DIVISION ALGEBRAS OVER NONLOCAL HENSELIAN SURFACES

TIMOTHY J. FORD

Let R be the coordinate ring of an integral affine algebraic surface, \widetilde{R} the henselization of R along a reduced, connected curve and \widetilde{K} the quotient field of \widetilde{R} . Then every central \widetilde{K} -division algebra \widetilde{D} of exponent n in $B(\widetilde{K})$ is cyclic of degree n. If K is the quotient field of R and D is a central K-division algebra of exponent n with ramification divisor Z on $\operatorname{Spec} R$, then there is an étale neighborhood $U \to \operatorname{Spec} R$ of Z such that upon restriction to K(U), D is a cyclic algebra of exponent n and index n.

In this paper we continue to investigate the structure of division algebras D finite dimensional over their center K, where K has transcendence degree 2 over an algebraically closed field k of characteristic 0. The motivating question behind this work, which remains unanswered, is whether the exponent of the class [D] in the Brauer group B(K) is equal to the degree $\sqrt{(D:K)}$ of the division algebra. This question has been addressed in the works [2], [3] and [8]. In [2] it was shown that exponent(D) = degree(D) when exponent(D) has prime factorization $2^n 3^m$. It was shown in [3] that exponent(D) = degree(D) when K is the quotient field of the henselization at a closed point on a normal algebraic surface. Division algebras over such fields K were also studied in [8]. In [8] it was shown that every central K-division algebra is also cyclic. That is, if exponent(D) = n, there is a cyclic Galois extension L/K of degree n which splits D (see for example, [15, §30]). Thus a structure theory for division algebras was obtained which is similar to that of global fields. The purpose of this paper is to extend the results of [8] to the case where K is the function field of a ring \widetilde{R} obtained by henselizing an affine algebraic surface along a curve. The line of proof used here pretty nearly follows that of [8]. As another parallel to [8] we point out in Remark 8 that [8, §2] can be adapted to construct the algebra D as a symbol $(\alpha, \beta)_n$ over K in the special case that D ramifies on a curve Z whose normalization \overline{Z} is simply connected.

The results of this paper are mainly concerned with surfaces that have been henselized along a curve. For the basic properties of henselian couples, the reader is referred to [14]. Let R be the coordinate ring of a normal, integral, 2-dimensional affine variety over k. Let I be an ideal in R such that R/I is reduced and connected. Let \widehat{R} be the completion of R in the I-adic topology. Then \widehat{R} is a normal domain. To see this, note first that R is a G-ring [12, Theorem 77, p. 254]. Therefore \widehat{R} is a normal ring [12, Theorem 79, p. 258]. Since R/I is connected, it follows that \widehat{R} is connected. Thus \widehat{R} is a normal domain. Let $(\widehat{R}, \widehat{I})$ be the henselization of R along I. By [6, Proposition 1.5], \widehat{R} is also a normal domain. We now state our main result.

Theorem 1. Let \widetilde{K} be the quotient field of either \widehat{R} or \widetilde{R} and \widetilde{D} a central, finite dimensional \widetilde{K} -division algebra with exponent $(\widetilde{D}) = n$. Then \widetilde{D} is a cyclic algebra of degree n.

Before starting the proof of Theorem 1 we mention an important consequence for algebras over K, the quotient field of R. For simplicity let us assume B(R) = 0 and R is regular. The sequence

(1)
$$0 \to \mathbf{B}(K) \stackrel{a}{\to} \bigoplus_{C} \mathbf{H}^{1}(\mathbf{K}(C), \mathbb{Q}/\mathbb{Z})$$

