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OPTIMAL APPROXIMATION CLASS
FOR MULTIVARIATE BERNSTEIN OPERATORS

Z. DlTZIAN AND X. ZHOU

For the Bernstein polynomial approximation process on a sim-
plex or a cube, the class of functions yielding optimal approximation
will be given. That is, we will find the class of functions for which
\\Bnf — /]I cos) = O(n~ι) in terms of the behaviour of a certain K-
functional. Moreover, this is done in the context of direct and converse
results which yields an improvement on such results as well.

1. Introduction. For the simplex S in Rd,

(1.1) S Ξ L = ( ^ , . . . , ^ ) : ^ > 0 , |X|ΞΞ

the Bernstein polynomial approximation is given by

(1.2) Bnf = Bn(f,x)=
μ/neS

where μ = (m\, . . . , md) with m, integers, and

( L 3 ) P ^ x ) n

i=l \ Ϊ=1 /

with the convention

μ\ = m\\ - - rnjl a n d xμ = x{

ι- xd

d.

For the cube Q in Rd ,

(1.4) Q = {x = (Xι,...,χd):0<Xi< 1 for 1 < i < d},

the Bernstein polynomial approximation is given by

(1.5) Bnf = Bn{f,x)=
μ/neQ

93
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where

d

(1.6) Pn9μ(x)= t[Pn,mt(Xi) and

i-l

We note that both (1.2) and (1.5) reduce to the classical Bernstein
polynomials in case d = 1.

The class of functions for which

\\Bnf - f\\c(S) = O(rΓa) (or \\Bnf - f\\C(Q) = O(n~a))

for 0 < a < 1 was determined by the first author [7]. Some ad-
ditional articles were written in the past few years about the rate of
approximation of Bnf or ~Bnf to / (see [8] and [13]). However,
the determination of the class of functions for which the optimal rate
of approximation is achieved, that is, \\Bnf - f\\c(S) = 0{n~ι) or
\\Bnf - f\\c(S) - O(n~x) eluded investigators of the subject (includ-
ing [13], the billing of which in MR 89k41007 looked promising). It
is clear that the rate O(n~ι) is optimal as both Bn and Bn satisfy
conditions in [6] with σ% — n~ι and hence \\Bnf - f\\c(S) = o(n~ι)
(or \\Bnf - f\\c(Q) — o(n~1)) implies that / is locally a solution of
a certain elliptic partial differential equation given below in (2.2).

Recently, the rate of convergence of the related sequence of op-
erators, that is, the Bernstein-Durrmeyer operators (see [1], [3] and
[4]), was extensively and successfully investigated. One can only hope
to match the success of the investigation of the Bernstein-Durrmeyer
operators as those have properties like commutativity, self adjoint-
ness and simple expansion by orthogonal polynomials. Still, we were
encouraged by the above mentioned success and, below, we have a
saturation theorem for the rate of convergence of Bnf - f (which is
a much more difficult problem).

The result below will contain a characterization, that is, a necessary
and sufficient condition on / so that \\Bnf - f\\c(S) = O(n~ι) or
\\Bnf- f\\c{Q) - O(n~ι). The saturation result will be a consequence
of a set of direct and converse inequalities, and thus, the generally
difficult problem of unifying the direct-converse theorem with the sat-
uration theorem is handled.
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It is hoped though, that stronger results will eventually emerge. We
will explain the possibilities and make conjectures about further, more
powerful results, in §8. We suspect that it will take quite some time
as well as the introduction of new techniques before these conjectures
are settled.

Here, we rely heavily on the investigation of best polynomial ap-
proximation on the simplex or on the cube [11, Chapter 12], an intro-
duction of a three-term ^-functional and on some recent results on
multivariate Bernstein and Markov inequalities [8]. The use of these
techniques, combined with some hard work and a new notation that
overcomes the need to solve the problem in two dimensions first (see
[6] and [2]), led us to the solution of the problems below on which we
have worked for the last few years.

2. Further notations and the main result. We first introduce the
elliptic differential operators that will be crucial in our investigation.
For a polytope A (that for us will be either the simplex S of (1.1) or
the cube Q of (1.4)), we denote by VA the set of unit vectors in the
directions of the edges of A where e and — e are considered to be
the same vector. We define, for a convex set A, a direction ξ, and a
point x EA,

(2.1) ξ

= Inf d(x,x+λξ) Inf d(x,x + λξ)
x+λξ£A x+λξ£A

λ>0 λ<0

where d(x, y) is the Euclidean distance between x and y in Rd

The differential operators are now given by

(2.2) P(D)=
ξevs

P(D)=

Q

where S and Q are given by (1.1) and (1.4), respectively. As
d(S,ei,x) = Xi(l-\x\), d(S, (ei-ej)/\/2, x) = IXjXj, d{Q,eι,x)
= Xi(l - Xi) and for ζ = fo - ej)/V2, d/dξ = -^(d/dXi - d/dxj),
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we may write

(2.3)
i = l

d d

d

= Σ * (1-*.o
The J^-functionals used in the present paper are now given by

(2.4) Ks(f,t)= Inf
gec\s)

tiSup\\φ3

ξ(d/dζγg\\cis)
ζevs

 ς

tiSup\\φl(d/dξγg\\C{Q)

and

(2.5) KQ(f,t)= Inf
geC\Q)

where ψξ(x) of (2.4) and (2.5) is given by (2.1) with Λ = 51 and
A = Q, respectively.

