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DIVISION ALGEBRAS
OVER NONLOCAL HENSELIAN SURFACES

TIMOTHY J. FORD

Let R be the coordinate ring of an integral affine algebraic sur-
face, R the henselization of R along a reduced, connected curve and
K the quotient field of R . Then every central ^-division algebra D
of exponent n in B(K) is cyclic of degree n . If K is the quotient
field of R and D is a central AΓ-division algebra of exponent n with
ramification divisor Z on Spec R, then there is an etale neighbor-
hood U -> SpecR of Z such that upon restriction to K(U)9 D is
a cyclic algebra of exponent n and index n .

In this paper we continue to investigate the structure of division
algebras D finite dimensional over their center K, where K has
transcendence degree 2 over an algebraically closed field k of char-
acteristic 0. The motivating question behind this work, which re-
mains unanswered, is whether the exponent of the class [D] in the
Brauer group B(K) is equal to the degree y/(D : K) of the divi-
sion algebra. This question has been addressed in the works [2], [3]
and [8]. In [2] it was shown that exponent(D) = degree(D) when
exponent(Z>) has prime factorization 2 " 3 m . It was shown in [3]
that exponent(Z>) = degree(Z)) when K is the quotient field of the
henselization at a closed point on a normal algebraic surface. Divi-
sion algebras over such fields K were also studied in [8]. In [8] it was
shown that every central ^-division algebra is also cyclic. That is, if
exρonent(Z>) = n, there is a cyclic Galois extension L/K of degree n
which splits D (see for example, [15, §30]). Thus a structure theory
for division algebras was obtained which is similar to that of global
fields. The purpose of this paper is to extend the results of [8] to the
case where K is the function field of a ring R obtained by henselizing
an affine algebraic surface along a curve. The line of proof used here
pretty nearly follows that of [8]. As another parallel to [8] we point
out in Remark 8 that [8, §2] can be adapted to construct the algebra
D as a symbol (α, β)n over K in the special case that D ramifies
on a curve Z whose normalization Z is simply connected.

The results of this paper are mainly concerned with surfaces
that have been henselized along a curve. For the basic properties of
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henselian couples, the reader is referred to [14]. Let R be the coor-
dinate ring of a normal, integral, 2-dimensional affine variety over k.
Let / be an ideal in R such that R/I is reduced and connected. Let
R be the completion of R in the /-adic topology. Then R is a nor-
mal domain. To see this, note first that R is a G-ring [12, Theorem
77, p. 254]. Therefore R is a normal ring [12, Theorem 79, p. 258].
Since R/I is connected, it follows that R is connected. Thus R is a
normal domain. Let (R, 7) be the henselization of R along / . By
[6, Proposition 1.5], R is also a normal domain. We now state our
main result.

THEOREM 1. Let K be the quotient field of either R or R and D a
central finite dimensional K-division algebra with exponent(Z)) = n.
Then D is a cyclic algebra of degree n.

Before starting the proof of Theorem 1 we mention an important
consequence for algebras over K, the quotient field of R. For sim-
plicity let us assume B(R) = 0 and R is regular. The sequence

(1) O -
c

is exact, where the summation is over all irreducible curves C on
Speci? [5, §3]. Therefore the class [D] in B(K) is completely de-
termined by the ramification data a([D]) in φ H ^ K ί C ) , Q/Z). The
irreducible curves Z, where a([D]) Φ 0 make up the ramification
divisor Z = Zx U U Zm of D. Denote a([D]) by (L{, . . . , Lm)
where Lz is a cyclic Galois extension of the function field K(Z/) of
Z/. Again, for the sake of simplicity, assume Z is connected. Sup-
pose / is a radical ideal for Z and let (R, /) be the henselization of
R along / . Let (R91) -* (A9 J) be an etale neighborhood of (R, / ) .
Then we can assume A is a domain. Let K.(A) be the quotient field
of A. Let SpecΛ/J = W. Then W = Z . In fact we may write W
as a union of irreducibles W — W\ U U ̂  where Ŵ  = Z/ for
each /. The diagram

