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CONFORMAL DEFORMATIONS PRESERVING
THE GAUSS MAP

ENALDO SILVA VERGASTA

In this work, given a conformal immersion /: Mn —• RN of a
Riemannian manifold Mn into a euclidean space ΆN, we establish
conditions for the existence of another conformal immersion f:Mn —•
RN with the same Gauss map as / . In particular, for n - 2 and
N = 3 , these conditions are described by means of a partial differen-
tial equation on the principal curvatures of / .

0. Introduction. Let Mn be a connected n-dimensional Riemann-
ian manifold and let / : Mn —• R^ be a conformal immersion. We
denote by F:Mn —•(?„,# the Gauss map of / , which assigns to
each point p E Mn the rc-dimensional tangent space f*{TpM) in
the Grassmannian Gnjf. We consider the following problem: Un-
der what conditions does there exist another conformal immersion
/: Mn -» RN such that the Gauss map of / coincides with the Gauss
map of / , up to a congruence in Gnχ induced by a congruence in
RN ? When this occurs we say that / is a G-deformation of f. This
situation is equivalent to considering conformal immersions / and /
with parallel tangent spaces f*{TpM) and f^{TpM) in R^, which we
will always assume. The analogous problem for isometric immersions
/ and / was considered by Dajczer and Gromoll [D&G].

In §1 we characterize our situation by means of a tensor field and
a diίFerentiable function satisfying certain conditions (see Proposition
1.5). This result will be used in §2, where we treat the above problem
for n = 2.

For surfaces, we also consider the oriented Gauss map F*:M2 —•
G\ N, where now f*{TpM) is seen as an oriented 2-plane in the ori-
ented Grassmannian G\ N. In regard to the above problem we have

two different situations. The first one is when / and / have the
same oriented Gauss map. In this case, it was shown by Hoffman
and Osserman [H&O-2] that either / and / are minimal surfaces
or / coincides with / up to homothety and translation in R^. The
other situation is when, for any local orientation in M2 , the oriented
Gauss maps of / and / differ by the orientation-reversing congru-
ence in G\ N. In this case we call / a G*-deformation and say that
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/ is G*-deformable. If / is not totally umbilic, we show that a G*-
deformation is unique up to homothety and translation (Theorem 2.1).
When N = 4, we also prove that G*-deformable immersions must
have flat normal bundle. For N = 3, Theorem 2.4 characterizes (?*-
deformable immersions by means of a condition on their principal
curvatures. We apply Theorem 2.4 to obtain / when / is a rotation
surface, a eyelid of Dupin or a surface with constant mean curvature.
A similar result is obtained for constant mean curvature surfaces in
the euclidean sphere S3.

For hypersurfaces in R w + 1 , n > 3, the problem considered here
will be treated in a forthcoming paper. Most of the results contained
in these two works were announced in [Ve] and were obtained in my
doctoral thesis. I wish to express my deep gratitude to Professor M.
Dajczer for valuable advice and constant encouragement. I also thank
the referee for many helpful suggestions.

1. Conformal deformation in RN preserving the Gauss map. Let us

denote by ( ) 0 the Riemannian metric on Mn and by Aξ the second
fundamental form of the conformal immersion / : Mn —• RN in the
normal direction ξ, defined by

(1.1) \

where ( ) ' denotes the tangent projection along / and V is the Levi-
Civita connection of the canonical metric ( , ) on the euclidean space
R^. We denote also by ( , ) the metric on Mn induced by / , defined
by ( , ) = e2φy{ , ) 0 , where e1(^^Mn -> R is the conformal factor of

/ .
Let / : Mn -+RN be a G-deformation of / with conformal factor

e2^ . We define an orthogonal tensor field T: TM -+ TM by

(1.2) T = e-'fΓιoPof,9

where φ = φi- <P\ and, for each q e Mn ,

(1.3) Pq: T-* »

denotes the parallel transport in R^. For any vector field V along /
we have

(1.4)

where X is any tangent field on Mn. We denote by V the Levi-
Civita connection on Mn relative to the metric ( , ) and by Vφ the
gradient of φ with respect to this metric. The following result gives
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necessary and sufficient conditions on T and φ for the existence (at
least locally) of a G-deformation of / .

PROPOSITION 1.5. Let f\Mn —• RN be a conformal immersion.
(i) If f is a G-deformation of f, then

and

(1.7) ^ ί oΓ=Γ- 1 o^

y^r any tangent field X and normal field ξ. Moreover the second
fundamental form A of f is given by

(1.8) Aξ = e-*T-ιoAPξ.