The main result of this paper can now be stated.

THEOREM 2.1. For Bnf and Ks(f, t), given in (1.2) and (2.4),

respectively, we have

(2.6) \\Bnf-f\\C{S)<M{Ks{f, n

and

(2.7) Ks{f, n-W) < Mn-V2 £k^ 2\\Bkf - f \\C{S)

k=l

with M independent of f and n, and hence for 0 < a < 1

(2.8)' | |*Λ/-/Hc (s) = O(n-°)*Ks(f, n~χl2) = O(rΓ").

We observe that in the above theorem, (2.6) and (2.7) are the direct
and converse results respectively and (2.8) for a — 1 is the saturation
result.

The analogous result for the cube is given by:
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THEOREM 2.2. For ~Bnf and KQ(f, t) given by (1.5) and (2.5),
respectively, we have

(2.6)' \\Bnf-f\\CiQ) <M(KQ(f, n

and

(2.7y

M independent of f and n, and hence for 0 < a < 1

(2.8)' ||ΛΛ/-/Hc(β) = O(n"a) <*tfβ(/, n"1/2) = O(n-a).

We will prove the more difficult Theorem 2.1 in more detail in §§4,
5 and 6 and will comment on the necessary changes in the proof of
Theorem 2.2 in §7. It is clear that (2.8) follows from (2.6) and (2.7)
and that (2.8)' follows from (2.6)' and (2.7)'.

3. Results about polynomials. This section will be dedicated to re-
sults on polynomials. Modifications of earlier results and rephrasing
for the new notation are given for a somewhat more general situation
than is needed for this paper. We hope these points will be useful
elsewhere too.

We denote the set of polynomials of total degree n by Πn .
In [9], it was proved that for a bounded convex set A,

(3.1) || d{A,ξ, Ύ/2(d/dζγP\\Lp{A)< CV||i>||L^) for PeUn

where r is an integer, 0 < / ? < o o , ξ eRd, | |£ | | = 1, and d(A 9ξ,x)

is given in (2.1). For the set S, we can prove:

THEOREM 3.1. For S given in (1.1), 0 <p < oo, and ξ e Vs,

(3.2) ||tι/(-)ι7(f, ')ι/2(d/dξ)P\\Lp{S) < Cn\\wP\\Lβ{S)9 PeUn,

where w(x) = x"1 --x^d(\ - \x\)a*+* with α, > 0 for p = oo and
OLi > -ί/p for p < oo.

For Theorem 3.1, we may deduce the following result by repeating
(3.2) using ^P e Un and the fact that w(x)(d(ξχ ,*)••• d(ξj, x)) 1 / 2

satisfies conditions on w(x) in Theorem 3.1.
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COROLLARY 3.2. For w(x), S and p of Theorem 3.1 and £,• e VS>

we have

d d
(3.3)

dζk

<Cnk\\wP\\L,S)9

Proof of Theorem 3.1. In fact, we only have to prove our result
for ξ = e\. If ξ = e\, it is clear that renaming / is sufficient. If
ξ = (ej — ej)/y/2, we write the polynomial J°(x) and the weight w(x)
as a polynomial and weight in xr for r / j and 1 - \x\ for the 7
variable. We now observe that d/dξ acts on the new variables like
2~ι/2d/dXi and that d(ζ, ) 1 / 2 contributes a factor of \fϊ multiplied
by d(βi, -)1/2 in the new variables. We note also that this transforma-
tion was used extensively in [7] and later in [8] and [2] for similar pur-
poses. Using iterated integration and the notation \x\ = X2 H
it is clear that all that we have to show is

(3.4)

and

(3.5)

Sup

<Cn Sup xf(l-\x\)fi\P(xι,...,xd)\

1-1*1
dx\

<Cn?
JO

dx\

for 0 < p < oc. We regard X2 > . . . , x<i as constants and make the
change of variable y = X\j{\ - \x\) and hence

to obtain the result for w*(y)J^P*(y) from [11, Theorem 8.4.7] for
I < p < 00 and [14, Theorem 5] for 0 < p < 00. (Both references
have the interval [-1, 1] rather than [0, 1] as the underlying interval
but that does not create any problems.) D

We now recall a result about best polynomial approximation that
will be crucial for the present paper. The rate of best polynomial
approximation on a set S is denoted by

(3.6) En(f)Lp{S)^Ig\\f-P\\Lp{S).
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We further define A^-functionals on the simple polytope *S. We recall
that a polytope (convex hull of finitely many points) in Rd is simple
if it has an interior point and each vertex is joined to other vertices
by exactly d edges.

