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TRANSLATION TO AND FRO
OVER KAC-MOODY ALGEBRAS

WAYNE NEIDHARDT

Over a (not necessarily symmetrizable) Kac-Moody algebra, we de-
fine translation functors in both the dominant and the antidominant
directions, and prove an adjoint-like property relating the two trans-
lation functors. Using this property, we show that for any x and y
in the Weyl group, the numbers dim Ext"(M(x - 1), L(y - 1)) relating
Verma modules and irreducible modules do not depend on the choice
of dominant integral weight .. We then define operators of coher-
ent continuation and polynomials analogous to the Kazhdan-Lusztig
polynomials and study some of their properties.

1. Introduction. Translation functors over (not necessarily symme-
trizable) Kac-Moody algebras were introduced in [11], with certain
restrictions on which translations were allowed, using the idea of lo-
cal projective resolutions, also introduced in [11]. These translation
functors were a generalization of those introduced, in the case of a
finite dimensional algebra, by Jantzen in [6]. The main restriction we
placed on translations was that in order to translate to, say, the weight
A’ from the weight A”, we required that A’ — " be dominant integral,
since part of the definition involves taking the tensor product with the
irreducible module L(4' — 4”) of highest weight A’ — A".

In the present paper, we show how to translate back to A” from A'.
The main difficulty is that the irreducible module of extreme weight
A" — X' is a lowest weight module, so that in general when one tensors,
for example, a Verma module with this lowest weight module, the
result no longer has finite dimensional weight spaces, nor is the set
of weights bounded above. Thus, the usual techniques used in the
category @ or in similar categories are not sufficient to deal with this
problem. We therefore are led to introduce the notion of modules with
reverse Verma series, and, after proving some of their properties, deal
with the situation of a Verma module tensored with a lowest weight
module. Once this difficulty has been overcome, we are able to define
the translation functors from A’ to A” in the situation described above,
using local projective resolutions as before.
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After defining translation functors in both directions, we apply them
in certain situations to obtain instances of a translation principle,
which says roughly that “whatever happens in one Weyl group or-
bit happens in another, provided the two orbits have representatives
in the same facette.” In particular, we show for any n > 0 that
dim Ext"(M(x - A),L(y - 1)), where M(u) denotes the Verma mod-
ule of highest weight u, depends only on the elements x and y of the
Weyl group and on the facette of A, but not on the particular choice
of A within that facette. We also apply the functors to the situation of
translation from a chamber to a wall and back again, thus obtaining
the operators of coherent continuation. Finally, we apply the result
on Ext mentioned above to define polynomials P, , for each x and
y in the Weyl group. These are analogous to the Kazhdan-Lusztig
polynomials introduced in [8], except that we use a dominant integral
weight rather than an antidominant integral weight (so that in the fi-
nite dimensional case we have P, , = Pyy, yw,, Where wy is the longest
element of the Weyl group).

The paper is organized as follows. Section 2 gives the basic termi-
nology and notation associated with Kac-Moody algebras. In §3 we
recall the local projective resolutions introduced in [11], but in slightly
more generality. These resolutions allow us to do homological algebra
in certain categories of modules which do not have enough projectives,
and will be used to define translation functors and other functors. We
study reverse Verma series as well as Verma series in §4, and apply the
results of §§3 and 4 in §5 to define translation functors from one Weyl
group orbit to another. Section 6 is devoted to the construction of a
spectral sequence converging to the translation functors for the case
of translation in one direction. This spectral sequence is used in §7
to prove an adjoint-like property relating the two translation functors
which translate back and forth between two Weyl group orbits. This
adjoint-like property is the key to our result on Ext, mentioned above,
which is proved in §8. Operators of coherent continuation are defined
in §9, and their basic properties are derived. In §10 we introduce the
polynomials P, , and prove some of their properties.

2. Definitions and notation. We give in this section the basic defini-
tions and notation associated with Kac-Moody algebras and their rep-
resentations. We also introduce certain categories of modules which
will be used in the sequel, along with certain types of filtrations on
those modules.
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Let A = (A;;) be an [ x [ generalized Cartan matrix (GCM), so that
A;; = 2 for all i, A4;; is a nonpositive integer for i # j, and 4;; = 0 if
and only if 4;; = 0. Let K be a field of characteristic zero, and let g
be any Lie algebra over K satisfying

(1) g is generated by a finite dimensional abelian subalgebra b, called
the Cartan subalgebra, and elements ey, ..., ¢, fi,..., f], called simple
root vectors and negative simple root vectors, respectively.

(2) There are linearly independent sets {4;,...,#;} in h and {ay,...,
a;} in b*, the dual vector space of h, such that 4;; = a;(h;) for all i
and j. The «;’s are called the simple roots, and the 4;’s are called the
simple coroots.

(3) [e,-,fj] = 5,jh[ for all l,] = 1,...,[.

(4) [h,e;] = a;(h)e; and [h, f;] = —a;(h)f; for all A € b and all
i=1,...,1

(5) (ad e;)~u*(ej) = 0 = (ad f;) "4 +1(f;) for all i # j.

(6) There is an involutive antiautomorphism ¢: g — g such that
o(e;)= fiforalli=1,...,/,and a(h) = h for all h € }.

For any GCM 4, such an algebra g exists and is called a Kac-Moody
algebra defined by 4. These objects were introduced in [7 and 9].

Denote by nt (respectively, n~) the subalgebra of g generated by
{ey,...,e} (respectively, {f1,..., f1}), and set b = h @ n*, called the
Borel subalgebra of g. Foreachi=1,...,/,leta; = Kh;®Ke;®K f;. It
is easy to see from the relations that a; is a subalgebra of g isomorphic
to sl(2, K).

For any h-module M and any A € h*, let M; = {m € M|h-m =
A(h)m for all & € b}, called the A-weight space of M; if M; # 0
we call 1 a weight of M. In case M is an h-module satisfying M =
@D, cy- My, we call M a weight module, and we write I1(M) for the
set of weights of M. If in addition each AM; is finite dimensional, we
define the character of M to be ch M =} ,.(dim M, )e*, where the
e#’s are formal exponentials. Note that this discussion of weights and
weight modules applies as well to g-modules and b-modules, which
may be viewed as h-modules by restriction. In particular, for the
adjoint representation of g, we let A = {a € h*|g, # 0 and « # 0} and
call A the set of roots of g.

In the sequel, whenever M and N are g-modules which are weight
modules, we will write Hom (M, N) for the set of g-module maps from
M to N, and Ext(M, N) for the set of equivalence classes of extensions
of M by N in the category of weight modules.
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We define an ordering on h* by letting y < A if A —u = EL, kia;,
where k; € Z,, the set of nonnegative integers. We set At =
{a € Ala > 0}, called the set of positive roots, and A~ = —A* =
{a € Ala < 0}. Also, let P = {4 € h*|A(h;) € Z for all i}, called the set
of integral weights, and let P* = {1 € h*|A(h;) € Z, for all i}, called
the set of dominant integral weights.

For any A € h*, we denote by C(A) the full subcategory of g-modules
M such that M is a weight module with finite dimensional weight
spaces and such that IT1(M) C {u|u < 4}.

Suppose M is a g-module. If v € M, is a nonzero vector satisfying
nt-v =0, we call v a maximal vector. If in addition M = U(g)v,
where U(-) denotes the universal enveloping algebra functor, we call v
a highest weight vector and call M a highest weight module of weight
A. Every highest weight module is a weight module.

Let A € b*, and denote by K (1) the one-dimensional b-module whose
underlying vector space is K and whose g-module structure is given by
(h+x)-k =A(h)k forallh € h, x € nt, and k € K. The Verma module
of weight A is then the induced g-module M (1) = U(g) ®y) K(4).
It is well known that M(4) is the universal highest weight module
of weight A, and that it has a unique irreducible quotient, denoted
by L(A). Similarly, we may define lowest weight modules, and let
W () be the universal lowest weight module of weight A and I'(4) its
unique irreducible quotient. (These may be thought of as “upside-
down” versions of M(4) and L(A), and hence the choice of notation.)

For each i = 1,...,/, define the linear involution 7;: h* — h* by
ri(A) = A—A(h;)a; for all A € h*. The Weyl group W is then defined to
be the subgroup of GL(h*) generated by {r;,...,r;}. For any w € W,
we define the length of w, denoted /(w), to be the smallest n such
that w may be written in the form w =r; ...r; for some iy,...,i, €
{1,...,1}. Let p € b* be a fixed element such that p(4;) = 1 for all i,
and define the dot action of W on h* by w -1 = w(4 + p) — p for all
we W, Aeb*.

Let I1 = {ay,...,a;}, so that I1 is the set of simple roots, and define
Ar = WII, called the set of real roots, A} = Ag N A%, and Ay =
Agr NA~. For any a € A}, we define 7, € W by r, = wr;w™!, where
a = wa; with w € W. This can be shown to be independent of the
choices of w and «;.

We now define three types of filtrations of modules which will be
used in the sequel.
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DEerFINITION 2.1 ([4]). Let M be a weight module, all of whose
weight spaces are finite dimensional, and let £ € h*. By a local
composition series (LCS) for M at u, we mean a finite sequence
0=Myc M, Cc --- C M, = M of submodules of M such that
each factor F; = M;/M;_, satisfies either I1(F;) N {v|v > u} = & or
F; = L(u;) for some y; > u. We write (M : L(u)) for the number of i
such that y; = u. If (M: L(u)) # 0, we call L(u) a composition factor
of M.

REMARK. In [4, Proposition 4.2] it is shown that if }° . , dim M,
is finite, then M has an LCS at u. In particular, such series always
exist for modules which are objects in categories of the form C(4). It
is also shown in [4] that the number (M : L(u)) does not depend on
the choice of LCS.

DEFINITION 2.2. Let M be a weight module. By a Verma series
(VS) for M, we mean a sequence (possibly finite) 0 = My C M, C

. of submodules of M such that (i) M = |J;~oM;, (ii) each factor
F; = M;/M;_, = M(A;) for some 4; € b*, and (iii) for any u € b*,
{i]A; > u} is a finite set. In case M has such a VS and u € h*, we write
(M: M(u)) for the number of i such that 4; = 4.

REMARK. Condition (iii) could be replaced by the requirement that
all weight spaces of M be finite dimensional. We prefer the above
definition, however, because of its analogy with that of reverse Verma
series, given below, in which the weight spaces are almost never finite
dimensional. Also, the numbers (M : M(u)) can be shown to be inde-
pendent of the choice of VS, if one exists, by character considerations.

DEFINITION 2.3. Let M be a weight module. By a reverse Verma
series (RVS) for M, we mean a sequence (possibly finite) M = Mj D
M, > --- such that (i) ;5o M; = 0, (ii) each factor F; = M;_, /M; =
M(A;) for some A; € b*, (iii) for any u € b*, {i|A; < u} is a finite set,
and (iv) there exist vectors v; € M) such that v;+M; is a highest weight
vector for F; and such that M; = Zj>,- Un)v, foreachi=0,1,....

REMARK. In the case of a VS, any choice of weight vectors which
represent highest weight vectors of the factors satisfies the analogue of
condition (iv) in the definition of RVS. The difference in the behaviors
of direct and inverse limits is what forces us to specify this condition
in the case of an RVS.

Modules with RVS, as well as those with VS, will be studied in
depth in §4. Observe that a finite RVS is the same as a finite VS. In
the infinite case, however, they are quite different.
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3. Projectives and local projective resolutions. We recall the defini-
tion and basic properties of local projective resolutions, which were
introduced in [11], and prove some of their homological properties in
more generality than that of [11]. These are essentially a tool for doing
homological algebra in categories which do not have enough projec-
tives, specifically the categories C(A) defined in the previous section.
We will use them in defining translation functors and other functors.

Throughout this section, let A € h* be fixed. We begin with the basic
properties of the projectives in C(4) introduced in [13].

