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INDEX FOR FACTORS GENERATED BY JONES'
TWO SIDED SEQUENCE OF PROJECTIONS

MARIE CHODA

Let {e,;i = 0 , ± 1 , ± 2 , . . . } be a family of projections with the
property; (a) e[ex±\e\ = λet for some λ < 1, (b) e(ej = eJeι for |/ —
j \ > 2, (c) the von Neumann algebra M generated by the family
{e,\i = 0, ± 1, ± 2 , . . . } is a hyperfinite IIi-factor with the trace tr and
(d) tτ(we,) = λtr(w) if w is a word on 1 and e} (j < i' — 1). Let N be
a von Neumann algebra generated by {et; i

: = ± 1, ± 2 , . . . } . Then TV is
a subfactor of M. If λ = (l/4)sec2(π/m) for some integer m (m > 3),
then N' n M = Cl and the index [M: N] = (m/4)cosec2(π/m).

1. Introduction. The index theory for finite factors was introduced
by Jones in [3]. In that paper, the following sequence {ex\ i = 1,2,...}
of projections plays an important role:

(a) eiβi±\ei = λβi for some λ < 1,

(b) eiej = ejei for \i - j \ > 2,
(c) the von Neumann algebra P generated by {^ / = 1,2,...} is a

hyperfinite II i -factor,
(d) Xτ(weι) = λtτ(w) if w is a word on l9e\,e29... ,^/-i, where tr is

the canonical trace of P and 1 is the identity operator.
If Q is the subfactor of P generated by {ex\ ί = 2,3,...}, then the

index [P:Q] of Q in P is l/λ. In the case λ > 1/4, Q has trivial
relative commutant in P and [P:Q] = 4cos2(π/ra) for some m =
3,4, Hence by his basic construction, we have the family {e^ i =
. . . , -2, -1 ,0- , 1,2,...} of projections with the properties (a), (b), (c')
and (d');

(d) {ec ί = 0, ±1, ± 2 , . . . } generates a hyperfinite IIj factor M,
(df) tr(wei) = λtτ(w) for the trace tr of M if w is a word on 1 and

;

We shall call this family {e^ ί = 0, ± 1 , ± 2 , . . . } the Jones' two sided
sequence of projections for λ. The main purpose of this note is to show
the following theorem.

THEOREM. Let {e^ i — 0, ±1, ±2, . . . } be the Jones' two sided se-
quence of projections for λ = (l/4)sec2(π/m)forsomem (m = 3,4,...).
If M (resp. N) is the von Neumann algebra generated by {e^i =
0 , ± l , ± 2 , . . . } (resp. {erJ = ±1,±2,. . .}), then N is a subfactor of M
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with the index
[M:N] = (ra/4)cosec2(π/m),

and the relative commutant ofN in M is trivial, that is, N' n M = Cl.
The author learned from the referee that A. Ocneanu obtained the

same formula independently. She would like to express her hearty
thanks to the referee for many valuable comments.

2. Notations and preliminaries. Let B be a subfactor of a II i -factor
A. Then Jones defined in [3] the index [A:B] of B in A using the
coupling constants of A and B due to Murray and von Neumann ([4])
and he (and also, Pimsner-Popa in [5]) gives some methods to get
the number [A:B]. In [6], Wenzl gets another method to compute
[A: B] in the case where those factors are σ-weak closures of the union
of increasing sequences of finite dimensional algebras, which satisfy
some good conditions.

In this note, we shall use the results in [6] to give a proof of Theo-
rem.