(3.7)

= J*{S) ( l l / - gh,(S) + ''Sup \\φr

ξ(d/dξYg\\Lp{S^

where ψξ{x) is given by (2.1) (with S = A) and Vs is the set of unit
vectors in the directions of the edges of S. For much of this paper,
S can be regarded as a simplex or a cube which are simple polytopes.
We now restate part of Theorem 12.2.3 of [11] in the following way
which will be needed later.

THEOREM 3.3 (Ditzian-Totik). Suppose f e LP(S), 1 < p < oo or
f e C(S) (in which case the L^S) norm is used). Suppose further,
that S is a simple polytope, (in particular, S is a simple (1.1) or a
cube (1.4)), En(f)Lp{s) is given by (3.6) and Kr^s(f, tr)p is given by
(3.7). Then

(3.8)

and

(3.9)

En{f)Lp

Kr,s(f ,ίr
)p <Mf

f> n r)Lp{S)

Y, (k+l)

+ »-ΊI/lk

r-χEk{f)L

,{S))

(S)
p

0<k<l/t

Proof. The proof consists mainly of relating the present notation
with the notation of [11, Chapter 12] to show that in fact, the theorem
was proved there. We can write

(3.10) Kr9s(f9 f)L {S) - Sup Sup Whφξf\\L

ζevs o<h<t ( "

where

(3.11) Δ ^

is given by

0,

(x + ((r/2)-k)ηe),
r

otherwise.

The equivalence (3.10) follows the one-dimensional analogue [11,
Chapter 2] and is actually implied in [11, Chapter 12] for an essentially
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identical situation. We now recall the modulus cor

s(f', t)p from [11,
p. 202] which is given by

t)p = Sup Sup l|Δj;^>ol/2 ί/(.)||L#(S)

max dlx + λxe, x + λ2e)

(Note that (3.12) looks somewhat simpler but is exactly what is given
in [11, p. 202].) We further observe that for d(S9e9 x) given in (2.1),
we have

^ds(e9x) < d{S9e9x) < ds(e, x)

and hence

(3.13) afs{f, t/y/2) < ωr

s{f, t) < ωr

s(f, t)

where ωr

s(f, t) and ωr

s(f, t) are given in (3.10) and (3.12). We now
note that

(3.14) Ws(f, at)p < C{ar + l ) ω J ( / ? t)p

which again follows from its analogue for one dimension [11, Theo-
rem 4.1.2] or directly from (3.10) and is implied in [11, Chapter 12].
Combining (3.10), (3.13) and (3.14) with (12.2.3) and (12.2.4) of [11],
we obtain (3.8) and (3.9). Note that the "proof above consists mainly
of matching and slightly modifying notations. D

Further results which are corollaries of Theorem 3.3 will be used
later for p = oo and where the simple polytope is a simplex or a cube.

THEOREM 3.4. For Kr,s(f\ tr)p given by (3.7), 1 < p < oo, reN,
and a simple polytope S, we have

and

(3.16) Kr9S(f9f)p

<C f
\<k<l/t
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Before we go into the proof which actually consists of substituting
the results of Theorem 3.3 in an appropriate manner, we make some
observations.

(a) Often the ^-functional uses two norms rather than a norm and
a seminorm for its definition. In this case, we define

(3.17)

+ ? (\\g\\Lp(S) + max \\φr

ξ(

instead of (3.7) and we can rewrite (3.15) and (3.16) as

(3.15)' K;+ι>s(f, f+i)p < CK;>s{f, f)p

and

(3.16/
\<k<l/t

which appear to be somewhat nicer but carry the same contents as
(3.15) and (3.16).

(b) Using the equivalence in (3.10) and (3.13), we can restate (3.15)
and (3.16) as

(3.15)" ωr+ι(f, t)p < C(a/S(f9 t)p + tr\\f\\Lp{S))

and

(3.16)" afs(ft t)p < Cf Π ' < l M ^ d u Δ

(The second inequality follows from /^+1)-i du/ur+ι ~ kr~ι.) We
note that (3.16), (3.16)' and (3.16)" are forms of the Marchaud-type
inequality.

Proof of Theorem 3.4. We use (3.9) (with r+1) and then (3.8) (with
r) to obtain

Σ kr£
\<k<rι

\<k<r'
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The definition of Kr9s(f, tr)p in (3.7) implies

(3.18) Kr9s(f, (At)r)p < ArKr,s{f, f)P for A > 1

which, with A = l/kt (k < 1/ί), completes the proof of (3.15).
To prove (3.16), we just use (3.9) (with r) and then (3.8) (with
r + 1 ) . D

4. Bernstein inequality for Bernstein polynomials. In this section,
we will prove the Bernstein inequality estimate and other estimates of
derivatives of Bernstein polynomials that will be crucial for our paper.

