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DIVISION ALGEBRAS
OVER NONLOCAL HENSELIAN SURFACES

TiMoTHY J. FORD

Let R be the coordinate ring of an integral affine algebraic sur-
face, R the henselization of R along a reduced, connected curve and
K the quotient field of R. Then every central K-division algebra D
of exponent n in B(K ) is cyclic of degree n. If K is the quotient
field of R and D is a central K-division algebra of exponent n with
ramification divisor Z on Spec R, then there is an étale neighbor-
hood U — SpecR of Z such that upon restriction to K(U), D is
a cyclic algebra of exponent »n and index 7.

In this paper we continue to investigate the structure of division
algebras D finite dimensional over their center K, where K has
transcendence degree 2 over an algebraically closed field k£ of char-
acteristic 0. The motivating question behind this work, which re-
mains unanswered, is whether the exponent of the class [D] in the
Brauer group B(K) is equal to the degree /(D :K) of the divi-
sion algebra. This question has been addressed in the works [2], [3]
and [8]. In [2] it was shown that exponent(D) = degree(D) when
exponent(D) has prime factorization 2"3™. It was shown in [3]
that exponent(D) = degree(D) when K is the quotient field of the
henselization at a closed point on a normal algebraic surface. Divi-
sion algebras over such fields K were also studied in [8]. In [8] it was
shown that every central K-division algebra is also cyclic. That is, if
exponent(D) = n, there is a cyclic Galois extension L/K of degree n
which splits D (see for example, [15, §30]). Thus a structure theory
for division algebras was obtained which is similar to that of global
fields. The purpose of this paper is to extend the results of [8] to the
case where K is the function field of a ring R obtained by henselizing
an affine algebraic surface along a curve. The line of proof used here
pretty nearly follows that of [8]. As another parallel to [8] we point
out in Remark 8 that [8, §2] can be adapted to construct the algebra
D as a symbol (a, 8), over K in the special case that D ramifies
on a curve Z whose normalization Z is simply connected.

The results of this paper are mainly concerned with surfaces
that have been henselized along a curve. For the basic properties of
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henselian couples, the reader is referred to [14]. Let R be the coor-
dinate ring of a normal, integral, 2-dimensional affine variety over k.
Let I be an ideal in R such that R/l is reduced and connected. Let
R be the completion of R in the I-adic topology. Then R is a nor-
mal domain. To see this, note first that R is a G-ring [12, Theorem
77, p. 254]. Therefore R is a normal ring [12, Theorem 79, p. 258].
Since R/I is connected, it follows that R is connected. Thus R is a
normal domain. Let (ﬁ, T ) be the henselization of R along /. By
[6, Proposition 1.5], R is also a normal domain. We now state our
main result.

THEOREM 1. Let K be the quotient field of either RorR and Da
central:v finite dimensional K-division algebra with exponent(D) = n.
Then D is a cyclic algebra of degree n .

Before starting the proof of Theorem 1 we mention an important
consequence for algebras over K, the quotient field of R. For sim-
plicity let us assume B(R) =0 and R is regular. The sequence

(1) 0 — B(K) % @H'(K(C), 0/2z)
C

is exact, where the summation is over all irreducible curves C on
SpecR [5, §3]. Therefore the class [D] in B(K) is completely de-
termined by the ramification data a([D]) in @ H'(K(C), Q/Z). The
irreducible curves Z; where a([D]) # 0 make up the ramification
divisor Z = Z,U---UZ,, of D. Denote a([D]) by (L;, ..., Ly)
where L; is a cyclic Galois extension of the function field K(Z;) of
Z;. Again, for the sake of simplicity, assume Z is connected. Sup-
pose I is a radical ideal for Z and let (R, I) be the henselization of
R along 1. Let (R, I)— (A4, J) be an étale neighborhood of (R, I).
Then we can assume A is a domain. Let K(A4) be the quotient field
of A. Let SpecA/J = W . Then W = Z . In fact we may write W
as a union of irreducibles W = W, U---U W,,, where W; = Z; for
each 7. The diagram

B(K(4)) — @, H(K(W)), Q/2)

g 1 I

B(K) —— @7 H(K(Z), Q/z)
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commutes. Since R — A is unramified on Z, the vertical arrow y
is an isomorphism. Up to the isomorphism 7y, the ramification data
for D ® K(4) on SpecA agrees with that for D on SpecR. So
D ® K(4) has exponent n. Therefore, upon restnctlon to K,D =
D ® K has exponent n. By Theorem I, D = D® K has index n.
More specifically, D is split by a cyclic extension L/K of degree
n. Therefore, for some (4, J), D ® K(A4) is a cyclic algebra with
index = exponent. This proves

COROLLARY 2. Let R be the affine coordinate ring of a smooth sur-
face with quotient field K and B(R) = (0). Let D be a central K-
division algebra. There is an étale R-algebra A such that upon restric-
tion to K(A) the ramification data of D are preserved and D becomes
a cyclic central simple algebra with index = exponent. O

We now begin the proof of Theorem 1. We begin with some general
results about splitting the ramification of central simple algebras on
surfaces. Let S be a normal, integral, algebraic surface with function
field F. Let L be a finite extension field of F and Y — § the
integral closure of S in L.