ProrosiTiON 3.1 [13, Propositions 4.5, 4.7, 4.8 and 5.3, Lemma
4.12, Corollary 4.13 and Theorem 6.2]. For each irreducible object
L(u) in C(A), there is a unique (up to isomorphism) finitely generated
indecomposable projective object I*(u) in C(A) which maps onto L(u).
Conversely, every finitely generated indecomposable projective object in
C(A) has a unique irreducible quotient, so that L(u) «— I*(u) gives
a one-to-one correspondence between the irreducible objects in C(A)
and the finitely generated indecomposable projective objects in C(A).
Furthermore, I*(u) has a finite V.S with M(u) as the top factor, and
(I*(u): M(v)) = (M(v): L(u)) for all u,v < A. Finally, for any M €
Ob C(A) we have (M : L(u)) = dim Hom(I*(p), M).

Since C(A) does not have enough projectives, projective resolutions
cannot in general be constructed. Thus we rely on the following con-
cept.

DEFINITION 3.2 ([11, Definition 3.6]). Let u € h* and M € Ob C(A).
A local projective resolution of M at u is a complex

Ny e Iy 7N

in C(A), where each P, is a finite direct sum of various I*(v) with
v > u, and such that for any y > u, the restriction

o (B = o (Pl = My =0

to the y-weight spaces is exact.

ProrosiTION 3.3 [11, Proposition 3.7]. For any u € %* and any
M € Ob C(A), there exists a local projective resolution of M at .

ProrosiTION 3.4 [11, Proposition 3.8]. Let M,N € ObC(A), and
let uy > u,. Suppose

(Py) : s P— 5 Php->M—-0
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is a local projective resolution of M at u,, and

(@) o Qe — Qo N0

is a local projective resolution of N at yi,. Then for any ¢ € Hom(M, N)
there is a morphism of complexes ¢: (P.) — (Q.) over ¢, and the mor-
phism ¢ is unique up to homotopy.

ProrosiTION 3.5 [11, Proposition 3.10]. Let u € b*, and suppose
0-MEMLM -0

is a sequence in C(A) whose restriction to the x-weight spaces is exact
for every x > u. Suppose also that

(P): --~—>P,2—»---—+P6—>M'—->O
and
(P")Z ...-;Plil__’__.__) 6’—>M”—-*O

are local projective resolutions of M' and M", respectively, at u. Then,
setting P, = P, ® P for each k, there exist maps P, — P_; (k =
1,2,...) and Py — M such that

(Py) : = P> P> M—-0

is a local projective resolution of M at u, and such that the canoni-
cal injections give a morphism of complexes (P.) — (P.) over ¢ and
the canonical projections give a morphism of complexes (P.) — (PV)
over y.

We now use these properties of local projective resolutions to define,
in somewhat more generality than that of [11], the concepts which may
be used in doing homological algebra in C(4).

DEerFINITION 3.6. Let C be an abelian category with direct limits,
and let F be an additive functor from the full subcategory of C(A)
whose objects are finite direct sums of various I*(v) to the category
C. For any u € h* and any ¢ = 0, 1,..., we define the gth u-local
left derived functor of F, denoted L, ,F, from C(A) to C as follows.
For any M € Ob C(4), we define (L, ,F)M to be the gth homology
H,(F P,) of the complex

(FP.): o= FP, — -+ > FPy — 0,
where
(Py) : o P> P> M-—0
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is a local projective resolution of M at u. Furthermore, if ¢: M — N
is a morphism in C(4), we define (L, ,F)¢ to be the map induced on
homology by F¢,, where ¢: (P.) — (Q.) is a morphism of projective
resolutions of M and N, respectively, at u, lying over ¢. Finally,
define the left locally derived functors L,F from C(4) to C by

(LeF)M =1im(Ly,F)M and (LF)$ = lim(Ly,F)p.
u U

REMARK. By Proposition 3.4, (L, ,F)M is well defined, taking ¢
to be the identity on M, and (L, ,F)¢ is well defined by the unique-
ness up to homotopy. We also obtain unique maps (L, , F)M —
(Lg,u,F)M whenever u; > u, by Proposition 3.4, so that the direct
limit in the above definition makes sense.

Using Proposition 3.5 and the exactness of direct limits, we easily
obtain the following.

THEOREM 3.7. Let C be an abelian category with direct limits and
let F be an additive functor from the full subcategory of C(1) whose
objects are finite direct sums of various I*(v) to the category C. Let

0O-M->M-M' -0

be an exact sequence in C(A). Then, for any u € b*, there is a long
exact sequence in homology

2 (Lq,ﬂF)M' = (LguF)M — (Lq,uF)M"
= (Lg—1yF)M' — -+ — (Lo, F)M" — 0,
and, passing to the direct limits, there is a long exact sequence
coo = (LgF)M' — (LyF)M — (LyF)M"
— (Lg1 F)YM' — -+« — (LoF)M" — 0.

In the remainder of this section, we construct some projective resolu-
tions of modules with finite VS.

DEFINITION 3.8. Let u < A. Then we define S*(u) to be the kernel
of any nonzero ¢ € Hom(I*(u), M (u)).

REMARK. Since dim Hom(I*(u), M(u)) = (M(n): L(u)) = 1, the
module S*(x) does not depend on the choice of nonzero map.
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PROPOSITION 3.9. Let u < A. Then S*(1) has a finite VS, each of
whose factors M (v) satisfies v > u. Furthermore, for any u < v <2,
we have

(S*(w): M(v)) = (I*(1): M(v)) = (M(v): L(w)).

Proof. By Proposition 3.1, we may take a finite VS 0 = M, C
My c - C M,_; ¢ M, = I*(u) for I*(n), with the top factor
M, /M,_, = M(u), since L(u) is the unique irreducible quotient of
I*(u). It then follows that S*(1) = M,_,, and the result is now clear,

since (I*(u): M(n)) = (M(u): L(w)) = 1.

DEeFINITION 3.10. Let I" be the directed graph whose set of vertices
is h*, with an edge of multiplicity (M (v): L(u)) from u to v whenever
u < v. Define the nonnegative integer g;(v, #) to be the number of
paths of length i in I" from x to v, for all u,v € h* and all i > 0, where
we take go(v, u) = d,,, (Kronecker symbol). More explicitly,

8gi(v, 1) = > (M(x:): L(Xi-1)) -~ (M(x1): L(x0))-

B=Yo<X1<-<)i=V

REMARK. By Proposition 3.9, g,(v,u) = (S*(v): M(u)) for any
u,v <A

ProrosITION 3.11. Let M € Ob C(A) have a finite VS. Then M has
a projective resolution

P B Ap B L

in C(A) such that each

=P [E(M: M) gn(v, u)] I'(v)

v<A | u<i

(that is, P, is a finite direct sum of various I*(v), and the number of
times I*(v) occurs as a summand is 2u<a(M: M(u))gn(v, 1)), and
such that each Imd, has a finite V'S with

(Imdy: M(v)) =Y (M: M(u))gn(v, 1) forallv <A
u<i

Proof. 1t suffices, by induction on 7, to show that there is a short

exact sequence
0—-S—-P-M-0
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such that P = @,;(M: M(v))I*(v), and such that S has a finite
VS with (S: M(v)) = ¥ ,,(M: M(u))g (v, ) for any v < A. Let
O0=MyCcM,C---CM,=Mbea VS for M, with each M;/M;_, =
M(u;). Now, from the short exact sequences for each u < 4

0 — S*(u) = I*(4) — M(u) — 0,

it follows by induction on the length k of the VS for M and the
Horseshoe Lemma that there is a short exact sequence

0-S—>P-M-=0

in which P = @f;l (W) = @, <;(M: M(v))I*(v), and in which S
has a filtration by submodules 0 = Sy ¢ S; C --- C S, = S with each
S;/S;_1 = S*(u;). But then, by Proposition 3.9, we see that S has a
finite VS, and for any v < A we have

k k

(S: M) = Y(Si/Si-1: M) = Y (SH(w): M(v))

i=1 i=1

gi(v, ) = ) (M: M(u)g (v, ),
1 U<

x|

i

which was to be shown.

These exact projective resolutions will be useful in our applications,
since if M has a finite VS with factors M (u,),..., M(u;) then a pro-
jective resolution given by the above proposition is in fact a local pro-
jective resolution of M at u for any u with u < y; foralli=1,...,k.
Thus, in the case of modules with finite VS, the need for passage to
the direct limit is eliminated in the computation of left locally derived
functors.

4. Verma series and reverse Verma series. In order to define transla-
tion functors from chambers to walls, which will be done in the next
section, we need to deal with certain weight modules with infinite
dimensional weight spaces and whose set of weights is not bounded
above, i.e. modules which are not in any category of the form C(4),
or any other category which behaves like what is usually called the
category @. The modules which occur may be dealt with by using the
idea of reverse Verma series, which were defined in Definition 2.3,
and which we study in this section, along with Verma series, defined
in Definition 2.2.

We first observe that, by property (iii) of Definition 2.3, one can find
a rearrangement /4y, 4, ... of the weights A,4,,... such that u; < u;
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implies i < j. To see this, for each n = 1,2,... let S, = {i|4; <
An}, so that §; ¢ §; € ... and U,oS» = {1,2,3,...}. Each S,
is finite by property (iii) of the definition, so that we may choose
such an arrangement for S, then append weights to obtain such an
arrangement for S, etc.

We now prove convenient criteria for determining whether a given
weight module has an RVS, or whether it has a VS.

PROPOSITION 4.1. Let M be a weight module. Then M has an RVS
if and only if M is a free U(n~)-module with a U(n™)-basis consisting
of weight vectors {vy,v;,...} of weights Ay, A,,..., respectively, such
that for any u € 4*, {i|A; < u} is a finite set.

Proof. If M has an RVS, then we obtain such a U(n™)-basis directly
from property (iv) of the definition.

Conversely, suppose such v; exist. As in the preceding discussion,
we let yy, ua,... be a rearrangement of 4;,4,,... such that y; < y;
implies i < j, and let wy, w,,... be the corresponding rearrangement
of vy,vs,.... Thus w; € M, foreachi=1,2,..., and for any u €
b*, {ilui < u} is a finite set. Set N; = 3 ;. U(n™)w;. Since M
is U(n™)-free with basis {v;,v,,...} = {wy,w,,...}, it is clear that
M = Ny D Ny D ... and that ;5o N; = 0. We now show that
each N; is a g-submodule of M. For this, it suffices to show that for
any j = 1,2,...,U(g)U(n")w; = U(g)w; C Y k»; U(n")wy. Since
U(g) = U(n™)U(b) by the PBW Theorem, it suffices to show that
U(b)w; C > 4>; U(n™)wy. But this follows from the ordering of the
weights of the weight vectors w; and the factthat M =}, U(n™)wy,
when we write U(b) = U(n*)U(h) by the PBW Theorem. It remains to
show that each N;_;/N; = M(u;). Observe that N;_;/N; is generated
by w; + N; and is U(n™)-free of rank one. By the ordering of the
weights U(n*)w; C N, so that w; + N; is a highest weight vector and
N;_1/N; is a highest weight module of weight u;. Since it is U(n™)-
free, we have N;_|/N; = M(u;).

As a corollary of the proof, we obtain the following.

COROLLARY 4.2. If M has an RV, then it has an RVS M = My D
M D --- where the order of the factors M;_|/M; = M(A;) satisfies
l,‘ < lj implies i< ]
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By an entirely analogous argument to that used in Proposition 4.1,
we may prove the following proposition and corollary regarding mod-
ules with VS.

PROPOSITION 4.3. Let M be a weight module. Then M has a VS if
and only if M is a free U(n™)-module with a U(n™)-basis consisting of
weight vectors {vi,v,,...} of weights Ay, A,,..., respectively, such that
for any u € b*, {i|A; > u} is a finite set.

COROLLARY 4.4. IfM hasa VS, thenithasaVSO0=Myc M, C ---
where the order of the factors M;/M,_; = M(A;) satisfies A; > A; implies
1<].

We now wish to prove certain properties regarding the ordering of
factors in an RVS. In particular, we wish to be able to order the factors
in such a way that all the Verma factors whose highest weights lie in
a certain set (which we will later take to be a Weyl group orbit or a
union of such orbits) may be assumed to occur as consecutive factors
in the RVS. The main results are Theorems 4.14 and 4.19. We begin
with some properties of Hom and Ext.

ProposITION 4.5 [10, Proposition 2.6]. Let u,v € h*. Then (M(v):
L(u)) # 0 if and only if Hom(M (u), M(v)) # 0.

