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Abstract

We study a nonlinear elliptic equation with a singular termd aa continuous
perturbation. We look for positive solutions. We prove thmaultiplicity theorems
producing at least two positive solutions. The first muitiy theorem concerns
equations driven by a honhomogeneous in general diffedeogierator. Also, two of
the theorems have a superlinear perturbation (but witHmtAimbrosetti—Rabinowitz
condition), while the third has a sublinear perturbatiorur @pproach is variational
together with suitable truncation and comparison tectesqu

1. Introduction

Let Q@ € RN be a bounded domain with@?-boundarydQ. In this paper, we study
the following nonlinear, nonhomogeneous Dirichlet problevith a singular term:
) —diva(Du(2)) = B(Qu(2)™ 4+ f(z,u(z2)) in <,
Use =0, u=>=0, ye(0,1).

In (1) the mapa: RN — RN involved in the definition of the differential operator
is strictly monotone and satisfies certain other regulacitnditions. The precise hy-
potheses ora(-) are gathered irH(a) below. They are general enough to incorporate
as special cases important differential operators suclheag-Laplacian (1< p < 0),
the (p, q)-differential operator (k< q < p < oo, p > 2) and the generalizeg-mean
curvature differential operator (2 p < o0). In general the differential operator is not
homogeneous (in contrast to the special case of gHeaplacian). The perturbation
f(z, x) is a continuous function o2 x R which exhibits ¢ — 1)-superlinear growth
near+oco. However, to express the{ 1)-superlinearity off (z, -), we do not employ
the usual in such cases Ambrosetti-Rabinowitz conditibe &R-condition for short).
Here instead, we use a more general “superlinearity” cmmdivhich incorporates in
our framework perturbations with “slower” growth nearco. We prove three multi-
plicity theorems producing at least two positive solutioifie second multiplicity re-
sult concerns equations driven by tpeLaplace differential operator and a perturbation
which is (p — 1)-sublinear nearocc.
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Equations involving the combined effects of singular angdeslinear terms, were
studied by Coclite—Palmieri [4], GherguaRulescu [10], Hirano—Saccon—Shioji [13],
Lair—Shaker [16], Sun—-Wu—Long [24] (semilinear equatidrigen by the Laplacian) and
by Gashski—Papageorgiou [9], Giacomoni—Schindler—Tak#l], Kyritsi—-Papageorgiou
[14], Perera—Zhang [22] (nonlinear equations driven by fiHeaplacian). All the afore-
mentioned works deal with equations which have a paramsinigular term and prove
multiplicity of solutions for all small values of the paratae We stress that in our case
the differential operator is nonhomogeneous and this isueceoof difficulties in the ana-
lysis of problem (1).

2. Mathematical background—hypotheses

In this section we recall some definitions and facts fromaaitpoint theory which
we will use in the sequel and also we introduce the hypothesethe data of (1).

Let X be a Banach space arXi* its topological dual. By(-, -) we denote the
duality brackets for the pairX*, X). Let ¢ € C}(X). We say thatc € R is a critical
value of g, if there existsx € X s.t. ¢'(X) = 0 and¢(x) = c. We say thatp satisfies
the “Cerami condition” (the “C-condition” for short), if éhfollowing is true:

“Every sequencé€Xplin>1 C X s.t. {¢(Xn)}n=1 C R is bounded and

@+ %)’ (%) >0 in X* as n— oo,

admits a strongly convergent subsequence”.

This compactness-type condition is in general weaker thanusual Palais—Smale
condition. Nevertheless, the C-condition suffices to pravdeformation theorem and
from it derive the minimax theory of certain critical values ¢ € C'(X). In particu-
lar, we can state the following theorem, known in the literatas the “mountain pass
theorem”.

Theorem 1. If ¢ € C1(X) satisfies the C-conditigrko, X; € X, ||[Xo—X1|| > p > O,

max{¢(Xo), p(X1)} < infle(X): X = Xoll = p] = n,
and

¢ = inf maxe(y(t)) where I'= {y € C([0, 1], X): y(0) = %o, ¥(1) = X},
yell O=t=
thenc > 5, and c is a critical value ofp.

In this work, in addition to the Sobolev spa\te)l'p(sz), we will also use the Banach
spaceC}(Q) = {u € C}(): ul;e = 0}. This is an ordered Banach space with posi-
tive cone

C, ={ueClQ):u@ >0, foralzeQ}.
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This cone has a nonempty interior given by
: ou
intC, = {u €C,:u(2 >0 for all ze Q, %(z) <Oforallze 852},

with n(-) being the outward unit normal o8<.
By | - || we denote the norm of the Sobolev spaué’p(sz). By virtue of Poincare
inequality, we have

lull = [|[Dullp forall ue Wol’p(SZ).

By |- || we will also denote th&®N-norm. However, no confusion is possible since
it will always be clear from the context which norm we use.

For x € R, we setx™ = max{+x, 0} and then foru € W,""(2) we defineu*(-) =
u(-)*. We know that

uf eWoP(Q), Ju=ut+u and u=u*-u.
By |- |n We denote the Lebesgue measureRh
For h: @ x R — R a measurable function (for example a Carathéodory fungtion
we define

Na(u)(-) = h(-,u(-)) forall ueWP(Q)

(the Nemytskii or superposition operator correspondingdn)to
Now, let ¥ € C%(0, o) be such that

t9'(t)
0< <cyg forall t>0 and somecy>0
2) D (t)

and citPt<v9(t) <c(1+1tP1) forall t>0 and some cy, ¢, > 0.

Below we have gathered the hypotheses on the a@gtp 3(2), f(z x) of problem
(1) which will be used in this work.