THEOREM 4.1. For ξ e Vs> Bnf defined by (1.2), v = 0, 1 and for
r = 0, 1, 2, . . . , we have

(4.1) || φp

We observe that for v — 1, (4.1) yields the Bernstein-type inequal-
ity and for v = 0 and r > 0, (4,1) yields the analogues of the inequal-
ities in §9.7 of [11]. The reader should note that we save a substantial
amount of work by not proving the inequality (4.1) for v — 2, 3, . . .
which would have come in handy. The use of such estimates for higher
v is replaced in what follows by applying (4.1) to iterates of Bnf, that
is, Bι

nf and it will be shown that such estimates are sufficient for the
proof of our main result.

Proof of Theorem 4.1. First, we recall from [7] the transformation
that will allow us to consider (4.1) for ζ = e\ only in which case
d/dξ = d/dx\. It is clear that if ξ = eι, we may just rename the
coordinates. The transformation

(4.2) (u\, . . . , ua) = T(x\, . . . , Xd), U[ = X\

Ujr = 1 — Xl — ' ' — .

introduced in [7], satisfies

(4.3) T2 = I, T:S -+S onto,

d d d , , , . d

dui dxi dXj dUj dXj'

it maps the point e, onto (0, . . . , 0) and a vector of Vs onto a vector
(not necessarily of Euclidean norm 1) in the direction of some edge
of S. Also, we have for any ξ e Vs,

(4.4) \\i{ξ, γ'2(d/dξγf(.)\\ = \\d(η, Ύ/2(d/dηYM )\\
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where fτ(u) = f(Tx), r eN, η = Tξ/\\Tξ\\2 and \\Tξ\\2 is the
Eucl idean n o r m in Rd. ( N o t e t h a t if ξ = (e,••— βj)/y/2, η = e, b u t

i{ξ,x) = 2xiXj = 2«, (1 - Mi a,) = 2J(//, Γx).) For the
Bernstein polynomials, we have

(4.5) Bn(f, x) = Bn(fτ, Tx), Bn(f, Tx) = Bn(fτ, x).

Suppose we proved (4.1) for ξ = β\ and hence for ζ = ex•; the above
implies for ξ — (e, - e/)/\/2 and η = e, ,

\\φζ{xγ+v{dldξ)r+»Bn{f,x)\\

= \\φη(Txγ^(d/dηy^Bn(fτ, Tx)\\

= \\φη(uγ+»(d/dηy+»Bn(fτ,u)\\

< Cn«/2\\φη(uγ(d/dηγfτ(u)\\

= Cn^2\\φζ(xγ(d/dξYf(x)\\.

Note that this type of argument is used repeatedly in the present paper
and elsewhere and was given in detail here to utilize T of [7] on the
new, more efficient notations of the present paper. We now prove
(4.1) for ξ = ex.

For Pn>β{x) given by (1.3) and Pnj{x) = 0 for β/n $ S, we
have

P

We now denote the forward difference by

(4.6) 4
( JL /r\

l)r kf(x + keh),

otherwise.

The routine calculation iterating the above implies now

= n(n - \)'"{n - r +

β/(n-r)eS

Recall that β/(n - r) <E S implies β/n, β/n + re{/n e S. We
now write (recalling d(e\9x) = φe\xγ = AΓI(1 - |x|) and β =
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(ku...,kd)) for β/(n-r)eS,

n

Λ-rβ

where I{r) = Wφ^id/dxrffWcvη • For β/(n - r) e S (and hence
0 < kx < \β\ < n -' r), we have

-1/2

-t\ dt

I
In

<c
Γ

-1/2
, - 1

n i \ n

Combining the above considerations, we have

d{eι,xγ+v>>l2\{dldx{)r+vBn{f,x)

where

kχ + \γrl2

_

Using

(4-8) 4-Pι ~ \x\) ~ (I ~ \β\)Xι\
Xι(l-\χ\) )
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for I = n-r and the Cauchy-Schwarz inequality, we have

Σ

β/(n-r)eS

1/2

β/(n-r)eS

For v = 0, it is clear that /π ,„(*) = 1. For v = 1, one may calculate
Iniι(x) and obtain

We omit this calculation as (3.8) of [4] implies /n> i + J < (n — r) d
where / (given there) is positive and hence Inj\ < (n - r)d < Cn.
To calculate Ln{x), we follow Lemma 3.2 of [5] to write

(4 9) χζ(l — lxh rP o(x)

_(n-r)\(k + r)\ {n-\β\)\

~ (n + r)! ^ ! n!(|^| - r)! " r»+'>^+«. W

which implies that Ln(x) is bounded as

(n - r)\ fa + r)\ (n - \β\)l ( n V ( n \* ..
1 ί—2 ί 1 LL_Ll I J j j < J\/[

with M independent of n . D

5. An estimate for Bernstein polynomial approximation of polyno-
mials. In several articles (see [11, §9.3], [12] and [3]), extensive use
is made of approximation of polynomials first which is later used to
estimate approximation of other functions applying the result to poly-
nomials of best approximation. This will be followed here for our
present, more involved problem. We prove the necessary estimates on
polynomials in this section and utilize the results in §6. It should be
noted that we will be advancing the use of polynomials of best ap-
proximation somewhat further than earlier results and we hope that
the techniques of this and the next section will prove fruitful as guid-
ance for other situations as well.

