ENTROPY OF A SKEW PRODUCT WITH A Z^{2}-ACTION

Kyewon Koh Park

Abstract

We consider the entropy of a dynamical system of a skew product \widehat{T} on $X_{1} x X_{2}$ where there is a Z^{2}-action on the fiber X_{2}. If the Z^{2}-action comes from a Cellular Automaton map, then the contribution of the fiber to the entropy of the skew product is the directional entropy in the direction of the integral of a skewing function φ from X_{1} to Z^{2}.

1. Introduction.

J. Milnor has defined the notion of directional entropy in the study of dynamics of Cellular Automata [Mi1], [Mi2]. When the notion is applied to a Z^{n} action it is considered to be a generalization of the entropy of non co-compact subgroups of Z^{n}.

In the case of a Z^{2}-action, we denote the generators of the groups by $\{U, V\}$. Let P be a generating partition under the Z^{2}-action. We write $P_{i, j}=U^{i} V^{j} P$. If a subgroup is generated by $U^{p} V^{q}$, then there is a natural way to compute the entropy of $U^{p} V^{q}$ as a Z-action on the space. Milnor extended this idea to define the entropy of a vector by embedding Z^{2} to the ambient vector space R^{2} as follows.

$$
h(\vec{v})=\sup _{B: \text { bounded set }} \varlimsup_{\varlimsup_{t \rightarrow \infty}} \frac{1}{t} H\left(\bigvee_{(i, j) \in B+[o, t) \vec{v}} P_{i, j}\right)
$$

Given a vector \vec{v}, we let θ_{o} be the angle between two vectors \vec{v} and (1,0). Let $w=\frac{1}{\tan \theta_{o}}$ so that $(w, 1)$ is a scalar multiple of the vector \vec{v}. It is easy to see that

$$
h(\vec{v})=\lim _{m \rightarrow \infty} \lim _{t \rightarrow \infty} \frac{1}{t} H\left(\bigvee_{j=0-m+j w<i<m+j w}^{[t y]} \bigvee_{i, j}\right)
$$

where $[a]$ denote the greatest integer $\leq a$.
We note that if $\vec{v}=(p, q)$, then $h(\vec{v})=h\left(U^{p} V^{q}\right)$. And it is easy to see that directional entropy is a homogeneous function, that is $h(c \vec{v})=c h(\vec{v})$ for any $c \in R$.

Directional entropy in the case of a Z^{2}-action generated by a Cellular Automaton map has been investigated in $[\mathbf{P a} 1, \mathbf{P a 3}]$ and $[\mathbf{S i}]$. D. Lind
defined a cone entropy, denoted by $h^{c}(\vec{v})$, of a vector \vec{v}. Given a vector $\vec{v}=(x, y)$ and a small angle θ, we consider the vectors $\vec{v}_{\theta}=\left(x_{\theta}, y\right)$ and $\vec{v}_{-\theta}=$ $\left(x_{-\theta}, y\right)$ where x_{θ} and $x_{-\theta}$ satisfy $\frac{y}{x_{\theta}}=\tan \left(\theta_{o}+\theta\right)$ and $\frac{y}{x_{-\theta}}=\tan \left(\theta_{o}-\theta\right)$ respectively. Cone entropy is defined as follows.

$$
h^{c}(\vec{v})=\lim _{\theta \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{j=0 j x_{-\theta} \leq i \leq \jmath x_{\theta}}^{[n y]} \bigvee_{i, j}\right)
$$

From the definition, it is clear that we have $h^{c}(\vec{v}) \geq h(\vec{v})$.
We say that a Z^{2}-action is generated by a Cellular Automaton if one of the generators of the Z^{2}-action, say V, is a block map (a finite code) of U. That is, $(V(x))_{i}$ depends only on the coordinates $x_{-r}, x_{-r+1}, \ldots, x_{r}[\mathbf{H e}]$. We call r the size of the block map V. We will show that in the case of a Z^{2}-action generated by a Cellular Automaton map, the directional entropy and the cone entropy are the same (Theorem 1).

Let $\left(X_{1}, \zeta_{1}, \mu_{1}, G\right)$ and $\left(X_{2}, \zeta_{2}, \mu_{2}, H\right)$ be two ergodic measure preserving dynamical systems with finite entropy, where G and H denote the respective group. Given an integrable skewing function $\varphi: X_{1} \rightarrow H$, we define a skew product G-action \widehat{T} on $\left(X_{1} \times X_{2}, \zeta_{1} \times \zeta_{2}, \mu_{1} \times \mu_{2}\right)$ such that $\widehat{T}^{g}(x, y)=$ ($T^{g} x, F^{\varphi(x)} y$) where T denotes the G-action of X_{1} and F denotes the H action on X_{2}. When we have $G=H=Z$, then the entropy of \widehat{T} has been extensively studied by many people (e.g. [Ab], [Ad], [Ma, Ne]). It is well known in this case that $h(\widehat{T})=h(T)+\left|\int \varphi d \mu\right| h(F)$. The above formula says that, as we expect, the fiber contribution to the entropy is $\left|\int \varphi d \mu\right| h(F)$.

