PACIFIC JOURNAL OF MATHEMATICS Vol. 171, No. 2, 1995

CORRECTION TO "FREE BANACH-LIE ALGEBRAS, COUNIVERSAL BANACH-LIE GROUPS, AND MORE"

VLADIMIR PESTOV

Vol. **157** (1993), 137–144

We correct a proof of the fact that the free Banach-Lie algebra on a normed space of dimension ≥ 2 is centreless, and observe that, as a corollary, every Banach-Lie algebra is a factor algebra of a Banach-Lie algebra faithfully representable in a Banach space.

1. All the major results of our paper [2] are based on the following statement, which appears as a part of Theorem 2.1.

Theorem A. The free Banach-Lie algebra on a normed space E is either trivial (if dim E = 0), or one-dimensional (if dim E = 1), or centreless.

Unfortunately, the proof of the above result presented in [2] is unsatisfactory, and it was Professor W.T. van Est who has kindly drawn the author's attention to this fact. Below we present a correct proof of Theorem A.

A 1973 investigation [4] of van Est and Świerczkowski was partly motivated by the question: is every Banach-Lie algebra a factor algebra of a Banach-Lie algebra faithfully representable in a Banach space? We can answer this in the positive.

Indeed, every Banach-Lie algebra \mathfrak{g} is a factor Banach-Lie algebra of a free Banach-Lie algebra [2]. Since centreless Banach-Lie algebras are exactly those whose adjoint representation is faithful, the following direct corollary of Theorem A holds.

Theorem B. Every Banach-Lie algebra is a factor algebra of a Banach-Lie algebra admitting a faithful representation in a Banach space.

2. Denote by \mathbb{K} the basic field (either \mathbb{R} or \mathbb{C}), and let E be a normed space. For an n > 0, let $\mathcal{A}_n(E) = E^{\otimes_{\pi} n} \equiv E \otimes_{\pi} E \otimes_{\pi} \cdots \otimes_{\pi} E$ be an *n*-fold (non-completed) projective tensor product. ([**3**, III.6.3.]) Endow the space $\mathcal{B}^n(E)$ of all *n*-linear continuous functionals on E^n with a norm:

$$||f|| \stackrel{def}{=} \sup\{|f(x_1,\ldots,x_n)| \colon ||x_i|| \le 1, \ i=1,2,\ldots,n\}.$$

The spaces $\mathcal{A}_n(E)$ and $\mathcal{B}^n(E)$ admit a canonical pairing, which determines an isometric embedding of $\mathcal{A}_n(E)$ into the strong dual $\mathcal{B}^n(E)'$ ([3, exer. III.21, (a)]).

Let $\mathcal{A}_{+}(E)$ stand for the free associative (non-unital) algebra on E, $\mathcal{A}_{+}(E) = \bigoplus_{n=1}^{\infty} \mathcal{A}_{n}(E)$, endowed with an l_{1} -type norm, $\left\|\sum_{n=1}^{k} x_{n}\right\| = \sum_{n=1}^{k} \|x_{n}\|$. Denote by $\hat{\mathcal{A}}_{+}(E)$ the Banach associative algebra completion of $\mathcal{A}_{+}(E)$. It is easy to verify that $\hat{\mathcal{A}}_{+}(E)$ contains an isometric copy of E in such a way that an arbitrary linear contraction f from E to an associative algebra \mathcal{A} endowed with a complete submultiplicative norm extends to a unique algebra homomorphism $\overline{f}: \hat{\mathcal{A}}_{+}(E) \to \mathcal{A}$ of norm ≤ 1 . We call $\hat{\mathcal{A}}_{+}(E)$ the free Banach algebra on E. Denote the Banach space completion of $\mathcal{A}_{n}(E)$; then $\hat{\mathcal{A}}_{+}(E)$ is the l_{1} -type sum of $\hat{\mathcal{A}}_{n}(E), n = 1, 2, \ldots$