The main result of this section is a strong Voronovskaja result for
Bernstein polynomials on polynomials.
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THEOREM 5.1. For a polynomial P e Π m , m < y/nt we have

(5.1) ±Σ2(J^J

<Mn-2m4\\P\\C{s)

Proof. We follow [7] and divide the simplex S into the regions
Vi = { x e S : X i > l/2d}, i=l,...,d a n d Vo = {x e S: I - \ x \ >
l/2d}. Obviously, (jf=o vi = s> a n d w i t h t h e transformation T of
(4.2), we have T: Vj —> VQ (onto) where we consider j as generic.
Furthermore, it is sufficient to prove (5.1) for x G VO . This follows as
in the case x e Vj , we can set u = Tx and Pτ(x) = P{Tx). From
the result (5.1) for w € Fo and the polynomial iY, we will obtain
(5.1) for x G Py and P(x) . To prove the above implication we write,
for xeVj, u = TxeV0 and η = Tξ/\\Tξ\\2,

Bn{Pτ,u)-Pτ{u)-^γ^φη{uY[^-\
ηevs ^ ''

< Mn-2m4\\Pτ\\c{S) = Mn-2m4\\P\\c{s).

We further note that since the left-hand side of (5.1) is a polynomial
of degree m < y/n9 it is sufficient to estimate it on S\/n (or S\/n Π ^o)
given by

This follows Sχ,2 c Sχ/n a n d hence Theorem 3.1 of [9] implies for

We now need the following computational lemma which will be
proved after the completion of the proof of Theorem 5.1.

LEMMA 5.2. For ψi(x) = Xi, i = I,..., d, we have

(a) Bn(ψj-Xi,x) = 0,
(b) Bn((Ψi - Xi)2, x) = Xi(l - Xi)/n,
(c) B \ 2
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(d) Bniίψt - Xi)», x) < C(A)n-r(Xi(\ - Xi))r for A/n < Xi <
l-A/n,

( e ) Bn{{ψi - Xi)(ψj - xj), x) = -(l/n)XiXj for iφj,

( f) Bn((ψi - Xi)(ψj - Xj){ψι - xι), x) = (2/n2)XiXjX[ for iφ jφ

Iφi.
and

(g) Bn((ψi - Xi)(ψj - Xj)2, x) = {l/n2)(2xj - l)XiXj for iφj.

We continue with the proof of Theorem 5.1 using Lemma 5.2. We
expand P(^) using Taylor's formula by

(5.2, (!)

where

As Bn is a linear operator on functions of £ (where x is considered
a constant), we have

3

Bn(P(.), x) = J8π(P(x), x) + X;5 Λ (/r( , x ) , x ) + 5

Using ^ w ( l , x) = 1, we have
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Using Lemma 5.1(a), we have Bn(Iχ( , x), x) = 0. Using Lemma
5.1(b) and (e) and a rearrangement of terms, we have

Bn(I2(-, x), x)

J_ d

In

In

i=l

d

P(x) - 2 P(x)

P(x)

ξevs

Combining the above identities, it is evident that we will complete
the proof when we estimate \Bn(Iτ,{ , x), x)\ and \Bn(R(-, x), x)\
by Cn-2m4\\P\\C{S) for x e Vo n Sι/n .

To estimate 5n(/ 3( , JC) , x), we use (c), (f) and (g) of Lemma 5.2
to write

P{χ)
1=1

C d d d

C

iφj

Xj dX[

d2 d

θxj

P(x)

P(x)

Recalling that 11 - 2x, | < 1 and 0 < 1 - JC, < 1 for x e S and that
i < 2dφe{x)2 for x e VQ , we now have, for P e ΠOT ,

-Xi)\l - 2xt\ P(x) <2d ΨeiX?
d d

P(x)

< C 2 m 4 | | P | | c ( S ) .

For the second inequality above, we use Corollary 3.2 with p — oo,
w(x) = 1, ξι = ξ2 and k = 2, and for the third inequality we use
the multivariate Markov inequality

\\(d/dξ)P(x)\\C{s)<Cm2\\Ph
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proved in Theorem 4.1 of [9] (for instance). For x e VQ , the estimates

O d d
•P(x) <

< Cm3 | |P| |

and

XiXj\2xj- —(—V
dXi \dXjJ

P(x)

d i d
<Cm3 | |P||

follow from Corollary 3.2 with p = oo, w = 1, k = 3 and
appropriately.