We investigate the entropy of \widehat{T} when $G=Z$ and $H=Z^{2}$. Note that the above formula cannot hold when the acting group on the fiber is a more general group, say Z^{2}. First of all, $\int \varphi d \mu$ is in general a vector. Secondly, if the skewing function takes a constant value, say $(1,1)$, then the fiber contribution should come from the entropy of $U V$, not necessarily from the whole Z^{2}-action. We prove that if the fiber Z^{2}-action is generated by a Cellular Automaton map, then we have the analogous theorem (Theorem 2) to the case when $H=Z$.

We may mention that directional entropy can be also defined in a topological setting. D. Lind constructed an example whose topological entropy does not satisfy the analogue of our Theorem $3[\mathbf{L i}]$. His example involves a Z^{2}-action which is not generated by a Cellular Automaton map. It is not clear that Theorem 3 holds for topological entropy when we have a Z^{2}-action on the fiber generated by a Cellular Automaton map. Lind's example is not interesting in the measure theoretic sense because it has the trivial invariant measure.

We have constructed a counterexample which does not satisfy Theorem 3
[Pa2]. For the example we explicitly construct the base transformation and use the Z^{2}-action due to Thouvenot [$\mathbf{T h}$] on the fiber. Both of them are constructed by cutting and staking method. It would be interesting to find out how generally Theorem 3 holds. For example, it is unknown if Theorem 3 is true when we have a topological Markov shift which does not satisfy the condition of Corollary 4. We are more interested in the case when the topological Markov shift has 0 -entropy as a Z^{2}-action.

Although Theorem 2 and 4 are more general than Theorem 1 and 3 , we will prove Theorem 1 and 3 because their proofs are easier and more geometric. It is also easy to see the proofs of Theorem 2 and 4 from those of Theorem 1 and 3.

We would like to thank Professor D. Ornstein for helpful discussions and the Referee for many valuable comments.

2. Cone entropy.

Throughout the section we assume that our Z^{2}-action is generated by a Cellular Automaton map. We denote by $H^{m}(\vec{v})$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} \bigvee_{i=-m+j w}^{m+j w} P_{i, j}\right) .
$$

Note that $H^{m}(\vec{v})$ is independent of the size of the vector \vec{v}. Let τ denote $H\left(P_{0,0}\right)$.

Lemma 1. $H^{m}(\vec{v})=H^{m^{\prime}}(\vec{v})$ if $m, m^{\prime}>2 r+w$.

Proof. Case 1. \vec{v} is not a scalar multiple of $(1,0)$.
Suppose $m^{\prime} \geq m$. Clearly from the definition we have $H^{m^{\prime}}(\vec{v}) \geq H^{m}(\vec{v})$. Hence it is enough to show $H^{m^{\prime}}(\vec{v}) \leq H^{m}(\vec{v})$. Note that

$$
\begin{aligned}
H^{m}(\vec{v}) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} \bigvee_{-m+j w \leq i \leq m+j w} P_{i, j}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} H\left(\bigvee_{-m+j w \leq i \leq m+j w} P_{i, j} \mid \bigvee_{0 \leq k<j} \bigvee_{-m+k w \leq i \leq m+k w} P_{i, k}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \lim _{n \rightarrow \infty} \frac{1}{n}\left\{H\left(\bigvee_{-m \leq i \leq m} P_{i, 0}\right)\right. \\
& +\sum_{j=1}^{n-1} H\left(\left.\bigvee_{j w \leq i \leq(j-1) w+r} P_{i, j}\right|_{0 \leq k<j} \bigvee_{k w \leq i \leq 2 m+k w} \bigvee_{i, k}\right) \\
& +\sum_{j=1}^{n-1} H\left(\left.\bigvee_{(j-1) w-r \leq i \leq j w} P_{i, j}\right|_{1 \leq k<j} \bigvee_{-2 m+k w \leq i \leq k w} V_{i, k}\right. \\
& \left.\left.\bigvee_{i, j}\right)\right\}
\end{aligned}
$$

We make the following observations:
(1)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{-m \leq i \leq m} P_{i, 0}\right)=0=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{-m^{\prime} \leq i \leq m^{\prime}} P_{i, 0}\right)
$$

(2)

$$
\begin{aligned}
& H\left(\underset{j w \leq i<(j-1) w+r}{\bigvee} P_{i, j} \mid \bigvee_{0 \leq k<j} \bigvee_{k w \leq i \leq 2 m+k w} P_{i, k}\right) \\
& \geq H\left(\underset{j w \leq i<(j-1) w+r}{\bigvee} P_{i, j} \mid \bigvee_{0 \leq k<j}^{\bigvee} \bigvee_{k w<i \leq 2 m^{\prime}+k w} P_{i, k}\right),
\end{aligned}
$$

because we condition on more information.
(3) By the same reason, we have

$$
\begin{aligned}
& H\left(\bigvee_{(j-1) w-r \leq i \leq j w} P_{i, j} \mid \bigvee_{0 \leq k<j} \bigvee_{-2 m+k w<i<k w} P_{i, k}\right. \\
& \left.\bigvee \bigvee_{-2 m+j w \leq i \leq-2 m+(j-1) w+r} P_{i, j}\right) \\
& \geq H\left(\bigvee_{(j-1) w-r \leq i \leq j w} P_{i, j} \mid \bigvee_{0 \leq k<j} \bigvee_{-2 m^{\prime}+k w \leq i<k w} P_{i, k}\right.
\end{aligned}
$$

These observations together with the formula for $H^{m}(\vec{v})$ above shows $H^{m^{\prime}}(\vec{v}) \leq$ $H^{m}(\vec{v})$.