(ii) If Mn is simply connected and there exist an orthogonal tensor
field T and a differentiate function φ satisfying (1.6) and (1.7),
then for any q$ e Mn,

/(«)= Γe'f.T

defines a G-deformation of f.

Proof. We will make use of the Gauss formula

where X, Y e TM and a(X, Y) denotes the normal component of
, Y. Recall the relationship between a and Aξ , given by

The Levi-Civita connection V of the metric on Mn induced by /
(see [Ku], p. 316) is given by

ψχY = VχY + X(φ)Y + Y(φ)X - (X, Y)Vφ.

Thus we can write

(1.10) {Vxfjγ = JΛVxY + X(φ)Y + Y(φ)X - (X, Y)Vφ).

From (1.4), (1.9) and (1.10) we obtain

= -X(φ)e-'Pf.Y

+ e-">PfΛVxY + X(φ)Y + Y(φ)X - {X, Y)Vφ)

= MTVXY +Y(φ)TX - (X, Y)TVφ),

and this proves (1.6).
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If ξ is a vector field normal to / , by (1.1) and (1.4) we have

j*Άζx = -(vxξy = -{p-^xPζγ = p-ι/*APζx.

Thus Aξ = e-vT'^Apξ. Now (1.7) follows from the fact that Aζ and
APξ are self-adjoint.

In order to prove (ii), we compute the exterior differential of the
1-form eφf*T defined on Mn with values in

d(e«>f*T){X, Y) = Vχe'f*TY-Vγe'J*TX-e'f*T{[X, Y\)

- e'Vyf.TX - e<ί>f*T{VxY - VYX).

Now we use (1.9) to get

d{e'f*T)(X, Y) = e«>(a(X, TY)-a(Y, TX))

+ e'f*(VχTY - TVXY - VYTX + TVYX

+ X{φ)TY-Y{φ)TX).

By (1.6) the above equality becomes

d{e'f.T)(X, Y) = e'{a{X, TY) - a(Y, TX)).

But, for each vector ξ normal to / we have

{a(X,TY)-a(Y,TX),ξ)

= (AξX, TY) - (AζTX, Y) = ((T-ιAζ-AζT)X, Y)

and this vanishes by (1.7). Thus eφf*T is a closed 1-form on Mn .
Since Mn is simply connected, we can define / : Mn —> RN by

f{q)= Γe'f.T.

Then / , = e*f*T and (f*X, f*Y) = e2v{X, Y). So / is a G-
deformation of / . D

REMARK 1.11. As an immediate consequence of (1.6), we see that
φ is constant along Mn if and only if T is a parallel tensor field
with respect to the metric ( , ) . When this occurs, / and / induce
the same metric on Mn, up to a constant factor. Thus, in this c^se
the problem considered here is equivalent to considering isometric
immersions / and / with the same Gauss map. This was done by
Dajczer and Gromoll in [D&G], where the orthogonal tensor field (1.2)
becomes T = f^ιPf^, is parallel and satisfies (1.7).
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2. Conformal deformations of surfaces preserving the Gauss map. In

this section we study conformal surfaces in RN that are (?*-
deformable. In this case, the above tensor field T must satisfy the
additional condition det T = - 1 on M2 . We also obtain a result for
surfaces with constant mean curvature in the euclidean sphere S3.
We begin with a uniqueness result.

THEOREM 2.1. Let f: M2 —> RN be a conformal immersion which
is not totally umbilic. If there exists a G*-deformation f, then f is
unique up to homothety and translation in RN.

Proof. Let M denote M2 with the opposite orientation. Denote
the Gauss maps of fiM2 -> RN and J:M2 -> RN by F and 7,
respectively. Then F = 7 as maps of M2 (without orientation) into
G$ N. Now apply Theorem 1.1 of [H&O-l] and the basic uniqueness
result in [H&O-2]. D

Using some results of [We-1] and [We-2] we prove the following
two theorems.

THEOREM 2.2. Let f: M2 -+R4 be a G*-deformable conformal im-
mersion. Then the normal bundle of f is flat.

Proof. We may assume the Gauss map F:M2 —> Gϊ, 4 is an im-
mersion since the curvature of the normal bundle is zero anywhere
F fails to be regular. Then as in the proof of the previous theorem
F: M2 - ^ 6 2 4 a n d F:M —• G\ 4 are equal. Using Corollary 3 on p.
464 of [We-2], and the notation there, the existence of / : M2 —• R4

implies

from the existence of / : M —• R 4 , it follows that

&\(g) - Pi(g) = *2(g) - Pi(g),

where g is the metric induced on M2 by / . Thus ε\(g) = Bi{g) and
by Corollary 2 on p. 464 of [We-2] it follows that the normal bundle
is flat. D

THEOREM 2.3. Let f:M2 -> R^ with N > 5 be a conformal im-
mersion. If there exists a point of M2 which is not an inflection point
off, then f is not G*-deformable.
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Proof. This follows immediately from Proposition 5 of [We-1] and
the observation that if / existed then as above f:M2 —• R^ and
f:M -+RN would have the same Gauss map. D

The main result of this section is the following.