(2) I ]r
B(K) y 0 £ , Hι(K.(Zi), Q/Z)
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commutes. Since R —• A is unramified on Z , the vertical arrow γ
is an isomorphism. Up to the isomorphism γ, the ramification data
for D®K(A) on Spec ,4 agrees with that for D on Spec JR. So
D ® K(A) has exponent n . Therefore, upon restriction to K, D =
D ® K has exponent n. By Theorem 1, D = D ® K has index n.
More specifically, D is split by a cyclic extension L/K of degree
ft. Therefore, for some (A, / ) , D ® K(^4) is a cyclic algebra with
index = exponent. This proves

COROLLARY 2. Lei i? 6e ί/ze affine coordinate ring of a smooth sur-
face with quotient field K and B(R) = (0). Let D be a central K-
division algebra. There is an etale R-algebra A such that upon restric-
tion to YL{A) the ramification data of D are preserved and D becomes
a cyclic central simple algebra with index = exponent α

We now begin the proof of Theorem 1. We begin with some general
results about splitting the ramification of central simple algebras on
surfaces. Let S be a normal, integral, algebraic surface with function
field F. Let L be a finite extension field of F and Y —• S the
integral closure of S in L.

L

Let π: Y' —• Y be any desingularization of Y. That is, Y1 is a
nonsingular surface and π is a proper, birational morphism. There is
a complex

0 - B(Yf) - B(L) Λ φ t f ί K ί C ) , Q/Z)
(3) c

which is exact except possibly at the term @Hι(K(C), Q/Z). This
follows by combining sequences (3.1) and (3.2) of [5]. If H 3 ( 7 ' , μ) =
0, (3) is exact. The first summation is over all irreducible curves
C c Yf, the second over all closed points P e Y1. Let D be a
central /^-division algebra and Dι = D ® L, the restriction of Z> to
L. We say that L splits the ramification of D on S if there exists
a desingularization π: Y' -+Y such that [Z)L] is in the image of the
map B(7') —• B(L). As was shown in [3], it is possible to find a
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desingularization σ: Sf —• S such that the ramification divisor Z of
D on S' has normal crossings. As was pointed out in [8, §1], it is
technically easier to test whether L splits the ramification of D on
Sf than on S. The following proposition was implicitly proved in the
text immediately preceding Theorem 1.6 of [8]. We will make use of
the construction used in the proof; hence we give it here for reference.

PROPOSITION 3. With the preceding notation, if the exponent of [D]
in B(F) is n, then there exists a cyclic Galois extension L/F of degree
n that splits the ramification of D on S'.

Proof. Let Z be the ramification divisor of D on 5". Using
[11, §V.l] we can find nonsingular curves D\, Dj on S1 such that
Z ~ D\ - £>2 and the curve Z u D\ U Dι is a divisor with normal
crossings. So there is a function a e F such that the principal divisor
(α) has underlying curve Z u£>i Ul>2 and a has valuation +1 on
each irreducible component of Z . Let L = F{aιln). Let Yf be the
integral closure of Sf in L. Let Y" —• Y' be any resolution of the
singularities of Yf. Since (a) has normal crossings Y' has only ratio-
nal singularities [8, Theorem 1.2]. We want to show that the algebra

= D <g> L is unramified along each prime divisor of Y", or that
extends to an Azumaya algebra on Y". Let σ be the composite

morphism Y" —• Y' —> S1. Then σ has ramification index n at the
prime components of Z . If E is the exceptional divisor of Y" -» Yf,
then DL is unramified on Y" - E by [8, diagram (4)]. Since Y' has
rational singularities E is simply connected so B(Y") = 2?(y" - 2?)
[8, Corollary 0.2]. Thus DL is unramified on Γ" and L splits the
ramificiation of D on 5 ' . D

