ENTROPY OF A SKEW PRODUCT WITH A Z²-ACTION

KYEWON KOH PARK

We consider the entropy of a dynamical system of a skew product \hat{T} on X_1xX_2 where there is a Z^2 -action on the fiber X_2 . If the Z^2 -action comes from a Cellular Automaton map, then the contribution of the fiber to the entropy of the skew product is the directional entropy in the direction of the integral of a skewing function φ from X_1 to Z^2 .

1. Introduction.

J. Milnor has defined the notion of directional entropy in the study of dynamics of Cellular Automata [Mi1], [Mi2]. When the notion is applied to a Z^n action it is considered to be a generalization of the entropy of non co-compact subgroups of Z^n .

In the case of a Z^2 -action, we denote the generators of the groups by $\{U, V\}$. Let P be a generating partition under the Z^2 -action. We write $P_{i,j} = U^i V^j P$. If a subgroup is generated by $U^p V^q$, then there is a natural way to compute the entropy of $U^p V^q$ as a Z-action on the space. Milnor extended this idea to define the entropy of a vector by embedding Z^2 to the ambient vector space R^2 as follows.

$$h(\vec{v}) = \sup_{B: \text{bounded set}} \overline{\lim}_{t \to \infty} \frac{1}{t} H\left(\bigvee_{(i,j) \in B + [o,t)\vec{v}} P_{i,j}\right).$$

Given a vector \vec{v} , we let θ_o be the angle between two vectors \vec{v} and (1,0). Let $w = \frac{1}{\tan \theta_o}$ so that (w, 1) is a scalar multiple of the vector \vec{v} . It is easy to see that

$$h(\vec{v}) = \lim_{m \to \infty} \lim_{t \to \infty} \frac{1}{t} H \left(\bigvee_{j=0-m+jw < i < m+jw}^{[ty]} \mathcal{V}_{i,j} \right),$$

where [a] denote the greatest integer $\leq a$.

We note that if $\vec{v} = (p,q)$, then $h(\vec{v}) = h(U^p V^q)$. And it is easy to see that directional entropy is a homogeneous function, that is $h(c\vec{v}) = ch(\vec{v})$ for any $c \in R$.

Directional entropy in the case of a Z^2 -action generated by a Cellular Automaton map has been investigated in [Pa1, Pa3] and [Si]. D. Lind

KYEWON KOH PARK

defined a cone entropy, denoted by $h^c(\vec{v})$, of a vector \vec{v} . Given a vector $\vec{v} = (x, y)$ and a small angle θ , we consider the vectors $\vec{v}_{\theta} = (x_{\theta}, y)$ and $\vec{v}_{-\theta} = (x_{-\theta}, y)$ where x_{θ} and $x_{-\theta}$ satisfy $\frac{y}{x_{\theta}} = \tan(\theta_o + \theta)$ and $\frac{y}{x_{-\theta}} = \tan(\theta_o - \theta)$ respectively. Cone entropy is defined as follows.

$$h^{c}(\vec{v}) = \lim_{\theta \to 0} \lim_{n \to \infty} \frac{1}{n} H \left(\bigvee_{j=0 j x_{-\theta} \leq i \leq j x_{\theta}}^{[ny]} P_{i,j} \right).$$

From the definition, it is clear that we have $h^{c}(\vec{v}) \geq h(\vec{v})$.

We say that a Z^2 -action is generated by a Cellular Automaton if one of the generators of the Z^2 -action, say V, is a block map (a finite code) of U. That is, $(V(x))_i$ depends only on the coordinates $x_{-r}, x_{-r+1}, \ldots, x_r$ [**He**]. We call r the size of the block map V. We will show that in the case of a Z^2 -action generated by a Cellular Automaton map, the directional entropy and the cone entropy are the same (Theorem 1).

Let (X_1, ζ_1, μ_1, G) and (X_2, ζ_2, μ_2, H) be two ergodic measure preserving dynamical systems with finite entropy, where G and H denote the respective group. Given an integrable skewing function $\varphi : X_1 \to H$, we define a skew product G-action \hat{T} on $(X_1 \times X_2, \zeta_1 \times \zeta_2, \mu_1 \times \mu_2)$ such that $\hat{T}^g(x, y) =$ $(T^g x, F^{\varphi(x)}y)$ where T denotes the G-action of X_1 and F denotes the Haction on X_2 . When we have G = H = Z, then the entropy of \hat{T} has been extensively studied by many people (e.g. [Ab], [Ad], [Ma, Ne]). It is well known in this case that $h(\hat{T}) = h(T) + |\int \varphi \, d\mu | h(F)$. The above formula says that, as we expect, the fiber contribution to the entropy is $|\int \varphi \, d\mu | h(F)$.

