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Abstract
One of the basic and important problems to study algebraic structures of the mapping class

groups is finding abelian subgroups included in the mapping class groups. Birman-Lubotzky-
McCarthy gave the answer of this question for the orientable surfaces, namely, they proved
that any abelian subgroup of the mapping class groups for orientable surfaces of genus g with
b boundary components and c connected components is finitely generated and the maximal
torsion-free rank of it is 3g+b−3c. In the present paper, we prove that any abelian subgroup of
the mapping class group of a compact connected non-orientable surface N of genus g ≥ 1 with
n ≥ 0 boundary components whose Euler characteristic is negative is finitely generated and the
maximal torsion-free rank of it is 3

2 (g − 1) + n − 2 if g is odd and 3
2g + n − 3 if g is even.

1. Introduction

1. Introduction
Let S be a compact orientable surface of genus g with b boundary components and c con-

nected components. Assume each connected component of S has a negative Euler character-
istic. Let S g,n be a compact connected orientable surface of genus gwith n boundary compo-
nents. We also write S as S g,n. We denote by M (S ) the mapping class group of S , that is, the
group of isotopy classes of orientation preserving self-homeomorphisms of S with isotopies
fixing each boundary component of S setwise. Birman-Lubotzky-McCarthy [3] proved
that any abelian subgroup of M (S ) is finitely generated with torsion-free rank bounded
by 3g + b − 3c. Kim-Koberda [4] quoted it in their paper and renew it as follows: if S is
a compact connected orientable surface and G is a torsion-free abelian subgroup of M (S ),
then G is isomorphic to a finitely generated subgroup of M (S ) which consists of Dehn twists
and pseudo-Anosov elements on some connected subsurface on S whose supports are pair-
wise disjoint. Let N = Ng,n be a compact connected non-orientable surface of genus g ≥ 1
with n ≥ 0 boundary components whose Euler characteristic is negative, that is, g + n ≥ 3.
The mapping class group M (N) of N is the group consisting of the isotopy classes of self-
homeomorphisms on N. Similarly, the isotopies fix each boundary component of N setwise.
Let p : S g−1,2n → Ng,n be the double covering map of Ng,n. Because M (Ng,n) is a subgroup
of M (S g−1,2n), it follows that any abelian subgroup of M (Ng,n) is finitely generated with
torsion-free rank bounded by 3(g− 1)+ 2b by the result of Birman-Lubotzky-McCarthy ([3,
Theorem A]). In this paper, we write ι : M (Ng,n)→M (S g−1,2n) for the injective homomor-
phism. By Szepietowski [5] the image ι(M (Ng,n)) includes no Dehn twists in M (S g−1,2n).
Therefore, our motivation in this paper is to detect finitely generated groups isomorphic
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to torsion-free abelian subgroups of M (Ng,n). Applying Birman-Lubotzky-McCarthy’s ar-
guments to the mapping class groups of non-orientable surfaces, we obtain the following
theorem:

Theorem 1.1. Let N be a non-orientable surface whose Euler characteristic is negative
and G a torsion-free abelian subgroup of M (N). Then, the torsion-free rank of G is k ≤
3
2 (g − 1) + n − 2 if g is odd and k ≤ 3

2g + n − 3 if g is even.

The idea to prove Theorem 1.1 is to show G is isomorphic to a subgroup 〈τ1, · · · , τk〉 <
M (N), where each τi is an isotopy class of a Dehn twist and the supports of τi and τ j are
disjoint for i � j (see Figure 1).

Fig.1. The maximal number of pairwise disjoint two-sided non-separating
curves on odd genus surfaces (left-hand side) and even genus surfaces
(right-hand side).

We remark that for even genus non-orientable surfaces Atalan [1, Proposition 3.1] found
the maximal rank of the abelian subgroups which contain groups generated by Dehn twists
about pairwise non-isotopic non-separating curves.