The hypotheses on the magp— a(y) involved in the differential operator are the
following:

H(a). a(y) = ag(||ly|)y for all y € RN with ag(t) > 0 for all t > 0 and
() a € CY0, o), t — ap(t)t is strictly increasing,ag(t) — 0 ast — 0F and
lime_o+ tag(t)/ao(t) = ¢ > —1,
(i) IVa(y)ll < cs2(llyl)/llyl for all y € RN\ {0} and somecs > O;
(iiiy (Va(y)s, &)rn = @(IyI)/1yIDIEN> for all y e RN \ {0}, all £ € RN,
(iv) if Go(t) = fot a(s)s dsfor all t > 0, then

A

pGo(t) > ap(t)t?—¢ forall t>0 and some &> 0.

The hypotheses on the weight functigf-) are the following:
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H(B). BeC(Q)NL>®(), B(z27 =0 forallze 2, 8 #0.

The hypotheses on the perturbatidiiz, x) are the following:

H(f). f: QxR — R is a continuous function s.t. for ait € , f(z, 0) = 0,
f(z,x) >0 for all x > 0 and
(i) f(zx)<a@@+x"1) forall ze 2, all x>0 and witha € L™(Q),

NP pon,
p<r<p*={N-p
+o0 if p>=N;

(i) if F(z %)= [ f(z s)ds then

fim F&X)

= +oo uniformly for all ze Q;
X—>+00 XP

(iii) there existt € ((r — p) max{1, N/p}, p*) and By > O s.t.

6o < liminf f(z, X)x — pF(z, x)

X—+00 XT

uniformly for all z e Q;

(iv) there existsy € C(£2), n(2) > 0 for all z € ©, with n(2) < (c1/(p—1))r1(p) for all
zeQ, n# (c/(p—1)hi(p) and

. f(z, x
lim sup (2, x)
x—>0* xp-1

<n(2 uniformly for all ze Q.

In Section 4, we consider equations driven by thdaplacian with a p — 1)-
sublinear perturbatiorf (z, x). In that case, our conditions of(z, x) are the following:

H(f). f: QxR — R is a continuous function s.tf(z, 0) =0 for all ze Q and
(i) for every p > 0, there existsx, € L5°(Q2) s.t.

[f(z,X)] <a,(z) foraa. ze, al 0=<x=p;
(ii) there existn € LY(R2) and7 > 0 s.t.

n(2) = (p) ae. in @ n#i(p),
(z, x) f(z, x)
1

oo f . R .
n(2) < liminf <limsup——— <7 uniformly for a.a. ze Q.
X—>+oo XP~ X400 xp-1

(iii) there exist O< §p < & S.t.

0 f(z,x) forall ze, all xel0,d,

B + f(z,&) <0 forall zeQ;
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(iv) for every p > 0, there exist€, > 0 s.t. for a.aze Q, x — f(z x) + £,xP 1 is
nondecreasing on [®].

REMARK. Evidently Go( - ) is strictly convex and strictly increasing. We set
G(y) = Go(|ly||) for all y e RN. We have

VG(y) = G6(||yll)ﬁ =ao(lyl)y = a(y) forall yeRN\{0}.

Therefore,G( ) is the primitive ofa(-), it is convex andG(0) = 0. Hence

®) G(y) < (a(y), Y)rv for all yeRN.

From hypothesedd(a) and (2), (3), we obtain easily the following lemma which
summarizes the main properties of the n&p).

Lemma 2. If hypotheses Kh) hold, then
(@) y— a(y) is maximal monotone and strictly monotone
) flay)| < ca(X + |ly|PY) for all y e RN and some £> O;

© @), Y)rv = (c/(p—1)IY[IP for all y € RN

From this lemma and the integral form of the mean value thepsge deduce the
following growth properties of the primitivé&s(-).

Corollary 3. If hypotheses ) hold, then

C1

o(p— 1)Ilyllp <G(y) <cs(1+]y||P) forall yeRN and some g¢= 0.

ExampLE. The following maps satisfy hypothesé(a):
(@ a(y) = llyl[P~?y with 1 < p < co.
Then the corresponding differential operator is fhvaplacian

Apu = div(|Du||P2Du) forall ue W&’p(Q).
(b) a(y) = lylP?y + llyl*?y with1<q<p, p=2.
Then the corresponding differential operator is the sum gf-baplacian and a
g-Laplacian (a p, q)-differential operator)

Apu+ Aqu for all ue Wy P(Q).

This operator arises in quantum physics (see Benci—DAeRortunato—Pisani [1])
and in plasma physics (see Cherfils—II'yasov [3]).
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(© a(y) = (1+ |ylI)P~2"2y with 2 < p < co.
Then the corresponding differential operator is the gdizeh p-mean curvature
operator defined by

div[(1 + ||Du[®)®P-2/2Du] for all u e W, P(Q).
(d) a(y) = [lyll"2y + In(1 + |lylIP-?)y with 1 < p < cc.

Let A: W,"P(Q) - W-LP(Q) = W, P(2)* (1/p+1/p = 1) be the nonlinear map
defined by

(4) (A(u), y) = /(a(Du), Dy)pn dz for all u, y € WyP(2).
Q
From Papageorgiou—Rocha—Staicu [21], we have:

Proposition 4. The nonlinear map AW, P(Q) — W17 () defined by(4) is
bounded(maps bounded sets to bounded katsentinuous and strictly monotor(eence

maximal monotone tgaand of type(S),, i.e. if Uy — U in W;"P(2) and

lim sup{A(un), u, —u) <0,

n—+o0
then y, — u in W"P(Q).