is exact, where the summation is over all irreducible curves C on Spec R [5, §3]. Therefore the class [D] in B(K) is completely determined by the ramification data a([D]) in $\bigoplus H^1(K(C), \mathbb{Q}/\mathbb{Z})$. The irreducible curves Z_i where $a([D]) \neq 0$ make up the ramification divisor $Z = Z_1 \cup \cdots \cup Z_m$ of D. Denote a([D]) by (L_1, \ldots, L_m) where L_i is a cyclic Galois extension of the function field $K(Z_i)$ of Z_i . Again, for the sake of simplicity, assume Z is connected. Suppose I is a radical ideal for Z and let $(\widetilde{R}, \widetilde{I})$ be the henselization of R along I. Let $(R, I) \rightarrow (A, J)$ be an étale neighborhood of (R, I). Then we can assume A is a domain. Let K(A) be the quotient field of A. Let Spec A/J = W. Then $W \cong Z$. In fact we may write W as a union of irreducibles $W = W_1 \cup \cdots \cup W_m$ where $W_i \cong Z_i$ for each i. The diagram

(2)
$$B(K(A)) \longrightarrow \bigoplus_{i=1}^{m} H^{1}(K(W_{i}), \mathbb{Q}/\mathbb{Z})$$

$$\uparrow \qquad \qquad \uparrow \gamma$$

$$B(K) \longrightarrow \bigoplus_{i=1}^{m} H^{1}(K(Z_{i}), \mathbb{Q}/\mathbb{Z})$$

commutes. Since $R \to A$ is unramified on Z, the vertical arrow γ is an isomorphism. Up to the isomorphism γ , the ramification data for $D \otimes \mathrm{K}(A)$ on Spec A agrees with that for D on Spec R. So $D \otimes \mathrm{K}(A)$ has exponent n. Therefore, upon restriction to \widetilde{K} , $\widetilde{D} = D \otimes \widetilde{K}$ has exponent n. By Theorem 1, $\widetilde{D} = D \otimes \widetilde{K}$ has index n. More specifically, \widetilde{D} is split by a cyclic extension L/\widetilde{K} of degree n. Therefore, for some (A, J), $D \otimes \mathrm{K}(A)$ is a cyclic algebra with index = exponent. This proves

COROLLARY 2. Let R be the affine coordinate ring of a smooth surface with quotient field K and B(R) = (0). Let D be a central K-division algebra. There is an étale R-algebra A such that upon restriction to K(A) the ramification data of D are preserved and D becomes a cyclic central simple algebra with index = exponent.

We now begin the proof of Theorem 1. We begin with some general results about splitting the ramification of central simple algebras on surfaces. Let S be a normal, integral, algebraic surface with function field F. Let L be a finite extension field of F and $Y \to S$ the integral closure of S in L.

Let $\pi\colon Y'\to Y$ be any desingularization of Y. That is, Y' is a nonsingular surface and π is a proper, birational morphism. There is a complex

(3)
$$0 \to \mathbf{B}(Y') \to \mathbf{B}(L) \xrightarrow{a} \bigoplus_{C} \mathbf{H}^{1}(\mathbf{K}(C), \mathbb{Q}/\mathbb{Z}) \xrightarrow{r} \bigoplus_{P} \mu(-1)$$
$$\xrightarrow{s} \mathbf{H}^{4}(Y', \mu) \to 0$$

which is exact except possibly at the term $\bigoplus H^1(K(C), \mathbb{Q}/\mathbb{Z})$. This follows by combining sequences (3.1) and (3.2) of [5]. If $H^3(Y', \mu) = 0$, (3) is exact. The first summation is over all irreducible curves $C \subseteq Y'$, the second over all closed points $P \in Y'$. Let D be a central F-division algebra and $D_L = D \otimes L$, the restriction of D to L. We say that L splits the ramification of D on S if there exists a desingularization $\pi \colon Y' \to Y$ such that $[D_L]$ is in the image of the map $B(Y') \to B(L)$. As was shown in [3], it is possible to find a

desingularization $\sigma: S' \to S$ such that the ramification divisor Z of D on S' has normal crossings. As was pointed out in $[8, \S 1]$, it is technically easier to test whether L splits the ramification of D on S' than on S. The following proposition was implicitly proved in the text immediately preceding Theorem 1.6 of [8]. We will make use of the construction used in the proof; hence we give it here for reference.

