ON SOME REFLEXIVE OPERATOR ALGEBRAS CONSTRUCTED FROM TWO SETS OF CLOSED OPERATORS AND FROM A SET OF REFLEXIVE OPERATOR ALGEBRAS

E. V. KISSIN

In an earlier article by Kissin a new class of reflexive algebras possessing non-inner derivations implemented by bounded operators was introduced. Its method supplies us with many examples of reflexive algebras which have non-inner derivations implemented by bounded operators and for which effective analysis appears to be possible.

0. Introduction. It is generally well-known that all the derivations of W^* -algebras are inner. Christensen [1] and Wagner [5] have proved that the same is true of nest and quasitriangular algebras. Furthermore, although Gilfeather, Hopenwasser and Larson [2] have shown that some CSL-algebras may have non-inner derivations, none of these derivations are implemented by bounded operators. The present paper extends the approach adopted in the earlier article [3] and considers a new method of constructing reflexive operator algebras \mathscr{A} from two given sets of closed operators $\{F_i\}_{i=1}^{n-1}$, $\{G_i\}_{i=1}^{n-1}$ and from a given set of reflexive operator algebras $\{\mathscr{F}_i\}_{i=1}^n$ (n can be a finite number or infinity).

The structure of these algebras and their properties are very interesting. For example, one can show that, if certain conditions are applied to the operators $\{F_i\}$ and $\{G_i\}$, then the algebras $\mathscr A$ are semi-simple and totally symmetric without, however, becoming C^* -algebras [4]. These algebras also possess the following property: if A is reversible and belongs to $\mathscr A$, then A^{-1} also belongs to $\mathscr A$. But in this paper we shall confine our discussion to two subjects:

- (i) Under what conditions on $\{F_i\}$ and $\{G_i\}$ are the algebras \mathscr{A} reflexive?
- (ii) What is the structure of Lat \mathcal{A} ?

Usually, when studing CSL-algebras, one considers the pairs $(\mathcal{A}, \text{Lat } \mathcal{A})$ in the same way as one considers the pairs $(\mathcal{A}, \mathcal{A}')$ when studing W^* -algebras. However, it has been suggested [3] that in the general case of operator algebras \mathcal{A} it would be more useful to consider

the triplets (\mathscr{A} , Lat \mathscr{A} , Ad \mathscr{A}) where Ad \mathscr{A} consists of all bounded operators which generate derivations on \mathscr{A} . As well as the obvious connection between \mathscr{A} and Ad \mathscr{A} , there is also a close link between Lat \mathscr{A} and Ad \mathscr{A} :

- (i) All operators A in Ad \mathscr{A} generate one-parameter groups of homeomorphisms of Lat \mathscr{A} ($M \to \exp(tA)M$).
- (ii) For every subspace M in Lat \mathscr{A} , the set Ad $\mathscr{A}_M = \{ B \in \operatorname{Ad} \mathscr{A} : BM \subseteq M \}$ is a Lie subalgebra of Ad \mathscr{A} and

$$\mathscr{A} = \bigcap_{M \in \text{Lat } \mathscr{A}} \text{Ad } \mathscr{A}_M$$

if \mathcal{A} is reflexive.

A knowledge of the structure of Ad \mathscr{A} enables us to obtain a clearer description of the nature of Lat \mathscr{A} . This can be done by establishing the structure of the orbits in Lat \mathscr{A} with respect to Ad \mathscr{A} .

In many cases, however, these triplets degenerate into pairs. For example, if \mathscr{A} is a W^* -algebra, then Lat \mathscr{A} is the set of all projections in \mathscr{A}' , and Ad $\mathscr{A} = \mathscr{A} + \mathscr{A}'$; as a result the triplet turns into the pair $(\mathscr{A}, \mathscr{A}')$. If \mathscr{A} is a CSL-algebra, then Ad $\mathscr{A} = \mathscr{A}$ and the triplet becomes the pair $(\mathscr{A}, \operatorname{Lat} \mathscr{A})$. But, in the case of an arbitrary operator algebra, Ad \mathscr{A} is not usually equal to $\mathscr{A} + \mathscr{A}'$ and Ad \mathscr{A} does not contain Lat \mathscr{A} ; in this case, therefore, the triplet does not degenerate into a pair.

One of the simplest classes of this type of algebras is \mathcal{R}_1 [3]. This class consists of all the reflexive algebras \mathcal{A} which satisfy the following conditions:

- (a) The quotient Lie algebra Ad \mathcal{A}/\mathcal{A} is non-trivial;
- (b) For every M in Lat $\mathscr A$ the codimension of Ad $\mathscr A_M$ in Ad $\mathscr A$ is less than or equal to 1.

According to these conditions, no CSL- or W^* -algebras (except for the factors $B(H) \otimes I_2$) belong to \mathcal{R}_1 . For algebras from \mathcal{R}_1 , effective analysis appears to be possible. The structure of the quotient Lie algebra Ad \mathcal{A}/\mathcal{A} , for $\mathcal{A} \in \mathcal{R}_1$, is quite simple and enables us to obtain a description of Lat \mathcal{A} in terms of the orbits in Lat \mathcal{A} with respect to Ad \mathcal{A} [3].

The new method introduced in the article provides us with a wide variety of algebras from \mathcal{R}_1 , although not all the algebras obtained by this method belong to \mathcal{R}_1 (see Example 2). There is reason to think that this method may in fact provide us with all the algebras from \mathcal{R}_1 which satisfy some extra conditions on Lat \mathcal{A} .

Theorem 2.4 investigates the structure of Lat \mathscr{A} and Theorem 2.5 considers some sufficient conditions for the algebras \mathscr{A} to be reflexive. Section 3 deals with a particular case when all $\mathscr{T}_i = B(H_i)$ and a detailed

description of Lat \mathscr{A} is obtained in Theorem 3.5. Two examples of algebras \mathscr{A} when n=2 are also considered. In Example 1, $\dim(\operatorname{Ad}\mathscr{A}/\mathscr{A})=2$ and all operators from Ad \mathscr{A} which do not belong to \mathscr{A} generate non-inner derivations on \mathscr{A} . In Example 2, Ad $\mathscr{A}=\mathscr{A}$, although the structure of Lat \mathscr{A} is the same as in Example 1.

I would like to thank the referee of this article for his helpful suggestions, and am grateful to Dr. J. A. Erdos for his useful advice.

1. Preliminaries and notation. Let n be an integer or infinity, let H_i , for $1 \le i \le n$ ($1 \le i < \infty$, if $n = \infty$), be Hilbert spaces and let \mathcal{T}_i be reflexive operator algebras on H_i . (A subalgebra \mathcal{T} of B(H) is reflexive if $\mathcal{T} = \text{Alg Lat } \mathcal{T}$, where Lat \mathcal{T} is the set of all closed subspaces invariant under operators from \mathcal{T} , and Alg Lat \mathcal{T} is the algebra of all operators in B(H) which leave every member of Lat \mathcal{T} invariant.) Let F_i and G_i , for $1 \le i < n$, be closed operators from H_{i+1} into H_i . By $D(F_i)$ and $D(G_i)$ we shall denote their domains in H_{i+1} . Let F_i^* and G_i^* be the adjoint operators from H_i into H_{i+1} and let $D(F_i^*)$ and $D(G_i^*)$ be their domains in H_i . Set $D_1 = H_1$, $D_n^* = H_n$ (if $n < \infty$)

$$D_{i+1} = D(F_i) \cap D(G_i)$$
 and $D_i^* = D(F_i^*) \cap D(G_i^*)$

for $1 \le i < n$. Then $D_i \subseteq H_i$ and $D_i^* \subseteq H_i$.