REMARK. Since our aim is to produce positive solutions and the aligymoth-
eses concern the positive semia®s = [0, +00), by truncating f (x, -) if necessary,
we may and will assume thdt(z,x) = 0 for all ze @ and allx < 0. From hypotheses
H(f) (ii), (iii) it follows that

f(z, x)

xp-1

lim sup

X—+00

= 400 uniformly for all ze Q.

This means that the perturbatidi(z, -) is (p— 1)-superlinear nea#oc. However,
note that we do not employ the usual in such cases AmbroBettikmowitz condition
(the AR-condition for short). We recall that the AR-conditi (unilateral version) says
that there exisit > p and M > 0O s.t.

(5) O<uF(z,x) < f(z,x)x foral ze, al x>M

and ink, F(-, M) > 0.
A direct integration of (5), leads to the following growthtiesate

(6) Cex* < F(z,x) forall ze, al x> M, andsome ¢c;> 0.
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Evidently (6) implies that hypothesibi(f) (ii) holds. Also, if the AR-condition
holds, we may assume that> (r — p) max1, N/p}. Then we have
f(z, x)x — pF(z, x f(z, X)x — uF(z, x F(z, x
(z X)x = pF(z x) _ f(z ) ()+(u—p)()
XH XH XH
> (n—p)cs  (see (5), (6))
s Jim inf f(z, X)x — pF(z, x) .
X—>+00 XH

(u— p)cs uniformly for all z e Q.

So, hypothesidH () (ii) holds. Hence our “superlinearity” condition is morerg
eral than the AR-condition and permits the use of supertipegurbations with “slower”
growth near4+-co. We mention, that similar conditions were also employed lpgt@—
Magalhées [5], Fei [6] and Li-Wu—Zhou [19].

ExAaMPLE. The following functions satisfy hypothesél( f) (for the sake of sim-
plicity we drop thez-dependence):
f1(x) = 9xP1+x1 forall x>0 with ® € (0,A1(p) and 1€ (p, p*)

fo(x) = xPtIn(1+x) forall x> 0.
Note that f, does not satisfy the AR-condition.

REMARK. In the case of hypothesds$(f)’, again without any loss of generality,
we assume thaf (z, x) = 0 for all z € @, all x < 0. HypothesisH(f)" (ii) classifies
the perturbation asp(— 1)-sublinear. Hypothesi$i(f)’ (iii) expresses the oscillatory
behavior near zero.

ExamMPLE. The following function satisfies hypotheseK f)'. As before, for the
sake of simplicity, we drop the-dependence

0 if x<0O,
f(x) = ¢xPl—cx?1 if 0<x<1,

pxPl—exd—t if 1 <x
withl<g<p<®,¢>|Bleo+1 n>a(p) andé=n+c—1>0.

Next, let us recall some facts about the spectrum-eh g, W&’p(sz)). So, letm e
L>°(2)+, m# 0 and consider the following weighted nonlinear eigenvglugblem

{—Apu(z) = m(2)|u(2)|P?u(z) a.e.in Q,
U|;)Q = 0.
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There is a smallest eigenvaluig(p, m) which is positive, isolated (i.e., there exists
e >0 s.t. fo(p, M), A1(p, M) + &) contains no eigenvalue) and simple (i.e.ujfv are
eigenfunctions corresponding #a(p, m) > 0, thenu = &v, & # 0). Also, A1(p,m) > 0
admits the following variational characterization

IDullp ,
fTu'pde:UGWS-p(Q), U#O .
Q

™ ba(p,m) = inf|

The infimum in (7) is realized on the corresponding one-disimral eigenspace.
From (7) it is clear that the eigenfunctions correspondmas{p, m) do not change sign.
By 01(p, m) we denote the positive P-normalized eigenfunction (i.e01(p, m)|l, = 1).
From the nonlinear regularity theory and the nonlinear maxn principle (see Gasski—
Papageorgiou [8] (pp. 737-738)), we havgp, m) € int C.. Note thatir;(p, m) is the
only eigenvalue, with eigenfunctions of constant signml(z) < m'(z) a.e. inQ2, m #
m, thenii(p, M) < i(p, m). Finally, if m = 1, then we writek1(p, 1) = A1(p) and
(p, 1) = Gu(p).

3. The nonhomogeneous problem
We consider the following auxiliary Dirichlet problem:
(8) —diva(Du(@)=@u@" in Q upe=0 u=0 ye(01).

Proposition 5. If hypotheses &), H(B) hold, then problem(8) has a solution
ueintC,.

Proof. For everyn > 1, we consider the following perturbed version of prob-
lem (8)

1 -v
(9) —diva(Dun(2) = ﬂ(z)(un(z) + ﬁ) in Q, uUlse=0, u, >0,

n>1ye€(0,1).
First we solve problem (9). To this end, lete LP(2) and lety = E(w) be the
unique solution of the following Dirichlet problem

-V
(10)  —diva(Dy(2) = ﬂ(Z)(Iw(Z)I + %) in Q Yyhe=0 y=0,

y € (0, 1).

From the nonlinear regularity theory (see Ladyzhenskayattseva [15] (p. 286))
and Lieberman [18] (p.320)), we have that C, \ {0}. In fact the nonlinear strong
maximum principle of Pucci—Serrin [23] (p.111), impliesathy(z) > 0 for all z € Q.
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Therefore, we can apply the nonlinear boundary point threooé Pucci—Serrin [23]

(p-120) and we infer thay € intC,. On (10) we act withy and using Lemma 2 (c)
we obtain

C1

By
ioyips [ s dz<nipl [ ydz (seeh(s)
C1

- 1il(IO)IIB/IIB =cn’[lylp for some c; >0 (see (7))
= [IYllp < #n

=

(11

for some p, >0, n>1.