EXAMPLE 4. This is an example of a field extension L/F that splits
the ramification of D but does not split the Brauer class of D. In
the setting of Theorem 1 above, this phenomenon cannot occur be-
cause the surface X = Speci? is henselized. Let S = A1, the affine
plane over k, F = k(x, y) and D the symbol algebra (JC , y)ι. Let
L be the quadratic extension Fy/xy(x2 - l)(y2 - 1). The ramifica-
tion divisor of D on S is the curve xy = 0. Now L splits the
ramification of D on S since the ramification index of Y' -+ S is
2 at the primes (x) and (y). So DL is unramified on the surface
defined by the equation z2 = xy(x2 - l)(y2 - 1). We claim DL is not
split. This is because DL remains unsplit upon restriction to the field
M = F{y/x(x2- 1), y/yfy1- 1)). In fact the symbol algebra (JC , y)2
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is a generator of 2#(CΊ x Q ) where C\ and C2 are the elliptic curves
defined by u2 = x(x2 - 1) and v2 = y(y2 - 1) respectively (see [7,
Example 9]).

As in Theorem 1, let R be the affine coordinate ring of a normal,
integral, 2 dimensional variety over k. Let / be an ideal in R such
that R/I is reduced and connected. Let (R, /) be the henselization
of R along / . Let K be the quotient field of R and X = Spec I?.
Let D be a central AΓ-division algebra with exponent n in B(K). Let
π: X' —> X be a resolution of the singularities of X. Let Z c X1 be
the ramification divisor of D on Xf. If necessary, blow up points
on X' so that the ramification divisor of D on X1 is a divisor with
normal crossings.

COROLLARY 5. Let π: Xf -+ X, K, D, n be as above. Then there
exists a cyclic extension LofK of degree n that splits the ramification
ofb on X1.

Proof. Since R is the direct limit of integral domains Aι of finite
type over K there is an etale neighborhood A of (i?, /) and a central
simple algebra Λ over F = K.(A) such that D = Λ®f K. Since £/ =
Specv4 is an algebraic surface we apply Proposition 3 to find a cyclic
splitting field E/F for the ramification of Λ on U. Let L = KE
and let Y' be the integral closure of X' in L. By the construction
in the proof of Proposition 3 we see that Yr —• X1 has ramification
index n along each of the prime components of Z , where Z is the
ramification divisor of D on Xr. Thus DL = D ® L = K® E ® L
is unramified on any desingularization of Y'. The construction of E
also makes it clear that L/K is cyclic of degree n . D

Proof of Theorem 1. By approximation techniques [6] it suffices to
assume K is the quotient field of R. We use the notation introduced
immediately before Corollary 5. By Corollary 5 there is a cyclic ex-
tension L of degree n that splits the ramification of D on Xf. If
Y' is the integral closure of X1 in L and Y" —> Y' is a resolution of
the singularities of Y', then Lemma 6 below shows that B{Y") = 0.
Thus Z>£ is split. D

LEMMA 6. Lέtf Λf = Speci? be as above. Let π: X' —• X be a

resolution of the singularities of X. Then B(Xf) = H 2(X', G m ) = 0,
3 G m ) = H 3 ( Z ; , μ) = 0 am/ H 4 (X ; , Gm) = H 4(X', μ) = 0.
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Before proving the lemma we state a corollary which follows imme-
diately from (3) and Lemma 6.