(2.1) Let A be a finite dimensional von Neumann algebra. Then
A is decomposed into a direct sum Y%Lχ ®Aι of a(i) by a(i) matrix
algebra Aj. The vector a = (a(i)) is called the dimension vector of A,
following Wenzl [6]. Each trace φ on the algebra A is determined by a
column vector w = (w(i)) which satisfies φ(x) = ΣΊLi W(/)TΓ(Λ;/) for
x G A, where x = Σ ®Xj (x/ € A{) and Tr is the usual nonnormalized
trace on the matrix algebra. The row vector w is called the weight
vector of the trace φ. Let B be a von Neumann subalgebra of A with
direct summand B = £ ? = 1 θ/?/ of b(i) by b(i) matrix algebras 2?/. The
inclusion of B in A is specified up to conjugacy by an n by m matrix
[gij]> where gij is the number of simple components of a simple Aj
module viewed as a 2?, module. The matrix [gij] is called the inclusion
matrix of B in A which we denote by [B —• A]. Let b = (b(i)) be the
dimension vector of B and v the weight vector of the restriction of φ
of B, then

(e) b[B -^A] = a and [B -> .4]w = υ.

(2.2) Let {e/;/ = 0,±1,±2,. . . } be Jones' two sided sequence of
projections for λ (λ < 1). A reduced word is a word on efs of minimal
length for the rules (a), (b) and ef <-• e\. As a trivial consequence
of Jones' method in [3], we have that the von Neumann algebra N
generated by {ez; / = ± 1 , ±2, . . . } is a subfactor of the hyperfinite IIχ
factor M generated by {et\ i — 0, ±1, ± 2 , . . . } .
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(2.3) The factor M is the cr-weak closure of the union of the in-
creasing sequence of the following von Neumann algebras {Mk\k =
1,2,...}:

Mx=Cl, M2m = {ej ,\j\<m-l}", M2m+ι = {M2m,em}".

The subfactor N of M is generated by the following increasing se-
quence of {Nk\k = 1,2, } :

Nι=N2 = Cι, N2m = {eJ9O?\j\<m-l}", N2m+X= {N2m9emγ.

The algebras Mk and Nk are all finite dimensional ([3]). We denote
by ak (resp. bk) the dimension vector of Mk (resp. Λ^). In the case
where Mk is the direct sum of dk matrix algebras, we say dk is the
length of the dimension vector ak.

(2.4) Every Nk is a subalgebra of Mk. Let E(B) be the conditional
expectation of M onto the von Neumann subalgebra B of M condi-
tioned by tτ(xE(B)(y)) = tτ(xy) for x e B and y eM.

LEMMA 1. E(Nk+x)E(Mk) = E(Nk) and E(N)E(Mk) = E(Nk) for
allk.

Proof. Since E{Nk+x)E{Mk) = E(Nk) if and only if E{Nk+x)E(Mκ)
= E(Nk+x)E(Nk)E{Mk), it is sufficient to prove that Xv(yE{Nk+ι){x))
= tr(yE(Nk)(x)), for x E Mk, y e. Λ^+1. Every reduced word y E
^2m+i has a form y = υw\emW2, where v is a reduced form on {ez; / =
—m + 1,— m + 2,..., —1} and Wj (i = 1,2) is a reduced word on
{e/; / = 1,2,..., m - 1}. Let w be a reduced word in Mlm\ then

\x{yE{NlmΛ.x){w)) = tτ{yw) = λtτ(w2wvw{) =

m ) - tτ(yE(N2m)(w)).

Since each algebra is generated by reduced words, E(N2m+\)E(M2m)
= E(N2m). Similarly E(N2m)E(M2m+ι) = E(N2m-ι). Since
E{NM)E{Mk) = E(Nk+i)E(Mk+i^)E(Mk) = E{Nh+ι_x)E(Mk) =

E{N)E{Mk) = £(Λ4) for all A:.

(2.5) Let ( ^ ) and (5^) be sequences of finite dimensional von Neu-
mann algebras such that Bk c ^ for all k. Following after [6], we
write (Ak)k D (Bk)k if (Ak)k (resp. (Bk)k) generates a Ilx-factor ^
(resp. a subfactor B of A) and satisfies the property of Lemma 1. So,
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by (c'), (2.2) and Lemma 2, we have {Nk)k c {Mk)k. Such a sequence
(Mk) is said to be periodic with period r if there is a number m such
that [Mw + r -> Afπ+Γ+/] = [Mw -> M^+z] for Λ > m (/ = 1,2,...)
and the matrix [Mn —• Λfw+r] is primitive for n> m. The sequences
(Λffc)fc D (A )̂ŷ  is periodic if both (Λf̂ ) and (Λ^) are periodic with
same period r and [Nn+r —• M^+r] = [JVΛ —> M^] for a large enough «
([6]). In Section 6, we show the periodicity of {Nk)k c (Mk)k.

