Koiso, N.
Osaka J. Math.
52 (2015), 453-473

ON MOTION OF AN ELASTIC WIRE IN A RIEMANNIAN
MANIFOLD AND SINGULAR PERTURBATION

NORIHITO KOISO

(Received November 20, 2012, revised December 12, 2013)

Abstract

R.E. Caflish and J.H. Maddocks analyzed the dynamics of a ppieader elastic
rod. We consider a thin elastic rod in an N-dimensional riemannian manifold.
The former model represents an elastic rod with positivektieéss, and the equation
becomes a semilinear wave equation. Our model represeritffiaitely thin elastic
rod, and the equation becomes a 1-dimensional semilin@ge plguation. We prove
the short time existence of solutions. We also discuss tiheveur of the solution
when the resistance goes to infinity, and find that the solutamverges to a solution
of a gradient flow equation.

1. Introduction and preliminaries

Let y(x,t) be a closed curve in thdl-dimensional euclidean space, parametrized
by its arc length O< x < 1. We define its potential energy 9&51|yxx|2 dx and kinetic
energy byfol|yt|2dx. The equation of motion derived by Hamilton’s principle is a
semilinear 1-dimensional plate equation; + yxxxx = (Uyx)x. Here,u = u(x, t) is the
Lagrange multiplier determined by the constrained cooditiy| = 1.

The existence of a short time solution of this equation wasqut by the present au-
thor [9] using a perturbation to a composition of parabofemtors. Later, A. Burchard
and L.E. Thomas [1] gave another proof using the contragtiamciple and Hasimoto’s
transformation in the 3-dimensional case.

In this paper, we generalize the above result into the casewiannian manifolds
by replacing the partial derivative,x by the covariant derivative/xyy. The potential
energy E(y) and kinetic energyK(y) becomes

1 1
(L) e = [ 1Vasax Ko = [ nfax
Using Hamilton’s principle, we will derive the equation ofotion:

(EW) {Vtyt + V)?)/x + U = R(Vx. VX)/X)VX + VX(UVX)!

Il =1,
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with initial datay (x,0) = yo(X), 1 (x,0) = y1(x) satisfying|yox| = 1 andg(yox, Vxy1) =
0. Here, R is the curvature tensoy, is a constant that represents the resistance, and
u = u(x,t) is the Lagrange multiplier. Note that the functiaris unknown, and will be
determined by the constrained conditipa| = 1. (EW) is a 1-dimensional semilinear
plate equation. The constapt is introduced to compare its solutions with that of the
parabolic equation below.

The gradient flow equation for the potential enefgfy) becomes

(EP) {Ut + Vfﬂx = R(nx, Vxnx)nx + Vx(uny),

|r}X| = 11

with initial data n(x, 0) = no(x) satisfying |nox| = 1. By [8], if there are no closed
geodesics of length 1, then equation (EP) has an infinite siohation. When the mani-
fold is the euclidean space, we know the followings by [9].

(1) Equation(EW) has a unique short time solution for any initial data

(2) For u > 0, we rescale the time variable t of equati¢BW) to v = p~t. If u is
sufficiently large then the solution of equatio(EW) exists for sufficiently long time
and converges to the solution of equatifEP) when u — oc.

In (2), the convergence is only iB° norm, because the rescaled initial velocity
dy/dt = ndy/dt = uy, diverges. Such phenomena is observed also in a hyperbolic-
parabolic singular perturbation [7]. It clarifies the réat of completely different two
differential equations, a plate equation and a 4-th ordealgdic equation.

In this paper, we generalize these facts to the case of rigia@amanifolds. The
following results show that the 1-dimensional plate edquat{EW) is stable under
“riemannian perturbation”.

Theorem 3.12. Equation (EW) has a unique short time solution for any non-
geodesic initial data.

Theorem 4.12. Assume that there are no closed geodesics of letigth w is
sufficiently large then the solution of the rescaled equation @W) exists for suffi-
ciently long time and converges to the solution of equati(EP) when u — oo.

We summarize notations and recall relevant basic facts fiemannian geometry
for convenience. LetMl, g) be a complete riemannian manifold.

We treat onlyC*>-objects. A closed curve means a map fr&h= R/Z into a
manifold. The pointwise inner product of vectors is denadbgdg(*, %), and the norm
is denoted by x* |.

For a mapz = z(u, v): R? > M, z, = (8zP/9u)(9/9xP) is a vector field along
the mapz. The covariant derivative/, X of a vector fieldX = XP 9/9xP along z for
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u-direction is given by

0] aX a
1.2 VuX)P P (@—X'
1.2 - 0 s = { e @S X o

where I;P; are Christoffel's symbols. We se€,z, = V,z, by definition, but higher
covariant differentiations do not commut¥, V,X — V,V, X = R(z,, z,)X. The curva-
ture tensorR has many symmetries, but we will not use them.