Thurston [7] proved that every mapping class τ ∈ M (N) is either reducible or of finite
order or pseudo-Anosov, and if τ is reducible, then it has a family A of isotopy classes of
essential simple closed curves such that τ(A ) = A and each of the restrictions of τ is of
finite order or pseudo-Anosov on each connected component of N − A, where A is a set of
representatives of A . We call this theorem Thurston’s theorem. In the theorem, the system
A is not unique in general. In Section 2, we will introduce an “essential reduction system” on
N in a similar way to Birman-Lubotzky-McCarthy [3]. Birman-Lubotzky-McCarthy proved
that the essential reduction system satisfies the condition in Thurston’s theorem and it is a
minimal reduction system among such systems and unique up to isotopy for only orientable
surfaces. We show the same result for non-orientable surfaces:

Theorem 1.2. A system A satisfying the conditions of Thurston’s theorem that is minimal
among such systems is unique up to isotopy.

Theorem 1.2 was first proven by Wu [8]. We give another proof by applying the argu-
ments of Birman-Lubotzky-McCarthy.

Because every abelian subgroup G of M (Ng,n) is a subgroup of M (S g−1,2n), we see G is
finitely generated by [3, Theorem A] immediately. Hence, we obtain the following.

Corollary 1.3. Let G be an abelian subgroup of M (N). Then G is finitely generated with
torsion-free rank bounded by 3

2 (g − 1) + n − 2 if g is odd and 3
2g + n − 3 if g is even.
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There are several differences from the case of orientable surfaces in the proofs of the lem-
mas to prove Theorems 1.1 and 1.2. First difference appears in the proof of (1) in Lemma 2.1.
We use the result of Stukow [6] about the kernel of the inclusion homomorphism from the
mapping class group of a subsurface to that of the ambient surface for the proof. Secondly,
the statement of Lemma 2.6 is different from the orientable surface case ([3, Lemma 2.4]).
Thirdly, because we use Lemma 2.6 to prove Lemma 2.7, we have some differences from
the orientable surface case in the proof of Lemma 2.7. However, we obtain a similar result
to the corresponding lemma ([3, Lemma 2.5]).

The paper is organized as follows. In Section 2 we will introduce essential reduction
systems in accordance with orientable surface case by Birman-Lubotzky-McCarthy, and
prove Theorem 1.2. In Section 3 we will accomplish the proof of Theorem 1.1.

2. Essential reduction classes

2. Essential reduction classes
In this section, following Birman-Lubotzky-McCarthy we introduce essential reduction

systems for non-orientable surfaces. A compact connected non-orientable surface of genus
g ≥ 1 with n ≥ 0 boundary components is the connected sum of g projective planes with
n open disks removed. We denote it by N = Ng,n. Note that N is homeomorphic to the
surface obtained from a sphere by removing g + n open disks and attaching gMöbius bands
along their boundaries, and we call each of the Möbius bands the crosscap. A simple closed
curve on N is essential if it does not bound a disk or a Möbius band, and is not parallel to a
boundary component of N. We often refer to essential simple closed curves as curves. The
collection of non-oriented isotopy classes of curves in N is denoted by the symbol S (N).
We remark that admissible isotopies fix each boundary component setwise. If τ ∈M (N) and
α ∈ S (N), then τ(α) denotes the class of t(a), where t ∈ τ and a ∈ α. A subset A ⊂ S (N)
is admissible if a set A of the representatives of A can be chosen so that it consists of
pairwise disjoint curves. Similarly we say that A is an admissible set of representatives.
Let A be an admissible subset of S (N). From now we use some notations which are the
same as Birman-Lubotzky-McCarthy [3]. The symbol MA (N) denotes the stabilizer of A

in M (N) which preserves the set A . We denote by NA the natural compactification of
N − A, where A is any admissible set of representatives of A . If τ ∈ MA (N), then we
can choose an admissible set A of representatives of A and a representative t of τ such that
t(A) = A. Furthermore, t|N−A extends uniquely to NA . Note that this process determines a
well defined class τ̂ ∈M (NA ). We shall refer to this class τ̂ as the reduction of τ along A .
The assignment τ 	→ τ̂ yields a homomorphism Λ : MA (N) → M (NA ), which we shall
refer to as the reduction homomorphism. Let a be a two-sided simple closed curve on N. We
denote by ta the Dehn twist along a, which is a homeomorphism on N defined by cutting N
along a, twisting one side by 2π, and reglueing. Let τα be the isotopy class of ta, where α is
an isotopy class of a. Abusing the notation we often call τα the Dehn twist along a