3. Bratteli diagram for (Mk)k and path maps. For convenience' sake,
throughout we put

(3.1) for a positive integer k,p — [k/2] and q — k-p.

In this section, we shall get, for the sequence (Mk) in (2.3), the com-
ponents of the inclusion matrix [Mq -> Mk], which we need to obtain
the inclusion matrix [Nk —> Mk]. Let Ak = { l ,e 1 ? . . . ,^}". Then
Mk is *-isomorphic to Ak_x for k > 2. On the other hand there is a
unitary u in Mim which satisfies ueiu* = e-ι and ue-iu* = β/ for all
i = 0,1, . . . , /w - 1 ([3]). Hence [Jl^ - M*+ 1] = [^_! - Ak] for all
fc > 2. It is clear that [M{ -> M2] is the 1 by 2 matrix [1,1]. In [3],
Jones gets the Bratteli diagram ([1]) for the sequence (Ak) and so we
get the Bratteli diagram for (Mk). The dimension vector ak of Mk,
the length dk of ak and the weight vector wk of the restriction of tr
on Mk are as follows:

(3.2) If λ < 1/4, then

dk =p+ 1,
k \

. ) i f / = 1 , 2 , . . . , 4 - 1 ,
P-IJ

if / = dk,

where Pj is the polynomial defined in [3] by Pι(x) — Pι{x) = 1 and
Pn+Ϊ(x) = Pn(x) - xPn-ι(x).

[Mk -* Mk+ι] = [δjj + δi+ιj]ij, for Kronecker's δ,j,

where i = 1,2,...,[{k + l)/2] + 1 and

, , , [ ( l)/2]+ 1 if/ciseven
= r i , 2 , . . . ,

I 1,2,..., (k + 3)/2 if k is odd.
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(3.3) If λ > 1/4, then λ = (l/4)sec2(π/« + 2) for some n = 1,2,....
The Blatteri diagram for Mi c M2 c c Mn has the same form as
in the case of λ < 1/4 and the diagram for Mn+2i-\ c Mn+2i (resp.
ΛfΛ+2/ C Λfrt+2/-i) is the same as the one for Mn_x c AfΛ (resp. the
reverse form of one for Λfπ_i c ΛfΛ), for all /' = 0,1,2,

Now we consider the Bratteli diagram for (Mk)k as a graph Λ, the set
of vertices of which is the set of points where ak(i) (k = 1,2,..., / =
1,2,...,^) stand. We denote the vertex in Λ corresponding to ak(i)
by the same notation ak(i). We denote by [ak{i) —> ak+x{j)] the edge
from ak(i) to ak+x(j). A /?α/Λ on Λ is a sequence ξ — (ζr) of edges
such that ζr = [ak(r){ir) -• ̂ ( r)+i0V)] for some ir, j r and fc(r) such
that k(r + \) = k(r) + \. The set of all paths in Λ with the starting
point ak(i) and the ending point ar(j) is called a polygon from the
vertex ak{i) to the vertex ar(j) and denoted by [ak(i) —> ar(j)]. Also
the set of all paths in Λ with ak{i) as the starting point and for some
j ar(j) a s the ending point is called a path map from the vertex ak(i)
to the floor ar and denoted by [ak(i) —> ar\ Let Ξm be the set of
paths on Λ consisting of m edges. For a ξ in Ξi and y in Ξm let
ξoy = {ξoη η ey}. Let x G Ξm be a polygon. If there are polygons y
and z in Ξm_j such that as sets of paths x is either the union of ξ o y
and ηoz or the union of yoξ and zoη for some ^ and η in Ξi, we say
x is the J/r^c^ sum ofy and z and we write x = y Θ z for y = x θ z.