We investigate the entropy of \hat{T} when G = Z and $H = Z^2$. Note that the above formula cannot hold when the acting group on the fiber is a more general group, say Z^2 . First of all, $\int \varphi d\mu$ is in general a vector. Secondly, if the skewing function takes a constant value, say (1,1), then the fiber contribution should come from the entropy of UV, not necessarily from the whole Z^2 -action. We prove that if the fiber Z^2 -action is generated by a Cellular Automaton map, then we have the analogous theorem (Theorem 2) to the case when H = Z.

We may mention that directional entropy can be also defined in a topological setting. D. Lind constructed an example whose topological entropy does not satisfy the analogue of our Theorem 3 [Li]. His example involves a Z^2 -action which is not generated by a Cellular Automaton map. It is not clear that Theorem 3 holds for topological entropy when we have a Z^2 -action on the fiber generated by a Cellular Automaton map. Lind's example is not interesting in the measure theoretic sense because it has the trivial invariant measure.

We have constructed a counterexample which does not satisfy Theorem 3

[Pa2]. For the example we explicitly construct the base transformation and use the Z^2 -action due to Thouvenot **[Th]** on the fiber. Both of them are constructed by cutting and staking method. It would be interesting to find out how generally Theorem 3 holds. For example, it is unknown if Theorem 3 is true when we have a topological Markov shift which does not satisfy the condition of Corollary 4. We are more interested in the case when the topological Markov shift has 0-entropy as a Z^2 -action.

Although Theorem 2 and 4 are more general than Theorem 1 and 3, we will prove Theorem 1 and 3 because their proofs are easier and more geometric. It is also easy to see the proofs of Theorem 2 and 4 from those of Theorem 1 and 3.

We would like to thank Professor D. Ornstein for helpful discussions and the Referee for many valuable comments.

2. Cone entropy.

Throughout the section we assume that our Z^2 -action is generated by a Cellular Automaton map. We denote by $H^m(\vec{v})$

$$\lim_{n \to \infty} \frac{1}{n} H \left(\bigvee_{j=0}^{n-1} \bigvee_{i=-m+jw}^{m+jw} P_{i,j} \right).$$

Note that $H^m(\vec{v})$ is independent of the size of the vector \vec{v} . Let τ denote $H(P_{0,0})$.

Lemma 1. $H^{m}(\vec{v}) = H^{m'}(\vec{v})$ if m, m' > 2r + w.

Proof. Case 1. \vec{v} is not a scalar multiple of (1,0).

Suppose $m' \ge m$. Clearly from the definition we have $H^{m'}(\vec{v}) \ge H^m(\vec{v})$. Hence it is enough to show $H^{m'}(\vec{v}) \le H^m(\vec{v})$. Note that

$$H^{m}(\vec{v}) = \lim_{n \to \infty} \frac{1}{n} H \left(\bigvee_{j=0}^{n-1} \bigvee_{-m+jw \le i \le m+jw} P_{i,j} \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} H \left(\bigvee_{-m+jw \le i \le m+jw} P_{i,j} \left| \bigvee_{0 \le k < j} \bigvee_{-m+kw \le i \le m+kw} P_{i,k} \right. \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \left\{ H\left(\bigvee_{-m \le i \le m} P_{i,0}\right) + \sum_{j=1}^{n-1} H\left(\bigvee_{jw \le i \le (j-1)w+r} P_{i,j} \middle| \bigvee_{0 \le k < j} \bigvee_{kw \le i \le 2m+kw} P_{i,k}\right) + \sum_{j=1}^{n-1} H\left(\bigvee_{(j-1)w-r \le i \le jw} P_{i,j} \middle| \bigvee_{1 \le k < j} \bigvee_{-2m+jw \le i \le -2m+(j-1)w+r} P_{i,j}\right) \right\}.$$

We make the following observations:

(1)

$$\lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{-m \le i \le m} P_{i,0}\right) = 0 = \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{-m' \le i \le m'} P_{i,0}\right).$$

(2)

$$\begin{split} H\left(\bigvee_{jw\leq i<(j-1)w+r} P_{i,j} \left| \bigvee_{0\leq k< j} \bigvee_{kw\leq i\leq 2m+kw} P_{i,k} \right) \right. \\ &\geq H\left(\bigvee_{jw\leq i<(j-1)w+r} P_{i,j} \left| \bigvee_{0\leq k< j} \bigvee_{kw< i\leq 2m'+kw} P_{i,k} \right) \,, \end{split}$$

because we condition on more information.

(3) By the same reason, we have

These observations together with the formula for $H^m(\vec{v})$ above shows $H^{m'}(\vec{v}) \leq H^m(\vec{v})$.