PROPOSITION 3. With the preceding notation, if the exponent of [D] in B(F) is n, then there exists a cyclic Galois extension L/F of degree n that splits the ramification of D on S'.

Proof. Let Z be the ramification divisor of D on S'. Using [11, $\S V.1$] we can find nonsingular curves D_1 , D_2 on S' such that $Z \sim D_1 - D_2$ and the curve $Z \cup D_1 \cup D_2$ is a divisor with normal crossings. So there is a function $\alpha \in F$ such that the principal divisor (α) has underlying curve $Z \cup D_1 \cup D_2$ and α has valuation +1 on each irreducible component of Z. Let $L = F(\alpha^{1/n})$. Let Y' be the integral closure of S' in L. Let $Y'' \rightarrow Y'$ be any resolution of the singularities of Y'. Since (α) has normal crossings Y' has only rational singularities [8, Theorem 1.2]. We want to show that the algebra $D_L = D \otimes L$ is unramified along each prime divisor of Y", or that D_L extends to an Azumaya algebra on Y''. Let σ be the composite morphism $Y'' \to Y' \to S'$. Then σ has ramification index n at the prime components of Z. If E is the exceptional divisor of $Y'' \to Y'$, then D_L is unramified on Y'' - E by [8, diagram (4)]. Since Y' has rational singularities E is simply connected so $B(Y'') \cong B(Y'' - E)$ [8, Corollary 0.2]. Thus D_L is unramified on Y" and L splits the ramificiation of D on S'.

Example 4. This is an example of a field extension L/F that splits the ramification of D but does not split the Brauer class of D. In the setting of Theorem 1 above, this phenomenon cannot occur because the surface $X = \operatorname{Spec} \widetilde{R}$ is henselized. Let $S = A^2$, the affine plane over k, F = k(x, y) and D the symbol algebra $(x, y)_2$. Let L be the quadratic extension $F\sqrt{xy(x^2-1)(y^2-1)}$. The ramification divisor of D on S is the curve xy = 0. Now L splits the ramification of D on S since the ramification index of $Y' \to S$ is 2 at the primes (x) and (y). So D_L is unramified on the surface defined by the equation $z^2 = xy(x^2-1)(y^2-1)$. We claim D_L is not split. This is because D_L remains unsplit upon restriction to the field $M = F(\sqrt{x(x^2-1)}, \sqrt{y(y^2-1)})$. In fact the symbol algebra $(x, y)_2$

is a generator of $_2B(C_1 \times C_2)$ where C_1 and C_2 are the elliptic curves defined by $u^2 = x(x^2 - 1)$ and $v^2 = y(y^2 - 1)$ respectively (see [7, Example 9]).

As in Theorem 1, let R be the affine coordinate ring of a normal, integral, 2 dimensional variety over k. Let I be an ideal in R such that R/I is reduced and connected. Let $(\widetilde{R}, \widetilde{I})$ be the henselization of R along I. Let \widetilde{K} be the quotient field of \widetilde{R} and $X = \operatorname{Spec} \widetilde{R}$. Let \widetilde{D} be a central \widetilde{K} -division algebra with exponent n in $B(\widetilde{K})$. Let $\pi\colon X'\to X$ be a resolution of the singularities of X. Let $Z\subseteq X'$ be the ramification divisor of \widetilde{D} on X'. If necessary, blow up points on X' so that the ramification divisor of \widetilde{D} on X' is a divisor with normal crossings.

COROLLARY 5. Let $\pi\colon X'\to X$, \widetilde{K} , \widetilde{D} , n be as above. Then there exists a cyclic extension L of \widetilde{K} of degree n that splits the ramification of \widetilde{D} on X'.