To estimate Bn(R( , x), x), we recall that

d d 4 / £. \

chosen

ι 4 = l j=\

X
i dXi dXi dXi
ιι h h *4

We now use the binomial expansion identity in the form

β/neS, \β\/n=l

to obtain, using the multivariate Markov inequality of [9, Theorem
4.1], for xe VQ,

(5.5) Σ
β/neS, \β\/n=ί

< C\x\n max
l<i,<d

a
C{S)

<C2n-2m4\\P\\CiS).

For 0 < t < 1, x € S and β/n e .S, we have

ι\Λι κιln\ ^ \Λι κιln\
(5.6)

kiln + ί (^ - ki/ή) ~ x,
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which is trivial in case X; < kj/n and follows from the fact that
ta/(A + ta) is increasing for A > 0, t > 0 and a > 0 in case
x% >ki/n. Furthermore,

1

π + <(|*| - |j8|/B)) - 1 - W 1 - | W »
(5.7)

In fact, we needed the estimate (5.6) because (5.7) is meaningless for
\β\ — n. Using (5.4) and (5.5), we only have to estimate

β/neS, \β\/n<ϊ

d d

ζ=β/n+t(x-β/n)

e. - ψe •
z l ' 4 i

d d Σ
β/neS, \β\/n<l

Using Corollary 3.2 (with w = 1), (5.6) and (5.7), we have

;=1

1/4

7=1 XL
Σ
, \β\/n<\

Cm Σ P«, ' n

1/8

Σ

We now use (d) of Lemma 5.2 with r = 4, where we need to recall that
x 6 ^4^ implies x, > l/ύ?n (Λ = l/d), and the estimate 1 - x ; < 1,
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to obtain

1
Σ Pn,r1 / 2 \ —Xij \β/neS

For \β\ < n, we have

xι '-
J n

C

- 4

<

where M is independent of n and hence for x E Po,

which, together with the above, completes the proof of Theorem 5.1
pending the proof of Lemma 5.2. D

Proof of Lemma 5.2. Parts (a), (b), (c) and (d) follow from summing
first on the other indices (Φ i) and observing that what we have is the
rth moment of the univariate Bernstein polynomial in ;c, . The exact
expressions (a), (b) and (c) are known from Lemma 9.4.3 of [11] (for
example) and the estimate (d) from Lemma 9.4.4 of [11]. We now
calculate

. XiXj d d
_ _ _

z=\-\x\

/ = 1 ' z=\-\x\

and

Bn{ψiψj,x) =

-———

l - 1

d
-fL—Xj —

z=l-\x\

Simple arithmetic now implies (e), (f) and (g). Ώ
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6. Proof of the main result. First, we apply the strong Voronovskaja
estimate for polynomials given in Theorem 5.1 to polynomials of
best approximation to a function / . In this section, || || = || ||c(s),
Kr,s(f> f) = Kr,sif> Ooo and En(f) = En{f)C{S) with a simplex
S of (1.1).

THEOREM 6.1. For f € C(S) and Pm e Π m (m = [y/n]) satisfying
\\Pm -f\\< MEM) and for K3,s{f, t3) given by (3.7), we have

(6.1) \\BnPm -Pm- (2n)-ιP(D)Pm\\

Proof. We choose P,, Pj e Π 7 , satisfying | |P, - / | | < MEj(f) and
expand Pm by

(6.2) Pm = Pm- P2: + Σ{P2, - Py-ή + Pi,
7=1

7': 2j < m}.

We recall BnPx - Px = P(Z))Pi = 0 and utilize Theorem 5.1 to write
(for m = [\/h~])

= \\BnPm -Pm- (2n)-ιP(D)P
m\

4m4\\Pm - P2

< C2n~2 (

Applying now (3.8) of Theorem 3.3, we have

7=0

Using the definition of K3^s(f, t3), we have

(6.3) K3,s(f, (Atγ)<A3K3>s(f,t3) forA>l.
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We now choose in (6.3) t = 2~ι, with / of (6.2), and A = 2ι~j and
then t - n~χl2 and A = 2~//«1/2 and obtain

sif, 2~3/)

< C5(n-224l(K3,s(f> 2-3/) + n

O

We are now able to prove the main result.

Proof of Theorem 2.1. Using the definition of Ks(f, t) in (2.4),
there exists a function g e C3(S) such that

(6.4) \\f-g\\ + n-ι\\P(D)g\\

V 2 ϊ γ \ \ < 2Ks(f, n\\φ

We observe that the ΛΓ-functional Ki>s(f > ^3) given by (3.7) satisfies

K3,s(f,n-V2)<Ks(f,n-1/2) and K3,s(g, n-V2)<2Ks(f, n^2)

for all / e C(S) and g € C3(S) satisfying (6.4). For a polynomial
Pm = Pm{g) satisfying

\\Pm - g\\ = Em(g), PmeUm and m = [^n],

we have, using Theorem 6.1,

\\BnPm -Pm\\< \\BnPm -Pm- (2n)-iP(D)Pm\\

+ (2n)-ι\\P(D)Pm\\

< C(K3,s(g, n-3/2) + n-3/2\\g\\ + n-ι\\P(D)Pm\\)