Case 2. $\vec{v} = \eta(1,0)$ for some real η . We analogously denote by $H^m(\vec{v})$

$$\lim_{n\to\infty}\frac{1}{n}H\left(\bigvee_{i=0}^{[n\eta]}\bigvee_{j=-m}^{m}P_{i,j}\right).$$

We note that

$$\begin{split} H^{m'}(\vec{v}) &= \lim_{n \to \infty} \frac{1}{n} H \left(\bigvee_{i=0}^{[n\eta]} \bigvee_{j=-m}^{m+2(m'-m)} P_{i,j} \right) \\ &= \lim_{n \to \infty} \frac{1}{n} \left(H \left(\bigvee_{i=0}^{[n\eta]} \bigvee_{j=-m}^{m} P_{i,j} \right) \right) \\ &+ H \left(\bigvee_{i=1}^{[n\eta]} \bigvee_{j=m+1}^{m+2(m'-m)} P_{i,j} \left| \bigvee_{i=0}^{[n\eta]} \bigvee_{j=-m}^{m} P_{i,j} \right) \right) \right) \\ &\leq H^{m}(\vec{v}) + \lim_{n \to \infty} \frac{1}{n} \sum_{j=m+1}^{m+2(m'-m)} H \left(\bigvee_{i=0}^{[n\eta]} P_{i,j} \left| \bigvee_{i=0}^{[n\eta]} P_{i,j-1} \right) \right) \\ &\leq H^{m}(\vec{v}) + \lim_{n \to \infty} \frac{1}{n} \sum_{j=m+1}^{m+2(m'-m)} H \left(\bigvee_{i=0}^{r} P_{i,j} \bigvee_{i=[n\eta]-r}^{[n\eta]} P_{i,j} \right) \\ &\leq H^{m}(\vec{v}) + \lim_{n \to \infty} \frac{1}{n} \sum_{j=m+1}^{m+2(m'-m)} 2r\tau \\ &= H^{m}(\vec{v}) + \lim_{n \to \infty} \frac{4r\tau(m'-m)}{n} \\ &= H^{m}(\vec{v}). \end{split}$$

Since we have $H^{m'}(\vec{v}) \ge H^m(\vec{v})$ by definition, the proof is complete. Corollary 1. If \vec{v} is not a scalar multiple of (1,0), then we have

$$\begin{split} & \left| \frac{1}{n} H \left(\bigvee_{j=0}^{n-1} \bigvee_{-m+jw \le i \le m+jw} P_{i,j} \right) - \frac{1}{n} H \left(\bigvee_{j=0}^{n-1} \bigvee_{-m'+jw \le i \le m'+jw} P_{i,j} \right) \right| \\ & \le \frac{1}{n} H \left(\bigvee_{m < |i| \le m'} P_{i,0} \right) \\ & \le \tau \frac{2(m'-m)}{n}. \end{split}$$

Theorem 1. $h^{c}(\vec{v}) = h(\vec{v}).$

Proof. It is enough to show that $h^{c}(\vec{v}) - h(\vec{v})$ is small. If $\vec{v} = (x, y)$ where $y \neq 0$, then by rescaling, we may assume that $\vec{v} = (x, 1)$. Given any $\varepsilon > 0$, there exists θ such that if $\kappa \leq \theta$, then

(i)

$$\lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{0 \le j < n} \bigvee_{jx_{\kappa} \le i \le jx_{-\kappa}} P_{i,j}\right) < h^{c}(\vec{v}) + \varepsilon$$

(ii) $|x_{-\theta} - x_{\theta}| < \gamma$ where γ satisfies that $\gamma \tau < \varepsilon$. There exists m_0 such that if $m \ge m_0$, then

$$\lim \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} \bigvee_{-m+jx \leq i \leq m+jx} P_{i,j}\right) = h(\vec{v}).$$

We choose n_o such that if $n \ge n_o$, then we have

(iii)

$$h(\vec{v}) - \varepsilon < \frac{1}{n} H\left(\bigvee_{0 \le j \le n-1} \bigvee_{-m_o + jx \le i \le m_o + jx} P_{i,j}\right) \le h(\vec{v}) + \varepsilon,$$

(iv)

$$h^c(ec{v}) - 2\varepsilon < rac{1}{n} H\left(\bigvee_{o \le j \le n-1} \bigvee_{jx_{ heta} \le i \le jx_{- heta}} P_{i,j}
ight) \le h^c(ec{v}) + 2\varepsilon,$$

(v)

$$rac{1}{n}H\left(igvee_{o\leq j< K} igvee_{-m_o+jx< i< m_o+jx} P_{i,j}
ight) < arepsilon, ext{ where }$$
 $K = \max\{j: j|x_ heta - x| < m_o ext{ and } j|x_{- heta} - x| < m_o\},$

 and

(vi)

$$\frac{1}{n}H\left(\bigvee_{0\leq j< n}\bigvee_{jx_{\theta}\leq i\leq jx_{-\theta}}P_{i,j}\right)\geq \frac{1}{n}H\left(\bigvee_{0\leq j< n}\bigvee_{-m_{o}+jx\leq i\leq m_{o}+jx}P_{i,j}\right).$$