COROLLARY 7. Let π: X' -> X be a resolution of the singularities
of X = Speci?. Let K be the quotient field of R. The sequence

C P

is exact where the first summation is over all irreducible curves C c X1

and the second over all closed points P e X1. D

Proof of Lemma 6. First we note that since X1 is smooth,
W(X'9 Gm) is torsion for p > 2 [10, p. 71]. Thus ΉP(X', Gm) =
HP(X', μ) for p > 3 by Kummer theory. Since X' is not complete,
H 4 (X', μ) = 0 [13, Cor. VI. 11.5]. Since X is normal it has finitely
many singular points say ξ \, . . . , ξm . Let gi: ξt^ ̂  X be the closed
immersion, for each /. Let Ω = {ξ\, . . . , ξm}. Then on Xf-π~ι (Ω),
π is an isomorphism; hence the sheaves Rqπ*(μn) have support on Ω
for q > 0. By proper base change each stalk Rqπ*(μn)ζ is canonically
isomorphic to Hq(Xς , μn) where JŜ  = Xf xζi is the fiber of π over
£, . So Rqπ*(μn) is the direct image sheaf φ ^ j g/*(F/) where F/ is a
sheaf on & [13, Cor. II.3.11]. Since ξj = Spec/c and fc is algebraically
closed, Fi is the constant sheaf Rqπ*(μn)ξ = H (̂JSΓί ,//«). The spec-
tral sequence for gi: ζt ^ X is H^(^Γ, R*& (/•))'=> H^+^(^ , F,).
Since g/ is a closed immersion Rqgj (Fi) = 0 for # > 0. Thus
Ê o = H ^ - , ^ ) = E{ = ... = Ej = W(X,grFi). Again, A: is
algebraically closed, so W(X, g/ F/) = 0 for 7 > 0. This proves
Step 1.

Step 1. W(X, R*π*(μn)l= 0 for p > 0, q > 0.
Λ^p 2. Let Z = SpecjR/7. Then PicX = P i c Z .
This follows from [16].
Step 3. B(X) = 0 and H 2 (X, //„) = 0.
Since Z is an affine curve, PicZ is divisible. This follows from

the exact Kummer sequence

PicZ Λ PicZ -^H2(Z,μn)

and the fact that H 2 ( Z , μn) = 0 since Z is not complete [13, Cor.
VI.11.5]. By Step 2, PicX is also divisible. Now B(X) = B(Z) = 0
[9] or [16] since Z is 1 dimensional over K. Kummer theory gives
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the exact sequence

(4) PicX Λ PicX - H 2 (X, μn) - H 2 ( I , G m ) A . .

But nB(X) = WH 2(X, G m ) by Gabber's theorem, so H2(X, μn) = 0.
This completes Step 3.

Now let C denote the fiber X' xx Ω over the singular points of X.
Let Cred denote the reduced fiber and write C r e d = C\ U U Q as a
union of irreducible curves. We may assume C r e d has pure codimen-
sion one. The closed immersion Cre(i«-• X1 induces a homomorphism
VicX' —• Pic C r e d . The Kummer map is Pic Cred —• H2(C r ed,//«).

5ίcp 4. The composite map PicX' —• PicC r e d —• H 2(C r ed ? βn) is
surjective.

For each irreducible component C, of Cred choose a point Pi such
that P/ is not in the singular set of Cred - We can also assume each
Pi is not on the curve π~ι(Z). Since each Q is nonsingular and X'
is nonsingular we can find a prime divisor V\ for each / such that V{
intersects Q transversally at P/:

Q

τ r

So Vi is prime, disjoint from π " ! ( Z ) , hence is a henselian curve.
Thus Vi is geometrically unibranched and intersects Cred exactly at
Pi. Consider the diagram

1 •-> P/

r M Z ^ PicCi - Pic(C/-P/)

Now H2(C/ - JP|, //,,) = 0 and Z/Λ -• H 2 ( Q , ^ Λ ) is an isomor-
phism. Thus (5) shows that the class of Pj in PicC, maps to a
generator of H 2 ( C ί ? μn). The composite PicX' -> PicC/ takes the
class of Vi to the class of P z . This proves Step 4 since H2(C r ed, μn) =
0H2(Ch/ι«),

Consider the spectral sequence for π: X' —> X,

(6) H^(X, R^π*(^)) => H ^ ( X ' ? /ιΛ).
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From Steps 1 and 3 the sequence looks like

Ή?(X9R
2π*μn) 0 0

^ R 1 ; ^ ) 0 0
, π*μn) H 1 ^ , π.μn) H2(X, πφn) = 0

So H 2 (X', μn) = E2 D E2 D E2 = 0. Since E2 = 0, E2 = E ^ 2 =
H°(ΛΓ, R2π*μ«) and the map H2(X', μn) -> H°(X, R2π*μΛ) is an
isomorphism.