Let us impose some restrictions on the operators $\{F_i\}$ and $\{G_i\}$.

 (R_1) D_i and D_i^* are dense in H_i for all i.

 (R_2) $G_i \neq 0$ for all i.

By \mathcal{U} we shall denote the set of all sequences $T = \{T_i\}_{i=1}^n$ such that

$$(A_1)$$
 $T_i \in \mathscr{T}_i$, $T_{i+1}D(G_i) \subseteq D(G_i)$ and $T_{i+1}D(F_i) \subseteq D(F_i)$;

 $(\mathbf{A}_2) T_i G_i |_{D(G_i)} = G_i T_{i+1} |_{D(G_i)};$

(A₃) the operators $(F_iT_{i+1} - T_iF_i)|_{D(F_i)}$ extend to bounded operators T_{F_i} from H_{i+1} into H_i ;

 $(A_4)\sup ||T_i|| < \infty \text{ and } \sup ||T_E|| < \infty.$

From (R_1) it follows that for every i there only exists one bounded operator T_{F_i} which extends $(F_iT_{i+1} - T_iF_i)|_{D(F_i)}$. For every i let \mathscr{U}_i be a subalgebra of \mathscr{T}_i such that an operator B belongs to \mathscr{U}_i if and only if there exists a sequence $\{T_k\} \in \mathscr{U}$ for which $B = T_i$.

Let \mathscr{H} be the direct sum of all H_i . For every sequence $T = \{T_i\}$ from \mathscr{U} let $A^T = (A_{ij})$ be the operator on \mathscr{H} such that

(1)
$$A_{ii} = T_i$$
, $A_{ii+1} = T_{F_i}$ and all other $A_{ij} = 0$.

By (A_4) , A^T is bounded. Put

$$\mathcal{U}(\mathcal{H}) = \{A^T : T \in \mathcal{U}\};$$

$$I(\mathcal{H}) = \{A = (A_{ij}) \in B(\mathcal{H}) : A_{ij} = 0 \text{ if } i \ge j - 1\}.$$

By \mathscr{A} we shall denote the set of operators on \mathscr{H} generated by all sums of operators from $\mathscr{U}(\mathscr{H})$ and from $I(\mathscr{H})$.

For example, if n = 2, then F and G are closed operators from H_2 into H_1 , $\mathcal{H} = H_1 \oplus H_2$, \mathcal{F}_i , for i = 1, 2, are reflexive subalgebras of $B(H_i)$, $I(\mathcal{H}) = \{0\}$ and

$$\mathscr{A} = \mathscr{U}(\mathscr{H}) = \left\{ A = \begin{pmatrix} T_1 & T_F \\ 0 & T_2 \end{pmatrix} \in B(\mathscr{H}) \colon (1) \ T_i \in \mathscr{T}_i, T_2D(G) \subseteq D(G) \right\}$$

and
$$T_2D(F) \subseteq D(F)$$
; (2) $T_1G|_{D(G)} = GT_2|_{D(G)}$;

(3)
$$T_F|_{D(F)} = (FT_2 - T_1F)|_{D(F)}$$

Let \mathscr{A} be a subalgebra of B(H). Then

Ad
$$\mathscr{A} = \{ B \in B(H) : [B, A] = BA - AB \in \mathscr{A} \text{ for all } A \in \mathscr{A} \}.$$

Operators from Ad \mathcal{A} generate bounded derivations on \mathcal{A} . It can be easily checked that Ad \mathcal{A} is a Lie algebra and that \mathcal{A} and its commutant \mathcal{A}' are Lie ideals in Ad \mathcal{A} .

The rank one operator $z \mapsto (z, x)y$ will be denoted by $x \otimes y$.

2. Reflexivity of \mathscr{A} . In this section, in Theorem 2.4 we shall obtain some information about Lat \mathscr{A} and in Theorem 2.5 we shall state some sufficient conditions for an algebra \mathscr{A} to be reflexive.

Lemma 2.1. \mathscr{A} is an algebra and $I(\mathscr{H})$ is a weakly closed ideal in \mathscr{A} .

Proof. It is obvious that $I(\mathcal{H})$ is a weakly closed ideal in \mathcal{A} . Let $T = \{T_i\}$ and $T' = \{T_i'\}$ belong to \mathcal{U} . It is easy to see that their linear combinations also belong to \mathcal{U} . Therefore linear combinations of operators A^T and $A^{T'}$ belong to $\mathcal{U}(\mathcal{H})$. Let $B = \{B_i\}$ where $B_i = T_i T_i'$. Then B satisfies conditions (A_1) and (A_2) . Since the operators

$$(F_i B_{i+1} - B_i F_i) \mid_{D(F_i)}$$

$$= (F_i T_{i+1} - T_i F_i) T'_{i+1} \mid_{D(F_i)} + T_i (F_i T'_{i+1} - T'_i F_i) \mid_{D(F_i)}$$

extend to the bounded operators $T_{F_i}T'_{i+1} + T_iT'_{F_i}$, we get that B satisfies (A_3) and that

(2)
$$B_{F_i} = T_{F_i} T'_{i+1} + T_i T'_{F_i}.$$

From (2) it follows immediately that B satisfies (A_4) and hence $B \in \mathcal{U}$. From simple computations and from (1) and (2) it follows that

$$A^T A^{T'} \equiv A^B \mod I(\mathscr{H}).$$

Therefore \mathcal{A} is an algebra and the lemma is proved.

LEMMA 2.2. (i) The operators $F_i + tG_i$ and $F_i^* + \bar{t}G_i^*$ are closable for every complex t.

(ii) For every
$$\{T_i\} \in \mathcal{U}$$

 $(A_1^*) \ T_i^*D(F_i^*) \subseteq D(F_i^*) \ and \ T_i^*D(G_i^*) \subseteq D(G_i^*);$
 $(A_2^*) \ G_i^*T_i^* \mid_{D(G_i^*)} = T_{i+1}^*G_i^* \mid_{D(G_i^*)};$
 $(A_3^*) \ (T_{i+1}^*F_i^* - F_i^*T_i^*) \mid_{D(F_i^*)} = T_F^* \mid_{D(E_i^*)}.$

Proof. For every complex t the domain of the operator $F_i^* + \bar{t}G_i^*$ is D_i^* . Since D_i^* is dense in H_i , there exists the adjoint operator $(F_i^* + \bar{t}G_i^*)^*$. We also have that

$$(F_i^* + \bar{t}G_i^*)^*|_{D_{i+1}} = (F_i + tG_i)|_{D_{i+1}}.$$

Since $(F_i^* + \bar{t}G_i^*)^*$ is closed, the operator $F_i + tG_i$ is closable. Similarly we can prove that the operator $F_i^* + \bar{t}G_i^*$ is closable. Thus (i) is proved.

From (A_2) it follows that for every $\{T_k\} \in \mathcal{U}$, for every $y \in D(G_i)$ and for every $x \in D(G_i^*)$

(3)
$$(G_i y, T_i * x) = (T_i G_i y, x) = (G_i T_{i+1} y, x) = (y, T_{i+1} G_i * x).$$

Hence for every $x \in D(G_i^*)$

(4)
$$T_i^*x \in D(G_i^*)$$
 and $G_i^*T_i^*|_{D(G_i^*)} = T_{i+1}^*G_i^*|_{D(G_i^*)}$.

Thus (A_2^*) is proved.