232

We compute

$$\begin{aligned} |h^{c}(\vec{v}) - h(\vec{v})| \\ &\leq \left| \frac{1}{n} H\left(\bigvee_{o \leq j < n} \bigvee_{jx_{\theta} \leq i \leq jx_{-\theta}} P_{i,j} \right) \right| \\ &- \frac{1}{n} H\left(\bigvee_{o \leq j < n} \bigvee_{-m_{o} - jx \leq i < m_{o} + jx} P_{i,j} \right) \right| + 3\varepsilon \\ &\leq \left| \frac{1}{n} H\left(\bigvee_{o \leq j < n} \bigvee_{n(x_{\theta} - x) + jx \leq i \leq n(x_{-\theta} - x) + jx} P_{i,j} \right) \right| \\ &- \frac{1}{n} H\left(\bigvee_{o \leq j < n} \bigvee_{-m_{o} + jx \leq i < m_{o} + jx} P_{i,j} \right) \right| + 3\varepsilon \\ &\leq \frac{1}{n} H\left(\bigvee_{n(x_{\theta} - x) \leq i \leq n(x_{-\theta} - x)} P_{i,o} \right) + 3\varepsilon \\ &\leq \frac{1}{n} \gamma n\tau + 3\varepsilon. \end{aligned}$$

Hence we have

$$|h(\vec{v}) - h^c(\vec{v})| < 4\varepsilon.$$

In the case of $\vec{v} = (x, o)$, it is not hard to see that the idea of the second part of the proof of Lemma 1 combined with the idea of the proof above will give the desired result.

Theorem 2. If
$$\sum_{m=0}^{\infty} H\left(P_{0,1} \middle|_{-m \leq i \leq m} P_{i,0}\right)$$
 is finite, then we have $h^{c}(\vec{v}) = h(\vec{v})$.

Proof. We note that if we choose M so that

$$\sum_{m=M}^{\infty} H\left(P_{0,1} \left| \bigvee_{-m \leq i \leq m} P_{i,0} \right) < \varepsilon,\right.$$

then we get

$$\sum_{k=-m+M}^{m-M} H\left(P_{k,1} \left| \bigvee_{-m \leq i \leq m} P_{i,0} \right) \right| < 2\varepsilon,$$

for all m > M. Using this, it is easy to see that if $m_2 \ge m_1 \ge M$, we have that for any n,

$$\frac{1}{n}H\left(\bigvee_{j=0}^{[ny]}\bigvee_{i=m_{2}+jw}^{-m_{2}+jw}P_{i,j}\right) < \frac{1}{n}H\left(\bigvee_{j=0}^{[ny]}\bigvee_{i=-m_{1}+jw}^{-m_{1}+jw}P_{i,j}\right) + 2\varepsilon + \frac{m_{2}-m_{1}}{n}\tau$$
where $\frac{m_{2}-m_{1}}{\tau}$ comes from the difference between $\frac{1}{\tau}H\left(\bigvee_{i=0}^{m_{1}}P_{i,j}\right)$ and

where $\frac{m_2 - m_1}{n} \tau$ comes from the difference between $\frac{1}{n} H\left(\bigvee_{i=-m_1}^{m_1} P_{i,0}\right)$ and $\frac{1}{n} H\left(\bigvee_{i=-m_2}^{m_2} P_{i,0}\right)$.

Hence for a given $\varepsilon > 0$, there exist m_o as in Theorem 1 such that for a sufficiently large n,

$$\begin{split} |h^{c}(\vec{v}) - h(\vec{v})| \\ &\leq \left| \frac{1}{n} H\left(\bigvee_{o \leq j < n} \bigvee_{\substack{n(x_{\theta} - x) + jx \leq i \leq n(x_{-\theta} - x) + jx \\ o \leq j < n}} \bigvee_{\substack{n < n < n \\ o < j < n}} P_{i,j} \right) - \frac{1}{n} H\left(\bigvee_{o \leq j < n} \bigvee_{\substack{n < n \\ o + jx \leq i < m_{o} + jx}} P_{i,j} \right) \right| + 3\varepsilon \\ &\leq \frac{1}{n} \gamma n\tau + 2\varepsilon + 3\varepsilon. \end{split}$$

Corollary 2. If V is a finitary code with finite expected code length, then $h^{c}(\vec{v}) = h(\vec{v})$.

 \square

Proof. It is easy to see that a finitary code with finite expected code length satisfies the condition of Theorem 2. See [Pa3].

3. Main Theorem.

Let $\lambda = \mu_1 \times \mu_2$. We denote $\sum_{i=0}^{n-1} \varphi_k(T^i z)$ by $\varphi_k^n(z)$ for k = 1 or 2 and $z \in X_1$. Given two partitions, β_1 and β_2 , we write $\beta_1 \leq \beta_2$ if β_2 is a finer partition than β_1 .