We remark that Λ is not an isomorphism in general, because according to our definition
of the mapping class group each Dehn twist τα can be in the kernel Ker(Λ) of Λ. A natural
representation ∂ : M (N) → Aut(∂N) arises from the permutation of boundary components.
Let A two and A one be the subsets of A which consist of all isotopy classes of two-sided
curves and one-sided curves respectively. If we write card(A ), then it means the cardinality
of A .
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Lemma 2.1. Let A be an admissible subset of S (N). Then the following occur.

(1) Ker(Λ) = 〈τα | τα ∈ A two〉.
(2) Ker(Λ) ⊂ center(Ker(∂ ◦ Λ)).

Proof of Lemma 2.1. We will prove only (1), since the proof of (2) is the same as
that of [3, Lemma 2.1 (2)]. Let A be a set of representatives of A which are pairwise
disjoint, and N − Â the surface which we cap the components of ∂A in N − A by once
punctured disks. We put orientations in the new boundary components of NA . We denote
by {p+i , p−i } the pair of points on two new boundary components obtained by cutting N along
a two-sided curve and compactifying it naturally, and by qi a point on a new boundary
component obtained by cutting N along a one-sided curve and compactifying it naturally.
We define Homeo′(NA ) as the set of homeomorphisms t which satisfy t({p+i , p−i }) = {p+j , p−j }
and t(qi) = q j, and if the orientation of the boundary component which has p+i is the same
as (resp. opposite to) the boundary component which has t(p+i ), then the orientation of
the boundary component which has p−i is the same as (resp. opposite to) the boundary
component which has t(p−i ). Set M ′(NA ) = π0(Homeo′(NA )). We consider the capping
homomorphism η1 : M ′(NA ) →M (N − Â) induced by the inclusion NA ↪→ N − Â. Note
that the Dehn twists along the new boundary components are not isotopic to the identity in
M ′(NA ). We define a homomorphism ν1 : M (N − Â) →M (NA ) by ν1(τ) = τ|NA

for any
τ ∈M (N − Â). Let g be a regluing map from NA to N. For any τ ∈M ′(NA ), there exists
σ ∈ MA (N) such that σ ◦ g = g ◦ τ. This process determines the homomorphism ν2 from
M ′(NA ) to MA (N) by ν2(τ) = σ. Let ν3 be a restriction of ν2 to Ker(η1). Then, we obtain
the following commutative diagram.

1 �� Ker(η1) ��

ν3
����

�

M ′(NA )
η1 ��

ν2
����

�

M (N − Â)

ν1�
��

1 �� Ker(Λ) �� MA (N) Λ �� M (NA )

The homomorphism ν1 : M (N − Â) → M (NA ) is isomorphism by our definition of the
mapping class groups. The homomorphism ν2 : M ′(NA ) → MA (N) is surjective. Actu-
ally, for any τ ∈ MA (N) there exists a representative t of τ and an admissible subset A
of representatives of A such that t(A) = A and t maps each two-sided (resp. one-sided)
curve to a two-sided (resp. one-sided) curve. Hence τ|NA

is an element of M ′(NA ), and
so it is a lift of τ to M ′(NA ). The homomorphism ν3 : Ker(η1) → Ker(Λ) is surjective
by the five-lemma. Thus, Ker(Λ) is generated by at most the projections of the generat-
ing set of Ker(η1). By [6, Theorem 3.6], we have Ker(η1) = 〈τα | α ∈ A 〉 � ZN , where
N = 2card(A two) + card(A one). We know that for each regular neighborhood α of a one-
sided curve on N, the Dehn twist τα along α is not contained in Ker(Λ) since it is a trivial
element in M (NA ). Moreover, both two Dehn twists along the boundary components in NA

which come from the same α ∈ A as the boundary components of the regular neighborhood
of α in N project τα in Ker(Λ). Therefore Ker(Λ) = 〈τα | α ∈ A two〉. �

Let Γ(NA ) = {Ni | i ∈ I} be the set of the connected components of NA , and so NA =∐
i∈I Ni. There is a natural representation ϕ : M (NA ) → Aut(∂NA ) which arises from

the permutation of components. The kernel Ker(ϕ) of ϕ is isomorpic to
⊕

i∈I M (Ni). If
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τ ∈M (NA ), then for some exponent n, τn is contained in Ker(ϕ). For any such an exponent,
we refer to the element of M (Ni) obtained by restricting τn as restrictions of τ.