From (A₃) it follows that for every $y \in D(F_i)$ and every $x \in D(F_i^*)$

(5)
$$(F_i y, T_i^* x) = (T_i F_i y, x)$$

= $((F_i T_{i+1} - T_{F_i}) y, x) = (y, (T_{i+1}^* F_i^* - T_{F_i}^*) x).$

Therefore for every $x \in D(F_i^*)$

(6)
$$T_i^*x \in D(F_i^*)$$
 and $T_{F_i}^*|_{D(F_i^*)} = (T_{i+1}^*F_i^* - F_i^*T_i^*)|_{D(F_i^*)}$

Thus (A_3^*) is proved. From (4) and (6) it follows that (A_1^*) holds which concludes the proof of the lemma.

DEFINITION. By S_t^i we shall denote the closure of the operator $F_i + tG_i$ which is defined on D_{i+1} and by R_t^i we shall denote the closure of the operator $F_i^* + \bar{t}G_i^*$ which is defined on D_i^* . By $D(S_t^i)$ and by $D(R_t^i)$ we shall denote their domains.

It is easy to see that $(R_t^i)^*|_{D_t+1} = F_i + tG_i$. Since $(R_t^i)^*$ is closed, we get that

$$S_t^i \subseteq (R_t^i)^*.$$

Since S_0^i is the closure of $F_i \mid_{D_{i+1}}$ and $(R_0^i)^* = (F_i^* \mid_{D_i^*})^*$, it follows that

$$S_0^i \subseteq F_i \subseteq (R_0^i)^*.$$

By \mathcal{H}_0 we shall denote the null subspace in \mathcal{H} . For every 0 < i < n let \mathcal{H}_i be the direct sum of H_1, \ldots, H_i . We shall consider \mathcal{H}_i as a subspace in \mathcal{H} . It is easy to see that $\mathcal{H}_i \in \text{Lat } \mathcal{A}$.

For every $K \in \operatorname{Lat} \mathscr{T}_i$ let \mathscr{K} be the direct sum of \mathscr{H}_{i-1} and K. Then \mathscr{K} can be considered as a subspace in \mathscr{H} , so that $\mathscr{K} \subseteq \mathscr{H}_i$ and $\mathscr{K} \in \operatorname{Lat} \mathscr{A}$.

Let S be a closed operator from H_{i+1} into H_i . Put

$$M_S^i = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in D(S) \text{ and } y = Sx \right\}.$$

Then M_S^i is a closed subspace in $H_i \oplus H_{i+1}$ which can be considered as a closed subspace in \mathscr{H} . Therefore M_S^i is a closed subspace in \mathscr{H} . By M_S^i we shall denote the direct sum of \mathscr{H}_{i-1} and M_S^i , and we shall consider M_S^i as a closed subspace in \mathscr{H} .

LEMMA 2.3. (i) Let S be a closed operator from H_{i+1} into H_i and let D be a linear manifold in D(S) such that

- 1) S is the closure of the oprator $S \mid_D$;
- 2) $TD \subseteq D$ for every $T \in \mathcal{U}_{i+1}$;
- 3) $T_{F_i}|_D = (ST_{i+1} T_iS)|_D$ for every $\{T_k\} \in \mathcal{U}$. Then $\mathcal{M}_S^i \in \text{Lat } \mathcal{A}$.
- (ii) Let S be a closed operator from H_i into H_{i+1} and let D be a linear manifold in D(S) such that
 - 1) D is dense in H_i ;
 - 2) S is the closure of the operator $S \mid_D$;
 - 3) $T^*D \subseteq D$ for every $T \in \mathcal{U}_i$.
- 4) $(T_{i+1}^*S ST_i^*)|_D = T_{F_i}^*|_D$ for every $\{T_k\} \in \mathcal{U}$. Then $\mathcal{M}_{S^*}^i \in \text{Lat } \mathcal{A}$.

Proof. If an operator A belongs to $I(\mathcal{H})$, then it is easy to see that $A\xi \in \mathcal{H}_{i-1}$ for every $\xi \in \mathcal{M}_{S}^{i}$.

Let $T = \{T_k\} \in \mathcal{U}$ and $A^T \in \mathcal{U}(\mathcal{H})$. Then $A^T \xi \in \mathcal{H}_{i-1}$ for every $\xi \in \mathcal{H}_{i-1}$. Suppose that $\xi = \binom{y}{y} \in M_S^i$. Then

$$A^T \xi \equiv \xi' \mod \mathcal{H}_{i-1}$$

where

$$\xi' = \begin{pmatrix} y' \\ x' \end{pmatrix} \in H_i \oplus H_{i+1}, \quad x' = T_{i+1}x \quad \text{and} \quad y' = T_i y + T_{F_i} x.$$

Let $x \in D$. Then, by 2), $x' \in D$. Since y = Sx, we get, by 3), that

$$y' = T_i Sx + (ST_{i+1} - T_i S)x = ST_{i+1}x.$$

Hence $\xi' \in M_S^i$. Thus, if $\xi = \binom{y}{x} \in M_{S'}^i$ and if $x \in D$, then $A^T \xi \in \mathcal{M}_S^i$. But, by 1), the elements $\xi = \binom{y}{x}$, where $x \in D$, are dense in M_S^i . Therefore $A^T \xi \in \mathcal{M}_S^i$ for every $\xi \in M_S^i$ which completes the proof of (i).

Now let S be a closed operator from H_i into H_{i+1} . We only need condition 3) for condition 4) to be defined correctly. By 1), S^* is a closed operator from H_{i+1} into H_i . Let $x \in D$ and $y \in D(S^*)$. Then for every $\{T_k\} \in \mathcal{U}$, by 4),

$$(T_{i+1}y, Sx) = (y, T_{i+1}^*Sx)$$

$$= (y, [ST_i^* + T_{F_i}^*]x) = ([T_iS^* + T_{F_i}]y, x).$$

By 2),

$$T_{i+1}y \in D(S^*)$$
 and $S^*T_{i+1}|_{D(S^*)} = (T_iS^* + T_E)|_{D(S^*)}$.

Applying (i) to S^* we obtain that $\mathcal{M}_{S^*}^i \in \text{Lat } \mathcal{A}$. The proof is complete.

THEOREM 2.4. Subspaces $\mathcal{M}_{S_i^i}^i$, $\mathcal{M}_{(R_i^i)^*}^i$ and $\mathcal{M}_{F_i}^i$ belong to Lat \mathscr{A} for $1 \leq i < n$ and for all complex t.

Proof. Put $D = D_{i+1}$. Then $D \subseteq D(S_t^i)$ and it follows from the definition of S_t^i that S_t^i is the closure of $S_t^i|_D$. It follows from (A_1) that $TD_{i+1} \subseteq D_{i+1}$ for every $T \in \mathcal{U}_{i+1}$. Finally, by (A_2) , and by (A_3) , we get

$$\left(S_t^i T_{i+1} - T_i S_t^i \right) |_{D_{i+1}} = \left(F_i T_{i+1} - T_i F_i + t \left(G_i T_{i+1} - T_i G_i \right) \right) |_{D_{i+1}}$$

$$= \left(F_i T_{i+1} - T_i F_i \right) |_{D_{i+1}} = T_{F_i} |_{D_{i+1}}.$$

Therefore, by Lemma 2.3, $\mathcal{M}_{S_i^i}^i \in \text{Lat } \mathcal{A}$.

or

Now put $D = D_i^*$. By the definition of R_i^i , we have that $D \subseteq D(R_i^i)$ and that the closure of $R_i^i|_D$ is R_i^i . By (R_1) , D is dense in H_i . It follows from Lemma 2.2 (A_1^*) that $T^*D \subseteq D$ for every $T \in \mathcal{U}_i$. Thus, conditions 1), 2) and 3) of Lemma 2.3 (ii) hold. By Lemma 2.2 (A_2) and (A_3) ,

$$\begin{aligned} \left(T_{i+1}^* R_t^i - R_t^i T_i^*\right)|_{D_i^*} \\ &= \left(T_{i+1}^* F_i^* - F_i^* T_i^* + \bar{t} \left(T_{i+1}^* G_i^* - G_i^* T_i^*\right)\right)|_{D_i^*} = T_F^*|_{D_i^*}. \end{aligned}$$

Therefore condition 4) of Lemma 2.3(ii) holds and $\mathcal{M}_{(R_i^i)^*}^i \in \text{Lat } \mathcal{A}$.

