
Kadokami, T. and Kobatake, Y.
Osaka J. Math.
53 (2016), 439–462

PRIME COMPONENT-PRESERVINGLY AMPHICHEIRAL LINK
WITH ODD MINIMAL CROSSING NUMBER

TERUHISA KADOKAMI and Y OJI KOBATAKE

(Received June 20, 2013, revised March 12, 2015)

Abstract
For every odd integerc � 21, we raise an example of a prime component-

preservingly amphicheiral link with the minimal crossing number c. The link has
two components, and consists of an unknot and a knot which is (�)-amphicheiral
with odd minimal crossing number. We call the latter knot aStoimenow knot. We
also show that the Stoimenow knot is not invertible by the Alexander polynomials.
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1. Introduction

Let L D K1[� � �[Kr be an orientedr -component link inS3. A 1-component link
is called a knot. For an oriented knotK , we denote the orientation-reversed knot by
�K . If ' is an orientation-reversing homeomorphism ofS3 so that'(K i ) D "� (i )K� (i )

for all i D 1, : : : , r where"i D C or �, and� is a permutation of{1, 2,: : : , r }, then L
is called an ("1, : : : , "r I � )-amphicheiral link. A term “amphicheiral link” is used as a
general term for an ("1, : : : , "r I� )-amphicheiral link. If' can be taken as an involution
(i.e. '2

D id), then L is called astrongly amphicheiral link. If� is the identity, then
an amphicheiral link is called acomponent-preservingly amphicheiral link, and� may
be omitted from the notation. If every"i D " is identical for all i D 1, : : : , r (including
the case that� is not the identity), then an ("1, : : : ,"r I� )-amphicheiral link is called an
(")-amphicheiral link. We use the notationsC D C1D 1 and� D �1. For the case of
invertibility, we only replace' with an orientation-preserving homeomorphism ofS3.
We refer the reader to [19, 4, 6, 7, 8, 9].

The minimal crossing number of an alternating amphicheirallink is known to be
even (cf. [8, Lemma 1.4]) from the positive answer for theflyping conjecturedue to
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Fig. 1. 15224980.

W. Menasco and M. Thistlethwaite [13]. The flyping conjecture is one of famous Tait’s
conjectures on alternating links, and it is also called Tait’s conjecture III in [17]. The
positive answer for the flyping conjecture implies those of Tait’s conjecture I on the
minimal crossing number (cf. [14]), and Tait’s conjecture II on the writhe (cf. [15]).
A. Stoimenow [17, Conjecture 2.4] sets a conjecture:

“Amphicheiral(alternating?) knots have even crossing number.”

as Tait’s conjecture IV by guessing what Tait had in mind (i.e. Tait has not stated it
explicitly). We pose the following conjecture:

Conjecture 1.1 (a generalized version of Tait’s conjecture IV). The minimal cross-
ing number of an amphicheiral link is even.

For the case of alternating amphicheiral links, Conjecture1.1 is affirmative as men-
tioned above from the answer for Tait’s conjecture II. Henceit motivates to find an
amphicheiral link with odd minimal crossing number. If there exists a counter-example
for Conjecture 1.1, then it should be non-alternating.

A non-split link is prime if it is not a connected sum of non-trivial links. We as-
sume that a prime link is non-split. There exists a prime amphicheiral knot with min-
imal crossing number 15 in the table of J. Hoste, M. Thistlethwaite and J. Weeks [5],
which gives a negative answer for Conjecture 1.1 (the original Tait’s conjecture IV).
The knot is named 15224980 (Fig. 1). Stoimenow [18] showed that for every odd integer
c � 15, there exists an example of a prime amphicheiral knot withminimal crossing
numberc. The casec D 15 corresponds to 15224980. We call the sequence of knots
Stoimenow knots(see Section 3). He also pointed out that there are no such examples
for the casec � 13.

The first author and A. Kawauchi [9], and the first author [8] determined prime
amphicheiral links with minimal crossing number up to 11. Then there are two prime
amphicheiral links with odd minimal crossing numbers named92

61 and 112n247 (Fig. 2),
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Fig. 2. 92
61 and 112n247.

where we use modified notations from Rolfsen’s table [16] andThistlethwaite’s table
on the web site maintained by D. Bar-Natan and S. Morrison [1].These examples show
that Conjecture 1.1 is negative for links. Since both 92

61 and 112n247 are not component-
preservingly amphicheiral, we ask the following question (see also Question 5.5):

QUESTION 1.2. Is there a prime component-preservingly amphicheirallink with
odd minimal crossing number?

If we remove ‘prime’ from Question 1.2, then we can obtain nugatory examples by
taking split sum of a Stoimenow knot and an unknot, or connected sum of Stoimenow
knot and the Hopf link. Our main theorem is an affirmative answer for Question 1.2
which is a negative answer for Conjecture 1.1:

Theorem 1.3. For every odd integer c� 21, there exists a prime component-
preservingly amphicheiral link with minimal crossing number c (Fig. 10).

