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REPRODUCING KERNELS AND COMPOSITION SERIES
FOR SPACES OF VECTOR-VALUED HOLOMORPHIC

FUNCTIONS

BENT 0RSTED AND GENKAI ZHANG

We calculate the norm of each K-type in a vector-valued
Hubert space of holomorphic functions on a tube domain of
type I. As a consequence we get composition series of the an-
alytic continuation of certain holomorphic discrete series and
an expansion relative to K of the matrix-valued reproducing
kernel.

Introduction.

The theory of unitary highest weight modules for semisimple Lie groups is by
now very well developed. Questions of classification, intertwining operators
and primitive ideals have been settled by algebraic means, see [1, 2, 3] and
[8] and reference there. However, there remain some open problems on the
analytic side, in particular to find analytical proofs and expressions for the
unitarity.

The problem we consider here is to calculate by purely analytical means
the invariant Hermitian form in a Harish-Chandra module of highest weight.
At the same time, we find explicitly the if-types in a composition series
at reducible values of the parameter for the module. This is of interest
for example in finding explicit intertwining differential operators giving the
various subquotients.

The problem of composition series and expansion of reproducing kernels
for analytic continuations of the holomorphic discrete series has been studied
extensively. In [15] this is done for the type I domain of tube type and for
the scalar-valued Bergman spaces by calculating the norm of each If-type.
Recall the simplest case, where G — SU(1,1) and the expansion amounts to
the binomial formula

u-•
k=o

Here the monomials zk, k > 0, of the complex variable z in the unit disk give
the if-types of the corresponding highest weight module, and the coefficients
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in the expansion give the reciprocals of the invariant Hermitian form for the
module. Faraut and Koranyi [4] recently solved this problem for a general
bounded symmetric domain by using the generalized Gamma-function. The
similar problem for vector-valued function spaces of holomorphic functions
has been around for some time, see [17]. However, it seems to us that even
for the group 577(2,2) with the "smallest" representation of £7(2) on C2 as
fiber no explicit result is known. Generally speaking, this problem involves
the explicit decomposition of tensor products of representations of compact
groups, which according [20], is prohibitive.

In this paper we give the expansion of the reproducing kernel of a vector-
valued Bergman space of holomorphic functions on a tube domain of type
I. We consider here the first simple nontrivial representation of the compact
group U(n) (or rather S(U(n), C/(n))), namely its defining representation on
Cn. The K-irreducible decomposition of the space of Cn-valued polynomials
can be then read off abstractly. We find the norm of each if-space and give
the expansion of the matrix-valued reproducing kernel.

As an application we can then read off from our formula the composition
series in the analytic continuation and also the unitarizablity of the quotients
in the composition series. Since the arguments are similar to those in [4]
and [15] we only sketch the proofs.

The calculation of the tensor product decompositions in this paper is el-
ementary. We can certainly use the spherical functions on compact groups
and Harish-Chandra c-functions to simplify our result. On the other hand
our calculation gives more information about the decomposition. In a sub-
sequent paper we will use the result in this paper to study the vector-valued
function spaces of holomorphic functions on some other bounded symmetric
domains.

The main results are Theorems 2, 3, and Corollary 1, 2 but also Lemma
1 and Theorem 1 might be of independent interest giving detailed structure
of the tensor products with U1.

§1. Decomposition of tensor products.

In this section we give the decomposition of tensor products of holomorphic
representations of U(n) with its defining representation on C1. The result
will be used in the next section to calculate the norm of each K-tγpe in
Hubert space of vector-valued holomorphic functions on

D = SU{n,n)/S(U{n)iU(n)).

Before going into the calculation we briefly recall here the root system for
the compact group U(ή) and fix some notations. See [20].
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The Lie algebra u(n) of U(n) has complixification u(n)c — gl(n,C), the
Lie algebra of GL(n, C), which has the standard realization a s n x n complex
matrices. Denote J5< the diagonal matrix with ith part being 1 and the rest
0, and Eijj i φ j , the matrix with (i,j) entry being 1 and the rest 0. The
elements {Eι,i = 1,... ,n} span a Cartan algebra of u(n)c- We denote ε*
the linear functional on the Cartan algebra defined by Si(Ej) = δij. The
root spaces and roots are CEitj and ε^ = ε» — Sj. respectively. The postive
and positive simple roots are ε» — ε̂  , % < j and ε< — ε<+i, t = 1,... ,n — 1
respectively.