L
/|
Y F
! /
S
Let n: Y' — Y be any desingularization of Y. That is, Y’ is a

nonsingular surface and 7 is a proper, birational morphism. There is
a complex

0—B(Y')—-BL)3 @Hl Q/z) > P u(-
(3) P
= HYY', 1) -0

which is exact except possibly at the term @ H!(K(C), Q/Z). This
follows by combining sequences (3.1) and (3.2) of [5]. If H3(Y', u) =
0, (3) is exact. The first summation is over all irreducible curves
C C Y', the second over all closed points P € Y'. Let D be a
central F-division algebra and D; = D ® L, the restriction of D to
L. We say that L splits the ramification of D on S if there exists
a desingularization z: Y’ — Y such that [D;] is in the image of the
map B(Y’) — B(L). As was shown in [3], it is possible to find a
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desingularization o: S’ — S such that the ramification divisor Z of
D on S’ has normal crossings. As was pointed out in [8, §1], it is
technically easier to test whether L splits the ramification of D on
S’ than on §. The following proposition was implicitly proved in the
text immediately preceding Theorem 1.6 of [8]. We will make use of
the construction used in the proof; hence we give it here for reference.

ProrosITION 3. With the preceding notation, if the exponent of [D]
in B(F) is n, then there exists a cyclic Galois extension L/F of degree
n that splits the ramification of D on S'.

Proof. Let Z be the ramification divisor of D on S’. Using
[11, §V.1] we can find nonsingular curves D;, D, on S’ such that
Z ~ Dy — D, and the curve Z U D, U D, is a divisor with normal
crossings. So there is a function « € F such that the principal divisor
(o) has underlying curve Z UD; UD, and o has valuation +1 on
each irreducible component of Z. Let L = F(a!/"). Let Y’ be the
integral closure of S’ in L. Let Y” — Y’ be any resolution of the
singularities of Y’. Since (o) has normal crossings Y’ has only ratio-
nal singularities [8, Theorem 1.2]. We want to show that the algebra
D; = D® L is unramified along each prime divisor of Y”, or that
D; extends to an Azumaya algebra on Y”. Let o be the composite
morphism Y” — Y’ — §’. Then ¢ has ramification index » at the
prime components of Z . If E is the exceptional divisor of Y" — Y',
then D; is unramified on Y” — E by [8, diagram (4)]. Since Y’ has
rational singularities E is simply connected so B(Y") = B(Y" — E)
[8, Corollary 0.2]. Thus D; is unramified on Y” and L splits the
ramificiation of D on §'. O

ExaMPLE 4. This is an example of a field extension L/F that splits
the ramification of D but does not split the Brauer class of D. In
the setting of Theorem 1 above, this phenomenon cannot occur be-
cause the surface X = SpecR is henselized. Let S = 42, the affine
plane over k, F = k(x, y) and D the symbol algebra (x, y),. Let
L be the quadratic extension Fv/xy(x2—1)(y2 —1). The ramifica-
tion divisor of D on S is the curve xy = 0. Now L splits the
ramification of D on § since the ramification index of Y’ — § is
2 at the primes (x) and (). So Dy is unramified on the surface
defined by the equation z? = xy(x%—1)(y?>—1). We claim D; is not
split. This is because D; remains unsplit upon restriction to the field
M = F(y/x(x2-1), v/y(y2 —1)). In fact the symbol algebra (x, y),
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is a generator of ,B(C; x C;) where C; and C, are the elliptic curves
defined by u? = x(x2 —1) and v? = y(y? — 1) respectively (see [7,
Example 9]).

As in Theorem 1, let R be the affine coordinate ring of a normal,
integral, 2 dimensional variety over k. Let I be an ideal in R such
that R/I is reduced and connected. Let (R, I) be the henselization
of R along I. Let K be the quotient field of R and X = SpecR
Let D be a central K-division algebra with exponent 7 in B(K ). Let
n: X' — X be a resolution o{ the singularities of X . Let Z C X' be
the ramification divisor of D on X'. If necessary, blow up points
on X’ so that the ramification divisor of D on X’ is a divisor with
normal crossings.