Let BI" = {u € LP(Q): |lullp < 4n} and consider the maf: B" — BL" (see
(11)). Using the Sobolev embedding theorem and the predalculations, we see that

E is compact. Then the Schauder fixed point theorem impliesfthiaeveryn > 1, we
can findu, € Bﬁan s.t.uy = E(uy) for all n > 1. We have

—diva(Dun(2)) = ﬁ(z)(un(z) + %)y in €, Uyse =0, uy >0,
y €(0,1)

= U €intC,. (as above).

Claim. {up}n>1 CintC, is an increasing sequence.

For everyn > 1, we have

1 -V
(12 Aup) = ﬂ(un + ﬁ) <

L) i wire
< ,B(Un + m) in (€2).

So, for everyn > 1, we have
A(un) — A(Un+1)

1 1
(13) < ﬁ[(un YT A TR T 1))y} (see (12))
_ o [Una+ Y+ DY — U+ Y+ )]y
= ﬂ[ (Un + 1/(0 + 1)) (Uns1 + 1/(0 + 1)) ] in WLP(Q).

On (13) we act with @, — Up41)™ € Wy'P(R) and obtain

0 < (A(Un) — A(Un+1), (Un — Uns1)T)  (see Lemma 2 (a))
_ / ﬁ|:(un+l +1/(n+ 1)) — (un + 1/(n+ 1))
Q

_ +
(Un + /(0 + 1)) (Unya + Y £ DY }(“” Uns2)” dz
= [{Un > Uny1}In =0

= Up < Upyy forall n>1.
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This proves the claim.
By virtue of the claim, we have

(14) Aup) = ﬂ(un + %)y < pu;” in WP (Q) foral n=>1.

Sinceu; € intC,, we can findt € (0,1) small s.t. {01(p)/%) < u; (see Filippakis—
Kristaly—Papageorgiou [7], Lemma 3.3). Then fpr= maxN/p, 1}, we have

(15) Buy” <t B0u(P)N) T <t |Bllo(C1(P)YN) T € LYRQ)
(see Lazer—McKenna [17]).

From (14), (15) and Ladyzhenskaya—Ural'tseva [15] (p. 288 know that we can
find My > O s.t. [|upflec < My for all n > 1. Then from Lieberman [18], we can find

M, > 0 andn € (0, 1) s.t.

(16) u, € C2"(Q) and IUnllcingy < M2 forall n=1,

Exploiting the compact embedding 65"(%) into C(<), from (16) and the claim
we have

(17) Uy —Uu in C}Q) and uceintC,.
Recall that

1 -y
A(uy) = ﬁ(un + ﬁ) forall n>1.

So, passing to the limit as — oo and using (17), we obtain

A(u) = Bu”
= ueintC, is a solution of (8). ]

Since f > 0 (seeH(f)), we have
(18) AU =AU + Ni(u) in WHP(Q).

Next note that by virtue of hypothesds$(f) (i), (iv), given ¢ > 0, we can find
& >0 s.t.

(19) f(z,X) <@ +e)xP 1 +exT forall zeQ, al x>0.
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From (15) and (17), we have thgtu™" € L%). Therefore, we consider the
following auxiliary Dirichlet problem

{— diva(Du(2)) = B(2)u(2) ” + (n(2) + &)u(2)| ”U(Z)}

(20) + & U@ 2u(@ in

upe =0, u=0, ye(0,1).

Proposition 6. If hypotheses Kh), H(8) hold, then fore > 0 and || 8] small
problem (20) has a solutionu € intC,..

Proof. Lety: W, P(Q) — R be theCl-functional defined by

v = [ cou@ dz— [ 0@+ aur@P dz- 2 Ju;
[ 8@

o u(2”

ut(2dz for all ue W;P(Q).

In problem (20) the reaction(z,x) is the continuous o2 xR function defined by
o(z,x) = (@) + )X+ EF) T+ BAUED) T

Clearly this function satisfies the unilateral AR-condititsee (5)) and so it follows
easily that

(21) Y satisfies the C-condition.

By virtue of Corollary 3, we have

C1 1 é,-:s r ﬂ(Z)
v = —Eioul - - [ 0@ + ol dz- Equiy - [ F a2
1 €
> _[&*F — p_ r
2 (6 o e - esior + gt

for someé&*, cg > 0.

Here we have used Lemma 5.1.3 (p. 356) of Papageorgiou-sikyidllourou [20],
the fact thatu= € LY(Q2) (see (15), (17)) and the claim in the proof of Proposition 5)
Choosinge € (0, £*A1(p)), we have

¥ (u) = Gol|ul|” —ca(llull” + [IBllocllull) for some co >0

(22)
= [co — ca(lull"™P + [|Blloo ull* P ulP.

Let u(t) =t P+ ||Bllot P, t > 0. Evidently, x € C%(0,00) and since k p <,
we see that

u(t) > +oo as t—0" and pu(t) - 4+oo as t— +oo.
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Therefore we can findy € (0, +00) s.t.
u(to) = inf{p(t): t = 0]
= W) = - Ptg " + (L= PlBlty” =0

(p— 1)||ﬁ||oo]1/“)_

=>to:|:
r-p

Then u(tg) — 0 as ||Bllc — OF. So, for |||l small we have

Cg
u(to) < P

and this by virtue of (22) implies that

(23) YUu) =& >0 forall |u|=t.
Finally hypothesisH (f) (iii) implies that

(24) Y (t0y(p)) > —o0 as t — +oo.