THEOREM 2.4. Let f: M2 —• R3 be a conformal immersion without
umbilic points and let v and w be unit principal vector fields of f,
with eigenvalues λ and μ respectively.

(i) If f is G*-deformable, then

(2.5) (λ - μ)(*(&(λ)) + u>{»(μ))) + *(μMμ) - »{λ)w{λ) = 0.

(ii) If M2 is simply connected and (2.5) is satisfied, then f is G*-
deformable.

Proof. Let p be any point M2 and ζ be a unit normal field defined
on a neighborhood of p . Since / has no umbilic points, there exist
differentiable functions λ and μ, and orthonormal tangent fields *
and w, defined on a neighborhood of p, such that

(2.6) Aξ# = λa, Aξw — μw.

From Codazzi equation

we get

(2.7) *(/£) = (λ -

Let us suppose that / is G*-deformable. Then there exist a differ-
entiable function φ:M2 —• R and an orthogonal tensor field Γ with
detΓ = - 1 , satisfying (1.6) and (1.7). Let &\ and w\ be orthonor-
mal tangent fields on a neighborhood of p such that T*\ = *\ and

—^i. Then by (1.7) we have

Thus l̂̂ î is parallel to »\. So *\ and ̂ i are principal directions,
and this determines T up to signal. From now on we will suppose
that T^ — eλ and Tw = —&. Now (1.6) is equivalent to

(2.8) »{φ) = - 2 ( V ^ ,

From (2.7) and (2.8) we have

(2.9)
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By (2.8) we get

= 0.

Thus we must have

»{w{φ)) - w{*{φ)) = 0

or, using (2.9),

which is equivalent to (2.5). Note that equation (2.5) is invariant
by change of sign of the vector fields ζ, a and w. Thus it is valid
everywhere on M2.

Suppose now that (2.5) is satisfied on M2. We define the tangent
vector field

δ = — 2 ( V ^ , ur)& — 2 ( V ^ , v)w

and observe that δ does not depend on the unit vector fields ξ, * and
w satisfying (2.6). Now we define in M2 the 1-form γ given by

(2.11) γ(X) = {δ,X).

Using (2.7) we compute

{», to) = *(γ(*>)) - a>{y{e))

A — jU

By (2.5) the 1-form γ is closed. Since M2 is simply connected, there
exists φ: M2 —• E such that V9? = δ, that is,

(2.12) *(φ) = - 2 ( V ^ , u>), ^(9?) = - 2 < V ^ , *).

We define the tensor field Γ by Γ^ = * and Γ^ = - ^ . Then Γ
is orthogonal, detΓ = - 1 and (1.7) is satisfied. From (2.12) it is
easy to show that (1.6) is satisfied. By Proposition 1.5, / is G*-
deformable. D
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The next result is needed for the proof of some of the corollaries to
Theorem 2.4.

PROPOSITION 2.13. If (x, y) are principal coordinates on an open
set U c M2, then on U (2.5) is equivalent to

(2.14) (V+J&L) +(^±Ek) =0.
V λ-μ Jy V λ-μ Jx

Proof. Let E and G be positive functions such that

(2.15) i r - = £ " and £-= Ga>.
dx dx

Since [•$%, 4 ] = 0 we obtain

-Gu>{E) + EGiVeW ,e»)=0,

and then by (2.7) we have

C2 16Ϊ G -
(2.16) ϋ χ -

G μ x

F
μ' t y ~ λ-μ

From (2.15) and (2.16) it follows that

{ λ - μ ) E G '

and then (2.5) and (2.14) are equivalent. D

In the next two corollaries, we will consider / as the inclusion map
of an open subset of M2 in R 3 .

COROLLARY 2.17. Let M2 be a rotation surface which does not meet
its axis of symmetry. Then f is G*-deformable. If M2 is not totally
umbilic then f is unique up to homothety and translation; also, f(M)
is again a rotation surface. If M2 is part of a sphere and f{M) is a
rotation surface, then f(M) is part of a catenoid.

Proof. We take on f(M2) the parametrization φ: (0, In) x / -• R3

given by

φ(x, y) = (a(y)cosx, a(y) sinx, β{y))9
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where (a(y), β(y)) is a plane curve defined on an open interval / c R
and satisfying a(y) Φ 0 for any y e / .