For functions onS! and vector fields along a closed curve Nh, we useL,-inner
product { * , x ) and L,-norm || * ||. SobolevH"-norm is denoted by * ||». For a
tensor field along the closed curvgy ||, is defined using covariant derivatives. That
is, [¢]12 = 3" ,IVi¢]I?. As a special case, we sit|, = 0 for n < 0.

In the riemannian case, we have several difficulties.

(1) In the euclidean case, we can convert the equatioryféo an equation for
SN-L.valued functiong(x, t) := yx(x, t). Where, the constrained conditidp| = 1 is
automatically satisfied. Both of [9] and [1] used this tramsfation. In the riemannian
case, this approach fails, because we cannot eliminatertgmal unknown functions
y. We are forced to solve equation (EW) directly, and have toaga a plate equation
with third derivativesyxxx. Note that the plate equation is unstable under pertunatio
of third derivatives, and cannot be solved in general ([1&ti®n 11.7]).

(2) Since closed geodesics are singular points in the sphedl olosed curves
of fixed length, we cannot extend the solution if the solutapproaches to a closed
geodesic. This is the reason why we exclude closed geodiesitbeorem 4.12.

There are other formulations of the motion of an elastic widhen we consider
a wire of radiusr in the euclidean plain, the position vectorjs+ yJyx, wherey is
the coordinate orthogonal ® and J is the 7/2 rotation. Here, the kinetic energy is
12112 4+ r2[lyxe]|?, and the equation becomes a wave equatiodg(r 2y — yxx) + it =
(uyx)x. R.E. Caflisch and J.H. Maddocks [2] applied this approachaogcurves with
r > 0 and obtained the global existence theorem. See also [G]atleq (EW) is the
limiting case:r = 0, and the equation becomes 1-dimensional plate equatiote fdat
the plate equation is more delicate than the wave equatianfitdl a linear version of
equation (EW) in p.246 of R. Courant and D. Hilbert [4].

The gradient flow equation (EP) is used in [6] for the euclidease and in [8] for
the riemannian case. In both cases, the global existence@mnetrgence to elastica are
proved, provided that there are no closed geodesics of demgth. Such an equation
is derived from a total Hilbert manifold and a riemannian ricebn it. [6] and [8] use
{y: St — M | |yx| = 1} as the total manifold, and the standdré metric on it. On the
other hand, Y. Wen [14] usgy: S' — M | Length¢/) = 1} and theL? metric for plane
curves, and proves global existence and convergence toaatical Also, the Palais—
Smale theoretical approach of J. Langer and D.A. Singer fd2the riemannian case
uses{y: S' —= M | |yx| = 1} and theH? metric, and gives mountain pass lemma.
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2. The equations

To derive the equation of motion, we use Hamilton’s pringipFor a moving curve
y = y(x,t), the velocity energy igy||?> and the elastic energy iV« ||%. (By rescal-
ing, we omit coefficients.) Therefore, real motions areictetry paths of the integral

to
2.1) L(y) = / I = 1Vl di.
ty

Namely, the integral

1 t
L= / (s Ver) — (Vs Vo) dit

th

t2
= / (7t» Vevs) — (Vxvxo R(vss v)vx + Vst) dt

th

(2.2)

should vanish for everys = § = §(x, t) satisfying the boundary conditiod(x, t;) =
3(x, t2) = 0 and the constrained conditidlR{g(yx, ¥x)} = 20(yx, Vx8) = 0.
By integration by parts, we see

1

t
(2.3) EL/ = _/ (Vin + vf)’x — R(yx, Vxyx)yx, 8) dt.
t

On the other hand, thke, orthogonal complement of the spave:= {§ | g(y«, Vxé) =
0} at each timet is {Vx(uyx) | u = u(x)}. Therefore,y is stationary if and only if
n €V and iy + V3 — R, Vi) yx = Vx(Uyx) for some functionu = u(x, t).

In this paper, we treat an equation with resistapgevhich we call (EW).

2.4) {Vt)/t + vf)’x + uye = Ry, V) vx + V(uyy),

|J/X| = 1!
with initial datay (x,0) = yo(x), 1(x,0) = y1(x) satisfying|yox| = 1 andg(yox, Vxy1) =
0. Its solutions satisfy the energy equality:

d
(2.5) &{II;«II2 + 1 Vall?y = =2uln )%
From |yx| = 1, we derive an ODE fou as follows. Since

(2.6) 0= 32|ml? = 29(V2yx, ¥5) + 2 Vexl?
= 29(Vx Virt, 1) + 20(R(t, vt %) + 2| Venl?,

the unknownu satisfies

Q(V:)’x + Vit — Vx{R(yx, Vxyx)yx) — Vf(ny), ¥x)