Our example is a 2-component link with linking number 3 whosecomponents are a
Stoimenow knot and an unknot. We prove it in Section 4. The proof is divided into
three parts such as to show amphicheirality, to determine the minimal crossing number,
and to show primeness. We can immediately see its amphicheirality by construction.
Though to find the way of linking of the two components was not so easy, to determine
the minimal crossing number is easy by the help of Stoimenow’s result [18] (cf. The-
orem 3.1). In [18], to determine the minimal crossing numberand to show prime-
ness of his knot were very hard. Finally we show primeness by using the Kauffman
bracket (cf. Subsection 2.1). This part is also eased by Stoimenow’s result. In Sec-
tion 5, by R. Hartley [2], R. Hartley and A. Kawauchi [3], and A. Kawauchi [10]’s
necessary conditions on the Alexander polynomials of amphicheiral knots, we show
that a Stoimenow knot is not invertible (Theorem 5.4).
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Fig. 3. Splice.

2. Link invariants

2.1. Kauffman bracket. Let L be anr -component oriented link, andD a dia-
gram of L. Firstly we regardD as an unoriented diagram. On a crossing ofD, a
splice is a replacement from the left-hand side (the crossing) to the right-hand side as
in Fig. 3. Precisely, a 0-splice is to the upper right-hand side, and an1-splice is to
the down right-hand side, respectively. The resulting diagram is astate, and it is a dia-
gram of an unlink without crossings. Lets be a state,jsj the number of components of
s, t0(s) the number of 0-splices to obtains, t

1

(s) the number of1-splices to obtain
s, t(s) D t0(s)� t

1

(s), andS the set of states fromD. Let A be an indeterminate, and
d D �A2

� A�2. Then

hDi D
X

s2S

At(s)djsj�1
2 Z[ A, A�1]

is the Kauffman bracketof D, and

(2.1) fL (A) D (�A3)�w(D)
hDi

is the f -polynomialof L wherew(D) is the writhe ofD as an oriented diagram. Then
fL (A) is an invariant ofL, and

(2.2) VL (t) D fL (t1=4) 2 Z[t1=2, t�1=2]

is the Jones polynomialof L. We denotehDi as hDi(A) when we emphasis it as a
function of A. We have the following facts:

Lemma 2.1. Let L be an r-component oriented link, and D a diagram of L.
(1) The Kauffman brackethDi is an invariant of L up to multiplications of(�A3). In
particular, if we substitute a root of unity for A and take its absolute value, then it is
an invariant of L, which is a non-negative real number.
(2) We have the following skein relation(Fig. 4) which can be an axiom of the Kauffman
bracket:



PRIME COMPONENT-PRESERVINGLY AMPHICHEIRAL L INK 443

Fig. 4. Skein relation I.

Fig. 5. Skein relation II.

(3) Let Li (i D 1, 2) be a link, Di a link diagram of Li , and D1 q D2 (L1 q L2,
respectively) the split sum of D1 and D2 (L1 and L2, respectively). Then we have

hD1q D2i D dhD1ihD2i, fL1qL2(A) D d � fL1(A) fL2(A).

(4) Let Li (i D 1, 2) be a link, Di a link diagram of Li , and D1 ℄ D2 (L1 ℄ L2, re-
spectively) the connected sum of D1 and D2 (L1 and L2, respectively). Then we have

hD1 ℄ D2i D hD1ihD2i, fL1℄L2(A) D fL1(A) fL2(A).

(5) We have a skein relation as inFig. 5:
(6) Let D� (L�, respectively) be the mirror image of D(L, respectively). Then we have

hD�

i(A) D hDi(A�1), fL� (A) D fL (A�1).

(7) fL (A) 2 A2(rC1)
� Z[ A4, A�4].

(8) Let � be a primitive8-th root of unity (i.e. � 4
D �1 and � 8

D 1). Suppose that
the number of the crossing number of D is even. ThenhDi(� ) is an integer or of the
form

p

�1 � (integer), which depends on r and the writhe. In particular, for r D 1,
hDi(� ) is an integer if and only if the writhe is0 (mod 4).
(9) Let � be a primitive8-th root of unity. Then we havejhDi(� )j D jVL (�1)j.

Lemma 2.1 (8) is obtained from (7) and (2.1), and it is a special case of (1).
Lemma 2.1 (9) is obtained from (2.2).

Let Tm be anm-half twist tangle form 2 Z, and T
1

a tangle in Fig. 6.
By Lemma 2.1 (2), (3), (4) and (5), we have the following:

Lemma 2.2. (1) We have

hTmi D Am
hT0i C �m(A)hT

1

i,
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Fig. 6. m-half twists.

Fig. 7. Skein triple.

where

�m(A) D Am�2
�

1� (�A�4)m

1� (�A�4)
.

(2) �
�m(A) D �m(A�1).

(3) Let � be a primitive8-th root of unity. Then we have

�m(� ) D m�m�2

and

�m(� ) � �
�m(� ) D m2.

2.2. Alexander and Conway polynomials. Let L be an oriented link, andD a
diagram ofL. Pick a crossingc of D. If c is a positive crossing (a negative crossing,
respectively), then we denoteD by L

C

(L
�

, respectively). Ifc is smoothed with pre-
serving the orientation, then we denoteD by L0. We call a pair (L

C

, L
�

, L0) a skein
triple (Fig. 7).