From (21), (23) and (24) we see that we can apply Theorem lnfilentain pass
theorem) and findi € W,"P(R) s.t. & < ¥ (@) and

y'(b) =0
(25) = A(l) = BU™" + (@ + &)(@")P T+ £ @)
= 0#0.
On (25) we act withd € W;'P(22) and obtaind > 0, T # 0.
Note that
A(u) = pu™”
<SBUTH+@+)IP 0= AWM in WLPQ),
= (AW - A(), u-0)") =0

= u<0 (see Lemma 2 (a)).

From Ladyzhenskaya—Ural'tseva [15] (p.286), we have L>*°(R2). Let d(z) =
d(z, 9R2). We can findcyp > 0 s.t.

0<0(2) <cd(z) foral zeQ (see Guo [12]).
Recall thatu € int C,. So, we can fincc;; > 0 s.t.

cnd(2) <u(z) forall zeQ.
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We have

_ 1 _ =
u(2™ =< c_Vd(Z) v forall ze Q.
11

Then from Giacomoni—Schindler-Tak§l1] we infer that
0eC,\({0.

Finally, invoking the boundary point theorem of Pucci—8er23] (p.120), we
conclude thatl € intC,.. O

By virtue of (19) and sinceg8li~” < Bu~”, we have
(26) A(@) > BUY + N;(@) in W EP(Q).
Now we are ready for the first multiplicity theorem.

Theorem 7. If hypotheses Kh), H(B8) and H(f) hold, then for |||, small
problem (1) has at least two nontrivial solutions

Up, Uy € int C+, Up < U1, U 75 us.

Proof. We consider the following truncation of the reactianproblem (1):
B@U@D™ + f(z u@@) if x<u(,
27) k(z, x) = 4 B(2x” + f(z, Xx) if u(2 <x =<2,
B@u@) + f(z,u(2) if 02 <x.

Evidently k(z, x) is continuous o2 x R. SetK(z, x) = fox k(z, s)ds and consider
the functionalo : W,"P(Q) — R defined by

o(u) =/§;G(Du(z))dz—[Q K(z,u(2))dz forall ue Wé’p(sz).

Claim 1. o € CY(W,P(R)) and o’(u) = A(U) — Ni(u) for all u e Wy"P(K).

To establish Claim 1, it suffices to show that € Cl(Wé’p(SZ)), where

oo(U) = /Q Ko(z, u()) dz for all ue W, P(®)
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where Ko(z, X) = [ ko(z, S) ds with

B@u() " if x<u(2),
ko(z,x) = 1 B@x77 if u(z) =x =U(2),
B@u(@™ if (2 <x

and thatog(u) = Ny, (u) for all u e WyP(R).
To this end, letu, y € Wol’p(Q) and » # 0. From the integral form of the mean
value theorem, we have

1 1
(28) X[UO(U + Ay) —oo(U)] = / / ko(z, u+siry)ds ydz
Q JO
We know that
1
(29) / Ko(z, u +sry)ds — ko(z,u) fora.a. ze R, as A — 0%,
0

For |A| small, we have

1
/ ko(z, u + sry) ds
0
1
= 2||Bllocu(z) " + /O u(2) + sry(@)|™” ds Xy<u<e)(2)

GO <2+ o M@ + Y@ [Nz D

for some c;; > 0 (see Také [25] (p.233))
<ci3u(2)™” for some c;3>0

<cid(2)™” for some ¢4 >0, all ze Q.
Note that

(31) c14d(2) 7 y(2) = crd(2)t a0 = 540

for all ze Q and somecs > 0.
Using Hardy’s inequality (see Brezis [2] (p.313)), we hakatt

g € LP(Q).
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Then from (29), (30), (31) we see that we can apply the Lebesijuninated con-
vergence theorem and obtain

(o4(u), y) = /Q ko(z, u)y dz for all 'y e Wy P(R)

(see (28) and recall that}(%) is dense inW, P(%))
= () = N, (u) for all ue W, P(Q).

This proves Claim 1.

From (27) and sincg(-)/a(-)” < B(-)/u(-)” € L), it follows that the functional
o(-) is coercive. Also, using the Sobolev embedding theoremcare easily see that
o(-) is sequentially weakly lower semicontinuous. So, by thdevétrass theorem, we
can findug € W,"P(Q) s.t.

(32) o (Ug) = inflo(u): u e WyP(R)].

From (32) and Claim 1, it follows that
o'(ug) =0
(33) = A(Uo) = Nk(Uo).
On (33) we act with § — Ug)* € W,"P(%). Then

(A(UD). (U — Uo)*) = /Q K(Z, Uo)(U — Uo)* dz

= /[ﬂ!fy + f(z Wl(u—ug)* dz (see (27))
Q
> (A(U), (U—up)™) (see (8) and recalf > 0)
= (a(Du) —a(Dug), Du— Dug)gn dz <0
{u=uo}

= [{u>ug}|n =0 (see Lemma 2 (a)), henee< u.
Next on (33) we act withup — )+ € W,"P(). We have
(AUe), (o~ ") = [ (2, (o~ 0)" dz
Q

= /[,BLTV + f(z, 0)](uo— )t dz (see (27))
Q
< (A(), (up—0)*) (see (26))

= (a(Dug) — a(Du), Dug — Dl)gn dz< 0

{uo>0}
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= |{up > U}|y =0 (see Lemma 2(a)), hencaug < U.
So we have proved that
o € [u, 0] = {ue Wy P(Q): u(2) < u(z) <02 ae. inQ}.