Case 2. $\vec{v}=\eta(1,0)$ for some real η.
We analogously denote by $H^{m}(\vec{v})$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{[n \eta]} \bigvee_{j=-m}^{m} P_{i, j}\right)
$$

We note that

$$
\begin{aligned}
& H^{m^{\prime}}(\vec{v})=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{[n \eta]} ; \bigvee_{j=-m}^{m+2\left(m^{\prime}-m\right)} P_{i, j}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(H\left(\bigvee_{i=0}^{[n \eta]} \bigvee_{j=-m}^{m} P_{i, j}\right)\right. \\
& \left.\quad+H\left(\bigvee_{i=1}^{[n \eta]} \bigvee_{j=m+1}^{m+2\left(m^{\prime}-m\right)} P_{i, j} \mid \bigvee_{i=0}^{[n \eta]} \bigvee_{j=-m}^{m} P_{i, j}\right)\right) \\
& \leq H^{m}(\vec{v})+\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=m+1}^{m+2\left(m^{\prime}-m\right)} H\left(\bigvee_{i=0}^{[n \eta]} P_{i, j} \mid \bigvee_{i=0}^{[n \eta]} P_{i, j-1}\right) \\
& \leq H^{m}(\vec{v})+\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=m+1}^{m+2\left(m^{\prime}-m\right)} H\left(\bigvee_{i=0}^{r} P_{i, j} \bigvee_{i=[n \eta]-r}^{[n \eta]} \bigvee_{i, j}\right) \\
& \leq H^{m}(\vec{v})+\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=m+1}^{m+2\left(m^{\prime}-m\right)} 2 r: \tau \\
& =H^{m}(\vec{v})+\lim _{n \rightarrow \infty} \frac{4 r \tau\left(m^{\prime}-m\right)}{n} \\
& =H^{m}(\vec{v}) .
\end{aligned}
$$

Since we have $H^{m^{\prime}}(\vec{v}) \geq H^{m}(\vec{v})$ by definition, the proof is complete.
Corollary 1. If \vec{v} is not a scalar multiple of $(1,0)$, then we have

$$
\begin{aligned}
& \left|\frac{1}{n} H\left(\bigvee_{j=0}^{n-1} \bigvee_{-m+j w \leq i \leq m+j w} P_{i, j}\right)-\frac{1}{n} H\left(\bigvee_{j=0}^{n-1} \bigvee_{-m^{\prime}+j w \leq i \leq m^{\prime}+j w} P_{i, j}\right)\right| \\
& \leq \frac{1}{n} H\left(\bigvee_{m<|i| \leq m^{\prime}} P_{i, 0}\right) \\
& \leq \tau \frac{2\left(m^{\prime}-m\right)}{n}
\end{aligned}
$$

Theorem 1. $h^{c}(\vec{v})=h(\vec{v})$.
Proof. It is enough to show that $h^{c}(\vec{v})-h(\vec{v})$ is small. If $\vec{v}=(x, y)$ where $y \neq 0$, then by rescaling, we may assume that $\vec{v}=(x, 1)$. Given any $\varepsilon>0$, there exists θ such that if $\kappa \leq \theta$, then
(i)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{0 \leq j<n} \bigvee_{j x_{\kappa} \leq i \leq j x_{-\kappa}} P_{\imath, j}\right)<h^{c}(\vec{v})+\varepsilon
$$

(ii) $\left|x_{-\theta}-x_{\theta}\right|<\gamma$ where γ satisfies that $\gamma \tau<\varepsilon$. There exists m_{0} such that if $m \geq m_{0}$, then

$$
\lim \frac{1}{n} H\left(\bigvee_{J=0}^{n-1} \bigvee_{-m+\jmath x \leq i \leq m+j x} P_{i, j}\right)=h(\vec{v})
$$

We choose n_{o} such that if $n \geq n_{o}$, then we have
(iii)

$$
h(\vec{v})-\varepsilon<\frac{1}{n} H\left(\bigvee_{0 \leq j \leq n-1} \bigvee_{-m_{\circ}+j x \leq i \leq m_{\circ}+j x} P_{\imath, j}\right) \leq h(\vec{v})+\varepsilon
$$

(iv)

$$
h^{c}(\vec{v})-2 \varepsilon<\frac{1}{n} H\left(\bigvee_{o \leq j \leq n-1} \bigvee_{j x_{\theta} \leq i \leq j x_{-\theta}} P_{i, j}\right) \leq h^{c}(\vec{v})+2 \varepsilon
$$