For an oriented linkL, the Conway polynomialof L is denoted byrL (z) which is
an element ofZ[z]. For a skein triple (L

C

, L
�

, L0), the Conway polynomial is defined
by the following skein relation:

rL
C

(z) � rL
�

(z) D zrL0(z), rO(z) D 1,

where O is the trivial knot.

Lemma 2.3. Let L be an r-component oriented link, and L� the mirror image
of L. Then we have

rL�(z) D rL (�z).
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Fig. 8. Generator�i of braid group, andÆi and NÆi .

More precisely, rL� (z) D rL (z) if r is odd, and rL�(z) D �rL (z) if r is even.

For anr -component oriented linkL, the (normalized one variable) Alexander poly-
nomial�L (t) is defined by

�L (t) D rL (t1=2
� t�1=2) 2 Z[t1=2, t�1=2].

For A, B 2 Z[t1=2, t�1=2], A
.
D B implies AD �tm=2B for somem 2 Z. For f, g 2

Z[z] or Z[t1=2, t�1=2], if they are equal as elements in (Z=dZ)[z] or (Z=dZ)[t1=2, t�1=2],
then we denote byf Dd g. For an oriented linkL, if rL (z) and�L (t) are regarded as
elements in (Z=dZ)[z] and (Z=dZ)[t1=2, t�1=2] respectively, then we call them themod
d Conway polynomialof L and themod d Alexander polynomialof L respectively.

3. Stoimenow knots

Let �i (i D 1, : : : , m� 1) be a generator of them-string braid group, andÆi and
N

Æi (i D 1, : : : , m� 1) tangles in Fig. 8. For an odd numbern � 15, a Stoimenow knot
with crossing numbern, denoted bySn, is the closure of the following composition of
�i , Æi and NÆi (i D 1, : : : , m� 1):

3 �1 22 32k 4 �3 2 �1 (�2)2k (�3)2 4 �2 (n D 4kC 11),

Æ3 �1 22 32k 4 �3 2 �1 (�2)2k (�3)2 4 N

Æ2 (n D 4kC 13),

where in the sequence above,mD 5, �i is translated intoi and ��1
i is translated into

�i , and i l implies that i is repeatedl times with l � 1. The former isof type I, and
the latter isof type II, respectively. Note thatS15 D 15224980 in Fig. 1, and both two
tangles above have (nC1) crossings. We can see strong (�)-amphicheirality ofSn from
its diagram with (nC 1) crossings in the righthand side of Fig. 9.
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Fig. 9. Stoimenow knotSn.

Theorem 3.1 (Stoimenow [17, 18]). A Stoimenow knot Sn is a prime strongly
(�)-amphicheiral knot with minimal crossing number n.

4. Proof of Theorem 1.3

We take a 2-component linkLn D Sn [ U whose components are a Stoimenow
knot Sn and an unknotU as in Fig. 10. The linkLn is of type I if Sn is of type I, and
is of type II if Sn is of type II. We prove thatLn is a prime component-preservingly
amphicheiral link with minimal crossing numbernC6, wherenC6 is odd withnC6�
21 becausen is odd with n � 15.

Proof of Theorem 1.3. By the righthand side of Fig. 10,Ln is a component-
preservingly strongly (�, C)-amphicheiral link.
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Fig. 10. Prime component-preservingly amphicheiral linkLn.

The linking number ofLn, lk(Ln), is 3 by a suitable orientation. Letc( � ) denote
the minimal crossing number of a link. Since

c(Ln) � c(Sn)C c(U )C 2jlk(Ln)j D nC 6,

and the lefthand side of Fig. 10 realizes the lower bound, we have c(Ln) D nC 6 and
it is odd.

Finally we show thatLn is prime by using the Kauffman bracket. Suppose thatLn

is not prime. ThenLn is a connected sum of two links such that one is a Stoimenow
knot Sn and the other is a 2-component link with unknotted components and with link-
ing number 3 by Theorem 3.1. HencehLni should be divisible byhSni by Lemma 2.1
(4). We computehLni(� ) and hSni(� ), where � is a primitive 8-th root of unity. By
Lemma 2.1 (4) and (8),jhLni(� )j should be divisible byjhSni(� )j.
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Fig. 11. Splices ofLn.

To computehSni and hLni, we setK D Sn and L D Ln, and we denote the results
of splicings by K00, K01, K

10, K
11

, L00, L01, L
10 and L

11

, respectively as in
Fig. 11. Here we drew only the type I case. We can obtain the type II case in a
similar way.

Then by Lemma 2.2 (1), we have:

(4.1)
hK i D hK00i C A�2k

�2k(A)hK01i C A2k
�

�2k(A)hK
10i

C �2k(A)�
�2k(A)hK

11

i

and

(4.2)
hLi D hL00i C A�2k

�2k(A)hL01i C A2k
�

�2k(A)hL
10i

C �2k(A)�
�2k(A)hL

11

i.
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We can see thatK00 and K
11

are amphicheiral knot diagrams with writhe 0,K01 D

(K
10)�, the writhe of K01 is �10, the writhe ofK

10 is 10, L00 and L
11

are 2-
component amphicheiral link diagrams with writhe 6,L01 D (L

10)�, the writhe of
L01 is �4, and the writhe ofL

10 is 16. By Lemma 2.1 (6), we have

K00(A) D K00(A�1), K
11

(A) D K
11

(A�1), K
10(A) D K01(A�1),

L00(A) D L00(A�1), L
11

(A) D L
11

(A�1), and L
10(A) D L01(A�1).