REMARK 2. The /th coordinate ^ ( 0 °f the dimension vector ak

represents a cardinal number of different paths in the polygon [ax (1) —>
%(/)]. Below, we consider α^(/) as the polygon [ax(l) —> %(/)] and
the dimension vector ak as the path map [ax{\) ^ ak]. Also, for path
map x = (x(l), . . . ,x(m)), we denote by the same notation x the path
map (x( 1),..., x(m), 0,..., 0). We shall identify two polygons or path
maps if they are same as figures.

Under such identification, we define the direct sum of path
maps. Let x = (x(l),...,x(Λ)), y = (y(l),. ..,y(m)) and z =
(z(l),...,z{n)) be path maps. If h = max{/*,ra,ft} and x{i) = y(i) +
z(/) for every polygon {x(i)9y(i), z(/)}, we say x is the Λrec/ .s wm of
y and z, and we write x = y ® z.

REMARK 3. If we use the method of path model in [4], a polygon
corresponds to a matrix algebra and a path map corresponds to a
multi-matrix algebra.
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EXAMPLE. (1) The polygon α 6 ( l ) = (a\(l) -> a${\)) and the path

map a^ — (tfi(l) —• a$) are as follows in the case of either λ < 1/4 or

n > 6:

A A /\
\/\. = \/\ V\
i\ί ~ hi N\
V V VV\

/ ΛΛΛ
(2) Let x e Ξ7, y e Ξ6 and Z G Ξ6 be polygons, then x = y © z are

as follows:

A Λ
ΛΛ
\/\Λ
ΛΛ/
VV
V

Λ/
V

(3) Direct sum of path maps.
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Now we discuss the inclusion matrix [Mq —• Mk\ It is obvious
that the (/,y)-component of [Mq —> Mk] means the cardinal number
of [aq{i) —» ak(j)]. Hence the zth row vector JC/ of [Mq —• Mk] is
considered as the path map [aq(i) —> α^].

Under the identification of vectors and path maps, we define the
polynomials /(m) of path maps on Λ by

fi(0) = ah fi(\) = aM and ft{m + 1) = fM{m) θ fi(m - 1).

Then for all positive integers / and m, /(2m) (resp. /(2m + 1)) is a
polynomial on path maps {<Z/+2;; 7 = 0,1,2, . . . ,m} (resp.
j = 0,1,2,..., m) with positive integers as coefficients.

LEMMA 4. Let xz Z>£ ί/ẑ  ith row vector of the inclusion matrix [Mq —•
^ a triplet {k,p,q} in (3.1). 77ze«, the path map xt is as follows

for alii (i = 1,2,...,^);

_ f fp(2i-2) if q is even,
Xi~\fp{2i-\) ifqisodd,

under the identification for vectors that (y(1),..., y(m), 0,..., 0) =

Proof. Since the path map JCI is (aq{\) -» ak), it is clear by the shape
of graph Λ that

_ ί ap+{ = fp(l) if q is odd,
Xχ " * ' " " if* is even.

Suppose the statements are true for all j < i. As a path map, we have

[a2i(i + 1) -> flp+2i] if ί is even,

[α2 / + 1(/ + 1) -^ αp+2/+i] if tf is odd,

by sliding up the line combining aq{\) and ag(i+l) as possible. Then
the assumptions of the induction means that

- {

( ) fy2l = ̂ (2/ - 2)

and

[^2(i-l)+l(0 -• ̂ +2(/-l)+l] = fp(2i ~ 1).

Since
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we have

/] θ [α2/(

i-l)l θ [02(1-1)0')

On the other hand,

Hence

Thus x/ +i = fp(2i) if ^ is even and */+ 1 = ^(2(/ + 1) - 1) if q is odd.