Let S be the double covering orientable surface of N. Wu [8] proved that a mapping
class τ ∈ M (N) is of finite order (resp. reducible, pseudo-Anosov) if ι(τ) ∈ M (S ) is of
finite order (resp. reducible, pseudo-Anosov). Moreover according to Thurston [7], there is
Nielsen-Thurston classification for M (N) (the proof is found in the paper of Wu [8]):

Theorem 2.2 ([7], [8, Theorem 2]). A homeomorphism t on N is reduced and is not of
finite order if and only if t is isotopic to a pseudo-Anosov homeomorphism.

Then we can rephrase the definition of pseudo-Anosov and reducible mapping classes on
non-orientable surfaces according to Birman-Lubotzky-McCarthy [3] as follows:

Definition 2.3. A mapping class τ ∈ M (NA ) is pseudo-Anosov if S (Ni) � ∅ for every
i ∈ I and τn(α) � α for any α ∈ S (NA ) and any n � 0. A mapping class τ ∈ M (NA ) is
reducible if there exists an admissible subset A such that τ(A ) = A .

We call the admissible set A as in Definition 2.3 a reduction system for τ, and we say
each α ∈ A as a reduction class for τ. A reduction system A for τ is an adequate reduction
system if the restrictions of τ to each component of NA are either of finite order or pseudo-
Anosov. If τ ∈ M (N) is either of finite order or pseudo-Anosov mapping class on N, we
call τ is adequately reduced.

We restate Thurston’s theorem by using adequate reduction system as follows:

Theorem 2.4 ([7]). Every mapping class τ ∈ M (N) is either reducible or adequately
reduced. If τ is reducible, then there exists an adequate reduction system A for τ.

Let i : S (N)×S (N)→ N∪ {0} be the geometric intersection number. A reduction class
α for τ is essential if for each β ∈ S (N) such that i(α, β) � 0 and each integer m � 0, the
class τm(β) is distinct from β. We often say α is essential if α is an essential reduction system
for some τ.

Proposition 2.5 ([3, Proposition 2.3]). Let α ∈ A and α′ ∈ A ′ be reduction classes for
τ ∈M (N). Suppose that α is essential. Then i(α, α′) = 0.

The following lemma is different from the corresponding lemma ([3, Lemma 2.4]) by
Birman-Lubotzky-McCarthy.

Lemma 2.6. Let F be a compact connected orientable or non-orientable surface with
χ(F) < 0. Fix any isotopy class δ of properly embedded arc d on F, namely, ∂d is embedded
in ∂F and the interior of d is embedded in the interior of F. We choose any τ ∈M (F) with
τ(δ) = δ. Then one of the following occurs.

(1) F is either S 0,3 or N1,2 or N2,1.
(2) If δ is an isotopy class of an arc which connects distinct two boundary components,

then there exists γ ∈ S (F) such that τ(γ) = γ and i(α, γ) � 0 for any α ∈ S (F)
with i(α, δ) � 0.

(3) If δ is an isotopy class of an arc which connects one boundary component, goes
through crosscaps even number of times, and surrounds one crosscap, then for any
α ∈ S (F) excepting β0 which is shown in Figure 2 with i(α, δ) � 0 there exists
γ ∈ S (F) such that τ(γ) = γ and i(α, γ) � 0.
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(4) If δ is an isotopy class of an arc which connects one boundary component, goes
through crosscaps even number of times, and does not surround one crosscap, then
for any α ∈ S (F) with i(α, δ) � 0 there exists γ ∈ S (F) such that τ(γ) = γ and
i(α, γ) � 0.