By Lemma 2.2 (2),A2k
�

�2k(A) can be obtained by replacingA with A�1 in A�2k
�2k(A).

By straight calculations using Lemma 2.1 and Lemma 2.2, we have:
(type I)

hK00i D A16
� 4A12

C 6A8
� 7A4

C 9� 7A�4
C 6A�8

� 4A�12
C A�16,

hK01i D �A18
C 3A14

� 5A10
C 6A6

� 7A2
C 6A�2

� 5A�6
C 4A�10

� A�14
C A�18,

hK
11

i D A16
� 3A12

C 5A8
� 6A4

C 7� 6A�4
C 5A�8

� 3A�12
C A�16.

(4.3)

hL00i D �A20
C 4A16

� 8A12
C 12A8

� 16A4
C 16� 16A�4

C 12A�8

� 8A�12
C 4A�16

� A�20,

hL01i D A22
� 3A18

C 6A14
� 9A10

C 12A6
� 12A2

C 11A�2
� 9A�6

C 5A�10
� 3A�14

� A�26,

hL
11

i D �A20
C 3A16

� 7A12
C 10A8

� 13A4
C 14� 13A�4

C 10A�8

� 7A�12
C 3A�16

� A�20.

(4.4)

(type II)

hK00i D �A20
C 4A16

� 9A12
C 14A8

� 17A4
C 19� 17A�4

C 14A�8

� 9A�12
C 4A�16

� A�20,

hK01i D A22
� 4A18

C 10A14
� 15A10

C 19A6
� 22A2

C 20A�2
� 18A�6

C 12A�10
� 7A�14

C 3A�18
� A�22,

hK
11

i D �2A20
C 6A16

� 13A12
C 21A8

� 24A4
C 28� 24A�4

C 21A�8

� 13A�12
C 6A�16

� 2A�20.

(4.5)
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hL00i D A24
� 5A20

C 13A16
� 24A12

C 35A8
� 44A4

C 46� 44A�4

C 35A�8
� 24A�12

C 13A�16
� 5A�20

C A�24,

hL01i D �A26
C 4A22

� 11A18
C 20A14

� 31A10
C 40A6

� 42A2
C 42A�2

� 33A�6
C 24A�10

� 13A�14
C 5A�18

� A�26
C A�30,

hL
11

i D A24
� 5A20

C 14A16
� 27A12

C 38A8
� 50A4

C 50� 50A�4

C 38A�8
� 27A�12

C 14A�16
� 5A�20

C A�24.

(4.6)

We substituteA D � to (4.1) and (4.2). We set� 2
D

p

�1. By Lemma 2.2 (2)
and the arguments above, we have

(4.7) hK i(� ) D hK00i(� ) � 4k
p

�1hK01i(� )C 4k2
hK

11

i(� )

and

(4.8) hLi(� ) D hL00i(� ) � 4k
p

�1hL01i(� )C 4k2
hL

11

i(� ).

By (4.3), (4.4), (4.5) and (4.6), we have
(type I)

hK00i(� ) D 45,

hK01i(� ) D �39
p

�1,

hK
11

i(� ) D 37.

(4.9)

hL00i(� ) D 98,

hL01i(� ) D �70
p

�1,

hL
11

i(� ) D 82.

(4.10)

(type II)
hK00i(� ) D 109,

hK01i(� ) D �132
p

�1,

hK
11

i(� ) D 160.

(4.11)

hL00i(� ) D 290,

hL01i(� ) D �264
p

�1,

hL
11

i(� ) D 320.

(4.12)

By (4.7), (4.8), (4.9), (4.10), (4.11) and (4.12), we have
(type I)

hK i(� ) D 148k2
� 156kC 45,

hLi(� ) D 328k2
� 280kC 98.
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(type II)

hK i(� ) D 640k2
� 528kC 109,

hLi(� ) D 1280k2
� 1056kC 290.

Note that 148k2
� 156kC 45 and 640k2

� 528kC 109 are odd and 328k2
� 280kC 98

and 1280k2
� 1056k C 290 are of the form 2�(odd), and they are positive fork � 1.

Hence if 148k2
� 156k C 45 divides 328k2

� 280k C 98 (640k2
� 528k C 109 divides

1280k2
�1056kC290, respectively), then 148k2

�156kC45 divides 164k2
�140kC49

(640k2
�528kC109 divides 640k2

�528kC145, respectively), and the quantity is odd.
(type I)

Suppose that 164k2
� 140kC 49 is divisible by 148k2

� 156kC 45. Since

(164k2
� 140kC 49)� (148k2

� 156kC 45)D 16k2
C 16kC 4> 0,

the quantity is not 1. Since

3(148k2
� 156kC 45)� (164k2

� 140kC 49)D 280k2
� 328kC 86> 0,

the quantity is not greater than 1. It is a contradiction.
(type II)

Suppose that 640k2
� 528kC 145 is divisible by 640k2

� 528kC 109. Since

(640k2
� 528kC 145)� (640k2

� 528kC 109)D 36> 0,

the quantity is not 1. Since

3(640k2
� 528kC 109)� (640k2

� 528kC 145)D 1280k2
� 1056kC 182> 0,

the quantity is not greater than 1. It is a contradiction.