Proof. Since \widetilde{R} is the direct limit of integral domains A_i of finite type over K there is an étale neighborhood A of (R,I) and a central simple algebra Λ over F = K(A) such that $\widetilde{D} = \Lambda \otimes_F \widetilde{K}$. Since $U = \operatorname{Spec} A$ is an algebraic surface we apply Proposition 3 to find a cyclic splitting field E/F for the ramification of Λ on U. Let $L = \widetilde{K}E$ and let Y' be the integral closure of X' in L. By the construction in the proof of Proposition 3 we see that $Y' \to X'$ has ramification index n along each of the prime components of Z, where Z is the ramification divisor of \widetilde{D} on X'. Thus $\widetilde{D}_L = \widetilde{D} \otimes L = \Lambda \otimes E \otimes L$ is unramified on any desingularization of Y'. The construction of E also makes it clear that E/\widetilde{K} is cyclic of degree E.

Proof of Theorem 1. By approximation techniques [6] it suffices to assume \widetilde{K} is the quotient field of \widetilde{R} . We use the notation introduced immediately before Corollary 5. By Corollary 5 there is a cyclic extension L of degree n that splits the ramification of \widetilde{D} on X'. If Y' is the integral closure of X' in L and $Y'' \to Y'$ is a resolution of the singularities of Y', then Lemma 6 below shows that B(Y'') = 0. Thus \widetilde{D}_L is split.

LEMMA 6. Let $X = \operatorname{Spec} \widetilde{R}$ be as above. Let $\pi: X' \to X$ be a resolution of the singularities of X. Then $B(X') = H^2(X', G_m) = 0$, $H^3(X', G_m) = H^3(X', \mu) = 0$ and $H^4(X', G_m) = H^4(X', \mu) = 0$.

Before proving the lemma we state a corollary which follows immediately from (3) and Lemma 6.

COROLLARY 7. Let $\pi: X' \to X$ be a resolution of the singularities of $X = \operatorname{Spec} \widetilde{R}$. Let \widetilde{K} be the quotient field of \widetilde{R} . The sequence

$$0 \to \mathbf{B}(\widetilde{K}) \stackrel{a}{\to} \bigoplus_{C} \mathbf{H}^{1}(\mathbf{K}(C)\,,\,\mathbb{Q}/\mathbb{Z}) \stackrel{r}{\to} \bigoplus_{P} \mu(-1) \to 0$$

is exact where the first summation is over all irreducible curves $C \subseteq X'$ and the second over all closed points $P \in X'$.

Proof of Lemma 6. First we note that since X' is smooth, $H^p(X', G_m)$ is torsion for $p \ge 2$ [10, p. 71]. Thus $H^p(X', G_m) =$ $H^p(X', \mu)$ for $p \ge 3$ by Kummer theory. Since X' is not complete, $H^4(X', \mu) = 0$ [13, Cor. VI.11.5]. Since X is normal it has finitely many singular points say ξ_1, \ldots, ξ_m . Let $g_i : \xi_i \hookrightarrow X$ be the closed immersion, for each i. Let $\Omega = \{\xi_1, \ldots, \xi_m\}$. Then on $X' - \pi^{-1}(\Omega)$, π is an isomorphism; hence the sheaves $\mathbb{R}^q \pi_*(\mu_n)$ have support on Ω for $q \ge 0$. By proper base change each stalk $\mathbb{R}^q \pi_*(\mu_n)_{\xi_i}$ is canonically isomorphic to $H^q(X'_{\xi_i}, \mu_n)$ where $X'_{\xi_i} = X' \times \xi_i$ is the fiber of π over ξ_i . So $\mathbb{R}^q \pi_*(\mu_n)$ is the direct image sheaf $\bigoplus_{i=1}^m g_{i^*}(F_i)$ where F_i is a sheaf on ξ_i [13, Cor. II.3.11]. Since $\xi_i = \operatorname{Spec} k$ and k is algebraically closed, F_i is the constant sheaf $\mathbb{R}^q \pi_*(\mu_n)_{\xi_i} = \mathbb{H}^q(X'_{\xi_i}, \mu_n)$. The spectral sequence for $g_i: \xi_i \hookrightarrow X$ is $H^p(X, \mathbb{R}^q g_{i^*}(F_i)) \Rightarrow H^{p+q}(\xi_i, F_i)$. Since g_i is a closed immersion $\mathbb{R}^q g_{i^*}(F_i) = 0$ for q > 0. Thus $E_0^j = H^j(\xi_i, F_i) = E_1^j = \cdots = E_i^j = H^j(X, g_{i^*}F_i)$. Again, k is algebraically closed, so $H^{j}(X, g_{j^{*}}F_{i}) = 0$ for j > 0. This proves Step 1.