(5) If δ is an isotopy class of an arc which connects one boundary component and goes
through crosscaps odd number of times, then for any α ∈ S (F) excepting β1 and
β2 which are shown in Figure 2 with i(α, δ) � 0 there exists γ ∈ S (F) such that
τ(γ) = γ and i(α, γ) � 0.

Proof. Let d be a properly embedded representative of δ, and η(d) a regular neighborhood
of d with the boundary components of F which have the end points of d. If d connects
distinct two boundary components (Case (a)) or connects one boundary component and
goes through crosscaps even number of times (Case (b)), then η(d) is homeomorpic to S 0,3.
If d connects one boundary component and goes through crosscaps odd number of times
(Case (c)), then η(d) is homeomorphic to N1,2. In Case (a), two of the boundary components
of η(d) are those of F. We denote by γ the isotopy class of the other boundary component
of η(d). Then γ is not isotopic to a point since χ(F) < 0. If γ is isotopic to a component
of ∂F (resp. a crosscap), then F is homeomorphic to S 0,3 (resp. N1,2). We suppose that γ
is an essential curve. Since τ(δ) = δ, it follows that τ(γ) = γ. If α ∈ S (F) intersects δ
nontrivially, then i(α, γ) � 0. In Case (b), one of the boundary component of η(d) is that
of F. We put γ2 and γ3 as the isotopy classes of the other two components. Neither γ2 nor
γ3 is isotopic to a point. Firstly we suppose that γ2 is parallel to ∂F. If γ3 is isotopic to
a component of ∂F (resp. a crosscap), then F is homeomorphic to S 0,3 (resp. N1,2). We
suppose that γ3 is an essential curve. Then it follows that τ(γ3) = γ3 and i(α, γ3) � 0 for
any α ∈ S (F) with i(α, δ) � 0. Next we suppose that γ2 is isotopic to a crosscap. If γ3

is isotopic to a component of ∂F (resp. a crosscap), then F is homeomorphic to N1,2 (resp.
N2,1). We suppose that γ3 is an essential curve. Unless α is isotopic β0 in Figure 2, we see
i(α, γ3) � 0 for any α ∈ S (F) with i(α, δ) � 0. We can show similar results if γ2 is essential.
In Case (c), one of the boundary component of η(d) is that of F. We denote by γ the isotopy
class of the other boundary component of η(d). We see γ is not isotopic to a point. If γ is
isotopic to a component of ∂F (resp. a crosscap), then F is homeomorphic to N1,2 (resp.
N2,1). We suppose that γ is an essential curve. Since τ(δ) = δ, it follows that τ(γ) = γ. Note
that γ bounds N1,1. We can take only β1 and β2 which intersect δ and do not intersect γ as
shown in Figure 2. Unless α is isotopic to β1 or β2 in Figure 2, we see i(α, γ) � 0 for any
α ∈ S (F) with i(α, δ) � 0. �

The result of the following lemma is the same as the orientable surface case by Birman-
Lubotzky-McCarthy ([3, Lemma 2.5]), while the statement of Lemma 2.6 is different from
the orientable surface case by them ([3, Lemma 2.4]).

Lemma 2.7. Let A be an adequate reduction system for τ and let α ∈ A . Set A ′ =
A − {α}. Then the following are equivalent:

(1) α is essential.
(2) A ′ is not an adequate reduction system for τm for any m � 0.
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Fig.2. Curves β0, β1, and β2.

Proof. We omit the proof that (1) implies (2) because it is the same as that of Birman-
Lubotzky-McCarthy. We assume that α ∈ A is not an essential reduction class for τ. Then
there exists a class γ ∈ S (N) with i(α, γ) � 0 and n � 0 such that τn(γ) = γ. Let A be an
admissible set of the representatives of A . We cut N along A, then γ determines a finite set
of pairwise disjoint isotopy classes of properly embedded arcs in NA , which we denote by
γ̂. If a component of NA has boundary components arising from α, then we shall say the
component is bounded by α. We note that at least one element of γ̂ occurs in a component
of NA bounded by α. We put Λ : MA (N) → M (NA ), and set τ̂ = Λ(τ). Since τn(γ) = γ,
therefore τ̂n(̂γ) = γ̂. By choosing a larger exponent n if necessary, we may assume that
τ̂n preserves each component of NA , ∂NA , and γ̂. In particular, the restrictions of τ̂n to the
components of NA bounded by α preserve a nontrivial isotopy class of a properly embedded
arc. By Lemma 2.6, for each such component, either the corresponding restriction of τ̂n is
reducible or the component is S 0,3, N1,2, or N2,1. Now we suppose that τ̂n is adequately
reduced, and therefore all the restrictions of τ̂n do not preserve any curves. Then it follows
that each component bounded by α is either S 0,3 or N1,2 or N2,1. A pair of pants will not
support a pseudo-Anosov mapping class. We can show that the mapping classes on N1,2