REMARK 4.1. In [12], the second author computes the J polynomials, which are
modified Jones polynomials, ofSn and Ln explicitly. The J polynomial is an invariant
of unoriented links.

5. Non-invertibility of Stoimenow knots

In this section, we show that a Stoimenow knotSn is not invertible by using the
Alexander polynomials. SinceSn is (�)-amphicheiral, we show that it is not (C)-
amphicheiral, which is equivalent to that it is not invertble.

Let L be a link, and�L (t) 2 Z[t, t�1] the Alexander polynomial ofL. For two
elementsA and B in Z[t, t�1] ((Z=dZ)[t, t�1], respectively), we denote byA

.
D B

(A
.
Dd B, respectively) if they are equal up to multiplications of trivial units. A one

variable Laurent polynomialr (t) 2 Z[t�1] is of type X if there are integersn � 0 and
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� � 3 such that� is odd, and fi (t) 2 Z[t, t�1] (i D 0, 1,: : : ,n) such that fi (t)
.
D fi (t�1),

j fi (1)j D 1, and for i > 0, fi (t)
.
D2 f0(t)2i

p
�

(t)2i�1
where p

�

(t) D (t� � 1)=(t � 1), and

(5.1) r (t)
.
D

(

f0(t)2 (n D 0),

f0(t)2 f1(t) � � � fn(t) (n � 1).

R. Hartley [2], R. Hartley and A. Kawauchi [3], and A. Kawauchi [10] gave necessary
conditions on the Alexander polynomials of amphicheiral knots.

Lemma 5.1 (Hartley [2]; Hartley and Kawauchi [3]; Kawauchi [10]). (1) Let K
be a (�)-amphicheiral knot. Then there exists an element f(t) 2 Z[t, t�1] such that
j f (1)j D 1, f (t�1)

.
D f (�t), and

�K (t2)
.
D f (t) f (t�1).

(2) Let K be a(C)-amphicheiral knot. Then there exist rj (t) 2 Z[t, t�1] of type X and
a positive odd number� j ( j D 1, : : : , m) such that

�K (t)
.
D

m
Y

jD1

r j (t
� j ).

In particular, if K is hyperbolic, then we can take mD 1 and �1 D 1.

We generalize Stoimenow knots as in Fig. 12. The lefthand side is called agener-
alized Stoimenow link of typeI, and is denoted byS1

p,q. The righthand side is called a

generalized Stoimenow link of typeII, and is denoted byS2
r,s. The numbers in rectangles

are the numbers of half twists. We note thatS1
2k,2k D S4kC11 and S2

k,k D S4kC13. We de-

note the Alexander polynomials (the Conway polynomials) ofS1
p,q and S2

r,s by �(1)
p,q(t)

and�(2)
r,s(t) (r(1)

p,q(z) andr(2)
r,s (z)), respectively. We compute�(1)

2k,2k(t) and�(2)
k,k(t) as the

mod 2 Alexander polynomials.

Lemma 5.2. The Alexander and the mod2 Alexander polynomials of S12k,2k and

S2
k,k are as follows:

(t C 1)2�(1)
2k,2k(t)

.
D2 t4kC6

C t4kC5
C t4kC4

C t4kC2
C t4k�1

C t7
C t4
C t2
C t C 1

D2 (t2
C t C 1)2(t4kC2

C t4kC1
C t4k�1

C t3
C t C 1),
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Fig. 12. Generalized Stoimenow linksS1
p,q and S2

r,s.

�

(2)
k,k(t)

.
D t3(�t6

C 9t5
� 26t4

C 37t3
� 26t2

C 9t � 1)

� 2kt2(t � 1)2(2t6
� 7t5

C 15t4
� 18t3

C 15t2
� 7t C 2)

C k2(t � 1)2(t10
� 3t9

C 7t8
� 17t7

C 32t6
� 40t5

C 32t4
� 17t3

C 7t2
� 3t C 1)

.
D2

(

t6
C t5
C t3
C t C 1 (k is even),

t12
C t11

C t9
C t7
C t6
C t5
C t3
C t C 1 (k is odd).

Proof. We have the following relations on the Conway polynomials from the skein
relation in Subsection 2.2:

(5.2)

(

r

(1)
p,q(z) � r(1)

p�2,q(z) D zr(1)
p�1,q(z),

r

(1)
p,q�2(z) � r(1)

p,q(z) D zr(1)
p,q�1(z),

and

(5.3)

(

r

(2)
r�1,s(z) � r(2)

r,s (z) D zr(2)
1,s(z),

r

(2)
r,s (z) � r(2)

r,s�1(z) D zr(2)
r,1(z).