It is clear that the free Banach-Lie algebra $\mathcal{FL}(E)$ is naturally isometric to the l_1 -type direct sum of a family of complete normed spaces $\mathcal{FL}_n(E)$, $n \in \mathbb{N}$, where $\mathcal{FL}_n(E)$ is the completion of $\mathcal{L}_n(E)$. (Here $\mathcal{L}_1(E) = E$, and the linear subspaces $\mathcal{L}_n(E)$ of the free Lie algebra, $\mathcal{L}(E) = \bigoplus_{k=1}^{\infty} \mathcal{L}_k(E)$, on the vector space E [1], are defined in a usual recursive fashion.) The symbol $E_{1/2}$ will stand for the normed space $(E, (1/2) \| \cdot \|)$. We will denote by $\hat{\mathcal{A}}_+^{-}(E)$ an algebra obtained from the free Banach algebra $\hat{\mathcal{A}}_+(E_{1/2})$ by doubling its norm. The doubled norm $\| \cdot \|^{-1}$ is Lie-submultiplicative, and the identity map Id_E extends to a contracting Lie algebra morphism $i: \mathcal{FL}(E) \to \hat{\mathcal{A}}_+^{-}(E)$. The restriction of i to $\mathcal{L}(E)$ is well known to be mono [2]. Since the identity map $\mathcal{A}_+^{-}(E) \to \hat{\mathcal{A}}_+(E_{1/2})$ has norm 1/2, its composition with i is a contracting Lie algebra homomorphism $\mathcal{FL}(E) \to \hat{\mathcal{A}}_+(E_{1/2})$, which we denote by i as well.

Assertion 1. Let n = 1, 2, ... The restriction i_n of $i: \mathcal{FL}(E) \to \hat{\mathcal{A}}_+(E_{1/2})$ to $\mathcal{FL}_n(E)$ is an isomorphic embedding of normed spaces; namely, for each $x \in \mathcal{FL}_n(E)$ one has

(1)
$$||i(x)||_{\hat{\mathcal{A}}_n(E_{1/2})} \le ||x|| \le \frac{2^n}{n} ||i(x)||_{\hat{\mathcal{A}}_n(E_{1/2})}.$$

Proof. Define recursively the *n*-fold commutator, $[x_1, \ldots, x_n]$, by $[x_1, \ldots, x_n] = [[x_1, \ldots, x_{n-1}], x_n]$. The map $(x_1, \ldots, x_n) \mapsto [x_1, \ldots, x_n]$ from $E \times E \times \cdots \times E \subset \mathcal{A}_n(E)$ to $\mathcal{L}_n(E)$ is *n*-linear and

$$|| [x_1, \ldots, x_n] || \le || x_1 ||_E \ldots || x_n ||_E = 2^n \frac{1}{2} || x_1 ||_E \ldots \frac{1}{2} || x_n ||_E.$$

Therefore, it extends to a unique bounded linear operator (of norm $\leq 2^n$), $\nu: \hat{\mathcal{A}}_n(E_{1/2}) \to \mathcal{FL}_n(E)$, having the property that if $x_1, x_2, \ldots, x_n \in E$, then

ERRATA

 $\nu(x_1x_2...x_n) = [x_1,...,x_n]$. The restriction of ν to $\mathcal{A}_n(E)$ is the familiar Specht-Wever map [1].

While the left hand side inequality in (1) follows from a definition of i, suppose that $||i(x)|| \leq 1$. One can assume without loss in generality that $x \in \mathcal{L}_n(E)$. Let an $\varepsilon > 0$ be arbitrary. For a finite collection of elements $x_{i,j} \in E$ one has ([3, III.6.3]) $i(x) = \sum_i x_{i,1} x_{i,2} \dots x_{i,n}$ and

$$||i(x)|| \ge \sum_{i} \frac{1}{2} ||x_{i,1}||_{E} \frac{1}{2} ||x_{i,2}||_{E} \dots \frac{1}{2} ||x_{i,n}||_{E} - \epsilon$$

that is,

$$\sum_{i} \|x_{i,1}\|_{E} \|x_{i,2}\|_{E} \dots \|x_{i,n}\|_{E} \leq 2^{n}(1+\varepsilon),$$

and therefore

$$\left\|\sum_{i} [x_{i,1}, x_{i,2}, \dots, x_{i,n}]\right\| \le 2^n (1+\varepsilon).$$

According to the Specht-Wever theorem [1], $\nu(x) \equiv \sum_i [x_{i,1}, x_{i,2}, \ldots, x_{i,n}] = nx$, whence $x = (1/n) \sum_i [x_{i,1}, x_{i,2}, \ldots, x_{i,n}]$ and $||x|| \leq (2^n/n)(1+\varepsilon)$. Since $\varepsilon > 0$ is arbitrary, one has $||x|| \leq 2^n/n$, as desired.