CorOLLARY 5. Let n: X' — X, K, D, n be as above. Then there
exists a cyclic extension L of K of degree n that splits the ramification
of D on X'.

Proof. Since R is the direct limit of integral domains A; of finite
type over K there is an étale neighborhood A4 of (R, I) and a central
simple algebra A over F = K(A4) such that D=A®rK. Since U =
Spec A4 is an algebraic surface we apply Proposition 3 to find a cyclic
splitting field E/F for the ramification of A on U. Let L = KE
and let Y’ be the integral closure of X’ in L. By the construction
in the proof of Proposition 3 we see that Y’ — X’ has ramification
index n along each of the prime components of Z, where Z is the
ramification divisor of D on X'. Thus D; = D® L =AQEQL
is unramified on any desingularization of Y'. The construction of E
also makes it clear that L/K is cyclic of degree n. O

Proof of Theorem 1. By approximation techniques [6] it suffices to
assume K is the quotient field of R. We use the notation introduced
immediately before Corollary 5. By Corollary 5 there is a cyclic ex-
tension L of degree n that splits the ramification of D on X'. If
Y’ is the integral closure of X’ in L and Y” — Y’ is a resolution of
the singularities of Y’ then Lemma 6 below shows that B(Y") =0.
Thus Dy is split. O

LEMMA 6. Let X = SpecINQ be as above. Let n: X' — X be a
resolution of the singularities of X . Then B(X') = H*(X', G,) =0,
H3(X',Gn)=H3X', ) =0 and H*(X',G,) =H*X', n) =0
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Before proving the lemma we state a corollary which follows imme-
diately from (3) and Lemma 6.

COROLLARY 7. Let n: X' — X be a resolution of the singularities
of X =SpecR. Let K be the quotient field of R. The sequence

0— B(K @H‘ ), Q/z) > P u(-1)—0
P

is exact where the first summation is over all irreducible curves C C X'
and the second over all closed points P € X'. O

Proof of Lemma 6. First we note that since X’ is smooth,
H? (X', G,,) is torsion for p > 2 [10, p. 71]. Thus H?(X', G,,) =
H? (X', u) for p > 3 by Kummer theory. Since X’ is not complete,
H4(X', u) = 0 [13, Cor. VI.11.5]. Since X is normal it has finitely
many singular points say &;,...,¢&¢,. Let g;: & — X be the closed
immersion, foreach i. Let Q = {¢;, ..., &y}. Thenon X' -7~ 1(Q),
m is an isomorphism; hence the sheaves R77.(u,) have support on Q
for ¢ > 0. By proper base change each stalk Rz, (u, )5 is canonically
isomorphic to HY(X; , un) where X é = X' x ¢ is the fiber of 7 over
&i. So Rim,(uy) is the direct i image sheaf @D, g~ (F;) where F; isa
sheaf on &; [13, Cor. I1.3.11]. Since &; = Speck and k is algebraically
closed, F; is the constant sheaf RY ”*(/‘”)f, = HI(X é , Un). The spec-
tral sequence for g;: & — X is HP(X, ng,-'(F,-))’=> HPt9(;, F;).
Since g 1is a closed immersion Rig-(F;) = 0 for ¢ > 0. Thus

H/(¢, Fi) = E| = -~ = E| = H/(X, g-F). Again, k is
algebralcally closed, so H/(X, g ~) = 0 for j > 0. This proves
Step 1.

Step 1. H?(X, Rim.(uy)) =0 for p >0,9>0.

Step 2. Let Z = Specﬁ/f. Then PicX = PicZ.

This follows from [16].

Step 3. B(X) =0 and H*(X, u,) =0.

Since Z 1is an affine curve, PicZ is divisible. This follows from
the exact Kummer sequence

PicZ 5 PicZ — HX(Z, u,)

and the fact that H*(Z, u,) = 0 since Z is not complete [13, Cor.
VI.11.5]. By Step 2, Pic X is also divisible. Now B(X) = B(Z) =0
[9] or [16] since Z is 1 dimensional over K. Kummer theory gives
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the exact sequence
(4) Pic X 5 PicX — H2(X, un) = H3(X, Gp) & - .

But ,B(X) = ,H?(X, G,;) by Gabber’s theorem, so H*(X, u,) =0.
This completes Step 3.

Now let C denote the fiber X’ x y Q over the singular points of X .
Let C..q denote the reduced fiber and write C,oq = C;U---UC; as a
union of irreducible curves. We may assume C.q has pure codimen-
sion one. The closed immersion C,.q — X’ induces a homomorphism
Pic X' — Pic C;eq. The Kummer map is Pic Creq — H?(Creq > Un) -

Step 4. The composite map Pic X’ — Pic Creq — H2(Creq, Un) 1S
surjective.