At last, if $S = F_i$ and $D = D(F_i)$, then it can be easily seen that conditions 2) and 3) of Lemma 2.3(i) follows from (A_1) and (A_3) . Therefore $\mathcal{M}_E^i \in \text{Lat } \mathcal{A}$ and this completes the proof of the theorem.

Now we shall prove the main result of the section.

THEOREM 2.5. If for every $i, 1 \le i < n$, either
(a) $\bigcap_{t \in \mathbb{C}} D(S_t^i) = D_{i+1}$ and the closure of $G_i|_{D_{i+1}}$ is G_i ,

(b) $\bigcap_{t \in \mathbb{C}} D(R_t^i) = D_i^*$ and the closure of $G_i^*|_{D_i^*}$ is G_i^* , then \mathscr{A} is reflexive.

Proof. Let $B = (B_{ij}) \in \text{Alg Lat } \mathcal{A}$. Since $\mathcal{H}_i \in \text{Lat } \mathcal{A}$, we obtain that $B_{ij} = 0$ if i > j. For every $K \in \text{Lat } \mathcal{F}_i$ the subspace $\mathcal{H} = \mathcal{H}_{i-1} \oplus K$ is contained in \mathcal{H}_i and belongs to $\text{Lat } \mathcal{A}$. Since all algebras \mathcal{F}_i are reflexive, we obtain that

$$(9) B_{ii} \in \mathscr{T}_i.$$

Now let

$$z = \begin{pmatrix} y \\ x \end{pmatrix} = \begin{pmatrix} F_i x \\ x \end{pmatrix} \in M_{F_i}^i$$

where $x \in D(F_i)$. Considering $M_{F_i}^i$ as a subspace in \mathscr{H} we obtain that $Bz \equiv z' \mod \mathscr{H}_{i-1}$ where

$$z' = \begin{pmatrix} y' \\ x' \end{pmatrix} \in H_i \oplus H_{i+1}, \qquad x' = B_{i+1i+1}x$$

and $y' = B_{ii}y + B_{ii+1}x$.

Since $M_{F_i}^i \subseteq \mathcal{M}_{F_i}^i$ and since, by Theorem 2.4, $\mathcal{M}_{F_i}^i \in \text{Lat } \mathcal{A}$, we have that $z' \in M_{F_i}^i$. Therefore

(10)
$$x' = B_{i+1i+1}x \in D(F_i),$$
$$y' = B_{ii}F_ix + B_{ii+1}x = F_ix' = F_iB_{i+1i+1}x.$$

Thus

(11)
$$B_{ii+1}|_{D(F_i)} = (F_i B_{i+1i+1} - B_{ii} F_i)|_{D(F_i)}.$$

Now let (a) hold for some i and let

$$z = \begin{pmatrix} S_t^i x \\ x \end{pmatrix} \in M_{S_t^i}^i \quad \text{where } x \in D(S_t^i).$$

Then repeating the argument above we obtain that

$$B_{i+1\,i+1}x\in D\big(S_t^i\big),$$

$$B_{ii}S_t^i x + B_{ii+1}x = S_t^i B_{i+1i+1}x.$$

If $x \in D_{i+1}$, then $x \in D(S_t^i)$ and, by (a),

$$B_{i+1,i+1}x \in \bigcap_{t \in \mathbb{C}} D(S_t^i) = D_{i+1}.$$

Therefore

$$B_{ii}(F_i + tG_i)x + B_{ii+1}x = (F_i + tG_i)B_{i+1i+1}x.$$

From this and from (11) we immediately obtain that

(12)
$$B_{ii}G_{i}|_{D_{i+1}} = G_{i}B_{i+1\,i+1}|_{D_{i+1}}.$$

Let $x \in D(G_i)$. Since, by (a), the closure of $G_i|_{D_{i+1}}$ is G_i , there exists a sequence $\{x_n\}$ such that $x_n \in D_{i+1}$, $\{x_n\}$ converges to x and $\{G_ix_n\}$ converges to G_i . Then, by (12),

$$B_{ii}G_ix = \lim B_{ii}G_ix_n = \lim G_iB_{i+1i+1}x_n.$$

Since the sequence $\{B_{i+1}, x_n\}$ converges to B_{i+1}, x and since G_i is closed, we obtain that

(13)
$$B_{i+1}x \in D(G_i) \text{ and } B_{i}G_ix = G_iB_{i+1}x.$$

Now let (b) hold for some i and let

$$z = \begin{pmatrix} \left(R_t^i \right)^* & x \\ x \end{pmatrix} \quad \text{where } x \in D(\left(R_t^i \right)^*).$$

Repeating the same argument as for F_i we obtain that

$$B_{i+1\,i+1}x\in D\big(\big(R_t^i\big)^*\big),$$

$$B_{ii}(R_t^i)^*x + B_{ii+1}x = (R_t^i)^*B_{i+1i+1}x.$$

Therefore for every $y \in D_i^*$

$$(B_{ii}^*y, (R_t^i)^*x) = (y, B_{ii}(R_t^i)^*x)$$

$$= (y, [-B_{ii+1} + (R_t^i)^*B_{i+1i+1}]x) = ([-B_{ii+1}^* + B_{i+1i+1}^*R_t^i]y, x)$$

$$= ([-B_{ii+1}^* + B_{i+1i+1}^*(F_i^* + \bar{t}G_i^*)]y, x).$$

Repeating the same argument as in Lemma 2.2 we obtain from (11) that

$$B_{ii}^*D(F_i^*)\subseteq D(F_i^*)$$

and that

$$|B_{i+1}^*|_{D(E^*)} = (B_{i+1}^* F_i^* - F_i^* B_{ii}^*)|_{D(E^*)}.$$

Taking this into account and since $D_i^* \subseteq D(F_i^*)$, we obtain

$$(B_{ii}^*y, (R_i^i)^*x) = ([F_i^*B_{ii}^* + \bar{t}B_{i+1i+1}^*G_i^*]y, x).$$

From this formula it follows that

$$B_{ii}^* y \in D(R_t^i)$$
 and $R_t^i B_{ii}^* y = (F_i^* B_{ii}^* + \bar{t} B_{i+1}^* G_i^*) y$.