3. Proof of Theorem A. We can assume that dim $E \ge 2$. Let an $x \in \mathcal{FL}(E)$, $x \ne 0$ be arbitrary, $x = \sum_{k=1}^{\infty} x_k$, where $x_k \in \mathcal{FL}_n(E)$. For at least one $n = 1, 2, \ldots$, one has $x_n \ne 0$. It remains to find a $z \in E$ such that $[z, x_k] \ne 0$, for clearly then $[z, x] \ne 0$ as well. If E is of finite dimension, then such is $\mathcal{L}_n(E)$; if an element $x \in \mathcal{FL}_n(E) \equiv \mathcal{L}_n(E)$ commutes with every element of E, it must belong to the centre of $\mathcal{L}(E)$, which is trivial if dim E > 1. In infinite dimensions, however, this argument fails (which was essentially author's blunder in [2]).

Denote by ad the adjoint representation of $\mathcal{FL}(E)$ in the underlying Banach space, $\mathcal{FL}(E)_+$.

Assertion 2. Assume that dim $E = \infty$. Let $n \in \mathbb{N}$ and let $x \in \mathcal{FL}_n(E)$, ||x|| = 1. Then $|| \operatorname{ad} x || \ge n2^{-n}$.

Proof. Since $|| ad || \leq 1$, it is enough to check the desired property for $x \in \mathcal{L}_n(E)$: indeed, the unit sphere of $\mathcal{L}_n(E)$ is dense in the unit sphere of $\mathcal{FL}_n(E)$, and if $x_n \to x$ as $n \to \infty$, then $\operatorname{ad} x_n \to \operatorname{ad} x$ in $\operatorname{End} (\mathcal{FL}(E)_+)$ and $|| \operatorname{ad} x_n || \to || \operatorname{ad} x ||$.

The norm of i(x) in $\mathcal{A}_+(E_{1/2})$ is $\geq n2^{-n}$, according to Assertion 1. Assume that $i(x) = \sum_i x_{1,i} \otimes x_{2,i} \otimes \cdots \otimes x_{n,i}$, where $x_{j,i} \in E$. Let an $\varepsilon > 0$ be arbitrary.

VLADIMIR PESTOV

Choose an $f \in \mathcal{B}^n(E_{1/2})$ with $||f|| \leq 1$ and $|f(i(x))| \geq n2^{-n} - \varepsilon$. Due to infinite-dimensionality of E, there exists a linear functional $g: E \to \mathbb{K}$ of norm 1 with $g(x_{n,i}) = 0$ for all (finitely many) values of i. Let $y \in E$ be such that ||y|| = 1 and g(y) = 1. (The kernel of g, being one-dimensional, admits a projection from E of norm 1.) The mapping $f \otimes g$ of the form $a \otimes b \mapsto f(a) \cdot g(b), a \in E_{1/2}^n, b \in E_{1/2}$, is an (n+1)-linear functional of norm ≤ 1 on $E_{1/2}^{n+1}$. Since

$$(f\otimes g)(y\otimes i(x))=\sum_i f(y\otimes x_{1,i}\otimes\cdots\otimes x_{n-1,i})\cdot g(x_{n,i})=0,$$

one has

$$\begin{split} |(f \otimes g)(i(x) \otimes y - y \otimes i(x))| &= |(f \otimes g)(i(x) \otimes y)| \\ &= |f(i(x))| \cdot 1 \ge \frac{n}{2^n} - \varepsilon. \end{split}$$

and in view of arbitrariness of $\varepsilon > 0$, the norm of the element i([y, x]) = i(x)y - yi(x) in $\hat{\mathcal{A}}_+(E_{1/2})$ is $\geq n2^{-n}$. In view of Assertion 1, the norm of [y, x] in $\mathcal{FL}_n(E)$ is $\geq n2^{-n}$ as well.

References

- [1] N. Jacobson, Lie Algebras, Interscience, New York, 1962.
- [2] V. Pestov, Free Banach-Lie algebras, couniversal Banach-Lie groups, and more, Pacific J. Math., 157 (1993), 137–144.
- [3] H.H. Schaefer, Topological Vector Spaces, Spriner-Verlag, NY-Heidelberg-Berlin, 1971.
- [4] W.T. van Est and S. Świerczkowski, The path functor and faithful representability of Banach Lie algebras, J. Austral. Math. Soc., 16 (1973), 471-482.

Received January 30, 1995.

VICTORIA UNIVERSITY OF WELLINGTON P.O. BOX 600, WELLINGTON, NEW ZEALAND *E-mail address*: vladimir.pestov@vuw.ac.nz