For each irreducible component C; of C..4 choose a point P; such
that P; is not in the singular set of C..q. We can also assume each
P; is not on the curve 7z~ !(Z). Since each C; is nonsingular and X’
is nonsingular we can find a prime divisor V; for each i such that V;
intersects C; transversally at P;:

;

B "

So V; is prime, disjoint from n~!(Z), hence is a henselian curve.
Thus V; is geometrically unibranched and intersects Crq €xactly at
P;. Consider the diagram

Now H*(C; — P;, un) = 0 and z/n — H?(C;, u,) is an isomor-
phism. Thus (5) shows that the class of P; in PicC; maps to a
generator of H2(C;, u,). The composite Pic X' — PicC; takes the
class of V; to the class of P;. This proves Step 4 since H2(Creq, tn) =
BH(Ci, ).

Step 5. HX(X', un) = HO(X, R2m,(1n)) .

Consider the spectral sequence for 7: X' — X,

(6) HP (X, ROm.(un)) = HPY(X', pn).
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From Steps 1 and 3 the sequence looks like

HO(X, R%m,py,) 0 0
HO(X, R7.11,) 0 0
HO(X, m.u,) HY(X, moun)  H2(X, mopy) =0

So HX (X', un) = E3 2 E? D E3 = 0. Since E? = 0, E} = E}? =
HO(X, R?m,u,) and the map H2(X', u,) — HO(X, R?m,u,) is an
isomorphism.

Step 6. The Kummer theory map Pic X’ — H2(X’, u,) is surjec-
tive.

The spectral sequence H?(X, Ri7,(G,,)) = HPT9(X', G,,) yields
the exact sequence of lower degree terms

(7) 0 — PicX — PicX’ — HO(X, R'7.(Gnp)).

Combining (7) with the Kummer theory maps (4) and Step 5 we get
the commutative diagram

ln ln
0— PicX - Pic X' —  H%UX,R'7.G,)
! | |
0 — H}X,u, — HX,R2mu,)—0

Now
m
HO(X , R2m.pn) = D HO(X, g (HA(XL , 1))

i=1
= @H (X, , ) =HA(C, ).

The inclusion C,q — C 1is defined by a sheaf of nil ideals so
H?(C, un) — H?(Cieq, ) is an isomorphism [4, VIII, Cor. 1.2].
By Step 4 we see that the composite PicX’ — H2*(X', u,) —
H?(Creq, tn) is surjective. Combining the above results gives Pic X' —
H2(X', un) surjective.

Step 7. B(X') = H*(X', G,) =0.

Since X' is a smooth surface, B(X’) = H%(X’, G,,). By Kummer
theory,

Pic X' & Pic X' — H2(X', un) — »B(X') = 0

is exact. By Step 6, B(X') = 0.

Step 8. H3(X', Gpy) = H3(X', u,) =0.

As pointed out at the beginning of this proof, H3(X', G,) =
H3(X', ). The spectral sequence (6) yields H3 (X', un) = EJ
E? = E3 =E3 =H3(X, u,) =0 since X is an affine surface. O
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REMARK 8. Let (R, I), (R, I) be as in Theorem 1 except assume
moreover that R is regular and Z = Spec R/I has simply connected
desingularization. That is, if Z is the desingularization of Z, then
H!(Z, Q/z) = 0. Let K be the quotient field of R and D a central
K-division algebra with exponent 7 in B(K). Then Theorem 1 shows
that D is cyclic, hence is a symbol algebra (a, #), over K. Following
the steps of [8, §2] one can give an explicit description of « and S.

The details are omitted.

REMARK 9. We close with some comments on the possibility of glob-
alizing the above techniques to an affine rational surface with trivial
Brauer group (e.g. 42). In Corollary 2, suppose one can find the étale
R-algebra A4 such that (K(A4): K) is prime to index(D). Then, upon
restriction to K(A4) the index of D remains constant by [1, p. 60]. So
index(D) = exponent(D). To prove that such an algebra 4 always
exists does not appear to be possible in the near future. The henselian
property was used in a critical way in Step 4 to lift Picard group ele-
ments from the ramification divisor. Suppose an étale neighborhood
A of the ramification divisor can be constructed such that (1) the
degree(K(A): K) 1s prime to degree(D) and (2) on Spec 4, the com-
posite map Pic(Spec 4 x X') — Pic Creq — H?(Creq, 4n) of Step 4 is
surjective. Then, upon restriction to K(4) D will be a cyclic algebra
with index = exponent. Again, this means exponent(D) = index(D).
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