Theorem 3. $h(\hat{T}) = h(T) + h(\vec{v})$ where $\vec{v} = \int \varphi \, d\mu = (\int \varphi_1 \, d\mu, \int \varphi_2 \, d\mu)$.

Proof. Since $\int \varphi \ d\mu$ is finite, as in the case of a Z-valued skewing function, there exists φ' which is bounded and cohomologous to φ . Hence we may assume that φ is bounded. Let $|\varphi_1(z)| \leq L$ and $|\varphi_2(z)| \leq L$. Suppose $\vec{v} = \int \varphi \ d\mu = (x, y)$ where $y \neq 0$. We let α denote the generating partition

of the base. Let β denote a partition of X_2 . Both of the partitions α and β can be considered in a natural way to be a partition of $X_1 \times X_2$. For a given $z \in X_1$, we denote the set $\{(z, u) : u \in X_2\}$ by I_z .

Since

$$\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}(\alpha \lor \beta)\right) = \frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\alpha\right) + \frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta \middle| \bigvee_{i=0}^{n-1}\widehat{T}^{i}\alpha\right)$$

and

$$\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta\left|\bigvee_{i=0}^{n-1}\widehat{T}^{i}\alpha\right\right)=\int\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta|I_{z}\right)\,d\mu,$$

we have

$$\begin{split} \sup_{\beta} h\left(\widehat{T}, \alpha^{\vee}\beta\right) &= \sup_{\beta} \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i}(\alpha^{\vee}\beta)\right) \\ &= h\left(\widehat{T}, \alpha\right) + \sup_{\beta_{m}} \lim_{n \to \infty} \int \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i}\beta_{m} | I_{z}\right) d\mu \\ &= h\left(\widehat{T}, \alpha\right) + \lim_{m \to \infty} \lim_{n \to \infty} \int \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i}\beta_{m} | I_{z}\right) d\mu, \end{split}$$

where β_m denote the partition $\bigvee_{i=-m}^{m} \bigvee_{j=0}^{L-1} P_{i,j}$. We denote $\lim_{n\to\infty} \frac{1}{n} H \left(\bigvee_{i=0}^{n-1} \widehat{T}^i \beta_m | I_z \right)$ by $h_z \left(\widehat{T}, \beta_m \right)$.

As in Lemma 1, it is not hard to see that for sufficiently large m and m', we have

$$h_z\left(\widehat{T},\beta_m\right) = h_z\left(\widehat{T},\beta_{m'}\right)$$

We will show that for sufficiently large m,

$$\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta_{m}|I_{z}\right)\to h(\vec{v}) \text{ as } n\to\infty, \text{ for a.e. } z\in X_{1}.$$

We denote by x_{ℓ} the x-intercept of a line in \mathbb{R}^2 passing through $\varphi^{\ell}(z)$ with the same slope as \vec{v} . Let

$$s_n = \max\{x_1, \ldots, x_n\}$$
 and
 $t_n = \min\{x_1, \ldots, x_n\}.$

Given $\varepsilon > 0$, let k_o be the integer such that if $k \ge k_o$, then we have

(i)

$$\left|h(\vec{v}) - \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{0}^{[ny]} \bigvee_{i=-k+jw}^{k+jw} P_{i,j}\right)\right| < \varepsilon.$$

Given any $\delta > 0$ and $\varepsilon > 0$, there exists n_o such that if $n \ge n_o$, then we have

$$\mu E_1 = \mu \left\{ z : \left| \int \varphi \, d\mu - \frac{1}{n} \varphi^n(z) \right| < \delta \right\} > 1 - \varepsilon,$$

(iii)

$$\left|h(\vec{v}) - \frac{1}{n} H\left(\bigvee_{j=0}^{[ny]} \bigvee_{i=-k_o+jw}^{k_o+jw} P_{i,j}\right)\right| < \varepsilon,$$

(iv)

$$\mu E_2 = \mu \left\{ z : \left| h_z \left(\widehat{T}, \beta_{k_o} \right) - \frac{1}{n} H \left(\bigvee_{i=0}^{n-1} \widehat{T}^i \beta_{k_o} | I_z \right) \right| < \varepsilon \right\} > 1 - \varepsilon,$$