For the meaning of1, see Fig. 6.
(type I)

From (5.2), we have:

(5.4)

(

�

(1)
p,q(t) � t1=2

�

(1)
p�1,q(t) D (�t�1=2)p�1(�(1)

1,q(t) � t1=2
�

(1)
0,q(t)),

�

(1)
p,q(t)C t�1=2

�

(1)
p�1,q(t) D (t�1=2)p�1(�(1)

1,q(t)C t�1=2
�

(1)
0,q(t)),
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and

(5.5)

(

�

(1)
p,q(t)C t1=2

�

(1)
p,q�1(t) D (t�1=2)q�1(�(1)

p,1(t)C t1=2
�

(1)
p,0(t)),

�

(1)
p,q(t) � t�1=2

�

(1)
p,q�1(t) D (�t�1=2)q�1(�(1)

p,1(t) � t�1=2
�

(1)
p,0(t)).

From (5.4) and (5.5), we have:

(5.6)

8

�

�

�

�

<

�

�

�

�

:

(t1=2
C t�1=2)�(1)

p,q(t) D (t p=2
� (�1)pt�p=2)�(1)

1,q(t)

C (t (p�1)=2
C (�1)pt�(p�1)=2)�(1)

0,q(t),

�(t1=2
C t�1=2)�(1)

p,q(t) D ((�1)qtq=2
� t�q=2)�(1)

p,1(t)

� ((�1)qt (q�1)=2
C t�(q�1)=2)�(1)

p,0(t).

From (5.6), if p D q D 2k, then we have a skein relation among the Alexander
polynomials ofS1

2k,2k, S1
0,0, S1

1,0, S1
0,1 and S1

1,1 (cf. Fig. 13):

(5.7)

(t1=2
C t�1=2)2

�

(1)
2k,2k(t) D (tk�1=2

C t�kC1=2)2
�

(1)
0,0(t)

� (tk
C t�k)(tk�1=2

C t�kC1=2)(�(1)
1,0(t) ��

(1)
0,1(t))

� (tk
C t�k)2

�

(1)
1,1(t).

Since S1
1,0 and S1

0,1 are 2-component links withS1
0,1D �(S1

1,0)
�, and (5.7), we have

r

(1)
0,1(z) D �r(1)

1,0(z) and�(1)
0,1(t) D ��

(1)
1,0(t) by Lemma 2.3, and

(5.8)

(t1=2
C t�1=2)2

�

(1)
2k,2k(t) D (tk�1=2

C t�kC1=2)2
�

(1)
0,0(t)

� 2(tk
C t�k)(tk�1=2

C t�kC1=2)�(1)
1,0(t)

� (tk
C t�k)2

�

(1)
1,1(t).

Since S1
0,0D 818,

�

(1)
0,0(t) D �818(t) D �t3

C 5t2
� 10t C 13� 10t�1

C 5t�2
� t�3

D2 t3
C t2
C 1C t�2

C t�3,

�

(1)
1,1(t) D �t�3(t3

� 1)2 D2 t3
C t�3,

and (5.8), we have

(t C 1)2�(1)
2k,2k(t)

.
D2 t4kC6

C t4kC5
C t4kC4

C t4kC2
C t4k�1

C t7
C t4
C t2
C t C 1

D2 (t2
C t C 1)2(t4kC2

C t4kC1
C t4k�1

C t3
C t C 1).

(type II)
From (5.3), we have:

(5.9)

(

r

(2)
r,s (z) D r(2)

0,s(z) � rzr(2)
1,s(z),

r

(2)
r,s (z) D r(2)

r,0(z)C szr(2)
r,1(z).
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Fig. 13. S1
0,0, S1

1,0, S1
0,1 and S1

1,1.

From (5.9), we have:

r

(2)
r,s (z) D r(2)

0,0(z) � rzr(2)
1,0(z)C szr(2)

0,1(z) � rsz2
r

(2)
1,1(z).

In particular, if r D s D k, then we have a skein relation among the Conway poly-
nomials of S2

k,k, S2
0,0, S2

0,1, S2
1,0 and S2

1,1 (cf. Fig. 14):

(5.10) r

(2)
k,k(z) D r(2)

0,0(z)C kz(r(2)
0,1(z) � r(2)

1,0(z)) � k2z2
r

(2)
1,1(z).

Since S2
0,1 and S2

1,0 are 2-component links withS2
0,1 D �(S2

1,0)
�,

r

(2)
0,0(z) D �z6

C 3z4
C z2

C 1,

r

(2)
0,1(z) D �2z7

� 5z5
� 5z3

� 2z,

r

(2)
1,1(z) D �z10

� 7z8
� 18z6

� 15z4
� 4z2,
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Fig. 14. S2
0,0, S2

0,1, S2
1,0 and S2

1,1.

and (5.10), we haver(2)
0,1(z) D �r(2)

1,0(z) by Lemma 2.3, and

�

(2)
k,k(t)

.
D t3(�t6

C 9t5
� 26t4

C 37t3
� 26t2

C 9t � 1)

� 2kt2(t � 1)2(2t6
� 7t5

C 15t4
� 18t3

C 15t2
� 7t C 2)

C k2(t � 1)2(t10
� 3t9

C 7t8
� 17t7

C 32t6
� 40t5

C 32t4
� 17t3

C 7t2
� 3t C 1)

.
D2

(

t6
C t5
C t3
C t C 1 (k is even),

t12
C t11

C t9
C t7
C t6
C t5
C t3
C t C 1 (k is odd).
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Every elementf 2 (Z=2Z)[t, t�1] is of the form:

f D tkd
C tkd�1

C � � � C tk1
C tk0

wherek0, : : : , kd are integers such thatk0 < k1 < � � � < kd�1 < kd. Then we define the
mod 2 trace, denoted by tr2( f ) 2 Z=2Z D {0, 1}, as:

tr2( f ) D

(

1 (kd � kd�1 D 1),

0 (kd � kd�1 � 2).