(v)

$$
\begin{gathered}
\frac{1}{n} H\left(\bigvee_{o \leq j<K} \bigvee_{-m_{o}+j x<i<m_{o}+j x} P_{i, j}\right)<\varepsilon, \text { where } \\
K=\max \left\{j: j\left|x_{\theta}-x\right|<m_{o} \text { and } j\left|x_{-\theta}-x\right|<m_{o}\right\},
\end{gathered}
$$

and
(vi)

$$
\frac{1}{n} H\left(\bigvee_{o \leq j<n} \bigvee_{j x_{\theta} \leq i \leq j x_{-\theta}} P_{i, j}\right) \geq \frac{1}{n} H\left(\bigvee_{0 \leq j<n} \bigvee_{-m_{o}+j x \leq i \leq m_{o}+j x} P_{i, j}\right)
$$

We compute

$$
\begin{aligned}
& \left|h^{c}(\vec{v})-h(\vec{v})\right| \\
& \leq \left\lvert\, \frac{1}{n} H\left(\bigvee_{o \leq j<n} \bigvee_{j x_{\theta} \leq \imath \leq j x_{-\theta}} P_{i, j}\right)\right. \\
& \left.-\frac{1}{n} H\left(\bigvee_{o \leq \jmath<n} \bigvee_{-m_{o}-j x \leq \imath<m_{o}+j x} P_{i, j}\right) \right\rvert\,+3 \varepsilon \\
& \leq \left\lvert\, \frac{1}{n} H\left(\bigvee_{o \leq j<n} \bigvee_{n\left(x_{\theta}-x\right)+j x \leq i \leq n\left(x_{-\theta}-x\right)+j x} P_{i, j}\right)\right. \\
& \left.-\frac{1}{n} H\left(\bigvee_{o \leq \jmath<n} \bigvee_{-m_{0}+\jmath x \leq i<m_{0}+j x} P_{i, j}\right) \right\rvert\,+3 \varepsilon \\
& \leq \frac{1}{n} H\left(\bigvee_{n\left(x_{\theta}-x\right) \leq i \leq n\left(x_{-\theta}-x\right)} P_{i, o}\right)+3 \varepsilon \\
& \leq \frac{1}{n} \gamma n \tau+3 \varepsilon \text {. }
\end{aligned}
$$

Hence we have

$$
\left|h(\vec{v})-h^{c}(\vec{v})\right|<4 \varepsilon .
$$

In the case of $\vec{v}=(x, o)$, it is not hard to see that the idea of the second part of the proof of Lemma 1 combined with the idea of the proof above will give the desired result.

Theorem 2. If $\sum_{m=0}^{\infty} H\left(P_{0,1} \mid \underset{-m \leq i \leq m}{\bigvee} P_{2,0}\right)$ is finite, then we have $h^{c}(\vec{v})=$ $h(\vec{v})$.

Proof. We note that if we choose M so that

$$
\sum_{m=M}^{\infty} H\left(P_{0,1} \mid \bigvee_{-m \leq i \leq m} P_{i, 0}\right)<\varepsilon
$$

then we get

$$
\sum_{k=-m+M}^{m-M} H\left(P_{k, 1} \mid \bigvee_{-m \leq i \leq m} P_{i, 0}\right)<2 \varepsilon
$$

for all $m>M$. Using this, it is easy to see that if $m_{2} \geq m_{1} \geq M$, we have that for any n,

$$
\frac{1}{n} H\left(\bigvee_{j=0}^{[n y]} \bigvee_{i=m_{2}+j w}^{-m_{2}+j w} P_{i, j}\right)<\frac{1}{n} H\left(\bigvee_{j=0}^{[n y]} \bigvee_{i=-m_{1}+j w}^{m_{1}+j w} P_{i, j}\right)+2 \varepsilon+\frac{m_{2}-m_{1}}{n} \tau
$$

where $\frac{m_{2}-m_{1}}{n} \tau$ comes from the difference between $\frac{1}{n} H\left(\bigvee_{i=-m_{1}}^{m_{1}} P_{2,0}\right)$ and $\frac{1}{n} H\left(\bigvee_{i=-m_{2}}^{m_{2}} P_{i, 0}\right)$.

Hence for a given $\varepsilon>0$, there exist m_{o} as in Theorem 1 such that for a sufficiently large n,

$$
\begin{aligned}
&\left|h^{c}(\vec{v})-h(\vec{v})\right| \\
& \leq \left\lvert\, \frac{1}{n} H\left(\bigvee_{o \leq j<n} \bigvee_{n\left(x_{\theta}-x\right)+j x \leq i \leq n\left(x_{-\theta}-x\right)+j x} P_{i, j}\right)\right. \\
& \left.-\frac{1}{n} H\left(\underset{o \leq j<n-m_{o}+j x \leq i<m_{o}+j x}{ } \bigvee_{i, j}\right) \right\rvert\,+3 \varepsilon \\
& \leq \frac{1}{n} \gamma n \tau+2 \varepsilon+3 \varepsilon .
\end{aligned}
$$

Corollary 2. If V is a finitary code with finite expected code length, then $h^{c}(\vec{v})=h(\vec{v})$.

Proof. It is easy to see that a finitary code with finite expected code length satisfies the condition of Theorem 2. See $[\mathbf{P a 3}]$.