(2.7) ,
= |Vintl= + 9(R(¥xs ¥)¥x 10)-
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Using |y«|? = 1, we haveg(Vxn, vx) = 0, 9(Vivn) = —IVawxl% 9(Viro w) =
|V2y4|? — 202| Vi y«|%, and (2.7) becomes a linear ODE (E\Wor u:

—Uxx + |va/x|2U
(2.8) = 233|nyx|2 - |V>§Vx|2 + 9(Vi{ R(yx, Vxyx)vx} ¥x)
+ 9(Rve WIvx 1) + [Vinl?.
We write this equation as-uyy + |Vxyx|?u = F1(V3yx, Vxpt). To compare solutions of

equation EW (2.4) and solutions of equation (EP), we assumatut > 1 and change
the time variabld in equation EW (2.4) tax~*t. We call the resulting equation (EY).

(2 9) {sztyt + V):()’VX + 1 = R, Ve dwx + Vx(uyy),
. |Vx|2 =1,

with initial data y(x, 0) = »(X), n(x, 0) = uyi(x) satisfying |yox] = 1 and
d(yox, Vxy1) = 0. Note thatyi(x, 0) diverges whenu — oco. As equation EW (2.8),
the condition|y|?> = 1 implies an ODE (EW') for u:

(2.10) —Uxx + |VXVX|2U = Fl(vf)/x, M_lvxyt)-
When u — oo, equation EW (2.9) converges to an equation (EP)

n + Vf’?x = R(nx, Vxnx)nx + Vx(wnx),

@1 (il

with initial datan(x, 0) = no(x) satisfying|nox| = 1. We will show that the solution of
equation EW (2.9) converges to the solution of equation EP (2.11). Tosrit, we
rewrite equation EP (2.11) as a parabolic version of equnéd# (2.9). The unknown
w satisfies

(2.12) —wyx + | Vxnx|2w = F1(V3ny, 0).

It is derived from equation EW (2.9) and equation EW (2.10) by formal sub-
stitution: «~% = 0. It is known that this equation has a unique long time sofuti

Proposition 2.1 ([8, Theorem 4.1]) Suppose that there are no closed geodesics
of length1. For any initial datano satisfying|nox| = 1, there exists a unique solution
of equationEP (2.11)on 0 <t < oo.

3. Short time existence

In this section, we prove Theorem 3.12 as follows. From eqnaEW (2.8), we
see thatu is comparable tayx, and the right hand side of equation EW (2.4) implic-
itly contains the third derivative,xx. This disturbs to apply the general method for
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plate equations. (See [13].) Therefore, we will perturbagigun EW (2.4) to a para-
bolic equation EW (3.3) below. Since it is standard to show the short time erist
of solution y* of equation EW (3.3) for eache > 0, the main step of proof of The-
orem 3.12 is to show that the solutiop$ exist and are bounded on a time interval,
which is uniform with respect t@ > 0. It implies that there exists a convergent sub-
sequence/® (s — 0), whose limit is a solution of equation EW (2.4).

In this section, we fix the resistange € R and the initial datayy, y1 satisfying
lvox| = 1 andg(yox, Vxy1) = 0.

3.1. Existence of a solution of perturbed equation. Observe that the principal
part of equation EW (2.4) is a composition of two Schrodingperators:

(3.1) yie + Oy = (0 — V=150 + V—137}y,
which can be perturbed to a composition of parabolic opesato

Yie — 28y + (1 + Sz)af)/

3.2
52 = {8 — (e + V=1)32}{8 — (¢ — V/=1)82}y,

wheree is a positive constant. Namely, we consider a ‘paraboliciagipn (EW):

(3.3) {V‘Vt = 2eViy + (L + ) V3 = R Vi) v — it + Vx(Up),
. |J/X 2 = 11

with initial datay(x,0) = yo(X), ¥:(X,0) = y1(X) satisfying|yox| = 1 andg(yox, Vxy1) =
0. We assume that the positive constaris smaller than 1.

To prove the existence of solutions of equation EW@®.3), we have to control the
unknown functionu. By calculation similar to equation EW2.8), we derive an ODE
(EW#) for u:

(3.4) —Uxx + | Vax|?u = Fo(V3yy, V21p),
where

Fa(Vive, Vin)
= —2:{29(Vin, Vi) + (Vi Van)}
+ L+ )= VEml + 2021 Vi)
+ 9(Vx{ R(%, Vxr)vxhs 1) + 9(R0A m)vx 1) + | Va2

(3.5)

To controlu, we apply the following lemmas to equation EW3.4).



MOTION OF AN ELASTIC WIRE 459

Lemma 3.1 ([6, Lemma 4.1, Lemma 4.2]) The ODE —u”+ pu = q on S, where
p,g €Ly, p>=0and|pl|, >0, has a unique solution,tand u is bounded in €as

(3.6) maul < 2(1+ [pllc, Mgl maxu’| <21+ [pll)lallL,
Moreover if ||pllL, = 1, then higher derivatives are bounded as

(3.7 Iullnsz = C@+IIpIDNGl,  lulerz = C@+ [IpI&)lallcn,
where the positive integer B and the positive constant dégpemly on n.