Therefore, by (b), for every $y \in D_i^*$

$$B_{i}^* y \in \bigcap_{t \in \mathbb{C}} D(R_t^i) = D_t^*$$

and

$$(F_i^* + \bar{t}G_i^*)B_{ii}^*y = (F_i^*B_{ii}^* + \bar{t}B_{i+1i+1}^*G_i^*)y.$$

Thus

$$G_i^*B_{ii}^*|_{D_i^*} = B_{i+1}^*|_{i+1}G_i^*|_{D_i^*}.$$

Let $y \in D_i^*$ and $z \in D(G_i)$. Then

$$(G_i^*y, B_{i+1i+1}z) = (B_{i+1i+1}^*G_i^*y, z) = (G_i^*B_{i}^*y, z) = (y, B_{i}G_iz).$$

Since, by (b), the closure of $G_i^*|_{D_i^*}$ is G_i^* , we obtain from this formula that

(13')
$$B_{i+1,i+1}D(G_i) \subseteq D(G_i)$$
 and $B_{i,i}G_i|_{D(G_i)} = G_iB_{i+1,i+1}|_{D(G_i)}$.

Put $T_i = B_{II}$. It follows from (9), (10), (11), (13) and (13') that conditions (A₁), (A₂) and (A₃) hold for the sequence $T = \{T_i\}$ and that $B_{ii+1} = T_{F_i}$. Since B is bounded, T also satisfies condition (A₄). Therefore the sequence $T = \{T_i\}$ belongs to $\mathscr U$ and $B - A^T \in I(\mathscr H)$. Thus $B \in \mathscr A$ which concludes the proof of the theorem.

COROLLARY 2.6. If for every i at least one of the operators F_i or G_i is bounded, then \mathcal{A} is reflexive.

Proof. We obtain easily that $D_{i+1} = D(S_t^i)$ for every i and for $t \neq 0$. Therefore, by Theorem 2.5(a), \mathscr{A} is reflexive.

3. Structure of Lat \mathscr{A} . In Lemma 2.3 and Theorem 2.4 we obtained some information about the structure of Lat \mathscr{A} . But further investigation of its structure in the general case of arbitrary reflexive algebras $\{\mathscr{T}_i\}$ is very difficult. Therefore in this section we shall consider the simplest case when all $\mathscr{T}_i = B(H_i)$. In Lemma 3.1 we shall show that if all \mathscr{U}_i are weakly dense in $B(H_i)$, then the sufficient conditions of Lemma 2.3 for a subspace \mathscr{M} to belong to Lat \mathscr{A} are also necessary. Imposing some further restriction (R_3) on the operators $\{F_i\}$ and $\{G_i\}$ we shall obtain the main result of the section (Theorem 3.5) which describes the structure of Lat \mathscr{A} .

LEMMA 3.1. Let all $\mathcal{F}_i = B(H_i)$ and let all \mathcal{U}_i be weakly dense in $B(H_i)$. If $\mathcal{M} \in \text{Lat } \mathcal{A}$, then \mathcal{M} is either \mathcal{H} or one of the subspaces \mathcal{H}_i for $0 \le i < n$, or there exist an integer $1 \le i < n$ and a closed operator S from H_{i+1} into H_i such that

- (1) D(S) is dense in H_{i+1} ;
- (2) $TD(S) \subseteq D(S)$ for every $T \in \mathscr{U}_{i+1}$;
- (3) $T_{F_i}|_{D(S)} = (ST_{i+1} T_iS)|_{D(S)}$ for every sequence $\{T_K\} \in \mathcal{U}$; and that $\mathcal{M} = \mathcal{M}_S^i$.

Proof. Let $z \in \mathcal{M}$. If $z \in \mathcal{H}_{i+1}$ but $z \notin \mathcal{H}_i$, then $\mathcal{H}_{i-1} \subset \mathcal{M}$, since $I(\mathcal{H}) \subset \mathcal{A}$. Therefore if $n = \infty$ and if for every i there exists $z_i \in \mathcal{M}$ such that $z_i \in \mathcal{H}_{i+1}$ but $z_i \notin \mathcal{H}_i$, then $\mathcal{M} = \mathcal{H}$.

Suppose that $\mathcal{M} \neq \mathcal{H}$. Then there exists an integer i such that $\mathcal{M} \subseteq \mathcal{H}_{i+1}$ but $\mathcal{M} \subseteq \mathcal{H}_i$. (If $n < \infty$, then it is obvious. If $n = \infty$, then it follows from the argument above.) Hence $\mathcal{H}_{i-1} \subseteq \mathcal{M}$ and we get that $\mathcal{M} = \mathcal{H}_{i-1} \oplus \mathcal{M}$, where \mathcal{M} is a closed subspace in $\mathcal{H}_i \oplus \mathcal{H}_{i+1}$ which is considered as a subspace in \mathcal{H} .

Suppose that $\mathcal{M} \neq \mathcal{H}_{i+1}$. Let us show that $M \cap H_i = \{0\}$. Let $z \neq 0$ belong to $M \cap H_i$. Then for every $T = \{T_k\} \in \mathcal{U}$ we have that

$$A^T z \equiv T_i z \mod \mathcal{H}_{i-1} \in \mathcal{M}$$
.

Since $\mathscr{H}_{i-1} \subseteq \mathscr{M}$, we obtain that $T_iz \in \mathscr{M}$. Hence $Tz \in \mathscr{M}$ for every $T \in \mathscr{U}_i$. Since \mathscr{U}_i is weakly dense in $B(H_i)$, the set $\{Tz: T \in \mathscr{U}_i\}$ is dense in H_i . Therefore, since \mathscr{M} is closed, we obtain that $H_i \subseteq \mathscr{M}$. Hence $\mathscr{H}_i = \mathscr{H}_{i-1} \oplus H_i$ is contained in \mathscr{M} . Since $\mathscr{M} \neq \mathscr{H}_i$, there exists $x \in \mathscr{M}$ such that $x \in H_{i+1}$. Using that \mathscr{U}_{i+1} is weakly dense in $B(H_{i+1})$ and repeating the above argument we obtain that $H_{i+1} \subseteq \mathscr{M}$. Hence $\mathscr{M} = \mathscr{H}_{i+1}$ which contradicts the assumption that $\mathscr{M} \neq \mathscr{H}_{i+1}$. Thus $M \cap H_i = \{0\}$.

Since M is closed, there exists a closed operator S from H_{i+1} into H_i such that

$$M = M_S^i = \left\{ z = \begin{pmatrix} y \\ x \end{pmatrix} : x \in D(S) \subseteq H_{i+1} \text{ and } y = Sx \in H_i \right\}.$$

Therefore $\mathcal{M} = \mathcal{M}_{S}^{i}$.

Now for every $T = \{T_k\} \in \mathcal{U}$ and for every $z = \binom{y}{x} \in M_S^i$ we have that $A^T z \equiv z' \mod \mathcal{H}_{i-1}$, where

$$z' = \begin{pmatrix} y' \\ x' \end{pmatrix}$$
, $x' = T_{i+1}x$ and $y' = T_iy + T_{F_i}x$.

Since $\mathcal{M} \in \text{Lat } \mathcal{A}$ and since $\mathcal{H}_{i-1} \subset \mathcal{M}$, we have that $z' \in M_S^i$. Hence

(14)
$$T_{i+1}x \in D(S) \quad \text{and} \quad T_iSx + T_Ex = ST_{i+1}x$$

for every $x \in D(S)$. Thus conditions (2) and (3) of the lemma hold. From weak density of \mathscr{U}_{i+1} in $B(H_{i+1})$ and from (14) it follows that D(S) is dense in H_{i+1} . Hence condition (1) holds and the lemma is proved.

From this lemma and from Lemma 2.3 we obtain the following corollary.

COROLLARY 3.2. Let all $\mathcal{F}_i = B(H_i)$ and let all \mathcal{U}_i be weakly dense in $B(H_i)$. Then Lat \mathcal{A} consists of \mathcal{H} , of all subspaces \mathcal{H}_i for $0 \le i < n$, and of all subspaces \mathcal{M}_S^i for $1 \le i < n$, where S are closed operators from H_{i+1} into H_i which satisfy the conditions of Lemma 3.1.