Now define φ:M2 —• R by e^ = l/a2(y). One can immediately
verify that

(2.18) φ{x,y)

where

-I'
Jy0

m
βy0

 yγj

satisfy φx = e*φx and φy = -e*Wφy . Thus / defined by /(</>(* , J>)
= 0(x, y) is a G*-deformation. Now, if M2 is part of a sphere, then
up to homothety and translation / is the normal Gauss map of /
into the unit sphere S2 . So f{M2) must be a minimal surface, hence
it is part of a catenoid. α

A surface in R3 that is the envelope of a family of spheres tan-
gent to three fixed spheres in R3 is called a eyelid of Dupin. These
surfaces can be characterized by the fact that they are the surfaces
without umbilic points whose principal curvatures are constant along
the respective curvature lines (see [C&R], pp. 151-166).

COROLLARY 2.19. Let M2 be a eyelid of Dupin and U an open sim-
ply connected subset of M2. Then f restricted to U is G*-deformable.

Proof. If (x,y) are principal coordinates, then the respective prin-
cipal curvatures λ and μ satisfy λx = μy = 0. Thus (2.14) is verified
and we can apply Theorem 2.4. D

REMARK 2.20. In the preceding corollary, we have by (2.9),

ψ = \og{c(λ - μ)2)

for some positive constant c e R. By (1.8), the principal curvatures
of / are

j _ cλ _ _ — cμ
(A - μ)1

 (Λ - μ)1

Thus, in general, the new surface f(U) is not a eyelid of Dupin.

COROLLARY 2.21. Let f: M2 —> R3 be an oriented minimal surface
without umbilic points and let N: M2 —• S2 c R3 be the normal Gauss
map. Then f is G*-deformable and f = N up to homothety and
translation.



368 ENALDO SILVA VERGASTA

Proof. Taking principal coordinates (x, y) ? we have

Thus the corollary is a consequence of Theorem 2.1. D

COROLLARY 2.22. Let f:M2 -+ R3 be an oriented surface free of
umbilic points, with constant mean curvature H Φ 0, and let N: M2 —»
S2 c R3 be the normal Gauss map. Then f is G*-deformable and f
is the parallel surface g = f+ -gN, up to homothety and translation.

Proof. Taking principal coordinates (x, y), we have

and
8y = ( x + f ) fy

Thus g is a G*-deformation of / . We observe that, since

and
one sees that the mean curvature of / is also H. D

We conclude this work with a result analogous to the preceding
corollary, for a constant mean curvature surface in S3.

PROPOSITION 2.23. Let f:M2 —> S3 be an oriented surface free of
umbilic points, with constant mean curvature H, and let N:M2 -> S3

be a vector field normal to f. Then f (seen as a surface in R4) is
G*-deformable and f is the parallel surface

7 { N

up to homothety and translation.

Proof. It is analogous to the preceding proof. D

REMARK 2.24. One can easily check that the above immersion /
has constant mean curvature in S 3 . When H = 0, —/ is the polar
map of the minimal immersion / , as defined by Lawson [La].



CONFORMAL DEFORMATIONS PRESERVING THE GAUSS MAP 369

REFERENCES

[C&R] T. E. Cecil, and P. J. Ryan, Tight and taut immersions of manifolds, Re-
search Notes in Math., Pitman Adv. Pub. Prog., 1985.

[D&G] M. Dajczer and D. Gromoll, Real Kaehler submanifolds and uniqueness of
the Gauss map, J. Differential Geom., 22 (1985), 13-28.

[H&O-1 ] D. Hoffman and R. Osserman, The geometry of the generalized Gauss map,
Mem. Amer. Math. Soc, no. 236, (1980).

[H&O-2] , The Gauss map of surfaces in Rn , J. Differential Geom., 19 (1982),
733-754.

[Ku] R. S. Kulkarni, Curvature and metric, Ann. of Math., 91 (1970), 311-333.
[La] H. B. Lawson, Jr., Complete minimal surfaces in S3, Ann. of Math., 92

(1970), 335-374.
[Ve] E. S. Vergasta, Conformal immersions with the same Gauss map, An. Acad.

Brasil Ci., 59 (1987), 145-147.
[We-1] J. L. Weiner, The Gauss map for surfaces: Part \-The affine case, Trans.

Amer. Math. Soc, 293 (1986), 431-446.
[We-2] , The Gauss map for surfaces: Part 2-The Euclidean case, Trans. Amer.

Math. Soc, 293 (1986), 447-466.

Received May 2, 1988 and in revised form August 25, 1991.

UNIVERSIDADE FEDERAL DA BAHIA
CEP 40210, SALVADOR, BA, BRAZIL