Lemma 3.2. For any integer n> 4 and any positive constant Kthere exists a
positive constant C with the following propertyf a map y: St x (a, b) — M sat-
isfies |yx| = 1 and [|»t]ln-1, llvxlln, IVl ™t < K, then the solution u of equation
EW®’ (3.4) satisfies

(3.8) Ul < CLEL+ Il + lyscllPyad
for every i< n.
Proof. By Lemma 3.1, we know that
(3.9) lullcr < 2{1+ [ Va2 + Vs |2 F2(Vivs V)i, < Cu.
Therefore,||u|c2 is bounded, too. For 2 i <n, we have

[akull < Cofllulli—z + [F2(VEyx, V) lli-2)

(3.10)
< Ca{1+ flullic2 + el + llwx

li+a}.

It implies the boundedness d¢ti|j; by induction. O

Therefore, if the quantity| Viyx| is bounded from below by a positive constant,
then the left hand side of equation EWB.3) is bounded by lower derivatives. For the
principal part of equation EW(3.3), we know

Lemma 3.3 ([9, Lemma 3.4]) We consider a linear PDE fow:
(3.11) Wit — 26Wixx + (L + )wexxx = T,

with initial data w(x, 0) = wo(X), wi(X, 0) = wi(X). If f € C*, wge CH% w; e
C?*2_ then there is a unique solutiom € C**?* satisfying

(3.12) lwllcarae = C{[ fllca + llwollcara + lwallcasa}.

Here ||w|cs+2= and || f |cz« means the weighted Holder norfirderivatives are counted
twice of x-derivatives
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We can apply to equation EW(3.3) the standard argument for parabolic equa-
tions ([10]), replacing the estimation of the solutions be tlinear heat equation to
Lemma 3.3. We refer to [6] for the details.

Proposition 3.4. Suppose thafy is not geodesic. Therfior eache > 0, equation
EW* (3.3) has a solution on some interval<t < T.

On the other hand, iVyyox = 0, i.e., if the initial closed curve is a geodesic, then
we cannot expect the existence of solutions. For exampld Meg) be the surface of
revolution: ((14 p?)cosd, (1+ p?)sing, p), yo(X) = (cosx, sinx, 0) andys(x) = (0,0, 1).
This initial data satisfies the conditiomjox| = 1 and g(yox, Vxy1) = 0, but there are
no mapsy : St x (a, b) — M satisfying the initial condition andy,| = 1.

3.2. Uniform boundedness of solutions of equation (EW. Now, we have to
prove thatT = T(¢e) is uniformly bounded from below by a positive constant, inait
y is uniformly bounded on the interval [0). We prepare two lemmas which hold for
general mapy: St x (a, b) — M.

Lemma 3.5. Let y(x,t) be an arbitrary map S* x (a, b) — M. For any integer
n > 0 and any positive constant ,Khere exists a positive constant C with the following

property If [|yllco, I4llce, [7tlln=1, xlln < K, then
(3.13) IViVE® — VEVirll < C,  [I[VeVE s — VER2|| < Clintlln-

Proof. We have

IViVin — ViVinl =

n-1
D VR m) Ve )
(3.14) =0 i

VeV e = Vit2ul = | D Vid ROt 1)V v

i=0

and the assertion fon = 0 is obvious. Suppose that > 0. Since|y|c < C; for
i <n—1and|yxllc <Cp fori <n,

<Cs Y  1IVinlIVinll

i,j=0,i+j<n

n-1
> VRO n)VE T
i=0

(3.15) < Cal V21|l Intllco + Cs} < Ce,

> Vid RO n) Vi v
i=0

< Crllntlln + InellcoIViwdl} < Cellelln. - O
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By this lemma, the covariant differentiatio8, and V; practically commute in
estimations after this.

Lemma 3.6. For any integer n> 4 and any positive constant ,kKthere exists a
positive constant C with the following propert§y a map y: S* x (a, b) — M satisfies
Il = 1 and || ylin-1. llvxln, IIVxyxll~2 < K, then the solution u of equaticBW*’ (3.4)
satisfies

(3.16) (Vi Vi MUyl < CLL+ Il + P
for every i< n.

Proof. We expres&*1(uyy) as a linear combination aflu- VL+1—jyx. For the
terms with j <i + 1,

(3.17)  [[8u- Vil < Comax|lylliva Tullid < Cafl+ llyxllize + lellid,
and,

IVilll9du - Vi =Ty || < Call Vi L + llycllive + lnelli}

(3.18)
< Ca{l+ [nlI? + Iyl o).