For f1, f2 2 (Z=2Z)[t, t�1], tr2( f1 f2) D tr2( f1)C tr2( f2). There exists an elementg 2
(Z=2Z)[t, t�1] such that f D g2 if and only if everyki (i D 0, : : : , d) is even. Then
we call f a square polynomial, and we have

g D tkd=2
C � � � C tk1=2

C tk0=2

and tr2( f ) D 0.

Lemma 5.3. Let r(t) be of type X as in(5.1), and � a positive odd integer.
(1) If n D 0, then r(t�) is a square polynomial. If n� 1, then r(t�) is of the form:

r (t�) D g2 p
�

(t�)

where g2 (Z=2Z)[t, t�1] and p
�

(t) D (t� � 1)=(t � 1).
(2) tr2(r (t�)) D 1 if and only if n� 1 and � D 1.

Let �m be a primitivem-th root of unity, and�m(t) 2 Z[t ] the m-th cyclotomic
polynomial defined by

�m(t) D
Y

1�i�m�1
gcd(i ,m)D1

(t � � i
m).

The cyclotomic polynomial is a monic symmetric irreduciblepolynomial overZ. For
a primeq and a positive integerr ,

�qr (t) D
tqr
� 1

tqr�1
� 1
D tqr�1(q�1)

C tqr�1(q�2)
C � � � C tqr�1

C 1.

Since

tm
� 1D

Y

d�1,djm

�d(t),

we have

(5.11) p
�

(t�) D
t�� � 1

t� � 1
D

Y

dj��,d­�

�d(t).
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Theorem 5.4. A Stoimenow knot Sn is not invertible.

Proof. We show that bothS1
2k,2k and S2

k,k with k � 1 are not (C)-amphicheiral.
(type I)

Suppose that�(1)
2k,2k(t) satisfies the condition in Lemma 5.1 (2).

We set

h D2 t4kC2
C t4kC1

C t4k�1
C t3
C t C 1,

and mD qr with an odd primeq � 3 andr � 1. Then

(5.12) (t C 1)2�(1)
2k,2k(t)

.
D2 (t2

C t C 1)2h.

Claim 1. �m(t) is a mod2 divisor of h only if mD 3, 5 or 9.

Proof. TakeQ(t), R(t) 2 (Z=2Z)[t, t�1] such thathD2 �m(t)Q(t)CR(t). We can
take R(t) of the form:

R(t) D2 tdC3
C tdC2

C td
C t3
C t C 1

where�m=2< d < m=2. The span ofR(t) is less thanm=2C 3.
CASE 1 r � 2 except the case (q, r ) D (3, 2).
Since the degree of�m(t) is qr�1(q� 1) which is greater thanqr

=2C 3, R(t) D 0
should be hold. However it does not occur.

CASE 2 (q, r ) D (3, 2) (mD 9).
R(t) is not mod 2 divisible by�9(t) D t6

C t3
C 1 except the cased D 4.

CASE 3 r D 1.
We check only the casesmD 3, 5 and 7. The casemD 7 does not occur. Hence

we have the result.

Claim 2. h is mod2 divisible by�3(t) if and only if k� 0 (mod 3). h is mod
2 divisible by�5(t) if and only if k� 1 (mod 5). h is mod2 divisible by�9(t) if and
only if k� �1 (mod 9).

Proof. h is mod 2 divisible by�3(t) if and only if 4k C 1 � 1 (mod 3) which
is equivalent tok � 0 (mod 3).

h is mod 2 divisible by�5(t) if and only if 4kC 1� 0 (mod 5) and 4k � 1� 3
(mod 5) which is equivalent tok � 1 (mod 5).

h is mod 2 divisible by�9(t) if and only if 4kC1� 6 (mod 9) which is equivalent
to k � �1 (mod 9).

Claim 3. �15(t) is a mod2 divisor of h if and only if k� �5 (mod 15). �45(t)
is not a mod2 divisor of h.
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Proof. For�15(t) D t8
� t7

C t5
� t4

C t3
� t C 1, we only check the cases

d D �5,�6 and�7. For the cases,R(t) is mod 2 divisible by�15(t) if and only if
4k � 1� �6 (mod 15) which is equivalent tok � �5 (mod 15).

For �45(t) D t24
� t21

C t15
� t12

C t9
� t3
C 1, we only check the casesd D �21

and�22. For the cases,R(t) is not mod 2 divisible by�45(t).

Claim 4. p
�

(t�) is a mod 2 divisor of h only if p3(t) D �3(t) D t2
C t C 1,

p5(t) D �5(t) D t4
C t3
C t2
C t C 1 or p3(t3) D �9(t) D t6

C t3
C 1.

Proof. By Claim 1, Claim 2, Claim 3 and (5.11), we have the result.