Now let $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$ be sequences such that

- $(\mathbf{B}_1) \ y_i \in D_i \subseteq H_i, \qquad (\mathbf{B}_1^*) \ x_i \in D_i^* \subseteq H_i,$
- $(\mathbf{B}_2) \ y_i = G_i y_{i+1}, \qquad (\mathbf{B}_2^*) \ x_{i+1} = G_i^* x_i,$
- $(\mathbf{B}_3)\sup\|y_i\|<\infty,\sup\|F_iy_{i+1}\|<\infty;$
- $(\mathbf{B}_3^*)\sup||x_i||<\infty,\sup||F_i^*x_i||<\infty.$

By X we shall denote the set of sequences $\{x_i\}$ which satisfy conditions $(B_1^*)-(B_3^*)$, and by Y we shall denote the set of sequences $\{y_i\}$ which satisfy conditions $(B_1)-(B_3)$. It is obvious that X and Y are linear manifolds.

LEMMA 3.3. Let all $\mathcal{T}_i = B(H_i)$. If $\{x_i\} \in X$ and $\{y_i\} \in Y$, then the sequence of operators $\{x_i \otimes y_i\}$ belongs to \mathcal{U} .

Proof. Put
$$T_i = x_i \otimes y_i$$
. For every $x \in H_i$, by (B_1) , we have that $T_i x = (x, x_i) y_i \in D_i$.

Hence condition (A_1) holds. By (B_2) and by (B_2^*) , for every $x \in D(G_i)$

$$T_i G_i x = (G_i x, x_i) y_i = (x, G_i^* x_i) G_i y_{i+1}$$
$$= (x, x_{i+1}) G_i y_{i+1} = G_i T_{i+1} x.$$

Hence condition (A_2) holds. Next, for every $x \in D(F_i)$ we have that

$$(F_i T_{i+1} - T_i F_i) x = (x, x_{i+1}) F_i y_{i+1} - (F_i x, x_i) y_i$$

= $(x, x_{i+1}) F_i y_{i+1} - (x, F_i * x_i) y_i = T_F x$,

where the operator

(15)
$$T_E = x_{i+1} \otimes F_i y_{i+1} - F_i * x_i \otimes y_i$$

is bounded. Hence condition (A_3) holds. Finally, by (B_3) , (B_3^*) and (15),

$$\sup ||T_i|| = \sup ||x_i \otimes y_i|| \le \sup ||x_i|| \sup ||y_i|| < \infty$$

and

$$\begin{split} \sup & \|T_{F_i}\| = \sup \|x_{i+1} \otimes F_i y_{i+1} - F_i * x_i \otimes y_i\| \\ & \leq \sup \|x_{i+1}\| \sup \|F_i y_{i+1}\| + \sup \|y_i\| \sup \|F_i * x_i\| < \infty. \end{split}$$

Thus condition (A_4) holds and therefore the sequence $\{x_i \otimes y_i\}$ belongs to \mathcal{U} . The lemma is proved.

DEFINITION. For every k let $Y_k(X_k)$ be the set of elements in $D_k(D_k^*)$ such that $y \in Y_k(x \in X_k)$ if there exists a sequence $\{y_i\} \in Y(\{x_i\} \in X)$ for which $y = y_k$ $(x = x_k)$.

Since X and Y are linear manifolds, X_k and Y_k are also linear manifolds.

LEMMA 3.4. (i) If $\{x_i\} \in X$ and $\{y_i\} \in Y$ and if $\{T_i\} \in \mathcal{U}$, then $\{T_i * x_i\} \in X$ and $\{T_i y_i\} \in Y$.

(ii) If all \mathcal{U}_i are weakly dense in $B(H_i)$ and if $X \neq \{0\}$ and $Y \neq \{0\}$, then all X_i and Y_i are dense in H_i .

Proof. Let us prove that $\{T_i y_i\} \in Y$. Since $y_i \in D_i$, we have, by (A_1) , that $T_i y_i \in D_i$. Hence (B_1) holds. By (A_2) and by (B_2) ,

$$G_{i}(T_{i+1}y_{i+1}) = T_{i}(G_{i}y_{i+1}) = T_{i}y_{i}.$$

Thus (B_2) holds for $\{T_iy_i\}$. By (A_3) , by (A_4) and by (B_3) ,

$$\sup \|T_i y_i\| \le \sup \|T_i\| \sup \|y_i\| < \infty$$

138 E. V. KISSIN

and

$$\begin{split} \sup & \| F_i T_{i+1} y_{i+1} \| = \sup & \| \left(T_i F_i + T_{F_i} \right) y_{i+1} \| \\ & \leq \sup & \| T_i \| \sup \| F_i y_{i+1} \| + \sup \| T_F \| \sup \| y_{i+1} \| < \infty. \end{split}$$

Hence (B_3) holds for $\{T_iy_i\}$. Thus the sequence $\{T_iy_i\}$ satisfies conditions $(B_1)-(B_3)$ and therefore $\{T_iy_i\} \in Y$. In the same way, using conditions $(A_1^*)-(A_3^*)$ and $(B_1^*)-(B_3^*)$, we obtain that $\{T_ix_i\} \in X$, and (i) is proved.

Now suppose that $Y \neq \{0\}$. Then there exists a sequence $\{y_i\} \in Y$ and the smallest k such that $y_k \neq 0$. It follows from (B_2) that $y_i \neq 0$ for $i \geq k$. By (i), $\{T_i y_i\} \in Y$ for every $\{T_i\} \in \mathcal{U}$. Since \mathcal{U}_i are weakly dense in $B(H_i)$ and since $y_i \neq 0$ for $i \geq k$, the linear manifolds Y_i are dense in H_i for $i \geq k$. Suppose that 1 < k. Then $y_{k-1} = G_{k-1} y_k = 0$. Hence, by (A_2) ,

$$G_{k-1}T_k y_k = T_{k-1}G_{k-1}y_k = 0,$$

and therefore $T_k y_k \in \operatorname{Ker} G_{k-1}$ for every $\{T_i\} \in \mathscr{U}$. Since \mathscr{U}_k is weakly dense in $B(H_k)$, $\operatorname{Ker} G_{k-1}$ is dense in $B(H_k)$. Hence $G_{k-1} = 0$ which contradicts (R_2) . Therefore $y_{k-1} \neq 0$ which contradicts the assumption that 1 < k is the smallest number such that $y_k \neq 0$. Hence k = 1 and all Y_i are dense in H_i . In the same we obtain that if $X \neq \{0\}$, then all X_i are dense in H_i , and the lemma is proved.

Let us impose further restrictions on the operators $\{F_i\}$ and $\{G_i\}$. (\mathbb{R}_3) Let all X_i and Y_i are dense in H_i .

Since the operators S_t^i are closed, the operators $S_t^i|_{Y_{t+1}}$ are closable.

DEFINITION. By Q_t^i we shall denote the closed operator $(R_t^i|_{X_t})^*$ and by P_t^i we shall denote the closure of $S_t^i|_{Y_{t+1}}$.