PROPOSITION 4.6. Let A, u,v € b* such that u,v < A, and let n > 0.
If M is a highest weight module of weight v and Ext'é(l)(M (n), M) #
0, then there exist weights © = xn < Xn_1 < -+ < Yo < v such
that Hom(M (x;), M(xi—1)) # 0 for all i = 1,...,n and such that
Hom(M (x0), M(v)) # 0.

Proof. We use induction on n. For n = 0, if Hom(M(u), M) # 0
then L(u) is a composition factor of M, and hence (M (v): L(u)) #0
since M has highest weight v. But then, by Proposition 4.5, we have
Hom(M(u), M(v)) # 0, and we are done by taking yo = u.

For n > 0, use the short exact sequence

0 — S*(u) — I*(u) > M(u) — 0
and the projectivity of I*(u) to conclude that if Extf. (M(u), M)
is nonzero, then so is Ext”C&‘)(Sl(u),M ). But then, by Proposition

3.9, we have Ext"Cfl‘)(M(x),M) # 0 for some Verma factor M(x) in
the VS for S*(u), and this Verma factor satisfies both y > u and
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(M(x): L(u)) # 0. Thus by Proposition 4.5, Hom(M (u), M(x)) # 0,
so that we are done by applying the inductive hypothesis to M (y).

COROLLARY 4.7. Let u,v € b*, and let M be a highest weight module
of weight v. If Ext(M(u), M) # 0, then v > u, and Hom(M (u), M (v))
# 0.

Proof. If we have a nonsplit short exact sequence
0-M->N->Mu —0

in the category of weight modules, then we must have v > u, since
otherwise the universal property of M (u) would give a splitting map.
Thus, taking 4 = v, this is a nonsplit sequence in C(4), so that
Ext‘c( »(M(u), M) # 0. By the above proposition, we obtain a chain
of imbeddings M (u) = M(x;) C M(xo) € M(v).

LEMMA 4.8. Let M = My D M; D --- be an RVS for the weight
module M with factors M;_, /M; = M(4;) and weight vectors v; € M),
as in the definition. Suppose that for some n, Ext(M(1,), M(An41)) =
0. Then there is a submodule M, of M,_, such that M = My D
My D>---D>DM,_y DM, D> M, D - isalsoan RVS for M with
Mn—l/Mr,r = M(ln+l) and Mr,z/Mn+l = M(An)~

Proof. By hypothesis, the short exact sequence
0— Mn/Mn+1 - Mn—l/Mn+l - Mn—l/Mn -0

splits, so that there is a submodule M, of M,_, such that we have
an internal direct sum M,_/M,,, = M,/M,,, & M) /M,,, with
MM, = M,_ /M, = M(4,). From this it is clear that M,,_, /M, =
M, /My = M(A,4,). Fori #n, n+ 1, let w; = v;. Choose w,,; €
M;, such that w, | + M, is a highest weight vector for M, /M.,
and set w, = v,4;. Then the weight vectors wy, ws,..., Wy, Wiy, ..
satisfy the hypotheses of the definition for the submodule sequence
M=My>M D> ---D>M,; DM, DM, DO - tobean RVS
for M.

PROPOSITION 4.9. Let M = My D M; D --- be an RVS for M with
factors F; = M;_/M; = M(4;). Let S C h* be a set of weights such that
A; € S for all i, and suppose S = S, U S, is a disjoint union such that
Hom(M (u), M(v)) = 0 whenever u € S\ and v € S,. Further suppose
that {i|A; € S} is a finite set. Then M has a submodule N such that N
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has an RV'S whose factors are those F; with A; € S\ and such that M/N
has a finite RVS (or finite VS) whose factors are those F; with A; € S,.

Proof. Observe that Ext(M(u), M(v)) = 0 whenever 4 € S; and
v € S, by Corollary 4.7. Thus, we may apply the lemma a finite
number of times, switching the order of the factors, to obtain an RVS
M= My;>M >---> M, > for M, where for i = 1,...,n
we have M|  /M] = M(u;) with u; € S, and for i > n we have
M]_,/M] = M(u;) with u; € S, and where the sequence u;, i, ... is
a rearrangement of 1;,4,,.... Setting N = M gives the result.

ProPosITION 4.10. Let M = My D M; D --- and M' = M D
M) D --- each satisfy the hypotheses of Proposition 4.9 for the same
set of weights S = S{ US>, and let N C M and N' C M’ be as in the
conclusion of the proposition. If ¢ € Hom(M, M"), then ¢(N) C N', so
that ¢ induces maps ¢,: N — N' and ¢»: M/N — M'/N".

Proof. If this were not the case, then we would have a nonzero

composition of g-module maps
NE& M I MmN,

where 7 is the canonical epimorphism. Let N = Ny D N; D --- be
an RVS for N, with N,_|/N; = M(u;) for some u; € S; for each
i, and let M'/N' =V, D Vy D --- D V, = 0 be a finite RVS for
M'/N', with V;_/V; = M(v;) for some v; € S, for each j. Since
for each j, {ilu; < v;} is a finite set, there is some k such that 0 =
(M'/N"),,., = (M'/N")y,., = ---. Choosing weight vectors v; € N,
as in the definition of an RVS, since Ny = >, , U(n™)v; and 7 o
¢(v;) = 0 for all j > k, we see that m o ¢(N;) = 0. This implies that
Hom(N/Ny, M'/N') # 0. But each of the modules N/N, and M'/N’
has a finite RVS, so this implies that Hom(M (u;), M (v;)) # 0 for some
i and j. Since y; € S; and v; € S,, we have a contradiction to the
hypothesis on S; and S,. Thus ¢(N) C N'.

COROLLARY 4.11. Let M and S = S, U S, satisfy the hypotheses of
Proposition 4.9. Then the submodule N given in the conclusion of that
proposition is unique (that is, it does not depend on the choice of RVS
for M).

Proof. Apply Proposition 4.10 to the case where ¢: M — M is the
identity map.
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PROPOSITION 4.12. Let M = My D M; D --- and M = My > M| D
- be two RVS for M with M;_/M; = M(4;) and M]_, /M| = M(u;)
fori=1,2,---, andlet v € b*. Then |{i|A; = v}| = [{i|lu; = v}|.

Proof. Let S = {A;li > 1yu{uli > 1}, S; =Sn{x|x £ v}, and
S> =SN{x|x <v}. Observe that § =S, US, is a disjoint union and
Hom(M(u), M(v)) = 0 whenever 4 € S| and v € S,. Also, {i|4; € S,}
and {i|u; € S,} are finite sets, by the definition of RVS. Thus, we may
apply Proposition 4.9 to obtain submodules N and N’ of M such that
M/N (respectively, M/N') has a finite RVS whose factors are those
M (4;) (respectively, M(u;)) such that 4; € S, (respectively, u; € S3).
But by the uniqueness asserted in Corollary 4.11, N = N’, so that

I{ild = v} = (M/N: M(v)) = (M/N': M(v)) = [{ilu; = v}].

REMARK. In general, modules with RVS have infinite dimensional
weight spaces, so that the above proposition could not be proved by
character considerations, as is done in the case of VS. In fact, we have
used the result for modules with VS by reducing the RVS to a finite
RVS, which is a VS.

Proposition 4.12 allows us to make the following definition.

DeFINITION 4.13. If M = My D M; D --- is an RVS with fac-
tors M;_/M; = M(Ay) for i = 1,2,... and v € h*, then we define
(M: M(v)) = [{i|]A; = v}|.

THEOREM 4.14. Let S C b* be a set of weights, and suppose we are
given a finite disjoint union S = S\U- - -US), such that Hom(M (u), M (v))
= 0 whenever u € S; and v € S; with i < j. Then the following hold.

() If M = My D My D --- is an RVS for M with factors F; =
M;_/M; = M(A;) such that ; € S for all i, and if {i|A; € Si} is a
finite set for each k = 2,...,n, then there are unique submodules M =
Ny D N,—y D -+ D Ny = 0 such that each N, /[Ny_, fork = 2,...,n
has a finite RVS whose factors are those F; with A; € Sy, and such that
N, /Ny has an RVS whose factors are those F; with A; € S).

(i) [fM=N,DN,_;D---DNy=0and M'"=N, DN, _,D---D
N, = 0 both are filtrations by submodules satisfying the conclusion
of (i) above, then any ¢ € Hom(M,M') satisfies ¢(Ny) C N, for all
k =0,1,...,n, so that ¢ induces maps ¢y : Ni/Ny_; — N, /N, _, for
k=1,...,n.

Proof. This follows, by induction on #n, from Propositions 4.9 and
4.10 and Corollary 4.11, when we write S = (S, U---US,_1) US,.
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Using analogous arguments, similar results (without the finiteness
hypotheses) were established in [11]. We state them here for later use.

ProprosiITION 4.15 [11, Corollaries 4.4 and 4.6 and Proposition 4.5].
Let 0 =My C M, C--- beaVS for M with factors F, = M;/M;_| =
M(4;) for each i, and let S C bh* be a set of weights such that 1, € S
for all i. Suppose S =S, U---US, is a finite disjoint union such that
Hom(M(u), M(v)) = O whenever u € S; and v € S; with i < j. Then
there are unique submodules 0 = Ny C Ny C --- C N, = M such that
each Ny /Ny_, fork = 1,...,n has a VS whose factors are those F; with
A; € Sp.

Also, if 0 = My Cc M| C --- is a VS for M' satisfying the same hy-
potheses, and if 0 = Ny C N| C --- C N, = M’ is its filtration as stated
in the first paragraph, then any ¢ € Hom(M, M") satisfies (Ny) € N},
forallk =0,1,...,n, sothat ¢ induces maps ¢i: Ni/Nx_y — N /N, _,
fork=1,...,n.

We now turn to certain situations in which modules can be shown
to have RVS or VS.

PRroOPOSITION 4.16. Suppose that M has an RVS and that N is a
lowest weight module with lowest weight u. Then M ®x N has an RV'S,
and (M ®x N: M(v)) =35, (M: M(v — x))dim N, for any v € h™.

Proof. Choose a free U(n™)-basis {v;,vs,...} for M consisting of
weight vectors, as in Proposition 4.1. Taking a K-basis {w,,w;,...}
of weight vectors for N, we see that M ®k N is a free U(n™)-module
with basis {v; ® w;|i,j > 1}. Since N is a lowest weight module, it
is clear that the finiteness hypothesis of Proposition 4.1 is satisfied,
which implies that M ®x N has an RVS. By the proof of Proposition
4.1, (M ®k N: M(v)) is the number of v; ® w; which have weight v,
and this is clearly 3°,- ,(M: M(v — x)) dim N,.

REMARK. This shows that, in particular, M (1) ® I'(«) has an RVS
for any A, u € b*.

Entirely analogous arguments, using Proposition 4.3 in place of
Proposition 4.1, may be used to show the following result.

ProPOSITION 4.17. Suppose that M has a VS and that N is a highest
weight module with highest weight u. Then M ®x N has a VS, and

(Mg N: M(v)) = Exg,;(M3 M(v — x))dim N, for any v € b*.
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We close this section by investigating exactness properties of the
maps involved in the situation of Theorem 4.14 and Proposition 4.15.

LEMMA 4.18. Suppose that
0-MEMLEM -0

is a short exact sequence of g-modules with RV'S, each of which satisfies
the hypotheses of Proposition 4.9 together with the set of weights S =
SiUS,. Let N C M, NC M, and N' C M" be as stated in the
conclusion of Proposition 4.9. Then the sequence of induced maps given
by Proposition 4.10

0— M/N'S M/NYS M"/N" -0
is also exact.