3. Main Theorem.

Let $\lambda=\mu_{1} \times \mu_{2}$. We denote $\sum_{i=0}^{n-1} \varphi_{k}\left(T^{i} z\right)$ by $\varphi_{k}^{n}(z)$ for $k=1$ or 2 and $z \in X_{1}$. Given two partitions, β_{1} and β_{2}, we write $\beta_{1} \leq \beta_{2}$ if β_{2} is a finer partition than β_{1}.

Theorem 3. $h(\widehat{T})=h(T)+h(\vec{v})$ where $\vec{v}=\int \varphi d \mu=\left(\int \varphi_{1} d \mu, \int \varphi_{2} d \mu\right)$.
Proof. Since $\int \varphi d \mu$ is finite, as in the case of a Z-valued skewing function, there exists φ^{\prime} which is bounded and cohomologous to φ. Hence we may assume that φ is bounded. Let $\left|\varphi_{1}(z)\right| \leq L$ and $\left|\varphi_{2}(z)\right| \leq L$. Suppose $\vec{v}=\int \varphi d \mu=(x, y)$ where $y \neq 0$. We let α denote the generating partition
of the base. Let β denote a partition of X_{2}. Both of the partitions α and β can be considered in a natural way to be a partition of $X_{1} \times X_{2}$. For a given $z \in X_{1}$, we denote the set $\left\{(z, u): u \in X_{2}\right\}$ by I_{z}.

Since

$$
\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i}(\alpha \bigvee \beta)\right)=\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \alpha\right)+\frac{1}{n} H\left(\left.\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta\right|_{i=0} ^{n-1} \widehat{T}^{i} \alpha\right)
$$

and

$$
\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta \mid \bigvee_{i=0}^{n-1} \widehat{T}^{i} \alpha\right)=\int \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta \mid I_{z}\right) d \mu
$$

we have

$$
\begin{aligned}
& \sup _{\beta} h\left(\widehat{T}, \alpha^{\vee} \beta\right)=\sup _{\beta} \lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i}\left(\alpha^{\vee} \beta\right)\right) \\
& =h(\widehat{T}, \alpha)+\sup _{\beta_{m}} \lim _{n \rightarrow \infty} \int \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right) d \mu \\
& =h(\widehat{T}, \alpha)+\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \int \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right) d \mu
\end{aligned}
$$

where β_{m} denote the partition $\bigvee_{i=-m}^{m} \bigvee_{j=0}^{L-1} P_{i, j}$.
We denote $\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right)$ by $h_{z}\left(\widehat{T}, \beta_{m}\right)$.
As in Lemma 1, it is not hard to see that for sufficiently large m and m^{\prime}, we have

$$
h_{z}\left(\widehat{T}, \beta_{m}\right)=h_{z}\left(\widehat{T}, \beta_{m^{\prime}}\right)
$$

We will show that for sufficiently large m,

$$
\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right) \rightarrow h(\vec{v}) \text { as } n \rightarrow \infty, \text { for a.e. } z \in X_{1} .
$$

We denote by x_{ℓ} the x-intercept of a line in \mathbb{R}^{2} passing through $\varphi^{\ell}(z)$ with the same slope as \vec{v}. Let

$$
\begin{aligned}
s_{n} & =\max \left\{x_{1}, \ldots, x_{n}\right\} \text { and } \\
t_{n} & =\min \left\{x_{1}, \ldots, x_{n}\right\} .
\end{aligned}
$$

Given $\varepsilon>0$, let k_{o} be the integer such that if $k \geq k_{o}$, then we have
(i)

$$
\left|h(\vec{v})-\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\bigvee_{0}^{[n y]} \bigvee_{i=-k+j w}^{k+j w} P_{i, j}\right)\right|<\varepsilon
$$

Given any $\delta>0$ and $\varepsilon>0$, there exists n_{o} such that if $n \geq n_{o}$, then we have
(ii)

$$
\mu E_{1}=\mu\left\{z:\left|\int \varphi d \mu-\frac{1}{n} \varphi^{n}(z)\right|<\delta\right\}>1-\varepsilon
$$

(iii)

$$
\left|h(\vec{v})-\frac{1}{n} H\left(\bigvee_{j=0}^{[n y]} \bigvee_{i=-k_{o}+j w}^{k_{0}+j w} P_{i, j}\right)\right|<\varepsilon
$$

(iv)

$$
\mu E_{2}=\mu\left\{z:\left|h_{z}\left(\widehat{T}, \beta_{k_{o}}\right)-\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{k_{o}} \mid I_{z}\right)\right|<\varepsilon\right\}>1-\varepsilon
$$

(v) $k_{o}<\frac{\varepsilon}{2} n_{o}$,
and
(vi) $\left|s_{n}-t_{n}\right|<2 n \delta$.