For the termd!*u -y, we have

(3.19) (Vire, - w) = (9(Vin, ), M) = —(0dg(Vin, v}, dku).

Sinceg(Vin, ¥x) = 0, we can express the terg{Vi, yx) by a linear combination of
a(Vin, Vx 'm) (0 < j <i). Therefore,

i
(Vi U )| < Coflulli Y IVl [Vl
(3.20) ~

= Collulli (vl + lnell) = CoAL+ Inllf + Il O

REMARK 3.7. In the above proof, we utilized the conditigiVyys, ) = 0 to
estimate norms by lower derivatives. Such an estimation keyapoint to prove exist-
ence theorem for equations which are unstable under patianbof lower orders.

Using these lemmas, we can control the normyoés follows.

Lemma 3.8. For any integer n> 4 and any positive constant Kthere exists
a positive constant C with the following propertyet y is a solution of equation
EW* (3.3) such that||yt]ln-1, lxlln, [[Vxixll ™t < K. Then X(t) := [[Vinll® + (1 +
&2)||ViTlyy ||? satisfies X(t) < C{1+ X(t)} for each i<n.
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Proof. By Lemma 3.5 and Lemma 3.2,

LX) = (T, VeVhoa) + (L (VS s, B9
= (Virt, ViVin) + (1 + (Vi Vi2p)
+ (Vir, VeVin — ViVin)
+ A+ NV, iV s = VPn)
= (Virts Vid 26 Vian + Rrx, Vi) v — it + Vx(uyx)))
+ C1{1 + X(t)}
< 2| Vi )12 + (Vin, Vi up)) + Cof 1+ X(t))
< Ca{1+ X(1)}. -

(3.21)

Proposition 3.9. For any initial data yo(X), y1(X) satisfying |yox]| = 1 and
d(yox, Vxy1) = 0, there exists a positive constant T such that equak¥¥ (3.3) has a
solutiony® on0 =<t < T for every0 < ¢ < 1. Besidesy* are smoothly and uniformly
bounded with respect te.

Proof. Note that the consta@ in Lemma 3.8 depends continuously on the con-
stantK. Therefore,X(t) := [[1 13 + (1 + &2)]| VxwxlI2 + [| Vxyx| 72 satisfies an inequality
X'(t) = f(X(t)), where f is a continuous function independent of Let ¢ be the
solution of the ODE:/(t) = f(p(t)) with initial value ¢(0) = [y1]12 + 2||Vxyox|I2 +
| Vxyox || 2. Suppose that exists on [0,T]. Since 0< & < 1, X(t) < ¢(t) holds on
this interval, hence|yt|ls, ||xlls and ||Vxyx|| =2 are bounded.

On the interval [0,T], we inductively apply Lemma 3.8 fon > 4. At each step,
l7elln and |lyxlln+1 are bounded. Therefore, the short time solutigh of equation
EWF (3.3) in Proposition 3.4 extends to the interval 1], Besides, they are uniformly
bounded with respect te. ]

3.3. Existence and uniqueness of solutions of equation (EW)Now, we can
prove the short time existence.

Proposition 3.10. Equation EW (2.4) has a short time solution for arbitrary
smooth initial data satisfyingyox| = 1 and oyox, Vxy1) = 0.

Proof. Lety® be as in Proposition 3.9. Since they are uniformly boundeeret
is a sequence; — 0 such thaty® converge<C>-ly. The limit is a solution of equation
EW (2.4). O

After the existence theorem is proved, the uniqueness o$dhdion can be proved
by the standard argument.
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Proposition 3.11. Any two solutions of equatioBW (2.4) on [0, T) with same
initial data identically coincide.

Proof. Let{y, 11} be the initial data andy, u), (y, ) are two solutions. Taking
a tubular neighbourhood ofy, and taking its double covering if necessary, we may as-
sume thaty is in an open set) of RN. In U, we measure the difference between two
solutions by¢P := 7P —yP in coordinates and := 0—u. We regards := (¢P)(3/0xP)
as a vector field along.

We take a positive constarit’, less thanT in Proposition 3.10, such that the so-
lutions y and y stay inU for t < T’. Note thaty andy are C*-ly bounded.

Since W3yx)P is expressed a8y P + 4I4P (v)yKd3y" + 2nd order, the difference
(VE3R)P — (V3y)P is expressed as

(3.22) AP + AP (y)y283¢" + 2nd order= (Vy¢)P + 2nd order.

By a similar computation ob and rewriting them using covariant derivatives, we get

(3.23) {VtZC + V¢ = vy + Hi(V2¢, Vig, v),

—Uxx + |VxJ7x|2U = Hz(v;l;y V)%th)-
Here, Hi(V2¢, Vig, v) is a function ofx, t, Vi¢ (i <2), Vi¢, v such that
(3.24) [Hi(VZZ, Vig, v)| < Cal| VS| + Vx| + [¢] + [Veg | + [vl}.