Then from (27) and (33) we infer thak is a nontrivial positive solution of prob-
lem (1). As before (see the proof of Proposition 6), using régularity result of [18]
we have thatug € [u, U] NintC,.

Using ug € int C,, we introduce the following truncation of the reaction irolpr
lem (1)

B@uo(2)Y + f(z,uo(2)) if x < ue(2),

(34) &z, x) = { BEAXT + (2 %) it Uo(2) < x.

Evidently e(z,x) is continuous or2xR. We setE(z,x) = fox e(z,s)ds and consider
the functional: W, P(Q) — R defined by

w(u) =[ G(Du(z))dz—/ E(z,u(2)dz forall u eW&’p(Q).
Q Q
As in the proof of Claim 1, we show that € Cl(Wol’p(Q)) and
(35) 1 (U) = A(u) — Ne(u) for all u e WyP(Q).
Claim 2. The functionalu satisfies the C-condition.

Let {Un}n=1 C W,"P(R) be a sequence s.t.

(36) lu(un)| < M3 for some M3>0, all n>1
and
(37) 1+ JuaD'(Un) = 0 in WLP(Q) as n— oo.

From (37) we have

enllhl] 1,p .
‘(Un), by < 2L for all he WEP(R) with o
(' (un) >|_l+||un|| €Wy () with & |
énllhll
38 = |(A(up), h) = | e(z,up)hdz < ———— forall n>1
(39 (). [ ez undz < 0L

(see (35)).
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In (38), we chooséh = —u;, € Wol‘p(Q). Then using Lemma 2 (c), we have
C
p—11||Du;||g <cellu, || for some c;g>0, all n>1

(note thatu,” < u™ € L9(2)). Therefore
(39) {uT}n=1 C WyP(Q) is bounded.

Next in (38) we choosé = u; € W,"P(R). Then
(40) —/(a(Durf), Du; g dz+/ e(z, uf)uf dz<eg, forall n=>1.
Q Q
On the other hand, from (36) and (39), we have

(41) /QpG(Du,T)dz—/Q PE(z, ut)dz < My,

for someMy > 0, alln > 1.
We add (40) and (41) and obtain

/[pG(Durf) — (a(Du}), Du)gn] dz

Q

+ /[e(z, ubut — pE(z,uf)ldz< Ms for some Ms>0, al n>1
Q

= [e(z, u)ut — pE(z, uh)] dz < Mg
{un=uo}

for someM;g > 0, alln > 1 (see (34) and hypothesis(a) (iv))

(42) = [f(z upuy — pF(z up)ldz= My,

{un=Uo}

for someM; > 0, all n > 1 (see (34) and recall that,” <u € LYRQ)).
By virtue of hypothesedd (f) (i), (iii), we can find 8; € (0, 8p) andc;7 > O s.t.

(43) Bixt —c17 < f(z, X)x — pF(z,x) foraa. zeQ, all x=>0.
Using (43) in (42), we obtain
/31/ (uh)*dz< Mg, for some Mg>0, al n>1
{un=Uo}

(44) = {U}h>1 C L7(R) is bounded.
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From hypothesigH (f) (iii) it is clear that without any loss of generality, we may
assume that <r < p*.
First supposep # N. We can findt € [0, 1) s.t.
1 1-t t

(45) F = T + F

By virtue of the interpolation inequality (see, for examp&ashski—Papageorgiou
[8] (p-905)), we have

1—
lug lle = ug liz™ - llug

(46) = [luf|lF < Mollut||%., for some Mg >0, all n>1 (see (44)).
p

In (38) we chooséh = u;i € Wol’p(Q) and using Lemma 2 (c) and (34), we obtain

(47)
c
L ||Du; 1B < Mlo+/ f(z,ut)ut dz for some Myp>0, all n>1
p-1 {UnZUo)
< Mu(1+ [luf|;) for some M1 >0, all n>=1 (seeH(f) (i)
< Mgl + |Juf ") for some M, >0, all n>1
(see (46)).

The choice ofr (seeH(f) (iii)) and (45), imply thattr < p. Hence, from (47) it
follows that

(48) {UF}n=1 C Wy P(Q) s bounded.

If p= N, then p* = 400 and by the Sobolev embedding theorewé'p(sz) —
LS(R2) for all s € [1, +00). So, the above argument works and we reach (48), if we
replacep* by s > r large.

From (39) and (48) we infer that

{Un}n=1 C WyP(RQ) is bounded.
Therefore, we may assume that
(49) Uh—>u in WoP(Q) and u,—u in L)

with s =r if N < p ands > maxr, N/(N — p)}, if N > p. In (38) we choose
h=u,—uce Wol'p(sz), pass to the limit a: — oo and use (49). Then

Jlim (A(Un), un —u) =0

=S Uuy—Uu in WyP(Q) as n—oo (see Proposition 4).
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This proves Claim 2.
From (34) and hypothesisl () (ii), we have

(50) w(thy(p)) > —oc0 as t — +oo.

Recall thatug < 0. We may assume that there is no solution of (1) distinct figm
in the order intervallip, 0] = {u € Wol'p(sz): Up(2) < u(2) < G(2) a.e. inQ}. Otherwise,
we already have the desired second positive solution of rfdl) sso we are done.

We introduce the following truncation af(z, -):

e(z, X) if x=<0(2),

(51) e(z, X) = {e(z’ U(z) if a2 < x.

This is a continuous function. We sé&p(z, X) = f(;‘ e(z, s) ds and consider the
Cl-functional uo: W,'P(2) — R defined by

o(u) :/QG(Du(z))dz—/Q Eo(z, u(z)) dz for all u ewol‘p(Q).