We choose $\delta<\varepsilon^{2}$ and choose n_{o} satisfying (ii)-(vi) above. We fix m_{o} such that $k_{o}<(\varepsilon / 2) n_{o}<m_{o}<\varepsilon n_{o}$. For notational convenience, we write m and n instead of m_{o} and n_{o} respectively. We note that

$$
\begin{aligned}
& \bigvee_{j=0}^{n-1} \widehat{T}^{j} \beta_{m} \text { on } I_{Z} \\
& \leq \beta_{m} \bigvee_{F^{\varphi(z)}\left(\beta_{m}\right)} \bigvee_{F^{\varphi^{2}(z)}}\left(\beta_{m}\right) \bigvee \ldots \bigvee_{F^{\varphi^{n-1}(z)}}\left(\beta_{m}\right) \text { on } I_{z} \\
& \leq \bigvee_{j=0}^{\varphi_{2}^{n-1}(z)+L-1} \bigvee_{i=t_{n}-m+j w}^{s_{n}+m+j w} P_{i, j} \text { on } I_{Z} \text {. }
\end{aligned}
$$

Since t_{n} and s_{n} satisfy that

$$
\left|\left(t_{n}+m\right)-\left(s_{n}-m\right)\right|=\left|2 m+t_{n}-s_{n}\right|>|2 m-2 n \delta|>k_{o}
$$

and

$$
\left|\left(s_{n}+m\right)-\left(t_{n}-m\right)\right|<\varepsilon n
$$

if $z \in E_{1}$, then by our Corollary and (ii), we have

$$
\begin{aligned}
& \left|\frac{1}{n} H\left(\bigvee_{j=0}^{\varphi_{2}^{n-1}(z)+L-1} \bigvee_{i=t_{n}-m+j w}^{s_{n}+m+j w} P_{i, j}\right)-\frac{1}{n} H\left(\bigvee_{j=0}^{[n y]} \bigvee_{i=-k_{o}+j w}^{k_{o}+j w} P_{i, j}\right)\right| \\
& <\frac{1}{n} H\left(\bigvee_{i=t_{n}-m}^{s_{n}+m} P_{i, 0}\right)+\frac{1}{n} H\left(\bigvee_{j=q_{1}}^{q_{2}} \bigvee_{i=t_{n}-m+j w}^{s_{n}+m+j w} P_{i, j}\right) \\
& <\frac{1}{n} \tau \varepsilon n+\frac{1}{n}\left(q_{2}-q_{1}\right) \tau(w+2 r) \\
& <\tau(\varepsilon+\delta(w+2 r)),
\end{aligned}
$$

where $q_{1}=\min \left\{[n y], \varphi_{2}^{n-1}(z)+L-1\right\}$ and $q_{2}=\max \left\{[n y], \varphi_{2}^{n-1}(z)+L-1\right\}$.
Hence we have

$$
\begin{aligned}
& \left|\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right)-h(\vec{v})\right| \\
& \leq\left|\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right)-\frac{1}{n} H\left(\bigvee_{j=0}^{[n y]} \bigvee_{i=-k_{o}+j w}^{k_{o}+j w} P_{i, j}\right)\right|+\varepsilon \\
& \leq\left|\frac{1}{n} H\left(\bigvee_{j=0}^{\varphi_{2}^{n-1}(z)+L-1} \bigvee_{i=t_{n}-m+j w}^{s_{n}+m+j w} P_{i, j}\right)-\frac{1}{n} H\left(\bigvee_{j=0}^{[n y]} \bigvee_{i=-k_{o}+j w}^{k_{o}+j w} P_{i, j}\right)\right|+\varepsilon \\
& \leq \tau(\varepsilon+\delta(w+2 r))+\varepsilon .
\end{aligned}
$$

Let $E=E_{1} \cap E_{2}$. If $z \in E$, then by our choice of m and Corollary 1 , we have

$$
\begin{aligned}
& \left|\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right)-h_{z}\left(\widehat{T}, \beta_{m}\right)\right| \\
& \leq\left|\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right)-\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{k} \mid I_{z}\right)\right| \\
& \quad+\left|\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{k} \mid I_{z}\right)-h_{z}\left(\widehat{T}, \beta_{k}\right)\right|+\left|h_{z}\left(\widehat{T}, \beta_{k}\right)-h_{z}\left(\widehat{T}, \beta_{m}\right)\right| \\
& \leq \varepsilon+\varepsilon+\frac{1}{n} m \tau<\varepsilon(2+\tau) .
\end{aligned}
$$

Since φ_{1} and φ_{2} are bounded, it is easy to see that there exists ω such that $\left|h_{z}(\widehat{T}, \beta)\right|<\omega$ for all β and all z. We may also assume that $h(\vec{v})$ is
bounded above by ω. Now we compute

$$
\begin{aligned}
&\left|\sup _{\beta} \int h_{z}(\widehat{T}, \beta) d \mu-h(\vec{v})\right| \\
& \leq \int_{E}\left|h_{z}\left(\widehat{T}, \beta_{m}\right)-h(\vec{v})\right| d \mu+\sup _{\beta} \int_{E^{c}}\left|h_{z}(\widehat{T}, \beta)-h(\vec{v})\right| d \mu+\varepsilon \\
& \leq \int_{E}\left|h_{z}\left(\widehat{T}, \beta_{m}\right)-\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right)\right| d \mu \\
&+\int_{E}\left|\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right)-h(\vec{v})\right| d \mu \\
&+\sup _{\beta} \int_{E^{c}}\left|h_{z}(\widehat{T}, \beta)-h(\vec{v})\right| d \mu+\varepsilon \\
& \leq \varepsilon(2+\tau)+\tau(\varepsilon+\delta(w+2 r))+\varepsilon+4 \omega \varepsilon+\varepsilon \\
& \leq \varepsilon(4+2 \tau+\tau(w+2 r)+4 \omega) .
\end{aligned}
$$