It implies that ||Hi(VZ¢, ViZ, V)Ili < Cofll¢lli+2 + Vil + llvlli}. Hz has similar

property.
We apply Lemma 3.1 to the ODE far in (3.23), and get

(3.25) lvll2 < CallHa(Vieg, VEViO)I < CaZ(t)Y?,
where Z(t) = Vi< |13 + l|¢]|2. Forn <2,

1d
S e VAV I + IV 2%

= (VIViZ, Vi VRV ) + (VET2¢, Vi VI+2e)

= (VIVi, VI(V2 4 Vi) + (lower order$
(3.26) < (VIViZ, Vi{ve + Hi(V2E, Vg, v)}) + CsZ(t)
(Q(VEVAZ, %), 9T h) + CeZ(t)
lvlln 18x(9(VEVEL, p)} ]| + C7Z(t)
|

19(VR Ve, )12 + CaZ(1).

N IA

IA



464 N. Koiso

The last expression is bounded ByZ(t) if n=0,1. Forn = 2, sinceg(Vn, yx)
is expressed by(Vin, Vx 1) (j < 3), we see|g(V3ViZ, vl < Ciol Vit |l2. There-
fore, Z'(t) < C11Z(t). Since Z(0) = 0, we haveZ(t) = 0.

This proof is valid atty whenevery(to) = v (to) and y:(to) = y:(to). Therefore, the
set{t > 0] p(t) = y(t)} is open and closed in [{;), hence coincides with [O;). [

Combining Proposition 3.10 and Proposition 3.11, we getfthlewing

Theorem 3.12. EquationEW (2.4) has a unique short time solution for arbitrary
smooth initial datayy, y1 satisfying|yox| = 1 and dyox, Vxy1) = O.

REMARK 3.13. When we replace by —t, equation EW (2.4) does not change
its form. Therefore the result is time-invertible. Namedy,unique solution exists on
some open time intervaH{T, T).

4. Singular perturbation

In this section we prove Theorem 4.12 as follows. To compaend n, we embed
them intoRN as in the proof of Proposition 3.11, and put= (yP —»P)(3/dxP), and
v:=u—w. We will find that¢, v satisfy

@.1) {MZV{% + V3¢ + Vid = Hu(VZE, 1 tVig, v) + vy + 0 1Gs,

—vxx + [V [Pv = HZ(V;‘C: Milvatf) + u Gy,

where we take covariant derivatives alongexcept Vyyx.
Then, we can apply the following lemma to quantitiés:= |VP¢|?, Y :=
[VI+2¢)12, Z := ||VIVi¢|| and get the desired estimation pV7¢ .

Lemma 4.1 ([7, Lemma 1.5]) For any K;, K; > 0 and any T> 0, there are
C > 0 and uo > 0 with the following property
If w>ue and Xt), Y(t), Z(t) are non-negative functions dO, T) such that

(4.2) X(0) < K 2, [X(0) <Ky, Y(0) <Ky, Z(0)<Kyu?
and that

X)X () < KafX(0) +  2Z(t) + %) — KoY (),
(4.3)

Y/(t) + 1 ?Z'(t) < Ka{Y(t) + 1) — KoZ(t),
on [0, T), then they satisfy
(4.4) X({t) <Cu™2, Y(@)<C and Zt)<Cpu?

on [0, T).
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For estimation of higher derivatives, it will suffices to peothatZ := || V"¢ |2 +
VIV |2 satisfiesy 22’ + Z < C(u?™ 3 #2412,

Step 1. A priori uniform boundedness qf*.

At first, we have to prove thay are bounded uniformly with respect o > 1.
It implies that curvature tensor and its derivatives ardannily bounded. The energy
equality of equation EW (2.9):

d . _
(4.5) rralle 21l + Vsl = =2lnll?

implies that

T 2
{mg;/o |yt(x,t)|dt}
(4.6) 1,T T
§T// |yt(x,t)|2dtdx5T-/ I dt
0JO 0

= =T -[lIle nl®+ IVawxl?1§ < T - {lw % + 1 Vel i=o,

where T is any positive constant.

Therefore, if initial valueg|=2y:(x,0)||> and || Vxyx(X,0)||?> are uniformly bounded
with respect tox > 1, the solutions stay in a compact sat of the manifold M.
Moreover, if there are no closed geodesics of length 1, theggngV,yy||? of closed
curves inAT are bounded from below by a positive constant.

4.1. Uniform existence ofy*. We prove that the solutiopr exist on a uniform
interval [0,T) with respect tou > 1. We prepare two lemmas. The first one gives the
bounds ofu by means ofy, and the second one is an ordinal differential inequality of
the norm ofy. The bounds ofl is given as a modification of Lemma 3.5, Lemma 3.2
and Lemma 3.6. Constan®, K and C below are independent of.