Step 1. $H^p(X, \mathbb{R}^q \pi_*(\mu_n)) = 0$ for p > 0, q > 0.

Step 2. Let $Z = \operatorname{Spec} \widetilde{R}/\widetilde{I}$. Then $\operatorname{Pic} X \cong \operatorname{Pic} Z$.

This follows from [16].

Step 3. B(X) = 0 and $H^2(X, \mu_n) = 0$.

Since Z is an affine curve, Pic Z is divisible. This follows from the exact Kummer sequence

$$\operatorname{Pic} Z \xrightarrow{n} \operatorname{Pic} Z \to \operatorname{H}^{2}(Z, \mu_{n})$$

and the fact that $H^2(Z, \mu_n) = 0$ since Z is not complete [13, Cor. VI.11.5]. By Step 2, Pic X is also divisible. Now $B(X) \cong B(Z) = 0$ [9] or [16] since Z is 1 dimensional over K. Kummer theory gives

the exact sequence

(4)
$$\operatorname{Pic} X \xrightarrow{n} \operatorname{Pic} X \to H^{2}(X, \mu_{n}) \to H^{2}(X, G_{m}) \xrightarrow{n} \cdots$$

But ${}_{n}B(X) = {}_{n}H^{2}(X, G_{m})$ by Gabber's theorem, so $H^{2}(X, \mu_{n}) = 0$. This completes Step 3.

Now let C denote the fiber $X' \times_X \Omega$ over the singular points of X. Let C_{red} denote the reduced fiber and write $C_{\text{red}} = C_1 \cup \cdots \cup C_t$ as a union of irreducible curves. We may assume C_{red} has pure codimension one. The closed immersion $C_{\text{red}} \hookrightarrow X'$ induces a homomorphism $\text{Pic } X' \to \text{Pic } C_{\text{red}}$. The Kummer map is $\text{Pic } C_{\text{red}} \to \text{H}^2(C_{\text{red}}, \mu_n)$.

Step 4. The composite map $\operatorname{Pic} X' \to \operatorname{Pic} C_{\operatorname{red}} \to \operatorname{H}^2(C_{\operatorname{red}}, \mu_n)$ is surjective.

For each irreducible component C_i of C_{red} choose a point P_i such that P_i is not in the singular set of C_{red} . We can also assume each P_i is not on the curve $\pi^{-1}(Z)$. Since each C_i is nonsingular and X' is nonsingular we can find a prime divisor V_i for each i such that V_i intersects C_i transversally at P_i :

$$\frac{|C_i|}{|P_i|}$$

So V_i is prime, disjoint from $\pi^{-1}(Z)$, hence is a henselian curve. Thus V_i is geometrically unibranched and intersects $C_{\rm red}$ exactly at P_i . Consider the diagram

Now $H^2(C_i - P_i, \mu_n) = 0$ and $\mathbb{Z}/n \to H^2(C_i, \mu_n)$ is an isomorphism. Thus (5) shows that the class of P_i in Pic C_i maps to a generator of $H^2(C_i, \mu_n)$. The composite Pic $X' \to Pic C_i$ takes the class of V_i to the class of P_i . This proves Step 4 since $H^2(C_{red}, \mu_n) = \bigoplus H^2(C_i, \mu_n)$.

Step 5.
$$H^2(X', \mu_n) \cong H^0(X, \mathbb{R}^2 \pi_*(\mu_n))$$
.

Consider the spectral sequence for $\pi: X' \to X$,

(6)
$$H^p(X, \mathbb{R}^q \pi_*(\mu_n)) \Rightarrow H^{p+q}(X', \mu_n).$$

From Steps 1 and 3 the sequence looks like

$$\begin{array}{cccc} \mathsf{H}^0(X\,,\,\mathsf{R}^2\pi_*\mu_n) & 0 & 0 \\ \mathsf{H}^0(X\,,\,\mathsf{R}^1\pi_*\mu_n) & 0 & 0 \\ \mathsf{H}^0(X\,,\,\pi_*\mu_n) & \mathsf{H}^1(X\,,\,\pi_*\mu_n) & \mathsf{H}^2(X\,,\,\pi_*\mu_n) = 0 \end{array}$$

So $H^2(X', \mu_n) = E_0^2 \supseteq E_1^2 \supseteq E_2^2 = 0$. Since $E_1^2 = 0$, $E_0^2 = E_{\infty}^{0,2} = H^0(X, \mathbb{R}^2\pi_*\mu_n)$ and the map $H^2(X', \mu_n) \to H^0(X, \mathbb{R}^2\pi_*\mu_n)$ is an isomorphism.

Step 6. The Kummer theory map $\operatorname{Pic} X' \to \operatorname{H}^2(X', \mu_n)$ is surjective.

The spectral sequence $H^p(X, \mathbb{R}^q \pi_*(G_m)) \Rightarrow H^{p+q}(X', \mathbb{G}_m)$ yields the exact sequence of lower degree terms

(7)
$$0 \to \operatorname{Pic} X \to \operatorname{Pic} X' \to \operatorname{H}^0(X, \mathbb{R}^1 \pi_*(\mathbb{G}_m)).$$

Combining (7) with the Kummer theory maps (4) and Step 5 we get the commutative diagram

Now

$$H^{0}(X, \mathbb{R}^{2}\pi_{*}\mu_{n}) = \bigoplus_{i=1}^{m} H^{0}(X, g_{i^{*}}(\mathbb{H}^{2}(X'_{\xi_{i}}, \mu_{n})))$$
$$= \bigoplus_{i=1}^{m} \mathbb{H}^{2}(X'_{\xi_{i}}, \mu_{n}) = \mathbb{H}^{2}(C, \mu_{n}).$$

The inclusion $C_{\text{red}} \hookrightarrow C$ is defined by a sheaf of nil ideals so $H^2(C, \mu_n) \to H^2(C_{\text{red}}, \mu_n)$ is an isomorphism [4, VIII, Cor. 1.2]. By Step 4 we see that the composite $\text{Pic } X' \to H^2(X', \mu_n) \to H^2(C_{\text{red}}, \mu_n)$ is surjective. Combining the above results gives $\text{Pic } X' \to H^2(X', \mu_n)$ surjective.

Step 7.
$$B(X') = H^2(X', G_m) = 0$$
.

Since X' is a smooth surface, $B(X') = H^2(X', G_m)$. By Kummer theory,

$$\operatorname{Pic} X' \xrightarrow{n} \operatorname{Pic} X' \to \operatorname{H}^{2}(X', \mu_{n}) \to {}_{n}\operatorname{B}(X') \to 0$$

is exact. By Step 6, B(X') = 0.

Step 8.
$$H^3(X', G_m) = H^3(X', \mu_n) = 0$$
.

As pointed out at the beginning of this proof, $H^3(X', G_m) = H^3(X', \mu_n)$. The spectral sequence (6) yields $H^3(X', \mu_n) = E_0^3 = E_1^3 = E_2^3 = H^3(X, \mu_n) = 0$ since X is an affine surface.