Then $P_t^i \subseteq S_t^i$ and, since $R_t^i|_{X_i} \subseteq R_t^i$, we have that $(R_t^i)^* \subseteq Q_t^i$. Taking (7) into account we obtain that

$$(16) P_t^i \subseteq S_t^i \subseteq \left(R_t^i\right)^* \subseteq Q_t^i.$$

THEOREM 3.5. Let (R_3) hold. Then Lat \mathscr{A} consists of \mathscr{H} , of all subspaces \mathscr{H}_i for $0 \le i < n$, and of all subspaces \mathscr{M}_S^i for $1 \le i < n$, where S can be P_t^i , S_t^i , F_i , $(R_t^i)^*$, Q_t^i or any closed operator from H_{i+1} into H_i such that

- (1) $P_t^i \subseteq S \subseteq Q_t^i$ for some t;
- (2) $TD(S) \subseteq D(S)$ for every $T \in \mathcal{U}_{i+1}$.

Proof. It was already proved in Theorem 2.4 that subspaces $\mathcal{M}_{S_i^i}^i$, $\mathcal{M}_{(R_i^i)^*}^i$ and $\mathcal{M}_{F_i}^i$ belong to Lat \mathscr{A} . Repeating the same argument and using Lemma 2.3 we obtain that the subspaces $\mathcal{M}_{P_i^i}^i$ and $\mathcal{M}_{Q_i^i}^i$ also belong to Lat \mathscr{A} . Now let S be a closed operator which satisfies the conditions of the theorem. Since $Y_{i+1} \subseteq D(P_i^i) \subseteq D(S)$, condition (1) of Lemma 3.1 holds. Condition (2) of Lemma 3.1 follows from condition (2) of the theorem. Since $\mathcal{M}_{Q_i^i}^i$ belongs to Lat \mathscr{A} , Q_i^i satisfies condition (3) of Lemma 3.1. Therefore taking into account that $S = Q_i^i|_{D(S)}$, we obtain

$$(T_i S + T_{F_i})|_{D(S)} = (T_i Q_t^i + T_{F_i})|_{D(S)}$$
$$= Q_t^i T_{i+1}|_{D(S)} = S T_{i+1}|_{D(S)},$$

so that condition (3) of Lemma 3.1 holds. Therefore $\mathcal{M}_S^i \in \text{Lat } \mathcal{A}$.

Now let S be a closed operator from H_{i+1} into H_i which satisfies the conditions of Lemma 3.1 and let us prove that it satisfies the conditions of this theorem. It obviously satisfies condition (2) of the theorem.

Let $\{x_k\} \in X$ and $\{y_k\} \in Y$. Then, by Lemma 3.3, the operator $x_{i+1} \otimes y_{i+1}$ belongs to \mathcal{U}_{i+1} . It follows from condition (2) of Lemma 3.1 that for every $z \in D(S)$

$$(x_{i+1} \otimes y_{i+1})z = (z, x_{i+1})y_{i+1} \in D(S).$$

Since, by condition (1) of Lemma 3.1, D(S) is dense in H_{i+1} , we get that $Y_{i+1} \subseteq D(S)$. It follows from condition (3) of Lemma 3.1 and from (15) that for every $z \in D(S)$

$$(x_i \otimes y_i)Sz + (x_{i+1} \otimes F_i y_{i+1})z - (F_i * x_i \otimes y_i)z = S(x_{i+1} \otimes y_{i+1})z.$$

Hence

(17)
$$(Sz, x_i) y_i + (z, x_{i+1}) F_i y_{i+1} - (z, F_i * x_i) y_i = (z, x_{i+1}) S y_{i+1}$$

Let $z \in Y_{i+1}$. Then $(z, F_i * x_i) = (F_i z, x_i)$. Put $V = S - F_i$. We obtain from (17) that

(18)
$$(Vz, x_i) y_i = (z, x_{i+1}) V y_{i+1}$$

By (B_2) , $y_i = G_i y_{i+1}$. Since X_{i+1} is dense in H_{i+1} , we can choose X_{i+1} such that $(z, x_{i+1}) \neq 0$. Then it follows from (18) that for every $y \in Y_{i+1}$

$$Vy = tG_i y,$$

where $t = (Vz, x_i)/(z, x_{i+1})$. Therefore we obtain that

(19)
$$S|_{Y_{i+1}} = (F_i + tG_i)|_{Y_{i+1}} = S_t^i|_{Y_{i+1}}.$$

Thus $P_t^i \subseteq S$. Using (19) we obtain from (17) that for every $z \in D(S)$

$$(Sz, x_i) y_i - (z, F_i * x_i) y_i = (z, x_{i+1}) tG_i y_{i+1}.$$

By (B_2) , $y_i = G_i y_{i+1}$ and, by (B_2^*) , $x_{i+1} = G_i^* x_i$. Hence

$$(Sz, x_i) - (z, F_i * x_i) = t(z, G_i * x_i).$$

Therefore $(Sz, x_i) = (z, R_t^i x_i)$ which means that

$$S\subseteq \left(R_t^i|_{X_t}\right)^*=Q_t^i.$$

Thus $P_t^i \subseteq S \subseteq Q_t^i$ and S satisfies condition (1) of this theorem which completes the proof.

Now suppose that $n < \infty$, that all $H_i = H$, that all $G_i = I$ and that all $\mathcal{F}_i = B(H)$. Then

$$D_{i+1} = D(F_i), \qquad D_i^* = D(F_i^*),$$

all $Y_i = D = \bigcap_{i=1}^{n-1} D_{i+1}$ and all $X_i = D^* = \bigcap_{i=1}^{n-1} D_i^*$. If D and D^* are dense in H, then \mathscr{U} consists of all sequences $\{T_i\}_{i=1}^n$ such that $T_1 = \cdots = T_n = T$, where T belongs to

$$\mathbf{A} = \{ T \in B(H) : (a) \ TD_i \subseteq D_i ;$$

(b) the operators $(F_iT - TF_i)|_{D_{i+1}}$ extend to bounded operators T_{F_i} .

From Corollary 2.6 it follows that \mathscr{A} is reflexive. We also have that the operators P_t^i are the closures of the operators $(F_i + tI)_D = F_i|_D + tI$, that $S_t^i = F_i + tI$, that $R_t^i = F_i^* + tI$ and that

$$Q_t^i = ((F_i^* + \bar{t}I)|_{D^*})^* = (F_i^*|_{D^*})^* + tI.$$

Therefore $(R_t^i)^* = S_t^i$, $S_0^i = F_i$ and it follows from Theorem 3.5 that Lat \mathcal{A} consists of \mathcal{H}_i for i = 0, ..., n, and of all subspaces \mathcal{M}_S^i for i = 1, ..., n - 1, where S can be P_t^i , S_t^i , Q_t^i or any closed operator such that

- (1) $P_t^i \subset S \subset Q_t^i$ for some t;
- (2) $TD(S) \subseteq D(S)$ for every $T \in A$.

If the operators $\{F_i\}$ are such that for every i the closure of $F_i|_D$ is F_i and the closure of $F_i^*|_{D^*}$ is F_i^* , then

$$P_t^i = F_i + tI = S_t^i$$

and

$$Q_t^i = (F_i^* \mid_{D^*})^* + tI = (F_i^*)^* + tI = F_i + tI = S_t^i.$$

Therefore we obtain the following theorem which was proved in [3] (Theorem 4.4(ii)) (the theorem was erroneously stated without condition (b)).

THEOREM 3.6. If (a) D and D^* are dense in H; (b) for every i the closure of $F_i|_D$ is F_i and the closure of $F_i^*|_{D^*}$ is F_i^* , then Lat $\mathscr A$ consists of $\mathscr H_i$ for $i=0,\ldots,n$, and of all subspaces $\mathscr M_{S_i^i}^i$ for $i=1,\ldots,n-1$ and for $t\in\mathbb C$.