Lemma 4.2. For any integer n> 4 and any positive constant Kthere exists a
positive constant C with the following propertlf a map y: St x (a, b) — AT satisfies
Il =1 and ™ nlin-1, lxlln < K, then

(4.7) wAIViVin = Vil <€, IV = Vil < Clinll
hold for every i< n. Besidesthe solution u of equatioEW*" (2.10) satisfies

lulli < C{L 4w~ Hinli + llyxlival,

(4.8) T
(Vires ViR upO)| < Cllveli {1+ s Ml + lclial-
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Proof. We only check the last inequality.

(Vi 3 - 1) = [(Bx(9(Vin, 1)), Bku)l,
I3x{9(Vir, I < Calllnelli + 19V, woll}

(4.9) i it
< CaoflInlli + Y_ll9(Vin, Vi Iyl
j=1
< Cslllytli + Vartlicollvxlli} < Callmlli- O

Using this, we get the following differential inequality.

Lemma 4.3. For any integer n> 4 and any positive constant Kthere exists
a positive constant C with the following propertyet y be a solution of equation
EWH (2.9)in AT such thatu 2| |ln-1, l¥xlln < K. Then for every i< n,

(4.10) X(t) := n 2| Vi )? 4+ [V 12
satisfies
(4.11) X'(t) < C{L+ X)) + InelZy = IVl

Proof. By Lemma 4.2,

%X’(t) = w (Vir, ViVir) + (Vi ViV )
= 12V, ViVin) + (Vs Vi)
+ Vi, VeVir — ViVin)
+ (ViM% ViV e — Vit i)
(4.12) < (Virts Vid=1 + R0 Var) i + Va(Ups)})
+ Callnelli (1 4 X(t)Y?
< Collnlli (X + X(®)? = I Vinll?

1 .
= Ca(L+ X)) + SlInlf = V5l

1 1
= Col1+ XO) + 5 Inlis = S1Vanl® O

Combining these lemmas, we get the following

Proposition 4.4, For any positive number Kthere exist positive constant &nd
C with the following property If the initial value of equationEW* (2.9) satisfies
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(X, 0)ll, [ Vxyx(x,0)]l < K, then the solution exists di®, T1]. Besides ™ (],
lvxlln and Jlull, < C on [0, T4].

Proof. We see that the consta@tin Lemma 4.3 continuously depends d&h.
Therefore,

3
(4.13) X(t) =Y 2 {u 2 Vinl? + Vi )
i=0

satisfiesX'(t) < f(X(t)) — (1/8)| |13 for some continuous functiorf independent of
w. Hence, X(t) is bounded on some interval [0;]. We inductively use Lemma 4.3
with n =i > 4, and get bounds of al|yx|ln on [0, Ty].

Since they are bounded, we can extend the solution on the/aht®, T,]. O

4.2. Equations for the differences¢, v. We derive a PDE for the difference of
y andn. To comparey andp, we embed them int®kRN as in the proof of Propos-
ition 3.11. Sincey(t) may jump whenu — oo, we extend the riemannian metric to
the wholeRN, so that the metric is standard outside a compact set. It oibeds,
we consider the solutions iRN with metric tensorgyq and Christoffel symbolyP; .
In the coordinate expression, we have

Vipe = Vt? + Iy P (V)thytrv

(4.14)
Viyx = gy P + 40P (v)y293y" + lower derivatives.

Using these, we rewrite equation F\W2.9) and equation EW (2.10) as

(4.15) {“27”“ + Oy + AC )%y + 1 = GV 1, U) + (Urdxs
—Uxx + |VXVX|2U = Gz(af]/, /'Lilyxxt)-

Similarly, the solution{n, w} of equation EP (2.11) satisfies

(4 16) {3:(1’7 + 4F(77)'7x3377 +n = Gl(’?xx, 0, w) + wxnx,
—Wxx + |Vx77x|2w = 62(8;(177, O)-
We measure the differences of these solutiong byt y —n andv := u—w. Since
we have to divide the given time interval to compare solgjome cannot assume that
Z(x, 0) = 0. For the initial data we make the following

ASSUMPTION 4.5. u¢(x,0)ln and 1| Vi ¢ (x, 0)|ln are uniformly bounded with
respect tou > 1.
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Let T, be as in Proposition 4.4. Then, the assumption implies|thét, =2 Vi< |[n
and ||v||, are uniformly bounded with respect to< T; and i« > 1. However, we do not
have the bounds af||¢ |, at this step.

The differences;, v satisfy

12 + 93 + AT (nxd3C + &
(4.17) = Ha(xx 10 v) + vk — 7 2my + Ha(u ),
—Uxx + |Vx)’x|2U = H2(3§§y Hfl{xxt) + H4(M7177xxt)-

Here, Hy is a function such thatHs (&xx, 16, v)| < C{|&ex| 46|+ (¢ |+ &+ o]}
It implies that [ Hi(6xx, £t V)lln = CLlI¢lIne2 + 17 gtlln + [[v]ln}. Other Hp have
similar property.

Regardings = (¢P)(3/0xP) as a vector field along, we can rewrite (4.17) using
covariant derivatives:

wT2VZE + Vit + Vig = Hi(VZE, n™tVig, v) + vex + w7 1Gs,

4.18
(4.18) {—vxx T [Vl = Ha(VE¢, 1 1V2V8) + u1Ga,

where we take covariant derivatives alopgxceptVyyx. [|Gslln, |Galln are uniformly
bounded with respect tb< T; and u > 1.

4.3. Smallness of the differences.We will prove this by applying Lemma 4.1
to norms of¢. For it, we have to estimate by means of¢.

Lemma 4.6. Let {¢, v} be a solution of(4.18) satisfying Assumption 4.5 For
any integer n> 0, there exists a positive constant C such that

(4.19) VRS, VRwxm)) = Clig [nllvlln

holds on[0, T1]. For any integer n> 2, there exists a positive constant C such that
(4.20) lvlla < Cle Ve lln + 1 lnvz + 7Y

holds on[0, Ty].

Proof. The second inequality comes from the ODE #oin (4.18). For the first
inequality, we see

(4.21) [{VRE, Vi(oxn)| < Call¢ lInllvlln + 1{9(VR e, mx), 830)]-

Since g(Viyx, ¥x) is expressed by lower derivativeg(Vi+1c, ny) is expressed by a
function of Vi¢ (i <n), and[g(V2*¢, m)lla < Cali¢[ln holds. O

We put X, := [|[VI¢]|? and Z, := ||VIVi<|.
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Lemma 4.7. For any integer n> 0, there exists a positive constant C such that
(4.22) 1A(Ze?) + (Xns2®) + Za? < C
holds on[0, T4].

Proof. Note that||¢|li, «~t|Vi¢|i and |v]i are already bounded.

d _
ar ZIVRVICIIZ + IV 2012 + VR Ve |12

NI =

= (VyVig, W 2ViVRVi + VRVig) + (Ve VR t2g, Vit2e)
< (VRVig, w2 VRVEL + Viie + Vi)
+ Co{u 2 IVRVeg Vit lln-1 4+ V22 1S Insa)
< (VaVeg, VI{HU(VEE, W Vig, v) + vxi 4+ w7 'Ga}) + Co

(4.23)

< CollVi%igl + Cz = S V3Vt I + Ca =
Lemma 4.8. For n =0, 1, there exists a positive constant C such that
(4.24) 12Xn?)" A+ (Xn?) = CLICIE + w21Vl + 12
holds on[0, T;]. For any integer n> 2, there exists a positive constant C such that

(4.25) w72 (Xn?) + (Xn?d) + Xns2® < CLICIE L + w2 Veg )2 + 172

holds on[0, T4].

Proof. We use Lemma 4.6.

1 _,d? 1d

=2 Vn 2 - Vn 2 Vn+2 2

i IVRE P 4 5 IR P + 198 e |

= w VR, VEVRE) 4+ w2V VRe 12 + (VRe, Vi VRe) + (V522
(4.26) < VR, uTBVEVEL + VIViE 4 ViTee) + n7? | VRV |12

+ Colw 2IVEE ) Ve et + w2012y + VRS IS Inea)
< (VI¢, VI{H1(VZZ, 1 *Vig, ) + venx + w1Ga))
+ CafllZ 13 + 12 Vg IIE).

For the terms containing, we use Lemma 4.6. Plt = max{n, 2}.

(VR¢, Vi{H1(0, 0,v) + vinu}) = Call¢ Inllvlln

(4.27) . .
=< Callglntlig Iz + I Vig I + 7},
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Therefore, the totality

< Csliglndllg k2 + i HIVig Ik + 7 + Con 2 Vit |2
(4.28) 1 2 2 -2 2 -2
5§||§||k+z+Ce{||£||n+u Vi llic + n*}- O

Proposition 4.9. Let {¢,v} be a solution of(4.18) satisfyingAssumption 4.5 For
any integer n> 0, there exists a positive constant C such that], < Cu~* holds
on [0, T4].

Proof. We may assume that> 4. From Lemma 4.8 and the log-convexity of
the norm|| * [, i.e., [ViZ||? < Vi ¢ [Vit¥]l, we have

12 (Xo?) + (Xo%) < Caf{Xo? + Xn? + 1 2Zo* + 2 Zs? + 2},
(429 206+ O + X
< Cof Xo® + Xn? + 220" + 1 2Zn” + u %),
Put X := Xo? + Xn2, Y 1= Xo% + Xny2%, Z := Zg? + Zy2. Then,
(4.30) u*xﬂ+x§0ﬂx+uiz+wