in B(\mathscr{H})$ and it is easy to check that $[N, B]=N B-B N=N$. It can be proven that $\operatorname{Ad} \mathscr{A}=\mathscr{A}+\{N\}+\{B\}$ and that $\mathscr{A}^{\prime}=\{I\}$, so that all linear combinations of the operators N and B generate non-inner derivations on \mathscr{A}. One can also show that $\mathscr{A} \in R_{1}$.

In the following example we shall consider a reflexive algebra \mathscr{A} constructed from two closed operators F and G such that $\operatorname{Ad} \mathscr{A}=\mathscr{A}$, although the structure of Lat \mathscr{A} is the same as in Example 1.

Example 2. Let \mathscr{H} and W be the same as in Example 1. Set

$$
F=\left(\begin{array}{cc}
W & 0 \\
0 & W
\end{array}\right) \quad \text { and } \quad G=\left(\begin{array}{cc}
W & 0 \\
0 & W^{-1}
\end{array}\right)
$$

Then

$$
\begin{gathered}
D(F)=D(W) \oplus D(W), \quad D(G)=D(W) \oplus K \\
D_{2}=D(F) \quad \text { and } \quad D_{1}^{*}=D_{2}
\end{gathered}
$$

The operators F and G satisfy restrictions $\left(\mathrm{R}_{1}\right),\left(\mathrm{R}_{2}\right)$ and $\left(\mathrm{R}_{3}\right)$. Repeating the same argument as in Example 1 we obtain that \mathscr{A} is reflexive, that Lat \mathscr{A} consists of $\mathscr{H}_{0}, \mathscr{H}_{1}, \mathscr{H}$ and of all $M_{S_{t}}$, for $t \in \mathbb{C}$, and that G is the closure of $\left.G\right|_{D_{2}}$ and F is the closure of $\left.F\right|_{D_{2}}$. It can be proven that Ad $\mathscr{A}=\mathscr{A}$, so that all derivations on \mathscr{A} implemented by bounded operators are inner.

References

[1] E. Christensen, Derivations of nest algebras, Math. Ann., 229 (1977), 155-166.
[2] F. Gilfeather, A. Hopenwasser and D. R. Larson, Reflexive algebras with finite width lattices: tensor products, cohomology, compact perturbations, J. Funct. Anal., 55 (1984), 176-199.
[3] E. V. Kissin, On some reflexive algebras of operators and the operator Lie algebras of their derivations, Proc. London Math. Soc., (3), 49 (1984), 1-35.
[4] ___, Totally symmetric algebras and the similarity problem, (1985), preprint.
[5] B. H. Wagner, Derivations of quasitriangular algebras, preprint.
Received March 21, 1984 and in revised form February 12, 1986.

The Polytechnic of North London
Holloway, London N7 8DB, England