REMARK 8. Let (R,I), $(\widetilde{R},\widetilde{I})$ be as in Theorem 1 except assume moreover that R is regular and $Z=\operatorname{Spec} R/I$ has simply connected desingularization. That is, if \overline{Z} is the desingularization of Z, then $H^1(\overline{Z},\mathbb{Q}/\mathbb{Z})=0$. Let \widetilde{K} be the quotient field of \widetilde{R} and \widetilde{D} a central \widetilde{K} -division algebra with exponent n in $B(\widetilde{K})$. Then Theorem 1 shows that \widetilde{D} is cyclic, hence is a symbol algebra $(\alpha,\beta)_n$ over \widetilde{K} . Following the steps of $[8,\S 2]$ one can give an explicit description of α and β . The details are omitted.

REMARK 9. We close with some comments on the possibility of globalizing the above techniques to an affine rational surface with trivial Brauer group (e.g. A^2). In Corollary 2, suppose one can find the étale R-algebra A such that (K(A):K) is prime to $\operatorname{index}(D)$. Then, upon restriction to K(A) the index of D remains constant by [1, p. 60]. So $\operatorname{index}(D) = \operatorname{exponent}(D)$. To prove that such an algebra A always exists does not appear to be possible in the near future. The henselian property was used in a critical way in Step 4 to lift Picard group elements from the ramification divisor. Suppose an étale neighborhood A of the ramification divisor can be constructed such that (1) the degree(K(A):K) is prime to degree(D) and (2) on Spec A, the composite map $\operatorname{Pic}(\operatorname{Spec} A \times X') \to \operatorname{Pic} C_{\operatorname{red}} \to \operatorname{H}^2(C_{\operatorname{red}}, \mu_n)$ of Step 4 is surjective. Then, upon restriction to K(A) D will be a cyclic algebra with index = exponent. Again, this means exponent(D) = $\operatorname{index}(D)$.

REFERENCES

- [1] A. A. Albert, *Structure of Algebras*, Amer. Math. Soc., New York, 1939, revised 1961.
- [2] M. Artin, Brauer-Severi varieties, in Brauer Groups in Ring Theory and Algebraic Geometry, Lecture Notes in Math., Vol. 917, Springer-Verlag, Berlin (1982), 194–210.
- [3] _____, Two dimensional orders of finite representation type, preprint.
- [4] M. Artin, A. Grothendieck and J. L. Verdier, SGA 4, Théorie des Topos et Cohomologie Etale des Schémas, Lecture Notes in Math., Vols. 269, 270, 305, Springer-Verlag, Berlin/New York, 1972–1973.
- [5] M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc., 25 (1972), 75–95.
- [6] J. Denef and D. Harbater, Global approximation in dimension two, J. Algebra, 129 (1990), 159–193..
- [7] T. Ford, On the Brauer group and the cup product map, in: Perspectives in Ring Theory (F. van Oystaeyen and Lieven Le Bruyn, Eds.), NATO ASI series, Reidel, Dordrecht, 1988.
- [8] T. Ford and D. Saltman, *Division algebras over henselian surfaces*, Israel Mathematical Conference Proceedings 1 (1989), 320–336.

- [9] S. Greco, Algebras over nonlocal Hensel rings II, J. Algebra, 13 (1969), 48–56.
- [10] A. Grothendieck, Le groupe de Brauer, I, II, III, in: Dix Exposés sur la Cohomologie des Schémas, North Holland, Amsterdam, 1968.
- [11] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
- [12] H. Matsumura, Commutative Algebra, 2nd. ed., Benjamin/Cummings, Reading, Mass., 1980.
- [13] J. Milne, Etale Cohomology, Princeton University Press, Princeton, N.J., 1980.
- [14] M. Raynaud, Anneaux Locaux Henséliens, Lecture Notes in Math. Vol. 169, Springer-Verlag, Berlin 1970.
- [15] I. Reiner, Maximal Orders, Academic Press, New York 1975.
- [16] R. Strano, On the étale cohomology of Hensel rings, Comm. Algebra, 12 (1984), 2195–2211.

Received May 8, 1989. Supported in part by the NSF under grant DMS-8620411.

FLORIDA ATLANTIC UNIVERSITY BOCA RATON, FL 33431