(resp. N2,1) which preserve a properly embedded essential arc on it and each component of
∂N1,2 (resp. ∂N2,1) are of finite order. Thus by choosing a larger exponent n if necessary, we
may assume that the restrictions of τ̂n to the component bounded α are trivial.

From now we consider the corresponding situation when we reduce along A ′. We define
the reduction homomorphism Λ′ : MA ′(N) → M (NA ′). Let γ̂′ and α̂′ be the lift of γ and
α on NA ′ respectively. We see α̂′ is an adequate reduction class for Λ′(τn). We denote by L
the component of NA ′ which includes α̂′. We set ν = Λ′(τn)|L. We also define the reduction
homomorphism Λ′′ : Mα̂′(L) →M (Lα̂′), and set ν′′ = Λ′′(ν). Because the restriction of τ̂n

to the component of NA bounded by α is the identity, ν′′ is the identity. If α̂′ is an isotopy
class of one-sided curve, then ν is also identity by Lemma 2.1. If α̂′ is an isotopy class of
two-sided curve, then Ker(Λ′′) = 〈τα̂′ 〉 by Lemma 2.1, and so there exists k � 0 such that
ν = τk

α̂′ . We will prove that k = 0 from now. First we assume that γ intersects only α, that
is, γ ⊂ N − A′ (A′ is an admissible set of the representatives of A ′). We have i(α̂′, γ̂′) � 0,
so γ̂′ ∈ S (L). Since τn(γ) = γ, it follows that ν(̂γ′) = γ̂′. Then we see k should be 0. Next
we assume that γ intersects other curves of A ′, that is, i(γ,A ′) � 0. In this case γ̂′ is the
family consisting of isotopy classes of arcs which go through L at least once. If L = S 0,3,
then ν is the identity by our assumption. If L = N1,2, then k has to be 0 because M (N1,2) is
finite. If L = N2,1, then there is only one kind of two-sided curve on L shown in Figure 3.
By Lemma 2.6, α̂′ can not be β0, β1, or β2 because α̂′ is an isotopy class of two-sided curve.
Then there exists δ ∈ S (L) such that i(α̂′, δ) � 0 and ν(δ) = δ. Hence k = 0. Otherwise,
similarly to the previous case α̂′ can not be β0, β1, or β2, and so there exists δ ∈ S (L) such
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that i(α̂′, δ) � 0 and ν(δ) = δ. Hence we obtain k = 0. From the above arguments, we prove
A ′ is an adequate reduction system for τ. �

We set Aτ = {α ∈ S (N) | α is an essential reduction class for τ}. Since we obtain the
same result in Lemma 2.7 as [3, Lemma 2.5], we can prove the following lemma by similar
arguments to that of Birman-Lubotzky-McCarthy. Hence, we omit the proof of Lemma 2.8
(we use Lemma 2.7 in the proofs of (3) and (4) in Lemma 2.8).

Lemma 2.8 ([3, Lemma 2.6]).
(1) σ(Aτ) = Aστσ−1 .
(2) Aτm = Aτ for all m � 0.
(3) Aτ is an adequate reduction system for τ.
(4) Aτ ⊂ A for each adequate reduction system A for τ.

At the end of this section, we prove Theorem 1.2. The proof is the same as the proof of
[3, Theorem C].