4. Bratteli diagram for {Nk)k. Let (Λ^) be the sequence in (2.3).
Let Nk{+) = {a e Nk\j > I}" and Nk(-) = {e} e Nk;j < - I f .
Then Nk is generated by the commuting pair Λ^(+) and Nκ(-). For
a triplet {k,p,q} in (3.1), Λ^(+) is isomorphic to Mq and Λ^(-) is
isomorphic to Mp. Two dimension vectors and weight vectors of a
finite dimensional von Neumann algebra are respectively conjugate by
an inner automorphism. We may take a dimension vector bk of Nk

and the weight vector uk for the restriction of the trace tr of M to Nk

as

(4.1) bk = (ap(l)aq9ap(2)aq9...9ap(dp)aq)

and

(4.2) <uk = (tp(iYwq, tpfflwg,..., tp(dpywq),

where ιy denotes the transposed vector of the vector y. Since we
obtained the inclusion matrices for (Mk) in (3.1),

f In ® [Mp -• MD+{\ if A: is odd,

where /^ denotes the dk by ^ identity matrix. It is easy to check that
[Nk —• Nk+ι] satisfies the property (e) for bk and uk. The Bratteli
diagram for (Λ^) comes from the diagram for (Mk) following after
the above information.

In the case λ = (l/4)sec2(π/n + 2) for some n (n = 1,2,...), the
diagram for N\ = N2 c Λ̂ 3 c c N2n has the same form as in the
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case λ < 1/4, the diagram for N2n+4i-2 c JV^+^ -i (resp. iV2Π+4/— 1 C
N2n+4i) i s similar to one for iV2«-2 C N2n-ι (resp. Λ^-i C Λ^)
and the diagram for N2n+4i c #2/1+4/+1 (resp. Λ ^ z + i c N2n+4i+2)
has the reverse form of order changed one for N2n-\ c Λ̂ 2« (resp.

^2/1-2 C N2n).

5. Inclusion matrix of Nk in Af̂ . Let {k,p,q} be a triplet in (3.1).
Let Xi{j) be the (/,y)-component of [Mq —>• Af*] and x, the /th column
vector of [Mq —• Af^]. Here we consider x(z, 7) and X/ as a polygon and
a path map in Ξp. By Lemma 4, the polygon x/(y) can be decomposed
into the direct sum of polygons {ap+j(i)\ j = 0,1, . . . ,/ = 1,2,..., dfp}.
Then we define the matrix [ap —• X/] = [Λ(j, /c)] such that Λ(7, fc) is the
number that ap(j) is contained in xι(k). We call the matrix [ap —> JC/]
the inclusion matrix of the path map ap in the path map x, .

REMARK 5. Let x,y and z be path maps on Λ such that [x —> y] and
[x —• z] are defined. Then, by the definition of the direct sum of path
maps and the inclusion matrix for path maps, the matrix [x -+ (y@z)]
is defined and

[x -> (y Θ z)] = [x -> y] + [x -* z].

By this property and Lemma 4, the inclusion matrix [αp —> xz] of the
path map α^ in the path map X/ is defined from the inclusion matrices
[Mp —• Mr] (r > p) by the natural method.

LEMMA 6. Let λ = (l/4)sec2(π/« + 2) αm/p > Λ - 1.
(I) If n is odd andp is even, then

[aP-*fP(m)](i9j)

[ 0, otherwise.

Ifn is odd and p is oddy then

fp{m)\(ij)

1, - [ ^ ] < ^ - y < [ f ] ? l + f^r 1] < / + . / < 2 [ f ] -
0, otherwise.

{2) If n is even and p is odd, then

i m + 1 << << Γ m 1 i _•_ m + 1 \ ^ i _ \ i ^ ^ \ n Λ ( " m l

1, - [-2-J < / - 7 < ίyJ > 1 + [-2-J ^ z + ̂  ̂  2 llJ ~ LTJ '
0, otherwise.
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Ifn is even and p is even, then

[ap ->

= ί
{ 0, otherwise.