From (51) it is clear thajo(-) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can filg € Wol'p(Q) s.t.

po(0o) = infuo(u): u € Wy P(S)]
= 1o(lo) =0
(52) = A(llo) = Ne,((lo).

Reasoning as in the first part of the proof, using (26) and Hw fhatup is a
solution of (1), we show that

(53) Uo € [uo, U]
= Qg is a solution of (1) (see (51) and (52))
= 0p=up (see (53)).

Next we show thatip € intcy)[0,0]. To this end, we have the following inequalities

— diva(Duo(2)) — B(2)uo(2)”

= f(z, uo(2))

< (1@ + &)o@ + &Lt (see (19))
= —diva(Du(2) — (2u(z)” a.e.in Q.
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Invoking the strong comparison principle of Giacomoni—ifdler—Tak& [11] (The-
orem 2.3) we have

U—UuUg€intC,
= Uo € |ntccl)(§2)[0, D]
Note that

Klo.a = Holpa (see (34) and (51))
= Ug is a local C}(Q2)-minimizer of u

= Up is a local W, P(Q)-minimizer of . (see [11]).
So, we can findo > 0 s.t.
(54) 1(uo) < influe(u): lu—uoll = p] =1, (see [7]).

Then (50), (54) and Claim 2, permit the use of Theorem 1 (theirt@n pass
theorem). So, we can find; € Wol'p(SZ) s.t.

(55) @' (u) =0 and 5, = u(u).
From (54) and (55), we see thai # up. Also, from (55), we have
A(U1) = Ne(u1).
Acting with (Up — u1)™ € WyP() and using (34), we show that
Uz € [Ug) = {u € Wy P(R): up(2) < u(2) ae. inQ}
= U, is a solution of (1) (see (34)) angh > up.
As before, we show that; € intC,. O

4. The homogeneous problem

In this section we consider problem (1) with the general wombgeneous differ-
ential operator replaced by the-Laplacian (which is p — 1)-homogeneous). So, the
problem under consideration, is now the following:

(56) —Apu(@) =B@u@) 7 + f(zu@) In R, U=0 u=0 ye(,1).

For this problem, we will consider ap(— 1)-sublinear perturbatiorf (z, x) which
can have partial interaction with,(p) > 0 at +oco (nonuniform nonresonance). Also,
in this case, we do not require the positivity 6fand instead for the reaction we as-
sume an oscillatory behavior near zero. Finally, in the iplidity theorem, we do not
impose any restriction ofif||co-

The new hypotheses on the perturbatibfz, x) are H(f) (see Section 2, p.492).
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Theorem 8. If hypotheses K8), H(f) hold, then problem(56) admits at least
two positive solutions

Ug,Ug € intC,, Ug=<uUz, Ug# Uj.

Proof. Letu € intC, be the solution of the auxiliary problem (8) produced in
Proposition 5. Lett € (0, 1) be small s.ttu(z) < &, for all z € 2, with §, > 0 as in
hypothesisH (f)’ (iii). We set( =tu € intC, and we have

—Ap0(2) = —tP A u(2) = tPB(2u(z)”  (see Proposition 5)

&7 <Bu@)" + f(z,0(2)) a.e.in Q

(seeH(f) (iii) and recall thatt € (0, 1)).
Also, we have
(58) —Apéo =02 B(2)&," + f(z, &) a.e.in (seeH(f) (iii)

and ((z) < & for all ze Q.
We consider the following truncation of the reaction in gesb (56):

B(20(2)" + f(z,0(2)) if x <0(2),
(59) 9z X) = { B(@Dx 7 + f(z, %) it 0(2) < x < &,
B(2& " + f(z &) if £ < x.

This is a continuous function. We séi(z, x) = fox d(z, s)ds and consider the
functional v : Wy"P(R) — R defined by

1
Y(u) = B||Du||g — /Q G(z,u(2))dz forall ue Wol’p(Q).

As in Claim 1 in the proof of Theorem 7, we can check that
Y e CYW,P(RQ) and v/(u) = A(u)— Ng(u) for all ue Wy P(Q).

From (59) it is clear thaty(-) is coercive. Also, it is sequentially weakly lower
semicontinuous. Therefore, we can fingle WS"’(Q) s.t.

¥ (Uo) = infly(u): u € Wy P(Q)]
= ¢¥'(Up) =0
(60) = A(Up) = Ng(Uo).
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On (60) first we act withd—uo)* € Wy'(€2) and then with go—£)* € Wy ().
Using (57) and (58) and the nonlinear regularity result afdaerman [18], we have

Up €[u,é&] ={ue Wé’p(sz): u(z) <u(z) <& a.e. inQ}, ugeintC,.
Let p = & and Ietép > 0 be as postulated by hypothediq f)' (iv). We have

—ApUo(2) — B@)Uo(2) " + £,u0(2)P

f(z, Uo(2) + &,u0(2)" !

f(z, &)+ £,607" (seeH(f) (iv) and recallug(z) < & for all z€ Q)
<—B@E + 580 ae in @

(61)

IA

Let Dg = {z€ Q: ug(2) = &} and Dy = {z€ Q2: Dug(z) =0}. Letw =& —Uug €
CY(). Thenw(z) > 0 for all z € Q.

Let Zze Dg. Thenw(-) attains its minimum ag and soDw(2) = 0 = Dug(2) = 0,
hencez € D;. So, we have proved thddg C D;.

Sinceug € intC,, it follows that D, is a compact subset @®. The setDg being
a closed subset of the compact $&t is itself compact. Hence, we can firfd; € Q
open s.t.

(62) DoC Q1 CQCQ.