5tep 6. The Kummer theory map PicX' -> H 2(X', μΛ) is surjec-
tive.

The spectral sequence W{X, R«τr*((?m)) => ΉP+«(X',Gm) yields
the exact sequence of lower degree terms

(7) 0 -> PicX -> PicX' -^ H°(X, R ^ * ( G m ) ) .

Combining (7) with the Kummer theory maps (4) and Step 5 we get
the commutative diagram

0

Now
m

H°(X, R2π.μn) = φH°(X, ft.(H2(^ , μn)))

in
PicX -

I
0

in

I
- H 2 ( X ' ,

n -»

fin) ~»

• H°(X,

• H ° ( X , ϊ
1

G w )

0 -»•

The inclusion Cre^ ^ C is defined by a sheaf of nil ideals so
H2(C,μn) -+ H2(Creά,μn) is an isomorphism [4, VIII, Cor. 1.2].
By Step 4 we see that the composite PicX7 —> H2(X', μn) ->
H 2(C r ed, ///i) is surjective. Combining the above results gives PicX'—•
H2(Xr, μn) surjective.

Step 7. B(X') = H 2(X', G m ) = 0.
Since X1 is a smooth surface, B(X') = H 2(X', G m ) . By Kummer

theory,

PicX' Λ PicX' - H 2 (X ; , /ιΛ) -> ΠB(X0 ^ 0

is exact. By Step 6, B(ΛΓ') = 0.
Λ Φ 8. H 3(X', G m ) = H3(X' ,//„) = 0.
As pointed out at the beginning of this proof, H 3(X', Gm) =

H3(Xf, μn). The spectral sequence (6) yields H3(Xf, μn) = E^ =
E^ = E^ = E^ = H 3 (X , μn) = 0 since X is an affine surface. D
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REMARK 8. Let (i?, / ) , (R9 7) be as in Theorem 1 except assume
moreover that R is regular and Z = Spec R/1 has simply connected
desingularization. That is, if Z is the desingularization of Z , then
H ^ Z , Q/Z) = 0. Let K be the quotient field of R and D a central
X-division algebra with exponent n in B(K). Then Theorem 1 shows
that D is cyclic, hence is a symbol algebra (α, /?)Λ over i£. Following
the steps of [8, §2] one can give an explicit description of a and β.
The details are omitted.

REMARK 9. We close with some comments on the possibility of glob-
alizing the above techniques to an affine rational surface with trivial
Brauer group (e.g. A2). In Corollary 2, suppose one can find the etale
i?-algebra A such that (K(A): K) is prime to index(Z)). Then, upon
restriction to K(A) the index of D remains constant by [1, p. 60]. So
index(Z)) = exponent(Z)). To prove that such an algebra A always
exists does not appear to be possible in the near future. The henselian
property was used in a critical way in Step 4 to lift Picard group ele-
ments from the ramification divisor. Suppose an etale neighborhood
A of the ramification divisor can be constructed such that (1) the
degree(K(^4): K) is prime to degree(Z>) and (2) on Spec A, the com-
posite map Pic(Specv4 x X1) —• PicCred —• H2(C r ed, μn) of Step 4 is
surjective. Then, upon restriction to K(̂ 4) D will be a cyclic algebra
with index = exponent. Again, this means exponent(Z)) = index(Z>).
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