Proof of Theorem 1.2. Let τ ∈ M (N). Then, by Theorem 2.4 either τ is adequately
reduced (that is the case A = ∅) or τ is reducible, and if τ is reducible, then there exists an
adequate reduction system. By Lemma 2.8, Aτ is the intersection of all adequate reduction
systems for τ. Hence Aτ is canonical and unique. The desired curve system A is any
representative of Aτ. �

Fig.3. The only two-sided curve α̂′ on N2,1.

3. Abelian subgroups of mapping class groups

3. Abelian subgroups of mapping class groups
In this section we prove Theorem 1.1. Let N be a compact connected non-orientable

surface, and A ∈ S (N) an admissible subset. Then G <M (NA ) is adequately reduced if
each τ ∈ G is adequately reduced. Let G be an abelian subgroup of M (NA ). We denote by
rank(G) the torsion-free rank of G.

Lemma 3.1 ([3, Lemma 3.1]).
(1) Let AG be the union of the essential reduction systems Aτ for any τ ∈ G. Then AG

is an adequate reduction system for each τ ∈ G.
(2) If G is adequately reduced, then rank(G) ≤ C0(NA ), where C0(NA ) is the number

of components of NA not homeomorphic to a pair of pants.

Proof. We can show (1) by a similar argument to Birman-Lubotzky-McCarthy. Therefore
we only give the proof of (2). We set NA = �k

i=1Ni, where each Ni is a connected component
of NA . If Ni is a non-orientable surface, then let pi : S i → Ni be the double covering map of
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Ni, where S i is the double covering orientable surface of Ni. If Ni is an orientable surface,
then let pi : S i → Ni be the identity map on Ni. We define p = �k

i=1 pi : �k
i=1 S k → �k

i=1Ni

by p(x) = pi(x) for x ∈ S i, then p is a covering map of NA . Let ι : M (NA ) →M (�k
i=1S i)

be an injective homomorphism induced by p. We choose an adequately reduced abelian
subgroup G < M (NA ) = M (�k

i=1Ni). We set G̃ = ι(G) < M (�k
i=1S i). Then, G̃ is an

adequately reduced abelian subgroup, since τ ∈M (Ni) is finite order (resp. pseudo-Anosov)
mapping class if and only if τ̃ ∈ M (S i) is finite order (resp. pseudo-Anosov) mapping
class. By [3, Lemma 3.1], we know rank(G̃) ≤ C0(�k

i=1S i), where C0(�k
i=1S i) is the number

of components of �k
i=1S i not homeomorphic to a pair of pants. If Ni is a non-orientable

surface, then S i can not be a pair of pants, because the Euler characteristic of S i should be
even but that of a pair of pants is −1. If Ni is an orientable surface, then Ni is a pair of pants
if and only if S i is a pair of pants. Hence C0(�k

i=1S i) = C0(NA ). By G̃ � G, it follows that
rank(G) ≤ C0(NA ). �

Finally, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let G be a torsion-free abelian subgroup of M (N). By (1) of
Lemma 3.1, we see G ∈ MAG (N). We denote by Λ : MAG (N) → M (NAG ) the reduction
homomorphism along AG. We set H = Λ(G). The sequence

1 �� G ∩ Ker(Λ) �� G �� H �� 1

is exact. From this exact sequence, we have rank(G) = rank(G ∩ Ker(Λ)) + rank(H). By
Lemma 2.1, rank(G∩Ker(Λ)) ≤ rank(Ker(Λ)) ≤ card(A two). Therefore, we see G∩Ker(Λ)
is isomorphic to the group generated by Dehn twists along pairwise disjoint curves whose
cardinality is at most card(A two).

From (2) of Lemma 3.1, we see rank(H) ≤ C0(NAG ). By the arguments in the proof of
[3, Lemma 3.1 (2)], we see H is isomorphic to the group generated by pseudo-Anosov map-
ping classes on connected subsurfaces, and the number is bounded by C0(NAG ). However,
we remark that any subsurface which supports a pseudo-Anosov mapping class must also
support a non-trivial Dehn twist. Hence we can replace the pseudo-Anosov mapping class
generators by Dehn twists. As shown in Figure 1 (see also [2, Proposition 2.3]), card(A two)
is bounded by 3

2 (g − 1) + n − 2 if g is odd and 3
2g + n − 3 if g is even, so we are done. �
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