Let (V—, m) be a holomorphic representation of U(n) with highest weight
m = (mi,... ,mn) = rriιει-\ hmnεn, where mi > m2 > > mn > 0. De-
note On its highest weight vector with ||^m|| = l When m = (1,0,..., 0) =
εi, V— = Cn is the defining representation of U(n). We denote {ej its
orthonormal basis ex = (1,0,... ,0), ..., en = (0,0,..., 1). Hence ex is the
highest weight vector. We normalize so that ||ei|| = 1.

It follows that ([20])

n

(1.1) V— ®Cn =

where the ith term will not appear if m+εj violates the condition for highest
weight, that is if m^-i = m .̂ We let as above vm+εi be the highest weight
vector of Vm+εi. Our objective in this section is to write explicitly the
vectors ^ 8 ê  as sum of their components in V—+£j according to the above
decomposition.

Lemma 1. We have the following formulae for the highest weight vectors
Vm+si for i = 1,2

m / ® e x - J5χ ϊ2/ ® e 2 ,

w Λere / E E2ΛV^ is such that \\f\\2 + | | J5i, 2 / | | 2 = 1- //» > 3, ^Λej/ are of the

form
vm+εi = / ® ei - JS?if2/ ® e2 Ehif ® e<,

where f G F — z*5 α weight vector of weight m — εi^ αncί ^2,3/ = • =

Proof. Since ^m is a highest weight vector of V— of weight m we see that
the vector -u^ ® ex is of weight m + εi. It is annihilated by the operators

= 0.
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Moreover ||vjn ® βi || = 1 so we can take vm+ei — vm ® ex.
The element / ® ex — Eχ^f ® e2 for / £ E2tι V

m is of weight m + ε2. We
need only to prove that it is annihilated by Eiti+ι. Since the weight space
with weight m + εi)2 is the zero space, we know that i?1 ) 2£Ί,2/ = 0. Clearly

EXt2(f ® ei - E 1 | 2 / ® e2) = (#i,2/) ® ex - Eiaf ® (β l) = 0.

If j > 2, then Ejj+ιf = 0 since it is of weight m — ε i } 2 + ε ^ +i, whose
weight space is {0} because εi,2 and ε^j +i are simple positive. Therefore
/ ® ei — Eii2f ® e2 is a highest weight vector and is of norm 1. This proves
the formula for Vm+ε2

Now we prove the formula for υm+εi, i > 3. Let / i , . . . , /n in V^31 be such
that

^m+ε; = /l ® βi + + /„ ® βn

if Vrm+εi exists. By computing weights in both sides we see that fj is of
weight m — ε^i However —£j,i is a positive root if j > i, whose weight space
is {0}. So fj = 0'ήj>i. That is

= /i ® ei + + fi ® e<,

and /i is a constant multiple of the highest weight vector vm by the above
weight argument.

The condition Ejj+ivm+e. = 0, j = 1,2,..., i — 1 implies that ϋ ^ +i/i = 0
and

/ 2 = —Ei^fli - fi — —Ei-l,ifi-l

Hence

where the third equality is obtained since ^,3/1 = 0. Continuing similar
calculation we get fj = —Exjfi, j = 2,..., i. This finishes the proof of the
Lemma. D

Lemma 2. ΓΛe vectors v^^ei have the following decomposition according
to (1.1)

vm®en = anΛPΪn) + αn,2P( n )
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where P^ e V^+εi and \\Pτ

{j)\\ = 1. That is, each vector υ ^ ® e< Λαs no
projection in the space Vm+εj if j > i.