If the conditions of Theorem 3.6 do not hold, then the structure of Lat \mathcal{A} is more complicated, and even in comparatively simple cases it is difficult to describe it fully.

EXAMPLE. Let $F_1 \subset F_2 \subset \cdots \subset F_{n-1}$. Then $D = D(F_1)$ and $D^* = D(F_{n-1})$. Hence all $P_t^i = F_1 + tI$ and all

$$Q_t^i = (F_i^*|_{D^*})^* + tI = (F_{n-1}^*)^* + tI = F_{n-1} + tI.$$

Then for every 1 < k < n - 1 and for every $t \in \mathbb{C}$ we have that

$$F_1 + tI \subset F_k + tI \subset F_{n-1} + tI$$
.

By property (a) of A, $TD(F_k) \subseteq D(F_k)$ for every $T \in A$. Therefore Lat \mathscr{A} contains all subspaces \mathscr{H}_i for $i=0,\ldots,n$, and all subspaces \mathscr{M}_S^i for $i=1,\ldots,n-1$, where S can be any of the operators F_k+tI for $1 \le k \le n-1$ and for $t \in \mathbb{C}$. The following question arises: do other operators R exist, apart from F_k , $k=2,\ldots,n-2$, such that

- (1) $F_1 \subset R \subset F_{n-1}$;
- (2) $TD(R) \subseteq D(R)$ for every $T \in A$.

If such operators do not exist, then we have a full description of Lat \mathscr{A} . If they do exist, then each of them generates a set of subspaces \mathcal{M}_{R+tI}^i for $i=1,\ldots,n-1$ and for $t\in\mathbb{C}$, which belong to Lat \mathscr{A} .

Finally, we shall briefly consider two examples of algebras \mathscr{A} for n=2 and provide full descriptions of Lat \mathscr{A} and of Ad \mathscr{A} . The case when the operator G is the identity was investigated in [3]. In Theorem 4.3 it was shown that Ad $\mathscr{A} \neq \mathscr{A}$. In Example 2 a closed operator F was considered such that Ad $\mathscr{A} = \mathscr{A} + \{N\} + \{B\}$, where N and B do not belong to \mathscr{A} , so that dim(Ad \mathscr{A}/\mathscr{A}) = 2. It was also proved that $\mathscr{A}' = \{I\} + \{N\}$ so that B generates a non-inner derivation on \mathscr{A} . Now we shall consider an example of a reflexive algebra \mathscr{A} constructed from two closed operators F and G such that Ad $\mathscr{A} = \mathscr{A} + \{N\} + \{B\}$. But for this algebra $\mathscr{A}' = \{I\}$, so that all operators from Ad \mathscr{A} which do not belong to \mathscr{A} generate non-inner derivations on \mathscr{A} .

EXAMPLE 1. Let $H_1 = H_2 = H = K \oplus K$, where K is an infinite-dimensional Hilbert space and let $\mathcal{H} = H \oplus H$. Let $\{e_n\}_{n=1}^{\infty}$ be an orthogonal basis in K and let W be an unbounded operator on K such that

$$We_n = ne_n$$
.

For a complex a set

$$F = \begin{pmatrix} aW^2 & W^2 \\ 0 & aW \end{pmatrix}$$
 and $G = \begin{pmatrix} W^2 & 0 \\ 0 & W \end{pmatrix}$.

Then

$$D(F) = D(W^2) \oplus D(W^2), \qquad D(G) = D(W^2) \oplus D(W),$$
 $D_2 = D(F), \qquad D_1^* = D(G).$

Therefore restrictions (R_1) , (R_2) and (R_3) on operators F and G hold. Obviously G is the closure of $G|_{D_2}$ and F is the closure of $F|_{D_2}$. Also

$$P_{t} = S_{t} = F + tG = \begin{pmatrix} (a+t)W^{2} & W^{2} \\ 0 & (a+t)W \end{pmatrix} \text{ for } t \neq -a$$

and

$$S_{-a} = \begin{pmatrix} 0 & W^2 \\ 0 & 0 \end{pmatrix} = P_{-a}.$$

We also have that $D(S_t) = D_2$, if $t \neq -a$ and $D(S_{-a}) = K \oplus D(W^2)$. So $\bigcap_{t \in \mathbb{C}} D(S_t) = D_2$ and, by Theorem 2.5, \mathscr{A} is reflexive.

We have that

$$R_t = F^* + \bar{t}G^* = \begin{pmatrix} (\bar{a} + \bar{t})W^2 & 0\\ W^2 & (\bar{a} + \bar{t})W^2 \end{pmatrix} \text{ for } t \neq -a$$

and

$$R_{-a} = \begin{pmatrix} 0 & 0 \\ W^2 & 0 \end{pmatrix}.$$

It is easy to check that $S_t = R_t^* = Q_t$. Therefore, by Theorem 3.5, Lat \mathscr{A} consists of \mathscr{H}_0 , \mathscr{H}_1 , \mathscr{H} and of all M_S , for $t \in \mathbb{C}$.

Set

$$N = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ W^{-2} & 0 & 0 & -2I \\ 0 & W^{-1} & 0 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & -I & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Then $B, N \in B(\mathcal{H})$ and it is easy to check that [N, B] = NB - BN = N. It can be proven that $Ad \mathcal{A} = \mathcal{A} + \{N\} + \{B\}$ and that $\mathcal{A}' = \{I\}$, so that all linear combinations of the operators N and B generate non-inner derivations on \mathcal{A} . One can also show that $\mathcal{A} \in R_1$.

In the following example we shall consider a reflexive algebra \mathscr{A} constructed from two closed operators F and G such that $Ad \mathscr{A} = \mathscr{A}$, although the structure of Lat \mathscr{A} is the same as in Example 1.

Example 2. Let \mathcal{H} and W be the same as in Example 1. Set

$$F = \begin{pmatrix} W & 0 \\ 0 & W \end{pmatrix}$$
 and $G = \begin{pmatrix} W & 0 \\ 0 & W^{-1} \end{pmatrix}$.

Then

$$D(F) = D(W) \oplus D(W),$$
 $D(G) = D(W) \oplus K,$ $D_2 = D(F)$ and $D_1^* = D_2.$

The operators F and G satisfy restrictions (R_1) , (R_2) and (R_3) . Repeating the same argument as in Example 1 we obtain that $\mathscr A$ is reflexive, that Lat $\mathscr A$ consists of $\mathscr H_0$, $\mathscr H_1$, $\mathscr H$ and of all M_{S_t} , for $t \in \mathbb C$, and that G is the closure of $G|_{D_2}$ and F is the closure of $F|_{D_2}$. It can be proven that Ad $\mathscr A = \mathscr A$, so that all derivations on $\mathscr A$ implemented by bounded operators are inner.

REFERENCES

- [1] E. Christensen, Derivations of nest algebras, Math. Ann., 229 (1977), 155-166.
- [2] F. Gilfeather, A. Hopenwasser and D. R. Larson, Reflexive algebras with finite width lattices: tensor products, cohomology, compact perturbations, J. Funct. Anal., 55 (1984), 176-199.
- [3] E. V. Kissin, On some reflexive algebras of operators and the operator Lie algebras of their derivations, Proc. London Math. Soc., (3), 49 (1984), 1-35.
- [4] _____, Totally symmetric algebras and the similarity problem, (1985), preprint.
- [5] B. H. Wagner, Derivations of quasitriangular algebras, preprint.

Received March 21, 1984 and in revised form February 12, 1986.

THE POLYTECHNIC OF NORTH LONDON HOLLOWAY, LONDON N7 8DB, ENGLAND