Let hy(2) = f(z,Uo(2)+£,u0(2)P* andhy(2) = —B(2)&,” +£,£0 ", Thenhy,h; €
C(2) and hy(2) < hy(2) for all ze€ 2 (see (61)). So, we can finde (0, 1) small s.t.

(63)
Uo(2) +e <& forall zedQ (see (62), hi(2) +& <hy(z) foral zeQ.

We chooses = §(e) € (0, 1) s.t.

1 1

(64) I — (8)°7) < 5~ @y

and ||Bll«

=

€ €
2 2

for all s,s" € [ming, Uo, o] with |[s—s'| < § (recall thatup € intC, and so mig, up > 0
and this implies that — |8l /s” is uniformly continuous on [mi§ Uo, &]). Then
we have

—Ap(Uo + 8) — B(@)(Uo + 8) 7 + &, (o + 8)P*

= —Aplo — B(2)(Uo + 8) 7 + &,(Uo + 8)P*

< BUy” — B@)(Uo+8) 7 + f(z, Uo) + &,(Uo + 6)P

< 1Bllooltg” — (Uo + 8) | + h1(2) + &, I(uo + 8)P~* — uf ™|
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< % + % +hi(2) (see (63), (64))

< hy(2) = —Apéo — B(D)E, " + g, Op’l a.e.in Q;
= Up(2) +86 <& for zeQ; (bythe weak comparison principle, see [23])
= Do=0 (see (62))

= Uuy(2) <& forall zeQ.
So, we have proved that

Usingu € int C,, we introduce the following truncation of the reaction

B@uo(2)7Y + f(z,uo(2)) if x < ue(2),

(66) %o(z x) = {ﬂ(z)xy + f(z, %) it uo(2) < x.

This is a continuous function o x R. Let Gy(z, X) = fox Oo(z, s) ds and con-

sider the C*-functional v/: Wol'p(sz) — R (see Claim 1 in the proof of Theorem 7)
defined by

1
Yo(u) = _p||Du||g—fQGo(z, u@)dz forall ueWyP(Q).
Claim. g satisfies the C-condition.
Let {up}n=1 C Wo“’(sz) be a sequence s.{yo(un)}n=1 C R is bounded and

(67) L+ llunlD¥g(un) — 0 in WP(Q).

From (67) we have

en ]| 1,p .
; hy| < —""_ forall heW,PQ h +
[{(¥5(un), h)| < T [ud] or a e Wy () with &, 0
(68) = ‘(A(un), h) —/ do(z, un)h d7 < _enllnl forall n>1
Q 1+ flunll

(see Claim 1 in the proof of Theorem 7).
In (68) we chooséh = —u,, € Wy'P(22). Then

[Du, || < Mis for some Myj3>0, all n>1 (see (66))

(69) = {U7}n=1 C W P(Q) is bounded.
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Suppose thafjul|| — co. Lety, = ut/|lut| for alln>1. Then|y,|| =1, y. >0
for all n > 1. So, we may assume that

(70) Yo—y in WyP(Q) and y,—y in L), y=>0,

wheres=p if N < p ands > maxX{p, N/(N—p)} if N> p. From (68) and (69)
we have

(71) ‘(A(yn), hy— [ (@4 g,
Q

0 <el|lh| forall hew,P(Q)
lug 1P

with ¢, — 0%,
HypothesisH (f)" (ii) implies that

Ngo(un+) w

T —noyP ! in LYQ) with 5(2) <no(2 <7

(72)

a.e. inQ (see [7]).
Also, if in (71) we chooséh =y, —y € Wol’p(Q), then using (70) we have

(AYn): Yn—y) =0

(73) = Y¥y—Vy in Wol'p(SZ) (see Proposition 4), hencdly| =1, y=>0.

lim
n—oo

So, if in (71) we pass to the limit as — oo and use (72), (73), then

(A(Y), h) = / noyPthdz for all he Wy P(Q)
Q

= A(y) = noy”*
(74) = —ApY(2) = n0(2)y(2)P* ae.in Q, yle =0.

We have

21(p. n0) < Aa(p, 1) < Aa(p, Aa(p) =1
= y must be nodal (see (74)), a contradiction to (73).

This proves that

{UFh=1 € WyP(Q) is bounded

= {Un}n=1 C WyP(Q) is bounded (see (69)).

From this as in the proof of Theorem 7 (see Claim 2), via Pritjpos4, we con-
clude thaty satisfies the C-condition. This proves the claim.
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As in the proof of Theorem 7, by truncatirgy(z, -) at & and using (65), we show
that ug is a local minimizer ofys. So, we can findp € (0, 1) s.t.

(75) Yo(Uo) < Inf[o(u): [lu— Uoll = p] = 7o.
HypothesisH ()" (ii) implies that
(76) Yo(tly(p)) > —oc0 as t — +oc.

Then from (75), (76) and the claim, we see that we can applyoigme 1 (the
mountain pass theorem) and firide Wol’p(SZ) s.t.

(77) Yo() =0 and o = ¥o(0).

From (76) and (77) we havey # O, up < 0, 0 € intC,. and solves problem (56).
O

Evidently, combining the proof of Theorem 7 with the first fpaf the proof of
Theorem 8, we can have the following multiplicity theorerm foLaplacian equations
with the combined effects of singular and superlinear terde emphasize that no
restriction on||B|l- is imposed and so our result is in this respect an improvement
over all the previous singulap-Laplacian equations.

Theorem 9. If hypotheses KB) and H(f) hold, then problem(56) has at least
two positive solutions

Up, G eintC,, up=<0, ug#A0.
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