Proof. It is sufficient to prove the statement for/7 = n-1 and/7 = ft,
because fp(m) is the polynomial on {ap+yj = [m/2]J is odd (resp.
even)} if m is odd (resp. even) and [ap -> α^+7] = [α^+2 -+ ap+2+j] f°Γ

all /7 > n - 1 and y. Since ^,(1) = α^+i, it is clear that [ap -» j£(l)]
satisfies the conditions for all n and /7. For a given ft, assume that the
statements hold for p = n - 1, n and m = 1,2,...,/:. Then we can
give a proof of the statements for p = « — 1, n and m = k + 1 by the
relation;

[flp - fP{k + 1)] = [α, - αp+ipp+i - Λ+i(fc)] - [ap - Λ(* " 1)1

and

LEMMA 7. Let λ = (l/4)sec2(π/ft + 2) and Xi the ith column vector
of[Mq —• Mk\ Assume q > n.

(1) Ifn is odd, then [ap —• x, ] w α ( l + [ft/2]) square matrix with the
following form:

(5.1) Ifp = q is an odd number, then

f 1, 1 - i< r-j < i <j + r < n + 2 - /,
p / \ 0, otherwise.

(5.2) Ifp + I = q is even, then

(5.3) Ifp — q is even, then

[ap -• Xi](j, r) =
0, otherwise.

(5.4) Tf/7 + 1 = # /s Oί/̂ , then

p ι \ 0, otherwise.

(2) L ^ ft 6
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(6.1) Ifp — q is odd, then [ap —• xί\ is an n/2 by 1 + (n/2) matrix
with

1, 1 - / < r - j < i < j + r < n + 2 - i,

0, otherwise.

(6.2) Ifp + 1 = q is even, then [ap —• JC, ] is an n/2 square matrix
with

1, \r-j\<i<j + r<n + 2-i9

0, otherwise.

(6.3) Ifp = q is even, then [ap —• X/] is a 1 4- (Λ/2) square matrix
with

f 1, |r — 7*1 < / < 7 + r < n + 3 - /,
[ap —• x/](;,r) = <

t 0, otherwise

(6.4) ///? + 1 = q is odd, then [ap -» xz] /5 α 1 + (w/2) by n/2 matrix
with

Proof. Let π be odd. Then dj — dn-\ for all j > n - 1. Since
£/„_! = [n/2] + 1, [M^ —> Λ/̂ ] is a 1 + [n/2] square matrix. It means
that aj (j > n - 1) and each X[ are path maps consisting of 1 + [n/2]
polygons in Ξp +1. Similarly, if n is even, then aj is a path map with
[n/2] (resp. [n/2] + 1) polygons for odd (resp. even) j > n - 1. Hence
Xi is a path map with [n/2] (resp. [n/2]+l) polygons if Λ: is odd (resp.
even). Therefore by Lemma 5 and Lemma 7, the statements hold.

LEMMA 8. For the weight vector w^ of the restriction of tr to M^, we
have

[ap -^Xi]wk = wq{i)wp (i = I92,...,dq).

Proof. We denote the matrix [[ap —> α p + / ], 0,..., 0] by the same no-
tation [ap -* ap+i]9 where 0 is the column vector with all components 0.
Then by the Bratteli diagram for (Mk), we have for all / (/ = 0,1,...)

[ap-+ap+i]wk = λ»Wwp for Λ(ι) = [?] - [ ί ] .

Since X/ is given by the polynomials on {ap+j\j — 0 ,1, . . . } by Lemma
4, we have the statement by Lemma 5, (3.2) and the relation between
the polynomial f/s and P/s, because
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where Pj is the polynomial defined in [3] by P\(x) = Pi{x) = 1 and
Pn+ι(x) = Pn(x) - xPn-X(x).