In the case when $\vec{v}=\int \varphi=\eta(1,0)$ for some real number η, we need to argue differently. We may assume $\eta>0$. We construct φ^{\prime} which is cohomologous to φ as follows. Let $\varphi^{\prime}=\left(\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right)$.
(i) φ_{1}^{\prime} takes the values $[\eta]-1,[\eta]$ and $[\eta]+1$
φ_{2}^{\prime} takes the values $-1,0,1$.
(ii) In an orbit of a point, φ_{2}^{\prime} value, 1 or -1 , follows its value 0 .
(iii) We use the ergodic theorem to construct φ_{2}^{\prime} so that it takes the value 0 for all z^{\prime} s except a set of small measure.
Hence we may assume that φ satisfies these properties.
We let $\beta_{m}=\bigvee_{i=0}^{[\eta]} V_{j=-m}^{m} P_{i, j}$. Recall that r denote the size of the block map.
As in the previous case, we choose m_{o} so that if $m \geq m_{o}$, then
(i) $m_{o} \geq 10 r$,
(ii) $\left|h(\vec{v})-H^{m}(\vec{v})\right|<\varepsilon$,
(iii) $\mu\left\{z:\left|\sup _{\beta} \int h_{z}(\widehat{T}, \beta)-h_{z}\left(\widehat{T}, \beta_{m}\right)\right|<\varepsilon\right\}>1-\varepsilon$. We fix $m \geq m_{o}$. We choose n_{o} so that if $n \geq n_{o}$, then
(iv) $\mu\left\{z:\left|\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right)-h_{z}\left(\widehat{T}, \beta_{m}\right)\right|<\varepsilon\right\}>1-\varepsilon$,
(v) $\mu\left\{z:\left|\frac{1}{n} \sum_{i=0}^{n-1} \varphi\left(T^{i}(z)\right)-\int \varphi d \mu\right|<\varepsilon\right\}>1-\varepsilon$, and
(vi) $\mu\left\{z:\left|\frac{1}{n} \sum_{i=0}^{k} \varphi_{2}\left(T^{i}(z)\right)\right|<\varepsilon\right.$ for all $\left.0 \leq k<n\right\}>1-\varepsilon$.

Let E denote the set satisfying the above conditions, (iii), (iv), (v) and
(vi). We have $\mu E>1-4 \varepsilon$. Let $z \in E$.

Let

$$
u=\max \left\{\sum_{i=0}^{k} \varphi_{2}\left(T^{i}(z)\right): k=0,1, \ldots, n-1\right\}
$$

and

$$
v=\min \left\{\sum_{i=0}^{k} \varphi_{2}\left(T^{i}(z)\right): k=0,1, \ldots, n-1\right\}
$$

Since $\eta>0$, there exists $i_{o}=\max \left\{k: \varphi_{1}^{k}(z) \leq i\right\}$ for a.e. $z \in X_{1}$. We denote by $\Psi_{2}^{i}(z)$

$$
\max \left\{\sum_{\zeta=0}^{k} \varphi_{2}\left(T^{\zeta}(z)\right): 0 \leq k \leq i_{o}, i-[\eta] \leq \varphi_{1}^{k}(z) \leq i\right\}
$$

Now we compute

$$
\begin{aligned}
& \frac{1}{n} H\left(\bigvee_{j=-m}^{m} \bigvee_{i=0}^{\varphi_{1}^{n}(z)} P_{i, j}\right) \\
& =\frac{1}{n} H\left(\bigvee_{j=-m+u}^{m+u} \bigvee_{i=0}^{\varphi_{1}^{n}(z)} P_{i, j}\right) \\
& \leq \frac{1}{n} H\left(\bigvee_{i=0}^{\varphi_{1}^{n}(z)} \bigvee_{j=-m+\Psi_{2}^{i}(z)}^{u+m} P_{i, j}\right) \\
& \leq \frac{1}{n}\left(H\left(\bigvee_{i=0}^{\varphi_{1}^{n}(z)} \bigvee_{j=-m+\Psi_{2}^{i}(z)}^{m+\Psi_{2}^{i}(z)} P_{i, j}\right)+2 \cdot 2(\varepsilon n) \cdot \tau \cdot r\right) \\
& \leq \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right)+4 \varepsilon r \tau .
\end{aligned}
$$