Proof. This can be seen by using the similar weight argument as in the proof

of Lemma 1. D

Theorem 1. We have the following formula for entries a*,*, k > i, in the
above [lower triangular) matrix

,2
| =

where | α i α | 2 = 1.

To prove the Theorem, we need an identity.

L e m m a 3. The following identity holds

Proof. Consider the following partial fractional expansion

(1.2)
*' '^ y T7 •

A easy calculation shows that

Ti —

Put z = 0 in (1.2). We get

k-\

t = l i W * 2 = 1

Substituting n, = πij — mk — j -\- k we then get the identity in the Lemma.

D

For formulas of this kind see further [14].

Proof of Theorem 1. We will prove the Theorem by induction. The idea
is simply to use the branching rule by restriction of U(n) to its subgroup
U(n — 1). It is clear that the result is true for n — 1. Suppose the result is
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true for n — 1, that is the above formula is true for the tensor product of a

holomorphic representation of U(n — 1) with its defining representation on

Now let V— be a representation of U(n) with highest weight
m = (mi , . . . ,m n ) , m x > > m n > 0. It is easy to see that V— —
y(m1-mn,..,mn-1-mnfo) 0 y(mn,...,mn) a n d y(mn,...,mn) i s One-dimensional ([7]).

So by tensoring everything for the formulas about (mx — m n , . . . ,m n _i -

^ π 5 θ ) by y(mn, ,mn) w e gej. fae r e s u j ^ about m. So we can assume mn — 0.

We also notice that the formula for | α f c j |
2 stays the same if we replace mτ

by πii - mn.

We consider the natural imbedding of C 1 " 1 into C n by identifying the first

n—1 basis vectors eu . . . , en_i of C 1 " 1 and of C \ The group C/(n—1) is then

a subgroup of C/(n) under this identification. The space V—, as a J7(n — 1)-

module, is then decomposed into irreducibles, and the multiplicities of each

is one. See [20]. One of these is of highest weight m ; = ( m i , . . . , m n _i) .

With abuse of notation we denote this module by V— . Under the U(n — 1)-

action, the vector % is of weight m' and is annihilated by Eiμ+1. By the

multiplicity one property we see that vm G Vm is also in the space V— and

is the highest weight vector of V— .

The tensor product V—' ® C71""1, as U(n — l)-module, is decomposed as

follows,
π - l

2=1

with the same convention as that of (1.1). Let v + f t , i = 1,. . . , n — 1 be

the highest weight vectors of V— + E l We claim that

the subspace in (1.1) of [/(n)-decomposition. In fact, it is clear that v^+£t

has the weight m+Si under U(n). It is annihilated by Ejj+i, j — 1,. . . , n—2.

We need therefore only to prove that En^ι^nvΪΏ>+ει — 0. From Lemma 1 we

know that

Vrn'+si = / ® βi - £?1>2/ ® e2 ^i,i-i/ ® e{_i - EλJ 0 eu

with / E V— is of the weight m' — εi ί t. Now

The vector E n _i ? n / under C/(n) is then of weight m — ε M + εn_i,n = m —

Σj=i εj,j+i + εn-i,n5 which is zero by the weight theory. (Every weight ap-

pearing in the module V— is of the form m — YTjZl nj£jj+i- This expression
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is unique since ε ^ +i are linearly independent.) Similarly, we get

En-l,nEl,2f = 0, . . . , En^ι^nEι^ιf = 0.

The vector Ei^f is of weight m therefore En_ι^nEιyif = 0. That is

^n-i,n^m'+ε; = 0. So vm '+ e. is in Vm+εi. Consequently we have

So we have a decomposition table of vm ® e ί7 i = 1,..., e n _ l 7 with the

same Pj as they are viewed as ί7(n)-vectors. By our induction assumption,

we have

(1.3) vm ® en_! - an-lΛP[n-ι) + - + a ^ ^ P ^ .

Here we have used the simple observation that the formulae of lα^] 2 , k,i <
n — 1 for the tensor product V— ® C n - 1 of C/(n — 1) are the same as of
V ^ Θ C 1 of U(n).

Now we consider the decomposition of ̂  ® en,

(1.4) Wffi ® e™ = On-LxP^ + + O , , , ^ ! ^ , + O n ^ P ^ .

We observe further that

anΛEn.hnP
{

k

n} = αn_ 1 ) f cP f c

( n- 1 }, fc = 1,... ,n - 1

by operating £?n_i,n on (1.4) and comparing with (1.3). Taking norm in this
identity we see that

α c\ \n |2 _ ii rp p ( n ) | | - 2 l Λ I2

Below we will calculate \\En-ιinP^\\~2. By calculating weights in both
sides, we see that P^ is of weight m + ε n , λ = l , . . . , r o — 1 and P ^ n ) is
a highest weight vector of Vm+En. Moreover, all those vectors are annihi-
lated by Ejtj+U j = 1, . . . , n - 2. Therefore P f c

( n ) G Vm+εk is the highest
weight vector for the submodule of Vm+εk with highest weight m ' + εn in
the decomposition of V—+εk under U(n — 1), again by the multiplicity one
result.

We now recall the Gelfand-Cetlin orthonormal basis and tableaus. See
[20] for further details. For any [/(n)-module with highest weight raljnεi +

^̂ 2,71̂ 2H l-T^Vn^rn we restrict Vm to its subgroup U(n—1). Under U(n—\)
it is decomposed into irreducibles with highest weights rai)n_iεi + m 2 , n - i £ 2 +

h m n _ l j n _ ! ε n _ i as indicated above. We decompose further those spaces
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succesively under U(n — 2) and so on. In the last step we get one-dimensional
spaces of U(l). Normalize the nonzero vectors in these spaces we get the so
called Gelfand-Cetlin orthonormal basis. Each such vector corresponds to a
tableau

f TTλi . . . ΎΎ)

It follows from our observation above that Pfc is a normalized Gelfand-
Cetlin basis vector with the corresponding weight tableaus with entries
f̂c,n = mk + k and m^ — mi'ύiφk. It follows further from the Theorem

7 in [20, p. 205] that

- i ~ (mk - k) -

ΓΠTiV* -i-(mk-k)-l) U7=i^k(mi - % - (mk - k))

___ mn — mk — n + k

mn_! — mk — n + k
_ mk — mn — k + n

mk - m n _ i - k + n'

(Notice that only the term j = k is nonzero in the formula in Theorem 7
there.)

Prom this, (1.5) and the induction assumption we see that

(mk — m n _i — k + n),

(mk — mn — k + n)

(τnk — ? n n _ i — k + Ti) — rrij — k

(mk-mn-k

=

Π]=ijίk(™>k - rrij - k + j)
for i = 1,...,n — 1. So the theorem is true for αfcil, k,i < n — 1.

Since ΣΓ=i lαn,ΐ|2 = 1> by Lemma 3 we know that the Theorem is true for
αn>n. This finishes the proof. D

Lemma 4. Let ak^ be the entries in Theorem 1. The following identity holds

f, .a.Γfcij^K-mj -t + j + l)



REPRODUCING KERNELS 501

Proof. We prove this by induction on the number n. If n = 1 there is nothing
to prove. If n — 2 the above claim reads

1 _m1-m2 - 1 + 2 + 1

— m2 — 1 + 2 πiγ — m2 — 1 + 2

for % = 1, which is clearly true; for i = 2 it is just an obvious identity.
Suppose this is true for all n — 1 tuples of integers rriχ > > ran_x. We

prove this for n. For i < n we have

n
. |2

k=i
π - 1

ife=t

mά -i + j + 1) Π J i ' ^ i K - m, - ί
^

J ~ i + 3) Πi=i,j^(^< - m i - * + J)

l)(rrii -mn-i + n + l)

D

§2. The norm of ϋΓ-types.

Let D be the tube domain of type I, that is,

D = {Z e M(n,C) : 1 - Z*Z > 0}.

The domain D is the bounded realization of G/K, where G = SU(n, n) and

Let (Cn,εi) be the representation space of U{n) with highest weight S\
as in §1. For λ > 2n — 1 we consider the Hubert space Hχ of C1-valued
holomorphic functions f(Z) on D with the norm

(2.1)

ll/llλ = d(X) JD {{I - Z'Z)f(Z), f(zή det(l - Z*Zf~2ndZ < oo.

Here ( , •) is the innner product in Cn, dZ is the Lebesgue measure and
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This normalization correponds to the constant vector-valued function ex has
norm 1, i.e. | |ei| |λ = 1.

The group G acts on H\ via the following

Uλ(g) : f(Z) H> (det(CZ + P))- λ (CZ + D ) - 1 / ( ^ 1 ^ ) ^ - 1 = ( σ 2?) '

where g~λZ = (AZ + B)(CZ + D)~ι. Note that O1 here is also viewed as
a representation space of K. So for P(Z) ® v, with v G P 1 and P(Z) a
polynomial, viewed a s a C -valued polynomial, we have

(2.2) Ux{g) : P(Z) ®v^ (det(CZ + D))-χP(g-ιZ) ® (CZ + D)-λv.

Denote KX^W(Z) = KX(Z,W) the C 1 ® CT'-valued reproducing kernel of
H\ in the sense that

for any polynomial / in H\. It follows from the transformation property of
K\ under the group G that

KX(Z, W) = (det(l - W*Z))-χ (1 - W*Z)~\

Let P be the space of holomorphic polynomials on D. The space of in-
finite functions in H\ is then M = P ® C 1, as representations of K. As is
well-known ([15]),

where (V'—)* is the contragredient representation of V—.
Prom this and (1.1) we have that

i=l m>0

where we use the same convention of the summation as in (1.1). The inter-
wining operator from the right hand side to the left in the above is

)

Here £>— denotes the action in Vm of ί/(n) and its holomorphic continuation
to the complexification. We will therefore identify the vectors in V—+εi ®
(V™)* with the corresponding C* -valued polynomials on D. Note that here
we are identifying the space (V™)* with V—.
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Theorem 2. The norm square of the highest weight vector υ f f i + ε i

the K-type (m + Si) ® m* is given by
® % in

Π i < * K - m* - j + fc) Γ(m, + λ - i + 2) Π;=i,^i Γ(m, + λ - j + 1) *

Proof.

withΣ;=ill/ill2 = l We have

= ( (1 - Z*Z) Σ (^(Z) Λ .t J e,, ̂  p -
\ j=l 3=1

The integral of 7χ in the above formula over D with respect to the measure

in (2.1), by the Schur lemma, is

jh=d{\) I \(βs(Z) VΞk,υjjΓ det (1 - Z*Z)χ-2ndZ,

which furthermore by the formula (13) in [15, p. 568], is

A Π ? = i K + n - j ) ! Π?=iΓ(A-j + l)

λ - n Π j< fc K -mk-j + k) Π"=i Γ (mj + λ - j + 1) "

The second term /2 is

k=l
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k=l

n

m+ei (Z)vm+εiίVsί®ek)\2

k=l

where in the last equality we use the fact that vm ® ek only has projections
in V—+6i for k > i as proved in Lemma 2.

Let Vm ® efc = akΛP[k) + + akjkP^k) as in Lemma 2. So

Its integral is,

k=i

,\2 f I (D^> (Z)vm+εi, V m + E j )J

Here we have used the Schur Lemma since \\P ; \\ — | | v m + ε i | | = 1. Now by
Lemma 4 above and Proposition 1 in [15] we have

(h =
*=»

λ - n Π x t ί ^ - m t - j + fc) Π ^ i Γ(m j + λ - j + l)Γ(m< + λ - i + 2)"

Finally we get the norm of v <g> υssι+εi, after a long compution, from

-mk-j Fj=lάΦi Γ(m, + λ - j
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This completes the proof. D

Remark 1. To write the above expression further in a compact form
we recall briefly here the Gindikin Gamma-function, see [4]. For a bounded
symmetric space D = G/K with the corresponding strongly orthogonal roots
7 ! , . . . , 7 r . Let a be the (common) multiplicity of the root space in 6* of
Ίτ~Ίj, i φ j . (See [4] for precise definition.) The Gindikin Gamma-function
is defined by

One defines similarly then the Pochhammer's symbol

(λ)m — pp

In our case a = 2. In terms of the Gindikin's Gamma-function (see [4])

the formula in Theorem 2 can written as

Γ(m + n) λ

Note that we may write Y\j<k(mj — mk — j + k) as (2n - 2)2LJ^ ΓLUπ +
z/, α), where the product is over all the positive roots of u(n)c and y_ —
(—1, —2,. . . , - n ) and ( , •) is the Killing form. This expression of norm is
quite analogous to the correponding formula for the if-types in the scalar-
valued case ([4, Theorem 3.6]). This indicates that presumably there is a
general formula for the vector-valued case. See our forthcoming preprint on
type II and III domains.

Let K$ (Z, W) be the reproducing kernel of each if-space V—+εi ® (V—)*,

normalized as above so that vm and e\ have norm 1. Denote dm^ the dimen-

sion of the the space Vm+ε% ® (V—)*, see [7] and [18].

Corollary 1. For X G C we have the following expansion

(2.3)

i=l m>0 ^ '

This series converges uniformly on compact sets of D x D.

Proof. The case when λ > 2n — 1 follows from the standard argument about
reproducing kernels, see [5] for the scalar case. The case for general λ G C
follows from similar arguments as in [4]. D
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Example. We take n = 2. Let W = I and Z = I 1 in the above

expansion. The (1,1) entry of this matrix equality is the following

This might be of interest from the combinatorics point of view.

§3. The composition series.

In this section we will study the analytic continuation in the parameter λ
of the expansion of the reproducing kernel obtained above. In particular,
we will find the Wallach set, namely the set of those λ's at which we get a
unitary representation on the module generated by the reproducing kernel,
and we will find the composition series when M is reducible. We will only
briefly indicate the results since the argument is the much same as in [4] and
[15].

Lemma 5. For λ G C the function KX(Z, W) is positive definite on D x D
if and only if λ > n — 1 or λ = n — 1,..., 1.

Proof. It can be proved similarly as Lemma 5.1 in [4] that K\(Z,W) is
positive definite if and only if the coeflicients in the expansion of K\(Z, W)
are positive. The Lemma follows then by simple calculation. D

Remark 2. The Wallach set in this case is therefore (n — l,oo)U{l,...,n—
1}. We note here that at the last point in the Wallach set, i.e., at λ = 1 the
module Mo is infinite dimensional, whereas in the scalar case the last point
of the Wallach set is λ = 0 and it corresponds to the trivial representation.

For λ E C let q = q(λ) be the number of nonnegative integers among the
n complex numbers λ 4-1, λ — 1, ... , λ — n + 1. For fixed 0 < j < q let

where the summation is over the set of m and i for which the function

χ _)> —==±£i h ^ z e ro of at most multiplicity j , and with the same convention
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as in (1.1). We can therefore read off from our Theorem 2 the zeros of this
function and get

Theorem 3. For λ G C, M has a composition series

Mo C M1 C C Mq = M

of length q. q — q(λ) > 0 if and only if λ < n — \ and is an integer. Explicitly
those modules are given by (to mimize the notations we use highest weight
to indicate a module)
(1) if λ = n — k, k = 1,. . . , n — 1 then q(λ) = k and

Σ < 0
iφn—fc+l+1 m

< / - 1},

forO<l< k;

(2) i/ λ = 0 ; tΛen g = n — 1 αnrf

iφl+2 m

(m + ει+2) (8) m*, m ί + 2 < 1}

/or 0 < I < n - 1;

(3) if X is a negative integer then q — n and

- λ

for 0 < λ < n.

Note here Mo, the most interesting part, has the following form at λ
n — ft, ft = 1, . . . , n — 1,

n-A;

Corollary 2. Mo is unitarizable precisely when λ > n—1 or λ = 1,. . . , n—1.
M o is /mi£e dimensional if and only if λ is a negative integer. M3/Mj-ι,
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j > 1, is unitarizable if and only if j = q and λ < n — 1 is an integer. In
that case it is isomorphic to the Harish-Chandra module of polynomials in

H2n-\

Proof. The first two parts of the Corollary are direct consequences of Lemma
5 and Theorem 3 and some computations, keeping track of the signs of the
coefficients in the expansion, see [15] and [4]. We now prove the third part.
We consider here the case λ = n — k the general case is just the same.

In the realization of the the group G as above we let F{ be the elements
of 2n x 2n diagonal matrices

where Ei is the n x n matrix we used in §1. We choose a maximal abelian
subspace of the Lie algebra tc containing i^, where 6c is the complexifica-
tion of the Lie algebra of K. We define linear functional 7* on the Cartan
algebra by the relation 7<(i?τj) = 2δij and 7* is 0 on the orthogonal com-
ponent (respect to the Killing form) of the linear span of Fj's. Those are
the Harish-Chandra strongly orthogonal roots, as in [18] for example. We
choose a compatible ordering for the compact roots so that the space Ό1 is
a representation of K with highest weight — ̂  and ex is a highest weight
vector. The positive and negative noncompact root spaces of g<c> the com-
plexification of the Lie algebra of G, will be denoted by p+, p_ respectively.
p+ is simply the spaces of the matrices of the form

where x is a n x n matrix.
Now the module H\ for λ G C is a highest weight module of flc with

highest weight — (\)(Σ?=iΊi) ~ \lι wι^ highest weight vector 1 ® eu i.e.,
the constant vector-valued function. See [19] for the general case and [4] for
the scalar case.

We fixλ = n — fc, so q = k. We claim that Mk/Mk_ι is a highest weight
module with highest weight — (λ+2k) ΣΓ=i li~~\li a n d highest weight vector
(detZ)* ® ei. In fact it is clear that {άetZ)k ® ex is of the stated weight.
Moreover this vector is annihilated by the compact positive root vectors,
since generally, a tensor product of highest weight vectors is a highest weight
vector. Thus we need only to prove that it is annihilated by p+ . Let X G p-f,
and by (2.2) calculate

X ((det Z)k ® ex) = X(det Z)k ®eλ + (det Z)k ® Xeλ

= X(detZ)k®eu
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since X is upper triangular. However X(det Z)k ® ex is a polynomial of lower
degree ([4]) so by Theorem 3 we know that X(det Z)k ® ex is in Mk_λ. That
is X((det Z)k <g> ei) = 0 modulo M*_i D

The argument above is as in [4]. One can also use the argument as in [15]
to compare the invariant Hermitian form on Mq/Mq_ι with that on H2n-x
to prove the Corollary.

From the above results we can conclude

Proposition. The space M as a Qc-module is reducible precisely when
λ < n — 1 is an integer.

Remark 3. At λ = - 1 in the analytic continuation of our expansion
(2.3) we see that the left hand side is then ad(l — W*Z), the adjoint matrix
of (1 - W*Z). The coefficients of K^{Z,W) in the right hand side are
nonzero only for m = S\ H V ε^i = ( 1 , . . . , 1,0,..., 0) with the first i — 1
components being 1 and the rest 0. Therefore the formula (2.3), after a
direct calculation, is

ad(l - W'Z) =

Here cίεi+...+eι_1?i as we defined in §2 is the dimension of the representation
with highest weight (ελ H h ε»_i) ® (εx H h e^i +Si). We thus obtain
a representation theoretic interpretation of adjoint.

Consider finally the example n = 2, i.e., the conformal group. Here the
last Wallach point is the well-known positive-spinor solutions to Dime's equa-
tion. Indeed, one checks that the iί-types satisfying this are exactly Mo

above at λ = 1 with K-types (m + ε;) (g)m* with i = 1, m2 = 0, and mi > 0.
This of course, is in agreement with [9],
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