Let (?£ be the dpdq by ^ matrix, the (dq{j - 1) + /)th row vector
of which is the jth row vector of the matrix [ap —• x,], where / =
1,2,...,dq, j = 1,2,... ,dp. That is, the transposed matrix ιGk of Gk

is as follows;

tGk = [G[l]uG[2]u...,G[dq]uG[l]2,...,G[dq]2,...,

where (/[/]/ is the transposed vector of the jth row vector of [ap -* x/].

LEMMA 9. ΓAe matrix Gk satisfies the following-.

hGk = βk> Gkwk = uk & Gk[Mk -> Mk+ι] = [Nk -+ Nk+ι]Gk+ι,

where ak, bk are dimension vectors of Mk, Nk and Wk, uk are weight
vectors ofMk) Nk.

Proof. Since aq[Mq -» Mk] - ak, we have, by the relation (4.1),

(i)[ ] ^q{i)Xi = ak,
i i

where / runs over {I929...,dq}.
Lemma 6 implies that Gkwk = uk, combining the definition of Gk

and (4.2).
If λ > 1/4 and k > 2n, by Lemma 7, we have Gk[Mk —> Mk+X] —

[Nk —• Nk+x]Gk+\. For another case, we need a similar lemma as
Lemma 7. Below we do not need such cases. Hence we omit the
proof of such cases.

Thus we can get a method of inclusion of Nk in Mk. Hence we
denote Gk by [Nk -> Mk\.

6. Periodicity of (Λ^)^ c (Mk)k in the case λ > 1/4. In this section,
we assume that λ = (l/4)sec2π/(π + 2) for some n (n = 1,2,...).

LEMMA 10. The sequence (Mk) is periodic with period 2 and the
sequence (Nk) is periodic with period 4.

Proof. Combining the discussions in (2.5) in §3 with results in [2],
we have that the sequence (Mk) is periodic with period 2. The fact
implies that (Nk) is periodic with period 4, by the Bratteli diagram
for (Nk).
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LEMMA 11. Let JC, (resp. y, ) be the ith row vector of[Mq —• Mk]
(resp. [Mq+2 -+ Mk+A]). Ifq > n, then

[ap -+ Xi\ = [ α p + 2 -• }>/] (/ = 1,2, . . . , dq).

Proof. First we remark that both [Mq —• A^] and
are dq by <^ matrices, because (Mk) is periodic with period 2 and
[ M i + 2 -> Af*+4] = [Mq - Mk][Mk -> J»4+2]. Since /? = [fc/2] and
q = k-p,we have p + 2 = [(k + 4)/2] and ̂  + 2 = fc + 4 - (p + 2),
that is, {k + 4,p + 2,q + 2} satisfies (3.1). Hence xt = fp(2i - 2) (resp.

Xi = fp(2i - 1)) if and only if y i = fp+2(2i - 2) (resp. fp+2(2i - 1)).
By the definition, //(2m) (resp. //(2m 4- 1)) is a linear combination
on {αy ,αy+ 2 5 . . . ?^+2m} (resp. {a 7 + 1 ,^ + 3 , . . . ,^ + 2 m+i}) with integer
coefficients. Therefore, by Remark 5, we have [ap —> X/] = [α/7+2 —»- yz],
because (A/̂ ) is periodic with period 2.

LEMMA 12. The sequence (Nk) c (Mk) is periodic.

Proof. We already proved that both (Mk) and (Λ^) are periodic with
same period 4. Hence it is sufficient to prove that

[Nk - Mk] = [Nk+4 - , Mk+4] for fc > 2/i.

By the form of the matrix [Nk —• Λf̂ ] = G^, it is nothing else but
Lemma 11. Thus (Λ^) c (Mk) is periodic.

7. Proof of Theorem.

LEMMA 13. Ifλ = (l/4)sec2(π/m) for some m (m = 3,4,. . .), then

[M:N] = (m/4)cosec2(π/m).