<Cι(Ks(f, n

Furthermore,

\\Pm - g\\ < MEm{g) <

and as g satisfies (6.4),

(6.5) \\Pm -f\\< M3(Ks(f, n

Hence,

\\Bnf ~ f\\ < \\BnPm ~ Pm\\ + 2M3(KS(f, Π
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To prove (2.6), it remains only to show that

(6.6) n-ι\\P{D)Pm\\<L(Ks(f9 n~'l2) + fl

Following (6.4), it is sufficient to estimate n~ι\\P(D)(g - Pm)\\. We
write

(6.7) g - Pm = P2ι - Pm + ] Γ ( / V > - P v ) , 1 = min{j:V>m)

and use Corollary 3.2 to obtain

n-ι\\P(D)(g-Pm)\\ <Lxn~x I mιEm{g)

OO

~x ( m2K3s(g m" 3 )<L2n~x ( m2K3,s(g, m" 3 )

We recall from (3.7) and (6.4) that

K3,s(g> ?) ̂  ί3 Sup 11^(9/50^11 < 2t3nV2Ks(f, n
ζevs

and hence with the choices t = m~ι and t = 2~->, we obtain (6.5),
and the proof of (2.6) is complete.

To prove (2.7), we define

(6.8) Br

k(f,x) = Bk(Br

k-
ιf,x), B[{f, x) = Bk{f, x)

and obtain, using the definition of K4js(f> t4) >

(6.9) K4,s(f, t4) < \\f-B*f\\ + t4Sup\\φ4

s(d/dξ)4B4

kf\\.
ζevs

The elementary estimate yields

3

(6.10) ||/-^/||<^||^(^/-/)||<4||J?fc/-/||.

7=0

Theorem 4.1 with u = 0 and r = A repeated 4 times yields, for

(6.11) Svφ\\φ4{dldξ)4B4

ng\\ < Suv\\φ4{dldξ)4g\\.
ξevs ξev
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Theorem 4.1 with v — 1, used with r = 3, then r = 2, etc. yields

(6.12) Sup\\φ*(d/dζ)*B4

kf\\ < Ck2\\f\\.

A combination of (6.10), (6.11) and (6.12) yields

(6.13) K4,s(f,t4)

Following the inequality (6.13), we use a technique by V. Totik [15]
used also in Theorem 9.3.4 of [11] and in §5 of [3] to obtain

(6.14) K4,s(f,t4) < Ct" (
\ι<k<r2

with any p satisfying 0 < p < 4.
We now substitute (6.14) in the Marchaud type estimate (3.16) with

r = 3 to obtain, with 3 < p < 4,

Σ *2*~' Σ

<C 2 / 3

For a given n, we choose ΠQ satisfying n/2 < tio<n such that

!!£„/-/1|= min \\Bkf-f\\.
0 n/2<k<n

For Pm e Π m , | |PW - /1 | = Em{f) and m = [ y ^ ] , we have

Ks(f, m"1) < \\f-Pm\\ + m

m-3msa\\φl(d/dξ)3Pm\\.

We use (3.8) with m and prove

(6.15) m-3max\\φl(d/dξγPm\\ < C(K3>s(f, m~3) + m

and

(6.16) m-2\\P(D)Pm\\ < C(K3tS(f, m"3) + m- 3 | |/ | |) + \\BnJ-f\\
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We now use the estimate of ΛΓ3 $(/ , ί) for t = m~ι and the inequal-
ities (6.15) and (6.16) to obtain

Ks{f,n-χl2)<Ks{f,m-1)

<\\Bnof-f\\

As Ks(f-Pι,t)=Ks(f, t) and Ex{f) = \\f-Pχ\\ <
term | | / | | on the right-hand side of the above is redundant. Hence,
we only have to show (6.15) and (6.16). To prove (6.16), we write,
using (6.1) for n0 (m = k

-\\BnaPm-Pm\\

We now estimate \\Bn<ίPm-Pm\\ by

\\BnPm-Pm\\ < \\BnJ-f\\+2Em{f)

which completes the proof of (6.16). To prove (6.15), we follow the
proof of Theorem 7.3.1 of [11] almost verbatim to show that

(6.17) \\φ4

ξ(d/dξ)4Pm\\ <Lm\K39S(f9 m"3) + m- 3 | | / | | ) .