By Lemma 5.2, we have tr2(�(1)
2k,2k(t)) D 1. By Lemma 5.3, Claim 1, Claim 2,

Claim 3, Claim 4 and (5.12),h is of the form:

h
.
D2 g2 p3(t), g2 p5(t) or g2 p5(t)p3(t3)

for someg 2 (Z=2Z)[t, t�1]. However we have

h

t2
C t C 1

D2 t4k
C � � � C t5

C t4
C t2
C 1

for k � 0 (mod 3),k � 3,

h

t4
C t3
C t2
C t C 1

D2 t4k�2
C � � � C t3

C t2
C 1

for k � 1 (mod 5),k � 6, and

h

(t4
C t3
C t2
C t C 1)(t6

C t3
C 1)

D2 t4k�8
C � � � C t5

C t2
C 1

for k � 26 (mod 45),k � 26 are not square polynomials. It is a contradiction.
(type II)

Suppose that�(2)
k,k(t) satisfies the condition in Lemma 5.1 (2).

By Lemma 5.2, we have tr2(�(2)
k,k(t))D 1. By Lemma 5.3, there exists an odd�� 3

such thatp
�

(t) is a mod 2 divisor of�(2)
k,k(t). If k is odd, then there is no such� (check

only the cases� D 3, 5, 7, 9, 11). Hence we suppose thatk is even. Since

�

(2)
k,k(t)

.
D2 (t2

C t C 1)3,

we have� D 3. By the forms (5.1) and Lemma 5.1 (2),�(2)
k,k(t) is of the form:

(5.13) �

(2)
k,k(t)

.
D r1(t)r2(t)r3(t)
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wherer i (t)
.
D r i (t�1), jr i (1)j D 1 andr i (t)

.
D2 t2

C tC1 (i D 1, 2, 3). That is,�(2)
k,k(t) is

decomposed into at least three non-trivial factors inZ[t, t�1]. We setdi as the degree
(span) ofr i (t) (i D 1, 2, 3), and assumed1 � d2 � d3. There are two cases:

CASE 1 k � 0 (mod 4).
By Lemma 5.2, we have the mod 8 Alexander polynomial:

�

(2)
k,k(t)

.
D8 t6

� t5
C 2t4

C 3t3
C 2t2

� t C 1.

Since t2
� t C 1 and t2

� 3t C 1 are not mod 8 divisors of�(2)
k,k(t), the case does

not occur.
CASE 2 k � 2 (mod 4).
By Lemma 5.2, we have the mod 8 Alexander polynomial:

�

(2)
k,k(t)

.
D8 4t12

C 4t11
C 3t9

C t8
� 2t7

� 3t6
� 2t5

C t4
C 3t3

C 4t C 4
.
D8 (t2

� t C 1)(4t10
C 4t8

� t7
C 4t6

C 3t5
C 4t4

� t3
C 4t2

C 4).

We setsD 4t10
C 4t8

� t7
C 4t6

C 3t5
C 4t4

� t3
C 4t2

C 4. In this case, theZ-degree
of �(2)

k,k(t) is 12 which is equal to the mod 8 degree of it. By the assumption, there
are three cases for the triple (d1, d2, d3): (d1, d2, d3) D (2, 2, 8), (2, 4, 6) or (4, 4, 4).
The possibilities of the degree 2 mod 8 factors aret2

� t C 1 and t2
� 3t C 1. Since

t2
� t C 1 and t2

� 3t C 1 are not mod 8 divisors ofs, s is decomposed intosD s1s2

such that the degrees ofs1 and s2 are 4 and 6 respectively, they are both irreducible,
and s1

.
D2 s2

.
D2 t2

C t C 1. By (5.13),s1 and s2 are of the form:

s1
.
D8 2t4

C a1t3
C a2t2

C a1t C 2
.
D2 t2

C t C 1,

s2
.
D8 2t6

C b1t5
C b2t4

C b3t3
C b2t2

C b1t C 2
.
D2 t2

C t C 1

where a1, a2, b2 and b3 are odd, andb1 is even. Then the 9-th coefficient ofs1s2 is
odd (non-zero). However it contradicts the form ofs.

At the end of the paper, we raise refined questions realted with Question 1.2:

QUESTION 5.5. (1) Is there a prime component-preservingly amphicheiral link
with odd minimal crossing number less than 21?
(2) Is there a prime component-preservingly (")-amphicheiral link with odd minimal
crossing number?

About (1), we have already known that there are no such examples for the case that the
minimal crossing number� 11 (cf. [8]). If we need to use an amphicheiral knot with
odd minimal crossing number, then the minimal crossing number should be greater than
or equal to 19 from primeness. Under the restriction, if there exists an exampleL
for Question 5.5 (1) with minimal crossing number 19, thenL is a 2-component link
such that
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(i) its components are a knot with minimal crossing number 15and the unknot,
(ii) lk( L) D 0, and
(iii) on its diagram realizing the minimal crossing number,its components are also
realizing the minimal crossing numbers (i.e. 15 and 0).

About (2), our exampleLn was a prime component-preservingly (�,C)-amphicheiral
link with odd minimal crossing number. In general, the linking number of a 2-component
(")-amphicheiral link is 0. 112n247 in Fig. 2 is a prime (")-amphicheiral link with odd
minimal crossing number. However it is not component-preservingly (")-amphicheiral.
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