Proof. We first show that the induced map w;: N — N" is an epi-
morphism. Let v{,v/,... be canonical generators for N” as in the def-
inition of RVS, of weights 4;,4,, ..., respectively, so that each 4; € §;.
Observe that since M/N has a finite RVS, for some n we must have
M; = N, for all i > n. But y is surjective, so this shows that for
all i > n, v} € w(M,) = wi(N,,). If we can show that v} € Imy,
for all i > 1, we will have proved our assertion regarding ;. Sup-
pose that this is not the case. Then by the preceding argument, we
see that there must be some v} & Im y; such that v}’ € Im y, for all
j > i. Nown* o C35. ,Un™)vj C Imyy, so that v/ is a max-
imal vector in N”/Im y; of weight 4;. Thus L(4;) is a composition
factor of N”/Im y,, and hence L(4;) is also a composition factor of
M" /Im y;. But we have an epimorphism M /N — M"/Im y, induced
by vy, so this implies that (M/N: L(4;)) # 0. Since M/N has a finite
RVS whose factors are of the form M (u) with x4 € S, we have that
(M(u): L(4;)) # 0forsome u € S,, and hence Hom(M (4;), M(u)) # 0
by Proposition 4.5. This contradicts the hypothesis on .S, and S5, since
A; €8S and y € S,. Thus y, is an epimorphism.

Now y,0¢, = 0, since it is induced by ywo¢, so that Im ¢, C Ker y».
Also y, is surjective, since it is induced by . Suppose x+ N € Ker y».
Then yr(x + N) = y(x) + N" = N", so we have y(x) € N'. By
the above paragraph, there exists y € N with y(x) = yw(y). Thus
x —y € Kery = Im ¢, and there is some z € M’ with ¢(z) = x — y.
But then ¢5(z + N') = ¢(z) + N = x —y + N = x + N. Therefore
Ker yp, = Im ¢5.
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It remains to show that Ker ¢, = 0. By what we have already shown,
we have ch(M/N) = ch(M'/N') + ch(M"/N") + ch(Ker ¢;). On the
other hand, each of M/N, M'/N’, and M"”/N" has a finite RVS and
for any v € 5,

(M/N:M@))=(M: Mw))=(M": Mw))+(M": Mv))
= (M'/N'": M(v)) + (M"/N": M(v)),
and hence ch(M/N) = ch(M'/N’)+ch(M"/N"). Thus ch(Ker¢;) =0,
which implies Ker ¢, = 0.

THEOREM 4.19. Let
0o-ME2MEL M -0

be an exact sequence of g-modules, each of which satisfies the hypotheses
of Theorem 4.14 together with the set of weights S = S, U---US),. Let
M =NyDN)_D>---DNy=0,let M=N,D>N,_;D---DNy=0,
and let M" = N,/ D N)_| D --- D Ny = 0 be the filtrations given by the
conclusion of Theorem 4.14. Then for each k = 2,...,n the induced
sequence

0— Ny /Np_y % Ni/Ni—y & N//N/_,—0
is exact.

Proof. Writing S = S; U(S, U---US,), the lemma reduces us to
the case of finite VS, which was proved in [11, Theorem 4.8] with
somewhat weaker hypotheses.

For completeness, we include the following result on modules with
VS, which is the analogue of Theorem 4.19.

ProrosITION 4.20 [11, Theorem 4.8]. Let
0—-ME2MLM -0

be an exact sequence of g-modules, each of which satisfies the hypothesis
of Proposition 4.15 together with the set of weights S = S;U---US,.
LetO0=NycCc---CNy,=M,1let0=NyC---C Ny, =M, and let
0= Ny C---CNj =M" be the filtrations given by the conclusion of
Proposition 4.15. Then for each k = 1,...,n the induced sequence

o K
0— Ni/Ni_y & N[Ny &5 NYN{_, = 0

is exact.
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5. W-orbits and translation functors. We now apply the results of
the previous section on VS and RVS to define translation functors.
The basic idea is to “translate” Verma modules from one Weyl group
orbit in h* (under the dot action of W) to another orbit. When we
observe that certain unions of Weyl group orbits satisfy the hypotheses
of the results of §4, those results may be applied to modules with VS
or with RVS in this situation. Since the projectives have finite VS
(or RVS), we may then apply the results of §3 to define translation
functors for modules which do not have VS or RVS.

Throughout this section, fix A/,A” € h* suchthat '+p e P, V" +p €
P+, and A’ — A" € P*. Thus, with respect to the dot action of W, on
b*, both A’ and A" are in the closure of the dominant chamber, and
A" lies in the closure of the facette containing A’. We will translate
back and forth between the orbits W -4’ and W - A" using the modules
L(A' — A") and T'(A” — A’). Note that since A’ — 1" € P* we have that
both L(A' — 1") and I'(A” — A’) are integrable modules (that is, they
are direct sums of finite dimensional a;-modules for any i = 1,...,1),
so that an easy application of the representation theory of sl(2, K)
and induction on /(w) gives dim L(A' — "), = dim L(4' — "), and
dimI'(A” — A'), = dimI'(A" — 1), for all w € W and all u € b*.

We further assume that the stabilizer W), of A’ in W under the dot
action has finite index in W), (cf. Remark after Corollary 5.10).

PrOPOSITION 5.1 [11, Lemma 5.5]. Let v € b* such thatv +p € PT,
and set S| = {u € h*|w - u £ v for some w € W}, S, = W -v, and
Sy={uepw- -u<v foralwe W} Then Hom(M (1), M(u)) =0
whenever A€ S; and u € S; with i < j.

In light of this proposition, we may use our results on VS and RVS
to make the following definition.

DEFINITION 5.2. Let v € b* such that v + p € P*, and let Sy, S,,
and S be as specified in Proposition 5.1. If M has an RVS satisfying
the hypotheses of Theorem 4.14, together with the disjoint union S; U
S, US3, and if M = N3 D N, O Ny D Ny = 0 is the filtration of
submodules given by Theorem 4.15, then we denote the subquotient
N, /N, by M), so that M*) has a finite VS all of whose factors are
of the form M(w - v) for some w € W. Furthermore, if M’ = N3 D
N; D N{ D Ny = 0 is another such module with filtration, and if ¢ €
Hom(M, M’), then we denote the induced map ¢,: N>/N; — N;/Nj
by ¢W): M¥) — M), ,
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We define modules M) and maps ¢(*) in an analogous manner for
modules with VS, using Proposition 4.15 in place of Theorem 4.14.

REMARK. Although we use the same notation in both cases, this
should not lead to any confusion, since it will be clear from the context
whether we are dealing with modules with VS or RVS, and in either
case M) is simply the subquotient with those Verma factors of the
form M(w - v) which occur in the original VS or RVS, and ¢®) is
simply the map induced by ¢ on the subquotients.

We are now ready to define the translation functors between the
orbits W - A and W - }".

DEFINITION 5.3. Let F be the functor from the full subcategory
of C(A") whose objects are finite direct sums of various I*(v) to the
category of weight modules defined by FM = (M*") @ L(A' — A"))*)
and F¢ = (¢*") ® 1)), Then the gth translation functor Tf (q =
0,1,...) from C(A") to the category of weight modules is deﬁned by
Tf,', = L,F, that is, the gth left derived functor of F as defined in
Deﬁmtion 3.6.

Similarly, letting G be the functor from the full subcategory of C(1')
whose objects are finite direct sums of various I* (v) to the category
of weight modules defined by GM = (M*) @ I'(A" — ) #") and

G¢ = (¢ ® 1)*"), we define the gth translation functor T}, = L,G.
We set T}, = T}, and T} = T},

REMARK. For any particular 4 € b*, and any M € ObC(1"),
(LguF)M € ObC(A') for each ¢ = 0,1,..., but when taking the di-
rect limit to obtain Tf,', oM we might not remain in the category C(4’),
since the weight spaces may no longer be finite dimensional. A sim-
ilar remark applies to Tf,"'q. One of the results of this section will be
that Tf,',, Me Ob C(2'), so that since C(1') is a full subcategory of the
category of weight modules, this result will allow us to view Tf,,

a functor from C(1") to C(4'). We will also show that Tf , may be
viewed as a functor from C(4’) to C(4").

We begin our study of the properties of translation by showing that
modules with VS behave nicely under translation.

THEOREM 5.4. Let M € ObC (V) havea VS 0=MyC M, C ---, let
NeObC(A)havea VS 0= NyC N, C ---, and let $ € Hom(M, N).
(i) For each n =0,1,..., the map

(M ™) @k T(A" = X))*) — (Mysy ™) @ T2 = )%,
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which is induced by the inclusion M, C M, ,, is injective, and

T} M = lim(M, ") @, T(2" — 2'))*").
n
Also, if ¢ > 0 then Tf,"'qM =0.
(ii) For each n let k(n) be the smallest integer such that ¢(M,) C
Ni(n), and denote by ¢,: My, — Ny the restriction of ¢. Then we
have T} ¢ = Ii_n)qn(cﬁn(“ ® 1)),

Proof. Since
00— M, > M,y —» My /My, —0

is a short exact sequence in which all terms have a finite VS, by Propo-
sition 4.20 we obtain the exactness of

0— an) - n+1(i’) - (Mn+1/Mn)(Al) — 0,
and hence that of

0— M,*» @ T(A" = X) = My ) @x T(A" - 1)
— (M1 /M)*) @ T(X" = 2) — 0.

But, by Proposition 4.16, each of these modules has an RVS, so that
by Theorem 4.19 we obtain the injectivity of

(My*) @ D" = )" — (M ®) @ T(2" = 2))*".

Now, for any x4 € b*, there is an integer n(u) such that M/M,,
has no weights > u. Thus, if we apply Lemma 4.8 to the finite VS
(that is, finite RVS) of M), we may reorder the factors of M, if
necessary to obtain a ﬁnite VSO0=Myc M C---C M,’Z(ﬂ) = M,
such that for some k(u) € {0,1,...,n(u)} we have that each factor of
O=MycM;C---C M,’( is of the form M(y) for some y > u, and
each factor of M/Q( C M’ w1 C© 0 C M,’i(m is of the form M (y) for
some y # u. Let

. da Pq&,...i‘ﬁ,poﬁ = O
be a projective resolution of M, ,’C( 1) 38 in Proposition 3.11. Observe that
this is in fact a local projective resolution of M at u when we replace
do by the composition of dj with the inclusion A, ,’c( . & M. By Propo-
sition 3.11, all the images and kernels of the projective resolution have
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finite VS, so we may apply Theorem 4.19 twice and Proposition 4.16
once to obtain the exactness of

RN (Pq(l') Ok F(AII _ A,I))(}‘”) e (Po(i’) Rk F(A." _ A’I))(AI/)

= (M}y® @k TG = 1)) 0.
Now, letting G be the functor used in Definition 5.3 to define the
translation functors, we have that (L, ,G)M is the gth homology of

this complex with the last term deleted, so that by exactness we obtain
(Lg,uG)M =0 for ¢ > 0 and

(LouG)M = ( llc(u)(“ ®x T — 1:))(/1:,).
Passing to the direct limit gives T f,"qM =0 for ¢ > 0, and

”n . ll lll
Ti'M = lim(M;, ,*) @ T(X" — 4)*).
u
Observe that if u; > up, then k(uy) > k(u,), so that choosing ' €
h* low enough we have M,’((u) C My, C M,’((ﬂ,). By the injectivity
assertion which has already been proved, we have injections

(M} )") @k T(A" = A)NF) — (M) ") @ T(A" = 2)*")
— (M) @k T = 4))#.
Since the injectivity also implies that

. (i/) I, _ I (AI/)
lim(M,"’ @k I'(A" — 1))
n
is just the union of the images of the various (M,*) ®x (A" — 1'))*"),
we obtain

tim (M, *) @ T ~ 2)*) = lim(M,*) @ T@" — 2)™,
u n
and hence
T} M = lim(M,*) @k T(2" — )",
n
proving (i).

For statement (ii) on maps, we again begin by considering L, ,G
for some u € h*. Choosing m, n so that M/M,, and N/N, have no
weights > u, we may repeat the above argument to obtain projective
resolutions

"_"Pq_’"'_’PO—’M;{(u)—’O
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and
..._)Qq_)...._.)QO-—)NI/c,(”)——bo
which can be considered as local projective resolutions of M and N,
respectively, at u. Clearly ¢(M, ,’c( #)) C Ny by considering the highest
weight vectors of the Verma factors of M,’c( )" Thus, by the projectiv-
ity, we may obtain a ladder with exact rows
ce— Pq—>—> 0 — Mllc(u) —0
l l l ¢/\(u)

oo ) Qq_)...._.) QO_) N]’(’(”) _.)O’
so that applying the functor (—=#) @ I'(A" — A'))*") and passing to
homology we see that (Lo, G)¢ is just the map induced by ¢, on
the tensor product, that is (¢ (,)*) ®1)*"). Passage to the direct limit
gives the result.

For the translation functors T,f,',’ 4> We can prove a similar theorem,
using the same method. In this case, however, the statement is easier,
since when M € ObC(4") hasa VS 0 = M, ¢ M, C ---, so does
M®) @g L(A' — A"), and in fact this latter module is an object in
C(A"), hence so is (M*") @ L(A' — A"))*), and we easily have

(M*) @k L - 2)*) = lim(M, ") @k LI = A")),
n

so that we need not write the direct limit in the statement of the
theorem. We omit the proof, however, since it is essentially the same
as that of Theorem 5.4.
THEOREM 5.5. Let M € Ob C(A") have a VS. Then
THM = (M*) @k L(A - A")*)
and Tf ,M =0 for all ¢ > 0. Furthermore, if N € Ob C(2") also has
a VS and ¢ € Hom(M, N), then T} ¢ = (¢*") @ 1)*).
COROLLARY 5.6. Let M € Ob C(') (respectively, C(A")), and sup-
pose we have an exact resolution
--——>Mq—-+--~—->M0—->M-—-)O
in C(%) (respectively, C(4")) such that each My has a VS. Then T}, M
= Hy(T}"M.) (respectively, T}, M = Hy(T}, M.)).

Proof. This follows from Theorems 5.4 and 5.5, by the Acyclic
Model Theorem.
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Observe that for any x4 € h* and any M € Ob C(u), M has an exact
resolution
o Mg — o> My M —0

in C(u) in which each M, has a VS. To see this, simply tensor the
resolution of the trivial module
0

q
= U(g) ®u (o) (/\(B/b)) — - — U(g) ®u() (/\(9/5)) —-K—-0

with M over K. By [5, Proposition 1.7] we have that

q q
(U(B) ®u(b) (/\(B/b))) ®k = U(g) ®u() (/\(B/b) ®k M) ,

and thus an easy application of Proposition 4.3 shows that this module
has a VS. Thus, resolutions satisfying the hypotheses of Corollary 5.6
exist.

Using the existence of such a resolution for any M € Ob C(4”) and
Corollary 5.6 together with Theorem 5.5 gives the following result.

COROLLARY 5.7. For any M € ObC(A") and any q > 0, T; A,, M is
an object of C(X').

In view of this corollary, we will henceforth regard the functors Tf,',’ g
as functors from C(2”) to C(4'). Note that we cannot as yet make the
similar claim for Tf, & since in the complex used to compute this
functor in Corollary 5.6 we are dealing with a direct limit, which is
not necessarily an object of C(4").

We now turn to some explicit computations of the translations of
Verma modules.

PROPOSITION 5.8. Let W), (respectively, W,.) denote the stabilizer of
A" (respectively, A") in W under the dot action, and let X be a set of
left coset representatives for Wy, in Wy.. If w € W, then T l,,M (w - A")
has a VS with factors of the form M((wx) - A') with x € X, and each
of these factors occurs with multiplicity one.

Proof. Since
Mw - A" = M@w-A") and M(w -A")®k L(A —A")

has a VS, by Proposition 4.17, in which the multiplicity of any A/({)
is equal to dim L(A' — A")¢_y,.,», we have that for any M ({) occurring
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in the VS and any y € W, that y({ — w -1") < A’ — A", In particular, if
M (w'-2") occurs then w'~H(w'- A/ —w-A") = ' —(w'~lw)-A" < X' —A", so
that we must have (w'~!w) - A" = A", since A" + p € P*. By Theorem
5.5, T},M(w - ") has a VS, and all of its factors are of the form
M (w'-2") for some w' € W. But we have just observed that any such
factor satisfies w'~!w € W, so that w' = wx for some x € W,,.. That
is, for any factor M (w’-A") which occurs, we have w’-1' = (wx)- A’ for
some x € W,.. Note that to obtain all weights of the form (wx)-A’ with
x € W, we need only choose x € X, a set of left coset representatives
for W), in W), since if y € Wy, then (wxy) -4 = (wx)-A'. It remains
to prove the multiplicity assertion. We have that the multiplicity of
M((wx) - 2') is equal to

dim L(ﬂ,’ - A”)(wx).ll_w.lfl
= dim L(A' = A")wx)-1 (wx) -4 —w-17)
= dim L = A ymr o = dim L = )y = 1,

since x~! € Wj..
PROPOSITION 5.9. Let w € W. Then T} M(w - ') = M(w - A").

Proof. Note that M(w - )*) = M(w - A'). By Theorem 5.4,
we therefore need only consider the Verma factors of M(w - ') ®k
I'(A"” — A’) which are of the form M(w'-A") for some w’ € W. Now,
by Proposition 4.16 M(w - ') ® I'(A” — A') has an RVS in which the
multiplicity of any M({) is equal to dimI'(A” — A’);_,,.;-, so that for
any factor M({) which occurs in the RVS we have for all x € W
that x({ — w - A') > 4" > A'. In particular, if M(w'-A") occurs, then
wl(w' A —w-A) = (wlw')-A"=2' > A2/, so that (w~1w')-A" > A",
and, since A" + p € P*, (w™!w') - A" = A". This shows that for any
factor M(w' - 2") which occurs, we must have that w’ - 1" = w - 4", so
that M(w-A") is the only Verma factor which occurs in the finite RVS
for T4 M(w - X'). Its multiplicity is

dim F()." - l’)w.ll!__w.ll = dim F(l" - Al)w“(w-}."—w-,l')
= dlm F(].” - }.’)ll!_lr = 1,
and we have that 7' M(w - ¥') = M(w - 2").
REMARK. The assumption that ¥, have finite index in W, was not

needed for the preceding two propositions. Also, similar results were
obtained in [4] for the case of a symmetrizable GCM.
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COROLLARY 5.10. If M € Ob C (') has a VS, then T}" M is an object
of C(A") and it has a VS whose factors are all of the form M(w - A")
for some w € W.

Proof. Let 0 = My C M, C --- be a VS for M, so that by Theorem

5.4
T} M = lim(M, ") @ T(A" = ¥))*),
n

with the maps being injective. Identifying each (M, *)@x (A" —4"))*")
with its image T}, in the direct limit 7'M, we have that 0 = T, C
Ty C --- and T{;"M = {J,5o Tn. By Theorem 4.19 and Propositions
4.20 and 5.9, Tpp1 /Ty = M(w - A") if My, /M, = M(w - A'), and
Ty /Ty, =0if M, /M, = M(u) with u ¢ W - 2. Note also that
each M(w - A') can occur only finitely many times in the VS for M,
so that M(w - A”) occurs only finitely many times as a factor in the
filtration 0 = Ty C Ty C --- of T2"M. Eliminating repeated terms in
the filtration gives the result.

REMARK. It is in the above corollary where the assumption that W},
have finite index in W), is necessary. For example, with W infinite,
take ' =0and A" = —p, sothat W), = {1} and W, = W. If M =
Dyew M(w -0) € Ob C(0), then Ty "M =@,y M(w - (—p)) is not
an object of C(—p), since w - (—p) = —p for all w € W, and hence all
the weight spaces of T P M are infinite dimensional. Thus, Corollary
5.10 is not true without the finite index assumption, and we would
also not be able to obtain the next result without this assumption.

COROLLARY 5.11. For any M € ObC(¥) and any ¢ > 0, T}/ M
is an object of C(1"), and furthermore any composition factor L(u) of
Tj,"qM satisfies w - u < A" forallw € W.

Proof. Let
be an exact resolution of M in C(4’) such that each M, has a VS.
By Corollary 5.10, each T} M, is an object in C(A") with a VS whose
factors are of the form M (w-4") for some w € W. The first statement
now follows from Corollary 5.6, and since any composition factor of
T}, M is also a composition factor of T} M, the second statement
follows from Propositions 4.5 and 5.1.

In view of this corollary, we will henceforth view the translation
functors Tf,"'q as functors from C(') to C(A").
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6. A spectral sequence for Tf,', . We construct a spectral sequence

converging to Tf M, for any M € ObC(2"). Using this spectral
sequence, we show for the case g = 0 that the translation functor T° f
may be obtained as the composition of three functors. This fact will
be important in the next section, where it will be used to prove an
adjoint-like property of the translation functors.

DEFINITION 6.1. In any category of the form C(u) with x4 € b*, and
for any v € b* with v + p € P*, we define W) (¢ = 0,1,...) to be
the gth left derived functor of the functor M — M) from the full
subcategory of C(u) whose objects are finite direct sums of various
I*(x) to the category of weight modules.

ReMARK. The functors W) were introduced in [11], where it was
shown that they do not depend on the choice of u, provided M €
Ob C(u), so that we simply write WM without possibility of confu-
sion.

We now summarize several properties of the functors W, which
were proved in [11].

PRroPOSITION 6.2 [11, Theorem 6.2 and Lemma 6.6]. Let u € b*,
v+pePt,and M e ObC(u). If

—-)Mq-—>—>M0—-—)M—>O

is an exact resolution of M in C(u) where each M, has a VS, then
Wy M = Hq(M,f”)). In particular, if M has a VS, then WM = 0 for
q >0 and WY M = M"). Furthermore, WYL(x) =0if x ¢ W -v, and
Jor each w € W there is an epimorphism n: W} L(w -v) — L(w - v)
such that every composition factor L({) of Ker n satisfies x - { < v for
allxe W.

We now come to the main result of this section, which is essentially
a Grothendieck spectral sequence. In the proof, however, we use reso-
lutions by modules with VS, rather than proper projective resolutions
of complexes. With this change, our proof is an imitation of the proof
of [14, Theorem 11.38]. We use the notation and terminology of [14]
for filtrations on bicomplexes and the associated total complexes and
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spectral sequences. In particular, for any bicomplex

0 0
4y 1 di 1
di o
= My — My —
di 1 dgi 1
M du' M d(;l O
s 1 - o1 —

1 T

(that is, each row and each column a complex and dl’,’_ 1 qdl’,q+di’,’ q—1d1')'q
=0 for all p and g) we use the notations H,,,(M..) for Kerd,,/Imd, , ,

and Hy,(M..) for Kerdj,/Imd; .. Also the total complex Tot M is

the complex with nth term @, ,_, M;, and differential d' + d".

THEOREM 6.3. For any M € ObC(1"), there is a third quadrant

spectral sequence with EZ, = W} W} M @g L(A' — A")] = T} M.

Proof. Recall the standard resolution of the trivial module

n 0
= U(g) ®ue) \(8/6) = - = U(g) ®ur) \(8/b) = K — 0.

By tensoring this resolution over K with M and applying [5, Proposi-
tion 1.7], we obtain a resolution

- M- My—-M-—0
of M in C(A”) by modules with VS, and hence we obtain a complex
e Ml(l”) N Mo(l") =0

such that H,(M,*")) = W}'M for all n > 0, by Proposition 6.2. By
again tensoring with the standard resolution and applying [S, Propo-
sition 1.7], we obtain a bigraded module with commuting squares

0 0
T 1

= My — My — 0
T T

= My — My —0
7 7
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with My, = U(g) ®u ) [A?(a/b) ®k M,*")], so that each My, hasa VS
by Proposition 4.3, and using a sign change for the maps on alternate
rows, we obtain a bicomplex.

We note here that by the exactness of the functor

q
[U(g) ®ue) \(8/b) | ®k —

we obtain
Ker(Mp, — M,_14)
i
= U(g) ®uqs) /\(g/b) ®k Ker(M,*") — p_l(/l”))] ’

-

Im(Mp1,4 — Mpg)

[ q
= U(g) ®u) | \(8/b) ®k Im(M},1*) — Mp(ﬂ”))J ,

and
q
H,,(M..) = U(g) ®u(e) | \(8/b) ®x HP(M*M"))] .

Thus each of these modules has a VS by Proposition 4.3.
Now, let Ny, = (M, ®k L(A' — A"))*) for each p, g, and consider
the third quadrant bicomplex

0 0
1 1
~++= Nig = Nogo — 0
T T
= Ny = Noy —0

1 T

There are two natural filtrations of the total complex Tot N associated
to this bicomplex, the first obtained by restricting to certain columns
of the bicomplex, and the second by restricting to certain rows. The
associated spectral sequences have qu terms given by Hj,(Hp,(N.))
and H) (H,,(N..)), respectively, as shown in [14, Theorems 11.18 and
11.19]. This gives us two ways to compute H,(Tot N), and it is the
comparison of these two computations which will prove the theorem.

For the spectral sequence arising from the first filtration, since
HJ,(N..) is the gth homology of the complex

e — (Mpi Rk L(ﬂ.’ —)»”))ul) e — (MpO Rk L(l’ —/1"))()“,) -0,
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and since
‘___)Mpi®KL(AI_/-LII),_,....__> pO®KL(AI""A'”)—+O

is a resolution of M,*") @ L(A' — ") by modules each of which has a
VS by Proposition 4.17, we have that by Proposition 6.2 Hy,(N..) =
qu'[Mp('l”) ®k L(A' —A")]. But M,*) ®g L(A' — A") is itself a module
with VS, so Proposition 6.2 gives

[M,*") @k L& - A")]#¥), if g=0,

H” N** = .
pa(Nex) {0, if g > 0.

Thus, this spectral sequence collapses, and E2, = Hj(Hy(N..)) =
Hy(IM,*) @k L(X' — A")]*)) = T, ‘M by Corollary 5. 6 This shows
that H,(Tot N) = Tf M.

On the other hand, for the spectral sequence arising from the second
filtration, consider H},(N.) = Hy,([M.. ®k L(X — A")]*)). We have
already seen that the rows

grip = Mgp = Mgy — - — Moy — 0

of the bicomplex (M..) are complexes in which each term has a VS,
and in which moreover each kernel, image, and homology has a VS.
Thus, by Proposition 4.17, using the exactness of — ®x L(A' — 1"), the
same is true of the complex

oo Mgy ®x LA = A") = -+ — My, ® L(X' = A") = 0,

Using this fact together with the exactness of the functor V — V@)
on short exact sequences of modules with VS stated in Proposition
4.20, we obtain

Hy,(N..) = Hy([M.. @ L(X = 2")]*)) = [Hy,(M..) @k L' = 2")]*),
Since the sequence
s Hyp(Mo) — -+ — Hy,(My) — Hy(M,*)) — 0

is an exact resolution by modules with VS as noted in the remarks
following the definition of M,,, we see that

— H}(My) @k L(X = A") — -+ — H) (M) g L(A' — A")
— Hy(M.*y @k L(X' = A") = 0

is also an exact resolution by modules with VS by Proposition 4.17,
and by Proposition 6.2 we obtain

Hp (Hyp(Now)) = W) Hy(M.5) @k L - 2],
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But, again by Proposition 6.2, we obtain Hy(M,*")) = W} M. Thus,
for the spectral sequence arising from the second filtration we have
qu = Wp’V[Wq”'M ®k L(A' — A")]. Since qu ? Hpiq(TotN) =

T,

i prg™M> We have the result.

COROLLARY 6.4. For any M € Ob C(2"), we have
T, M = W W) M @k L(2' - A")].

7. An adjoint-like property of translation functors. We apply Corol-
lary 6.4 to show that for certain nice modules in C(4') and C(4"), we
have an adjoint-like property for the translation functors.

DEFINITION 7.1. Let v + p € P*. We denote by C (V)i the full
subcategory of C(v) whose objects are those modules M € Ob C(v)
such that every composition factor L(u) of M satisfies w - u < v for
alwe W.

REMARK. For the case v = 0, this simply says that all composition
factors are of the form L(u) with u in the Tits cone.

LEMMA 7.2. Let v + p € P*. For any M € Ob C(V)pice and any
q=0,1,..., we have W/M € ObC(V)yice. Furthermore, if ¢ > 0,
then every composition factor L(u) of Wy M satisfies w - u < v for all
wewWw.

Proof. Consider a resolution
"—>Mq—*"'—>Mo—'>M—>0

of M by modules with VS in C(v). By Proposition 6.2, we have that
WYM = Hy(M."™), so that any composition factor of W} M is also
a composition factor of M(g"), and the first statement follows from
Propositions 4.5 and 5.1. If g > 0, then it was shown in [11, Theorem
6.9] that W M has no composition factors of the form L(w -v), and
the result follows.

LEMMA 7.3. Let v + p € P*. Suppose that M is a module with an
RVS whose factors M (u) each satisfy w - u £ v for some w € W, and
suppose that N € Ob C(V)nice. Then there is a natural isomorphism
Hom(M, N) = Hom(M®), N).

Proof. Our hypothesis on the Verma factors in the RVS means that
the three step filtration of M in Definition 5.2 is really just a two
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step filtration, so that we have 0 = My C M|, C M, = M3 = M with
M,/M, = M®) and where M, has an RVS whose factors M (u) each
satisfy w - u £ v for some w € W. The short exact sequence

0—>M1——>M—>M(")—+O

gives a natural monomorphism ¢: Hom(M®*), N) — Hom(M, N),
where ¢ is just composition with the natural projection M — M®),
But consideration of the Verma factors of M; and the composition
factors of N, together with Propositions 4.5 and 5.1 shows that
Hom(M;, N) = 0. Thus ¢ is an isomorphism.

PROPOSITION 7.4. Let v + p € P*, let V' be a module with a finite
VS whose factors M (i) are each of the form M(w -v) for some w € W,
and let M € Ob C(V)pice. Observe that V = V") = WYV. Then the
natural map Hom(V, M) — Hom(V, Wy M) which sends ¢ to W§ ¢ is
an isomorphism.

Proof. First, consider the case where M = L(u) for some u with
w-u < v for all w € W. Then, by Proposition 6.2 we have that
Wy L(u) = 0, so that Exte,,(V, Wy'L(p)) = 0 for all n > 0. On the
other hand, by considering the Verma factors of ¥ and the hypothesis
on u, Propositions 4.5, 4.6, and 5.1 imply that Ext”c(,,)(V, L(u) =0
for all n > 0.

Next, consider the case where M = L(w - v) for some w € W.
By Proposition 6.2, we have an epimorphism #: Wy M — M such
that all composition factors of X = Kern are of the form L({) with
x-¢ < v forall we W. Thus, as in the above paragraph, we have
Extg (¥, X) = 0 for all n > 0, and from the short exact sequence

0= X—->W/MS5M—0

we obtain Extg, (V, M) = Exte,,(V, Wy M) for all n > 0, where the
isomorphism is induced by 7.

For the general case, let 0=l Cc Vi C---CV,=V bea VS forV,
with factors V;/V;_; = M(A;) for each i = 1,...,n, and choose u < 4,
foralli. Let0 =My C M, C--- C M}, = M be an LCS for M at u. We
use induction on k. For k = 1, we are done in case M is irreducible
by the above paragraphs, and if M, has no weights > u, then neither
does Wy M, by considering a resolution of M, by modules with VS as
in Proposition 6.2, so that by Corollary 4.7 we have Ext(V, Wy M) =
0 = Ext(V, M;) and Hom(V, Wy M;) = 0 = Hom(V, M;). For k > 1,
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from the short exact sequence
0—>M1 —*M—-’M/Ml—*o

we obtain the commutative diagram with top row exact

0 - Hom(V,M;) — Hom(V,M) — Hom(V,M/M,) — Ext(V,M))

(%) 1 l ! ! !
0 — Hom(V, WY M) — Hom(V, W& M) — Hom(V, W (M/M,)) — Ext(V, W& My).

By the case k = 1, the second and fifth vertical maps of (x) are
isomorphisms (which is why we did the extra work of studying Ext
as well as Hom in the case £ = 1), and by the inductive hypothesis,
the fourth vertical map of () is an isomorphism. Of course, the first
vertical map is also an isomorphism. Thus, if we can show that the
bottom row is exact, then the Five Lemma will show that the third
vertical map is an isomorphism, proving the result.

It remains to show that the bottom row of (x) is exact. From the long
exact homology sequence of Theorem 3.7, we have an exact sequence

WY (M[My) % W My — WM — WY (M/M) -0,

and hence a short exact sequence

0 — (Wy M,)/Im ¢ — W' M — W (M/My) — 0.
This gives the exactness of
(#+) 0 — Hom(V, (W{ M;)/Im¢) — Hom(V, W' M)

— Hom(V, Wy (M/M,)) — Ext(V, (Wy M,)/Im ¢).
Since M € ObC(V)yice, We have M/M; € Ob C(V)pice- Thus, by
Lemma 7.2, every composition factor L({) of W}/ (M/M,) satisfies
w - { < v for all w € W, and thus the same is true of Im ¢. But this
implies, by Propositions 4.5, 4.6, and 5.1, that Ext’c'-(,,)( V,Im¢) = 0 for
all n > 0, and hence Extg,(V, (Wy M1)/Im¢) = Exte,,(V, Wy M)

for all n > 0. Substituting this in (x*) gives exactness of the bottom
row of (x).

COROLLARY 7.5. Letv+p € P, let V be a module with RV S whose
factors M({) each satisfy w - { £ v for some w € W, and let M €
Ob C(V)pice- Then there is a natural isomorphism Hom(V ) M) =
Hom(V, Wy M).

Proof. By Proposition 7.4 and Lemma 7.3, we have natural isomor-
phisms Hom(V' ), M) = Hom(V' "), Wy M) = Hom(V, W} M).
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DEFINITION 7.6. For any g-module M, set M) = @ . M,. For
any weight module M, set *M = (M*)®). Thus *M = {¢ € M*|¢
vanishes on all but finitely many weight spaces of M}, where the action
on M* is given by (x - @)(m) = —¢(x-m) forall m € M, ¢ € M*, and
x € g. Note that *L(n) =I'(—#n) and *I'(n) = L(-n) for any n € bh*.

LEMMA 7.7. Let u,v € g*, set n = u— v, and suppose M € Ob C(u)
and N € Ob C(v). Then there is a natural isomorphism

Hom(M ®k I'(-7n), N) = Hom(M, L(n) ®k N).

Proof. This of course is well known for a finite dimensional module
in place of L(7), and the only work that needs to be done is to check
certain finiteness conditions in our present situation.

Let {n,n,,...} be a K-basis for N consisting of weight vectors. If
¢ € Hom(M ®k I'(—n), N) and m € M, then there exists y € h* with
m € 3 s>y M so that for any v € I(-n) we have
p(m @ v) € 3, 5r5y—yNe- Thus, using this m € M, we may de-
fine linear functionals y;,y;,... on I'(—n) by ¢(m ® v) = Y, 7:(v)n,,
and only finitely many of the y;’s are nonzero. Note also that each
y; vanishes on all but finitely many weight spaces of I'(—#). To see
this, if v € I'(—#)g then ¢(m @ v) € 35, Nryg and Ny, g # 0 implies
x+0 < {+0 < v, so that p(m®v) # 0implies —n < § < v—y. Thus we
have that each y; € *I'(—#). Identifying *I'(—#) with L(7), we may de-
fine ®(¢p)(m) =), vi®n; € L(n)®kx N. One may easily check that this
defines a linear map ®: Hom(M ®xI'(—n), N) - Hom(M, L(n)®k N).

Conversely, if ¥ € Hom(M, L(n) ® N) then for any m € M, we
may write y(m) = Y, y; ® n; and define ¥(y)(m @ v) = X, 7:(v)n;,
where we identify L(n) with *I'(—7), so that we obtain a linear map
¥Y: Hom(M, L(n) ®k N) —» Hom(M ®k I'(—n), N).

It is routine to verify that ® and ¥ are inverses of each other.

We now resume the notation of §§5 and 6 for the weights A’ and A”.

LEMMA 7.8. Let M € Ob C(A")pice- Then
M @k L(X' — ") € Ob C(A)nice-

Furthermore, if M has no composition factors of the form L(w - A")
with w € W, then M g L(A' — A") has no composition factors of the
Jorm L(w - ') withw € W.

Proof. Suppose L(y) is a composition factor of M Qg L(A' — 1").
Let0=Myc M, C---C M, =M be an LCS for M at y + 1" — 1.
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Then we have a filtration 0 = My ®x L(A' —1") C My g L(A' - ") C
o C My ®g L(A —2") = M @k L(A' — 2"), so that L(x) must be a
composition factor of some

(M; @k L(X' = 1"))/ (M- ®k L(A' = 1"))
= (M;/M;_,) @k L(A - A"),

and since this can only happen in case M;/M;_; has a weight > y +
A" — A, we see that M;/M;_; = L(u) for some u > y + A" — A'. Note
that, since M € Ob C(A")pice, We have w - u < A" for all w € W.

Now, since L(x) is a composition factor of L(u) ®x L(A' — "),
we see that L(y) is also a composition factor of M (u) @ L(A' — A").
But the latter module has a VS by Proposition 4.17, so that L(y) is
a composition factor of one of the Verma factors M ({) in the VS.
By Proposition 4.17, { is of the form u + v, where v is a weight of
L(A" — 2"). Thus, for all w € W, we have w - { = w - u + wr <
A"+ (A = A") = A, with equality holding only if w - u = A”. Applying
Propositions 4.5 and 5.1, we see that w - y < A’ for all w € W, and if
equality holds then w - u = A".

LEMMA 7.9. Let V € ObC(1') have an RVS whose factors M({)
each satisfy w - { £ A' for some w € W. Then each factor M({) in an
RVS for V @k T'(A" — A) (which exists by Proposition 4.16) must satisfy
w-& ¢ A for somew e W.

Proof. Each factor in an RVS for V ®k I'(A” — 1) is of the form
M (&) with & = { + v, where M({) is a Verma factor of V' and v is a
weight of I'(A” — '), by Proposition 4.16. Since wv > A" — A’ for all
w € W, choosing w so that w-{ £ A’ we obtain w-& = w-{+wv ¢ A".

We now have the tools necessary to prove the following adjointlike
property relating the two translation functors.

THEOREM 7.10. Let V € ObC(X) have a finite VS whose factors
M({) each satisfy w-{ £ A' for somew € W, and let M € Ob C(A")ice-
Then there is a natural isomorphism Hom(V, T{, M) = Hom(T}"V, M).

Proof. We have

Hom(V, T}, M) = Hom(V, Wi [Wg"' M ®k L(X' — A")])

by Corollary 6.4. Since W' M € Ob C(A")pice by Lemma 7.2, we have
W' M ®k L(A'—1") € Ob C(A')yice by Lemma 7.8. Thus, by Corollary
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7.5,

Hom(V, W W3 M @k L(X' — "))

= Hom(V®), W*) W' M @k L(A' — A")).
Also, by Lemma 7.7,
Hom(V®), W' M ®@k L(A' - A")
=~ Hom(V'") @ T(A" — X), W' M).
By Lemma 7.9, an RVS for V*) @ ¢ T'(1" — 1) satisfies the hypotheses
of Corollary 7.5, so that
Hom(V*) @ T'(A" — '), W§" M)
= Hom([V*) @k T(A" — N4, M).

But by Theorem 5.4, [V*) @ ['(A" — A)]#) = TH'V.

8. Translation and Ext. We now apply the adjoint-like property of
translation to compare Ext in various categories.

LEMMA 8.1. Let v+ p € P*. Suppose M € Ob C(v) has a VS whose
factors M(u) each satisfy w - u £ v for some w € W, and suppose N €
Ob C(V)nice- Then there is a natural isomorphism Extc,,(M,N) =

Ext¢(,,. (M®),N) for each n =0, 1,....

Proof. By Propositions 3.11, 4.5, and 5.1, M has a projective reso-
lution in C(v)

in which each P, satisfies the hypotheses of Lemma 7.3, and in
which all kernels and images also have finite VS satisfying the hy-
potheses of Lemma 7.3. Thus Hom(P,, V') is naturally isomorphic
to Hom(P,s”), V) for any V' € Ob C(¥)pice, Which shows that P,g”) is
projective in C(V)ce, and shows that the two complexes

0 - Hom(Py, N) - --- - Hom(P,,N) — ---

and
0 — Hom(P\"),N) - --- —» Hom(P{"),N) — - --

are isomorphic. Since

--——>P,$”)—>~-—>P(§”)—>M(”)—>O
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is an exact projective resolution of M) in C(v)pi. by Proposition
4.20, we obtain

Extl,, (M"),N) = H"(Hom(P"), N))
= H"(Hom(P,, N)) = Ext%,\(M, N).

LeEMMA 8.2. Let v < A satisfy w-v £ A for some w € W. Then
T} I*(v) is projective in C(v")pice.

Proof. The hypothesis on v also holds for any u such that M(u) isa
Verma factor of I* (v), by Propositions 3.1, 4.5, and 5.1. Thus, for any
M € Ob C(v")yice, We have a natural isomorphism Hom(A}, I* (v), M)
= Hom(I{ (v), T}, M) by Theorem 7.10. Now, if

O-M MM -0

is a short exact sequence in C(4"),;c., W€ have, by the right exactness
of T}, and the projectivity of I*(v), the exactness of

Hom(I* (v), T} M") — Hom(I* (v), T}, M)
— Hom(I* (v), T}, M") — 0
and hence, by the natural isomorphisms, the exactness of
Hom(T}' (v), M") — Hom(T}' 1" (v, M) — Hom(T} 1% (v), M") — 0.
This shows the right exactness of the functor Hom(T? I* (v), —) on

C(A")pice, 0 that T} I* (v) is projective in C(A")gce-

THEOREM 8.3. Suppose M € Ob C(1') has a finite VS whose factors
M(u) each satisfy w-u £ A' for somew € W, and let N € Ob C(A")pce-
Then

Extf (M, T{,N) = Ext{. (T§ M,N) foralln=0,1,....
Proof.. By Propositions 3.11, 4.5 and 5.1, M has an exact projective
resolution in C(4)
o P P> M-0

in which each P, is a finite direct sum of indecomposable projectives
satisfying the hypotheses of Lemma 8.2, and in which all kernels and
images have finite VS satisfying the same hypotheses as M. Thus,
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using the exactness asserted in Theorem 4.19 twice and the exactness
of — @k I'(A” — ') once, we see that

= T Py — =T Py T M —0
is exact. But by Lemma 8.2, this is in fact a projective resolution of

T} M in C(A")pice, SO that Extf-;., (T} M, N) is the nth cohomology
of the complex

0 — Hom(T Py, N) — --- — Hom(T% P, N) — -+ .
Since this complex is, by Theorem 7.10, isomorphic to
0— HOI’n(Po, T;‘,,,N) e —» Hom(Pn’ ]'%’IN) — -,

and the nth cohomology of this latter complex is Extf- ;.\ (M, T}, N),
we have that Ext¢ ., (T} M, N) = Ext{,, (M, T{,N). The result
now follows from Lemma 8.1.

LEMMA 8.4. Let w € W. Then (T}, L(w-A"): L(w - 1)) = 1 and all
other composition factors L(u) of T4, L(w - A") satisfy x - u < X' for all
xew.

Proof. We know that all composition factors L(u) of Tf,',L(w A"
satisfy x-u < A’ for all x € W, by applying Propositions 4.5 and 5.1 to
a resolution of L(w -4") in C(4”) by modules with VS. Thus it suffices

to show that for any x € W, (T}, L(w - 2"): L(x - X)) = 6. Recall

that T}, L(w - A") = W' [W§" L(w - ") ®x L(A' — A")] by Corollary 6.4.
Thus, by [11, Theorem 6.9],

(THL(w-A"): L(x-A)) = (Wg" L(w - ") @k L(A' = A"): L(x - 1")).
By Proposition 6.2, we have a short exact sequence
0— M— W} L(w-2") - Liw-4") -0

in which every composition factor L(u) of M satisfies y -/,u < A" for all
y € W. Since —®g L(A'—A") is exact, we have a short exact sequence

0— Mg L -2 — W L(w-A") @k L(A' = ")
— L(w - A"Y®g L(A — ") — 0,

and by Lemma 7.8, (M ®g L(X' —A"): L(x - 1)) = 0. Thus we have
(THL(w-2"): L(x-A)) = (L(w - A") ®x L(A' — 4"): L(x - 1)),
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and, using [11, Theorem 6.9] once again, we have
(T L(w-A"): L(x - )
= (W' [L(w - ") ®k L(X = A")]: L(x - X)) = 6w x,
where the last equality is the content of [11, Corollary 7.8].

REMARK. In [11], the translation functor 77, was defined in a
slightly different way, so that T/{I,',L(w -A") was taken to be
W [L(w - 2") @k L(A' - )]
(cf. [11, Definition 7.1]). Thus, for the above application of [11, Corol-
lary 7.8], the result in [11] states that (Tj,',L(w AN L(x - ) = 0y x-
Since we have used a different definition of the translation functor,
we need a little extra work to obtain this result. The reason for our

revision of the definition of the translation functors is that it gives us
the adjoint-like properties of Theorems 7.10 and 8.3.

PRrROPOSITION 8.5. Suppose ',A" € P* such that A' — A" € P*, and
let x,y € W. Then

EXU ) (M (x - X), L(y - X)) = Ext o (M(x - 2), L(y - "))
foralln=0,1,....

Proof. We have, using Proposition 5.9 and Theorem 8.3, that
Ext o (M(x - "), L(y - 2")) & Extg (T M(x - 2'), L(y - A"))
= Extg . (M(x - X), TS L(y - A)).
But, by Lemma 8.4, we may choose an LCS for Tf,',L(y -A"yatx-A,
such that L(y-1’) occurs once and such that all other irreducible factors
L(u) satisfy w - u < A’ for all w € W. Thus, by Propositions 4.5, 4.6,

and 5.1, we have that Ext’g(l,)(M(x -A"), F) =0 for any m > 0 for all
factors F other than L(y - A’) in the LCS, and hence

EXt? ) (M (x - ), THL(y - 2")) = Extl 0 (M (x - 4'), L(y - X)),

THEOREM 8.6. Let A € P*, and let x,y € W. Then, for any n =
0,1,..., dim Ext”c(i)(M(x -A), L(y - A)) depends only on x, y, and n,
but not on A.

Proof. Since 0 € P+ and 4 — 0 € P*, we may apply the preceding
proposition with A’ = 2 and 2" = 0 to obtain Ext¢;, (M (x-4), L(y-4)) =
Ext”C(O)(M(x -0), L(y - 0)).
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REMARK. Similar results hold for other facettes in the closure of the
dominant chamber. More precisely, if A’ +p, A"+ p € P* with A'-1" €
P* such that the stabilizers in W of A’ and A" under the dot action are
equal, then the proof of Proposition 8.5 carries over without change
to show Ext’éw)(M(x “A), L(y - A") = Exten(M(x - A"), L(y - 1)),
and for Theorem 8.6 we replace 0 in the proof by a weight 6 such that
0(h;) =—-1if A(h;) = —1 and 8(h;) =0 if A(h) > 0.

9. Coherent continuation. We now specialize A’ and A" to the case
where we are translating “to the a-wall” and “from the a-wall,” for
some simple root a. These translations are used to define operators
of coherent continuation, which were useful in proving the Kazhdan-
Lusztig conjecture for the case where g is finite dimensional.

Throughout this section, we fix a = «; for some i = 1,...,/, fix
Ao € P such that A,(h;) = —1 and A4 (h;) > 0 for j # i, and fix 1 € P*
such that A — A, € P*. Thus we have A in the dominant chamber
and 4, on the a-wall of the dominant chamber. We denote the simple
reflection r; by r,, as in §2. Observe that the stabilizers of 4 and A,
in W under the dot action are W, = {1} and W, = {1,r,}. We apply
the previous results with A’ =1 and A" = 4,.

DEFINITION 9.1. The operator of coherent continuation across the
a-wall is the functor ©, from C(4) to C(4) defined by 8, = T} o T}

Observe that @, is right exact, since both 7} and T} are.
An immediate application of Theorem 8.3 to the present situation
gives the following.

PROPOSITION 9.2. Let M € Ob C(A) have a finite VS whose factors
M(u) each satisfy w - u £ A for some w € W, and let N € Ob C(A).
Then for all n > 0, we have Ext}. ;(M,0,N) = Extg; (T3 M, T N).

DEerFINITION 9.3. The Bruhat order on W is defined by w, < w,
if there exist By,..., 8, € A} such that /(w;) < [(wrg) < -+ <
[(wyrg, ---rg,) and wyrg, ...rg, = w,.

LEMMA 9.4. Let w € W such that w < wr,. Then there is a short
exact sequence

0— M(w-2) = TE M(w - A,) —» M((wr,) - 4) — 0.

Proof. By Proposition 5.8, T’l M(w - 4,) has a VS with two factors,
M(w-4) and M((wry)-4), each ‘with multiplicity one. The result now
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follows from the fact that Ext(M(w-4), M((wr,)-4)) = 0 by Corollary
4.7.

LEMMaA 9.5. Let w € W such that w < wr,. Then T}"M(w - 1) =
M(w-4,) = Tf"M((wra) -4). Furthermore, if we choose an imbedding
¢: M((wry)-A) = M(w - 4), then Tf"(ﬁ is an isomorphism.

Proof. By Proposition 5.9,
Tf"M(w A= M(w-A,) and Tj"M((wra) “A) ZEM(wry) - Ag).

But 7, - A4 = 44, S0 that M ((wry)-A,) = M(w-4,), and we have the first
assertion. For the second assertion, since any nonzero map between
Verma modules is injective, it suffices to show that Tf"d) is not the
zero map. But this map induces

(T} ¢)*: Hom(T;* M(w - A), M(w - A,))
— Hom(T}* M((wry) - A), M(w - A4)),
and by the natural isomorphism of Theorem 7.10, we have the com-

mutative square

T gye
Hom(TX M(w - 2), M(w - 4a)) " Hom(T} M((wr,) - 1), M(w - 2))

l !
Hom(M(w - 1), T, M(w - Aa)) £ Hom(M ((wra) - 2), T M(w - 4a)),

where the bottom map is the restriction map, which is nonzero in view
of Lemma 9.4. Thus (T}"¢)* # 0, so that T}¢ # 0.

We close this section with a summary of several properties of the
operators of coherent continuation.

PROPOSITION 9.6. Suppose w € W such that w < wr,. Then
(i) Any imbedding ¢: M((wry)-A) — M(w - A) induces an isomor-
phism ©,¢: O, M((wry) - 1) — O, M(w - A).
(i) ©,L(w -A) =0.
(iii) There is a short exact sequence
0— Mw- 1) > O,Mw-A) = M((wry)-1) -0

which does not split.
(IV) eaL((wra) /1) # 0.

Proof. By Lemmas 9.4 and 9.5, together with the definition of ©,,
we obtain (i) and the existence of the short exact sequence in (iii). If
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the sequence were split, we would have

dim Hom(M ((wry) - A), @ M(w - 1))
= dim Hom(M ((wr,) - 1), M((wry) - A))
+ dim Hom(M ((wry) - A), M(w - A)) = 2.
But, by Proposition 9.2,

dim Hom(M((wr,) - 4),0,M(w - A))
= dim Hom(T}* M ((wr,) - A), T} M(w - 2))
= dim Hom(M (w - A,), M(w - 4,)) = 1.
Thus, the sequence does not split.

Now, fix an imbedding ¢: M((wr,) - 1) — M(w - 1), and let X =
Coker ¢. By the right exactness of ©,, we have the exact sequence

O M((wra) - 2) 2L @, M(w - 1) — ©,X — 0.

But ©,¢ is an isomorphism, by (i), so that ©,X = 0. Since L(w - 1)
is a quotient of X, (ii) now follows from the right exactness of 6,.
To prove (iv), it suffices to show that

Hom(M (w - 1), Ox L((wry) - 4))

is nonzero, and hence, by Proposition 9.2 and Lemma 9.5, that
Hom(M(w - A,), T,{L'L((wra) -4)) # 0. Let M be the unique maximal
submodule of M ((wr,) - 4), so that we have the short exact sequence

0—-M— M((wry)-A) = L((wry) -4) — 0,
and let
i My — > M; — M —0

be the exact resolution of M in C(A) obtained by tensoring M over
K with the standard resolution of the trivial module. Thus, for each
n=1,2,... we have M, = (U(g) ®us) A"~ !(g/b)) ®k M, so that each
M, has a VS whose factors M (u) each satisfy u < (wr,) - A. Splicing
the sequences, we obtain an exact resolution

= My — - — My — My — L((wry) -4) = 0

of L((wr,) - A) in C(A), where My = M((wr,) - ). Note that
this resolution satisfies the hypotheses of Corollary 5.6. Thus
T} L((wr,) - 4) is the Oth homology of the complex

Ao A Ao
= I My— > T My — T My — 0.
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Now T}My = T}M((wr,) - A) = M(w - A,) by Lemma 9.5, and
M, has a VS in which any factor of the form M(x - 1) must satisfy
XA < (wry)-A < w-A4, so that the VS for Tf"Ml, all factors are of the

form M (x -A,) With XA < w-Ao. Thus we see that T} L((wr,)-2) =
Tf"MO/Im(Tf"Ml — Tf"Mo) is a nonzero homomorphic image of
M(w - 4,). This shows that Hom(M(w - 4,), Tf"L((wra) -4)) # 0,
proving (iv).

10. Kazhdan-Lusztig polynomials. We define certain polynomials
Fx,y for each x,y € W, which are known in the finite dimensional
case to be similar to those introduced in [8], the difference being that
we work with a dominant weight rather than an antidominant weight.
Throughout this section we fix 4 € P*.

DeFiNITION 10.1. _Let X,y € W, and let ¢ be an indeterminate.
Define a polynomial P, ,(¢) € Z[t] by

Pyy(t) = Zdim Ext’(‘;(l)(M(x -A), L(y - A))HE=10x
k>0

REMARKS. By Propositions 4.5, 4.6, and 5.1, we have that
Extg (M (x - A),L(y-4)) =0

unless /(x) — I(y) > k, so that P, ,(¢) is indeed a polynomial in Z[z].
Also, by Theorem 8.6, the polynomial ?x,y depends only on x and y,
not on the choice of A € P*. For the case where g is finite dimensional,
if we set ¢ = t*> and view Py, as an element of Z[g'/?], it is shown
in [15, Theorem 7.3] that P, is the Kazhdan-Lusztig polynomial
Py, yw,» Where wy is the longest element of W. The reason for the
appearance of wy is that we are taking A to be dominant rather than
antidominant.

DerFiNITION 10.2. For any M € ObC(4), and any u < A, define
[M: M(u)] € Z to be the coefficient g, in the expression ch M =

Zyﬁl o ch M(ﬂ)

REMARK. Such an expression for ch M exists, by taking an exact
resolution of M in C(A) by modules with VS. It is unique by [10,
Lemma 5.3].

For the next proposition, recall the integers g;(v,u) which were
introduced in Definition 3.10.
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ProvrosiTiON 10.3. For any x,y € W,
[L(y-A): M(x-A)]=> (=1)*dim Ext{ ) (M(x - 1), L(y - 4)).
k>0
Proof. Consider the projective resolution of M(x - 4) in C(4)
= P 5 P> M(x-4)—0
given by Proposition 3.11, so that each P, = P, ; g (v, x - AN (v).
Then for each kK =0,1,... we have
dim Hom(P,,L(y - 1)) = Z & (v, x - 2)dim Hom(I*(v), L(y - 1))
v<i
=& -4 x-4),
by Proposition 3.1. The Euler-Poincaré principle gives

> (=1)kdim Extg; (M(x - 4), L(y - 4))

k>0
= > (~1)*dim H*(Hom(P,, L(y - 4)))
k>0
= > (=1)*dim Hom(P,, L(y - 4)) = > (=1 ge(y -4, x - A).
k>0 k>0

Now, it was shown in [10, Lemma 5.2], using a Mobius inversion
argument, that

[Ly-A): M(x-2)] =D (=DFeg(y-4,x-4),
k>0
and the result follows.
CoroOLLARY 10.4. For any x,y € W,
[L(y -24): M(x-A)] = (=1)!=IOP, (-1).
Conjecture 10.5. Ext’é(l)(M(x-A),L(y-l)) =OQunless /(x)—I(y) =k
(mod 2).
This conjecture was shown to hold in the finite dimensional case in

[1], [2], and [15], along with the Kazhdan-Lusztig conjecture.

CororLARY 10.6. If Conjecture 10.5 holds, then, letting q = 12 so
that we view Py, as Py ,(q) € Z[q'/?], we have for any x,y € W that
[L(y-4): M(x-A)] = (=1)/W=10p, (1),

What we would like to have is a combinatorial algorithm for com-
puting the polynomials P, , similar to the algorithm in [8], where the
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Kazhdan-Lusztig polynomials were introduced. We are missing sev-
eral tools which are available in the finite dimensional case, however.
Among these is a stronger version of Proposition 9.2 which allows
moving the operators ©, back and forth between the two arguments
to the Ext bifunctor. We nevertheless summarize here certain proper-
ties of the polynomials Py ,.

THEOREM 10.7. Let x,y € W. Then
(i) deg, Pxy(2) < I(x) = 1(p).

(i1) Py, =0 unless x > y.

(ili) Pyx =1 forany x e W.

(iv) Py = 015 (Kronecker symbol).
(V) Pyy=1forallxeWw.

Proof . By Propositions 4.5, 4.6, and 5.1, if Extg ;) (M (x-4), L(y-4))
is nonzero, then there exist wy, wy,...,w, € W such that x - 4 =
wo-ALw;-A< - <wy-A=y-Aand such that M(w;_; -4) imbeds in
M(w;-A) foreachi=1,...,n. Butthenx =wy>w; > --->w, =y
in the Bruhat order by [12, Theorem 4.3]. The first four assertions
follow from this fact and the definition of the polynomials Py ,. For
the fifth assertion, by Theorem 8.6 we may assume that 4 = 0, so
that 1-4 =4 =0 and L(A) = L(0) is the trivial module. Now, it was
shown in [3, Theorem 2] that for each n > 0, Extg o) (M (x-0), L(0)) =
H"(n*, L(0))x.0. Recall the standard complex

0-Cp—Cp— o Cp— -
used to compute the n*-cohcmology of L(0), where each C, =
Homg (A" n*, L(0)) and the cohomology 6: C, — C,,; is defined by

n+1
(60)(x1 - Xngt) = D (=D xi-cCrr Ao Fie AdXngr)

i=1
+ 3 (=) e, XIAX A Ry Ry A Xy

i<j
forall c € C, and all x,...,Xx,,; € n*. Since J is an h-module homo-

morphism, H"(n*, L(0)),.o may be computed as the nth cohomology
of the restriction of the standard complex to the x - 0-weight spaces

0— (Co)x0 = (Ci)x0— -+

But dim(Cy)x.0 = dim Homg (A" nt, L(0))x,—p = dim(A" n*),_x,, so
that dim(C,).o is equal to the number of partitions of p — xp into a
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sum of 7 distinct positive roots (with their appropriate multiplicities).
It was shown in [5, Proposition 2.4] that the only set of positive roots
which has a sum equal to p — xp is the set &, = {f € A*|x718 <
0}, and this set has cardinality /(x), by [5, Proposition 2.2]. Thus
dim(Cy)x.0 = J(x),»» and the restrictions of J to the x -0 weight spaces
are all the zero map, so that dim H"(n*, L(0))x.0 = Jj(x),»» and (v)
follows from the definition of the polynomial P, ;.

REMARK. Since so little is known about the multiplicities
(M(y-4): L(x-4)) and [L(y-4): M(x-A)],

or about the dimensions dim Ext”(M(x - A), L(y - 4)), in the case of a
nonsymmetrizable GCM, due in large part to the difficulty of comput-
ing the character of M(x -A), it is difficult to compute examples of the
polynomials Fx,y(t). However, one can show, using Proposition 10.3,
that when x > y with /(x)—I(y) = 1, we have the constant polynomial

Pry(t) = (M(y-4): L(x - 4)) = =[L(y - A): M(x - A)].

It would be interesting to be able to compute examples of P, ,(¢) with
l(x)—1(y) = 2 to see if they match the corresponding Kazhdan-Lusztig
polynomials.
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