The second to the last inequality is clear because by the condition (i) on m_{o}, we have

$$
\begin{aligned}
& H\left(\bigvee_{i=0}^{\varphi_{1}^{n}(z)} \bigvee_{j=-m+\psi_{2}^{i}(z)}^{u+m} P_{i, j} \bigvee_{i=0}^{\varphi_{1}^{n}(z)} \bigvee_{j=-m+\psi_{2}^{i}(z)}^{m+\psi_{2}^{i}(z)} P_{i, j}\right) \\
& \leq H\left(\bigvee_{j=m}^{u+m} \bigvee_{i=0}^{r-1} P_{i, j} \bigvee \bigvee_{j=v+m}^{u+m} \bigvee_{i=\varphi_{1}^{n}(z)-r+1}^{\varphi_{1}^{n}(z)} P_{i, j}\right)
\end{aligned}
$$

$$
\leq u \cdot r \cdot \tau+(u-v) \cdot r \cdot \tau
$$

Since the following inequality is also true

$$
\begin{aligned}
& \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right) \\
& \leq \frac{1}{n} H\left(\bigvee_{j=-m+v}^{m+u} \bigvee_{i=0}^{\varphi_{1}^{n}(z)} P_{i, j}\right) \\
& =\frac{1}{n} H\left(\bigvee_{j=-m}^{m+u-v} \bigvee_{i=0}^{\varphi_{1}^{n}(z)} P_{i, j}\right) \\
& \leq \frac{1}{n} H\left(\bigvee_{j=-m}^{m} \bigvee_{i=0}^{\varphi_{1}^{n}(z)} P_{i, j}\right)+\frac{2}{n}(u-v) r \cdot \tau \\
& =\frac{1}{n} H\left(\bigvee_{j=-m+u}^{m+u} \bigvee_{i=0}^{\varphi_{1}^{n}(z)} P_{i, j}\right)+4 \varepsilon r \tau
\end{aligned}
$$

we have

$$
\left|\frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} \mid I_{z}\right)-\frac{1}{n} H\left(\bigvee_{-m+u}^{m+u} \bigvee_{i=0}^{\varphi_{1}^{n}(z)} P_{i, j}\right)\right|<4 \varepsilon r \tau
$$

We note that

$$
\frac{1}{n} H\left(\bigvee_{-m+u}^{m+u} \bigvee_{i=0}^{\varphi_{1}^{n}(z)} P_{i, j}\right)=\frac{\varphi_{1}^{n}(z)}{n} \frac{1}{\varphi_{1}^{n}(z)} H\left(\bigvee_{-m+u}^{m+u} \bigvee_{i=0}^{\varphi_{1}^{n}(z)} P_{i, j}\right)
$$

converges to $h(\vec{v})$.
As in the case of $\vec{v}=\int \varphi d \mu=(x, y)$ where $y \neq 0$, it is now clear that

$$
\left|\sup _{\beta} \int h_{z}(\widehat{T}, \beta) d \mu-h(\vec{v})\right|
$$

can be made arbitraily small.
Similarly we can prove the following theorem.
Theorem 4. If $\sum_{m=0}^{\infty} H\left(P_{0,1} \mid \underset{-m \leq i \leq m}{\bigvee} P_{z, 0}\right)$ is finite, then we have $h(\widehat{T})=$ $h(T)+h(\vec{v})$ where $\vec{v}=\int \varphi d \mu=\left(\int \varphi_{1} d \mu, \int \varphi_{2} d \mu\right)$.

The following Corollaries are also almost immediate from the proof of Theorem 3.

Corollary 3. If $\sum_{m=0}^{\infty} H\left(P_{0,1} \mid \underset{-k \leq \jmath \leq k}{\bigvee} \underset{-m \leq \imath \leq m}{\bigvee} P_{i, j}\right)$ is finite for some k, then we have $h(\widehat{T})=h(T)+h(\vec{v})$ where \vec{v} is given as above.

Corollary 4. If a fiber Z^{2}-action, F, satisfies the condition of Corollary 3 after a linear transformation by a matrix A in $S L(2, Z)$, that is, $A \circ F$ satisfies the condition, then we have the above formula in Corollary 3 for the entropy.

References

Ab, Ro] L.M. Abramov and V.A. Rohlin, The entropy of a skew product of measure preserving transformations, AMS Translations, Ser. 2.
[Ad] R. Adler, A note on the entropy of skew product transformations, Am. Math. Soc., 4 (1963), 665-669.
[He] G.A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Syst. Theor., 3 (1969), 320-375.
[Li] D. Lind, personal communication.
Ma, Ne] S.B. Marcus and S. Newhouse, Measure of maximal entropy for a class of skew products, Springer Lect. Notes Math., 729 (1979), 105-125.
[Mi1] J. Milnor, On the entropy geometry of cellular automata, Complex Systems, 2 (1988), 357-386.
[Mi2] , Directional entropies of cellular automation-maps, Nato ASI Series, vol. F20, (1986), 113-115.
[Pa1] K.K. Park, On the continuity of directıonal entropy, Osaka J. Math., 31 (1994), 613-628.
[Pa2] , A counter example of the entropy of the skew product, preprint.
[Pa3] , Continuity of directional entropy for a class of Z^{2}-actions, J. Korean Math. Soc., 32 (1995), 573-582.
[Si] Y. Sinai, An answer to a question by J. Mılnor, Comment. Math. Helv., 60 (1985), 173-178.
[Th] J.P. Thouvenot, personal communication.

Received February 10, 1993 and revised June 24, 1993. This research has been supported in part by NSF DMS 8902080 and GARC-KOSEF.

Ajou University
Suwon, 441-749
Korea