We then observe that it is sufficient to examine ζ = β\. The rest fol-
lows from the one-dimensional theorem applied to X\ at the coordi-
nates (X2, . . . , Xd) = x. We obtain, using the mapping y = X\ j 1 - \x\
and the notations φ(y)2 = y(l-y)9 fχ(y) = f{xx, x2, . . . , xd) and

Sup \φe{xλ, x)r(d/dxι)rPm{xι,
C < 1 —|Jc|

= Sup \φ{y)r{dldy)rPmΛ{y)\
0 l
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and hence

Sup \ψe (xl9 xγ{dldxλγPm{x, x)\
0 | |

= Sup \φ{y)\dldyγPmΛ{y)\
0 l

<C\mi Sup \Δ\φhiy)\
Q<h<\/m

+m-χ Sup \φ(y)4(d/dy)4Pm,χ(y)\)
0<y<1 /

< CmWs(f, 1/m) + m-χ Sup \\φ*ζ{dldξ)*Pm\\
ξevs

which, together with (6.17), completes the proof of (6.15). This in
turn, completes the proof of (2.7). D

7. The proof of the main results for Bn . In this section, we point out
some changes that are needed for the proof of the saturation, direct
and converse results for Έn , that is, the proof of Theorem 2.2. We
first need a form of Theorem 3.1 and Corollary 3.2 on the cube whose
proof is simpler.

THEOREM 7.1. For the cube Q given in (1.4), 0 < p < oo and
ξ e VQ, we have, for P e Un,

(7.1)

< Cnk\\wP\\Lp{Q)

where w(x) ΞΞX^ χa

d

d(\-xxγι {\-xdγ*, αz , βt > 0 for p = oo
and OLi, βi > l/p for p < oo.

We note that the rest of the results in §3 are for a simple poly tope
S which applies to Q as a special case.

The analogues of Theorems 4.1 and 5.1 follow easily. In the state-
ments, we replace S by Q. We do not need the elaborate scheme of
dividing Q into subdomains and using a transformation like T. In
fact, we treat the whole domain Q in the same way as we treated Vo

in Theorems 4.1 and 5.1. We observe that Bn(f, x) is a polynomial
of degree nd (not ή) but if P e Hm<n , Bn(P, x) is a polynomial of
degree m. We further note that in the analogue of Lemma 5.2, (e),
(f) and (g) are changed in the following manner.
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LEMMA 7.2. For ψi{x) = X/, i = 1, ... , d, (a), (b), (c) and (d) o/

LemmaJ>.2 hold with Bn replacing Bn. Furthermore, we have
(e)' Bn((ψi - X/)(^ - xj) , x) = 0 /or / ̂  ,
(f)' 5 Λ ( ( ^ - x / ) ( ^ - x ; )(^/ - x/), x) = 0 for iφjφlφi,

and _

(g)' Bnϋψi - Xi)(ψj - Xj)2, x) = 0 /or i ̂  7 .

Theorem 6.1 for Tϊn follows verbatim and the same is true for the
rest of §6.

8. Comparisons, further questions and conjectures. When the results
in [7], [8] and [11] are examined, it is clear that, for 0 < a < 2,

(8.1) \\Bnf-f\\c{S) = O(n-^2) *K 2

In [2], the investigation of #2,s(/> *2)oo (in our notation) is pur-
sued but, in view of the present results, there is no hope to include
saturation in the context of K2 s(f> *2)oo .

For Ks(f,t), given in (3.7),'

As Theorem 3.4 yields, for a < 2, the implication

*3,s(/, t3) = O(ta) implies K2>s(f, t2) = O(ta),

we also have (for α < 2)

3 i m P l i e s κs(f, t) =

It is now clear that K$9s(f> *3) a n d Jζs(/> 0 can replace K2,s(f> t2)
in (8.1). Of course, (8.1) does not include results at the saturation
rate n~ι or close to it as n~ι(logn)a or n~1(logπ)α(loglogn)^ for
example. One may be led to believe that the behaviour of K$9s(f> *3)
is sufficient. However, it fails already in the univariate case.

To concentrate on possible generalization, we define

(8.2) K*s(f,t2)oo= Inf (\\f-g\\ + f*\\P(D)g\\)
gec\S)

with P(D) of (3.2). Now, we may ask if a result utilizing K£(f9 t
2)^

which contains saturation, direct and converse theorems is possible.
We believe that the answer will be affirmative. (If the requirement
that the saturation theorem will be included is dropped, the present
technique and discussion is sufficient.)
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We believe that an even stronger result is valid. We conjecture that a
strong converse inequality of type A in the terminology of [10], which
will imply that

(8.3) ll*»/-/ll~W>*~!)oo,

will be proved one day. We recall that even for the univariate Bern-
stein polynomial, (8.3) is open. For d > 1, even the weakest "strong
converse inequality of type D" (in the terminology of [10]), that is,

(8.4) Sup\\Bkf-f\\~K*s(f,n-1)
k>n

is not known. However, for Bernstein-Durrmeyer operators (see [4]),
the analogue of (8.3) is known for 1 < p < oo and all dimensions
d (and for d = 1,2,3 for 1 < p < oo). There are some possible
results between (8.3) and the result of this paper, but as we are in the
business of making conjectures, we might as well be brave.

Another interesting question is to find out the actual behaviour of /
from the jRΓ-functional or from the rate of convergence. Here, results
in the multivariate case are very scant. We conjecture that

(8.5) \\P(D)f\\<M implies | | / T 2 Δ ^ / | | < Mλ

where M\ depends on M but not on h or / .
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