Proof. The factors M and iV are generated by the periodic sequences
(Nk) c (Mk) of finite dimensional algebras. Hence, by [6, Theorem
1.5], for the weight vectors wk and uk of the restriction tr to Mk and
Nk, we have that [M:N] = ||w^||2/||^A:ll2 f°Γ a l a r 8 e enough k. By

(4.2),

ll«*llil = IKII2IKII2 for a {/CA^} in (3.1).
Put n = m - 2. Then we have

for all A: > n -

Since | | ^ I I 2 / I I ^ + 2 | | 2 = 1M for all k > n - 1,

[M:N] = | | ^ - i | | ^ i i
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By the discussion in 3,

j

where j runs over < 0 , 1 , . . . , —^— >.

On the other hand, by [3],

i\((l/4)sec20) = sinkθ/2k-{ cos*"1 #sin<9 for all k and θ.

Hence

Σ , sin2(/ι
[M: N] = ± ^ 3

i 2 ( 2))
+ 2))πi - exp(2(2; - n)/{n

=

4sin2(π/(n + 2))

= ((/i + 2)/4)cosec2(7τ/(A2 + 2)) = (ra/4)cosec2(π/ra),

because Σy=i exp((j7fc)2π/) = 0, for all integer fc.

REMARK. 14 (1) If m = 3 or 4, then [AT: JV] = [P:Q] for the
subfactor Q = {et\ / = 2,3,... };/ of the factor P = {en / = 1,2,... }".
That is, [M: iV] = 1 if m = 3 and [M: Λf] = 2 if m = 4.

(2) If m > 5, then [M: N] φ [P: Q\ If m = 5, then [Af: TV] < 4.
Hence there is an integer k (k > 3) such that [Λf:7V] = 4cos2(π/k).
H. Choda gets the number k, that is fe = 10. (Here the author thanks
H. Choda for helping her by computing a lot of indices [M: N].) On
the other hand, by the proof of Lemma 14,

[M: N] = 4cos2(π/3) + 4cos2(π/5).

This implies the following equation (the equation is proved by an
elementary method, which M. Fujii tells us);

cos2(π/3) + cos2(π/5) = cos2(π/10).

The following lemma is an easy consequence of Skau's theorem
([7]). Here we shall denote another proof of it as an application of
Lemma 7.

LEMMA 15. The relative commutant N1 n M ofN in M is trivial.

Proof. Since [M: N] is finite, Nr n M is finite dimensional. Let c be
the dimension vector of NfΓ\M. Since (Mk) D (Nk) is periodic, by [6,
Theorem 1.7],

7 | |1; k>2n9 i = 1,2,. ..,dq,j = 1,2,...,^},
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where G[i]j is the vector in §5. By Lemma 8, there are many {/,y}'s
such that 'G[/]7 = (l ,0,. . . ,0). It implies α = 1. Hence N' Π M is
1-dimensional, so that i V / n ¥ = Cl.

8. A generalization. Fix a positive integer n. Let

In the case « = 1, L = JV. It is clear that L is a subfactor of M, for
all tf. Also, L is a subfactor of N and [N:L] — 4cos2(π/m). Hence

[M:L] = (m/4)cosec2(π/m){4cos2(π/m)}"-1.

Let

and

*/}"> L2i+2 = {*-,-,L2i+\}" if / > n.

The sequence (Lk) is periodic with period 4 and generates L. By
a similar method as for (Nk) c (Af*-), we get the inclusion matrix
[Lfc -> Λ/^]. For a triplet {&,/?,#} in (3.1), we consider the matrix
[Λp-(Λ-i) —»• X|] for a large k, where x, is the same as in §3, that is the
ith row vector of [Mq -> Mk]. Then (Nk) c (Affc) is periodic. Let h
be the dimension vector of L' n Af.

If 9 is even, then xx = α^; hence [έ^_(Λ-i) -> xi] = [α^-(Λ-i) -^ αP].
If n = 2, we have Nf Γ\M = Cl, by the form of [ak —> α^+1] for an

odd A:.
If Λ > 3, {e_n+2?^-fi+3? >^-i}" is contained in L' Π Af and iso-

morphic to Mn-χ. Hence we have

L'nM = {e-
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