(v)
$$k_o < \frac{\varepsilon}{2} n_o$$
,
and
(vi) $|s_v - t_v| < 2$

(vi) $|s_n - t_n| < 2n\delta$. We choose $\delta < \varepsilon^2$ and choose n_o satisfying (ii)-(vi) above. We fix m_o such that $k_o < (\varepsilon/2)n_o < m_o < \varepsilon n_o$. For notational convenience, we write m and n instead of m_o and n_o respectively. We note that

$$\bigvee_{j=0}^{n-1} \widehat{T}^{j} \beta_{m} \text{ on } I_{Z}$$

$$\leq \beta_{m} \bigvee F^{\varphi(z)}(\beta_{m}) \bigvee F^{\varphi^{2}(z)}(\beta_{m}) \bigvee \dots \bigvee F^{\varphi^{n-1}(z)}(\beta_{m}) \text{ on } I_{z}$$

$$\leq \bigvee_{j=0}^{\varphi_{2}^{n-1}(z)+L-1} \bigvee_{i=t_{n}-m+jw} P_{i,j} \text{ on } I_{Z}.$$

Since t_n and s_n satisfy that

$$|(t_n + m) - (s_n - m)| = |2m + t_n - s_n| > |2m - 2n\delta| > k_o$$

and

$$|(s_n+m)-(t_n-m)|<\varepsilon n,$$

236

if $z \in E_1$, then by our Corollary and (ii), we have

$$\begin{split} & \left| \frac{1}{n} H \begin{pmatrix} \varphi_2^{n-1}(z) + L - 1 & s_n + m + jw \\ \bigvee & \bigvee \\ j = 0 & i = t_n - m + jw \end{pmatrix} - \frac{1}{n} H \begin{pmatrix} [ny] & k_o + jw \\ \bigvee & \bigvee \\ j = 0 & i = -k_o + jw \end{pmatrix} \right| \\ & < \frac{1}{n} H \begin{pmatrix} s_n + m \\ \bigvee \\ i = t_n - m \end{pmatrix} + \frac{1}{n} H \begin{pmatrix} q_2 & s_n + m + jw \\ \bigvee & \bigvee \\ j = q_1 & i = t_n - m + jw \end{pmatrix} \\ & < \frac{1}{n} \tau \varepsilon n + \frac{1}{n} (q_2 - q_1) \tau (w + 2r) \\ & < \tau (\varepsilon + \delta(w + 2r)), \end{split}$$

where $q_1 = \min\{[ny], \varphi_2^{n-1}(z) + L - 1\}$ and $q_2 = \max\{[ny], \varphi_2^{n-1}(z) + L - 1\}$. Hence we have

$$\begin{aligned} \left| \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} | I_{z} \right) - h(\vec{v}) \right| \\ &\leq \left| \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} | I_{z} \right) - \frac{1}{n} H\left(\bigvee_{j=0}^{[ny]} \bigvee_{i=-k_{o}+jw}^{k_{o}+jw} P_{i,j} \right) \right| + \varepsilon \\ &\leq \left| \frac{1}{n} H\left(\bigvee_{j=0}^{\varphi_{2}^{n-1}(z)+L-1} \bigvee_{i=t_{n}-m+jw}^{s_{n}+m+jw} P_{i,j} \right) - \frac{1}{n} H\left(\bigvee_{j=0}^{[ny]} \bigvee_{i=-k_{o}+jw}^{k_{o}+jw} P_{i,j} \right) \right| + \varepsilon \\ &\leq \tau(\varepsilon + \delta(w + 2r)) + \varepsilon. \end{aligned}$$

Let $E = E_1 \cap E_2$. If $z \in E$, then by our choice of m and Corollary 1, we have

$$\begin{split} & \left| \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} | I_{z} \right) - h_{z} \left(\widehat{T}, \ \beta_{m} \right) \right| \\ & \leq \left| \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} | I_{z} \right) - \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{k} | I_{z} \right) \right| \\ & + \left| \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{k} | I_{z} \right) - h_{z} \left(\widehat{T}, \ \beta_{k} \right) \right| + \left| h_{z} \left(\widehat{T}, \ \beta_{k} \right) - h_{z} \left(\widehat{T}, \ \beta_{m} \right) \right| \\ & \leq \varepsilon + \varepsilon + \frac{1}{n} m \tau < \varepsilon (2 + \tau). \end{split}$$

Since φ_1 and φ_2 are bounded, it is easy to see that there exists ω such that $\left|h_z\left(\widehat{T}, \beta\right)\right| < \omega$ for all β and all z. We may also assume that $h(\vec{v})$ is

bounded above by ω . Now we compute

$$\begin{split} & \left| \sup_{\beta} \int h_{z} \left(\widehat{T}, \beta \right) \, d\mu - h(\vec{v}) \right| \\ & \leq \int_{E} \left| h_{z} \left(\widehat{T}, \beta_{m} \right) - h(\vec{v}) \right| \, d\mu + \sup_{\beta} \int_{E^{c}} \left| h_{z} \left(\widehat{T}, \beta \right) - h(\vec{v}) \right| \, d\mu + \varepsilon \\ & \leq \int_{E} \left| h_{z} \left(\widehat{T}, \beta_{m} \right) - \frac{1}{n} H \left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} | I_{z} \right) \right| \, d\mu \\ & + \int_{E} \left| \frac{1}{n} H \left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} | I_{z} \right) - h(\vec{v}) \right| \, d\mu \\ & + \sup_{\beta} \int_{E^{c}} \left| h_{z} \left(\widehat{T}, \beta \right) - h(\vec{v}) \right| \, d\mu + \varepsilon \\ & \leq \varepsilon (2 + \tau) + \tau (\varepsilon + \delta (w + 2r)) + \varepsilon + 4\omega \varepsilon + \varepsilon \\ & \leq \varepsilon (4 + 2\tau + \tau (w + 2r) + 4\omega). \end{split}$$

In the case when $\vec{v} = \int \varphi = \eta(1,0)$ for some real number η , we need to argue differently. We may assume $\eta > 0$. We construct φ' which is cohomologous to φ as follows. Let $\varphi' = (\varphi'_1, \varphi'_2)$.

- (i) φ'_1 takes the values $[\eta] 1$, $[\eta]$ and $[\eta] + 1$ φ'_2 takes the values -1, 0, 1.
- (ii) In an orbit of a point, φ'_2 value, 1 or -1, follows its value 0.
- (iii) We use the ergodic theorem to construct φ'_2 so that it takes the value 0 for all z's except a set of small measure.

Hence we may assume that φ satisfies these properties.

We let $\beta_m = \bigvee_{i=0}^{[n]} \bigvee_{j=-m}^m P_{i,j}$. Recall that r denote the size of the block map. As in the previous case, we choose m_o so that if $m \ge m_o$, then

(i) $m_o \ge 10r$,

(ii)
$$|h(\vec{v}) - H^m(\vec{v})| < \varepsilon$$
,

(iii) $\mu \left\{ z : \left| \sup_{\beta} \int h_z \left(\widehat{T}, \beta \right) - h_z \left(\widehat{T}, \beta_m \right) \right| < \varepsilon \right\} > 1 - \varepsilon.$ We fix $m \ge m_o$. We choose n_o so that if $n \ge n_o$, then

(iv)
$$\mu\left\{z: \left|\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta_{m}|I_{z}\right)-h_{z}\left(\widehat{T},\beta_{m}\right)\right|<\varepsilon\right\}>1-\varepsilon,$$

(v)
$$\mu\left\{z: \left|\frac{1}{n}\sum_{i=0}^{n-1}\varphi\left(T^{i}(z)\right) - \int\varphi d\mu\right| < \varepsilon\right\} > 1 - \varepsilon,$$

and

$$\begin{array}{ll} \text{(vi)} \quad \mu \left\{ z: \left| \frac{1}{n} \sum_{i=0}^{k} \varphi_2 \left(T^i(z) \right) \right| < \varepsilon \text{ for all } 0 \leq k < n \right\} > 1 - \varepsilon. \\ \text{Let } E \text{ denote the set satisfying the above conditions, (iii), (iv), (v) and} \end{array}$$

(vi). We have $\mu E > 1 - 4\varepsilon$. Let $z \in E$. Let

$$u = \max\left\{\sum_{i=0}^{k} \varphi_2\left(T^i(z)\right): \ k = 0, 1, \dots, n-1\right\}$$

and

$$v=\min\left\{\sum_{i=0}^k arphi_2\left(T^i(z)
ight):\,k=0,1,\ldots,n-1
ight\}.$$

Since $\eta > 0$, there exists $i_o = \max\{k: \varphi_1^k(z) \le i\}$ for a.e. $z \in X_1$. We denote by $\Psi_2^i(z)$

$$\max\left\{\sum_{\zeta=0}^k arphi_2\left(T^\zeta(z)
ight): \ 0\leq k\leq i_o, \ i-[\eta]\leq arphi_1^k(z)\leq i
ight\}.$$

Now we compute

$$\begin{split} &\frac{1}{n}H\left(\bigvee_{j=-m}^{m}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right)\\ &=\frac{1}{n}H\left(\bigvee_{j=-m+u}^{m+u}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right)\\ &\leq\frac{1}{n}H\left(\bigvee_{i=0}^{\varphi_{1}^{n}(z)}\bigvee_{j=-m+\Psi_{2}^{i}(z)}P_{i,j}\right)\\ &\leq\frac{1}{n}\left(H\left(\bigvee_{i=0}^{\varphi_{1}^{n}(z)}\bigvee_{j=-m+\Psi_{2}^{i}(z)}P_{i,j}\right)+2\cdot2(\varepsilon n)\cdot\tau\cdot r\right)\\ &\leq\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta_{m}|I_{z}\right)+4\varepsilon r\tau. \end{split}$$

The second to the last inequality is clear because by the condition (i) on m_o , we have

$$H\left(\bigvee_{i=0}^{\varphi_1^n(z)}\bigvee_{j=-m+\psi_2^i(z)}^{u+m}P_{i,j}\middle|\bigvee_{i=0}^{\varphi_1^n(z)}\bigvee_{j=-m+\psi_2^i(z)}^{w+\psi_2^i(z)}P_{i,j}\right)$$
$$\leq H\left(\bigvee_{j=m}^{u+m}\bigvee_{i=0}^{r-1}P_{i,j}\bigvee_{j=v+m}^{u+m}\bigvee_{i=\varphi_1^n(z)-r+1}^{\varphi_1^n(z)}P_{i,j}\right)$$

$$\leq u \cdot r \cdot \tau + (u - v) \cdot r \cdot \tau.$$

Since the following inequality is also true

$$\begin{split} &\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta_{m}|I_{z}\right)\\ &\leq \frac{1}{n}H\left(\bigvee_{j=-m+v}^{m+u}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right)\\ &= \frac{1}{n}H\left(\bigvee_{j=-m}^{m+u-v}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right)\\ &\leq \frac{1}{n}H\left(\bigvee_{j=-m}^{m}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right) + \frac{2}{n}(u-v)r\cdot\tau\\ &= \frac{1}{n}H\left(\bigvee_{j=-m+u}^{m+u}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right) + 4\varepsilon r\tau, \end{split}$$

we have

$$\left|\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta_{m}|I_{z}\right)-\frac{1}{n}H\left(\bigvee_{-m+u}^{m+u}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right)\right|<4\varepsilon r\tau.$$

We note that

$$\frac{1}{n}H\left(\bigvee_{-m+u}^{m+u}\bigvee_{i=0}^{\varphi_1^n(z)}P_{i,j}\right) = \frac{\varphi_1^n(z)}{n}\frac{1}{\varphi_1^n(z)}H\left(\bigvee_{-m+u}^{m+u}\bigvee_{i=0}^{\varphi_1^n(z)}P_{i,j}\right)$$

converges to $h(\vec{v})$.

As in the case of $\vec{v} = \int \varphi \, d\mu = (x, y)$ where $y \neq 0$, it is now clear that

$$\sup_eta \int h_z\left(\widehat{T},\,eta
ight)\,d\mu - h(ec{v})$$

can be made arbitraily small.

Similarly we can prove the following theorem.

Theorem 4. If $\sum_{m=0}^{\infty} H\left(P_{0,1} \middle|_{-m \le i \le m} P_{i,0}\right)$ is finite, then we have $h(\widehat{T}) = h(T) + h(\vec{v})$ where $\vec{v} = \int \varphi \ d\mu = (\int \varphi_1 \ d\mu, \ \int \varphi_2 \ d\mu)$.

The following Corollaries are also almost immediate from the proof of Theorem 3.

 \Box

Corollary 3. If $\sum_{m=0}^{\infty} H\left(P_{0,1} \middle| \bigvee_{-k \leq j \leq k} \bigvee_{-m \leq i \leq m} P_{i,j}\right)$ is finite for some k, then we have $h(\widehat{T}) = h(T) + h(\overrightarrow{v})$ where \overrightarrow{v} is given as above.

Corollary 4. If a fiber Z^2 -action, F, satisfies the condition of Corollary 3 after a linear transformation by a matrix A in SL(2, Z), that is, $A \circ F$ satisfies the condition, then we have the above formula in Corollary 3 for the entropy.

References

- Ab, Ro] L.M. Abramov and V.A. Rohlin, *The entropy of a skew product of measure preserving transformations*, AMS Translations, Ser. 2.
 - [Ad] R. Adler, A note on the entropy of skew product transformations, Am. Math. Soc., 4 (1963), 665-669.
 - [He] G.A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Syst. Theor., 3 (1969), 320-375.
 - [Li] D. Lind, personal communication.
- VIa, Ne] S.B. Marcus and S. Newhouse, Measure of maximal entropy for a class of skew products, Springer Lect. Notes Math., 729 (1979), 105-125.
 - [Mi1] J. Milnor, On the entropy geometry of cellular automata, Complex Systems, 2 (1988), 357-386.
 - [Mi2] _____, Directional entropies of cellular automation-maps, Nato ASI Series, vol. F20, (1986), 113-115.
 - [Pa1] K.K. Park, On the continuity of directional entropy, Osaka J. Math., 31 (1994), 613-628.
 - [Pa2] _____, A counter example of the entropy of the skew product, preprint.
 - [Pa3] _____, Continuity of directional entropy for a class of Z^2 -actions, J. Korean Math. Soc., **32** (1995), 573-582.
 - [Si] Y. Sinai, An answer to a question by J. Milnor, Comment. Math. Helv., 60 (1985), 173-178.
 - [Th] J.P. Thouvenot, personal communication.

Received February 10, 1993 and revised June 24, 1993. This research has been supported in part by NSF DMS 8902080 and GARC-KOSEF.

Ajou University Suwon, 441-749 Korea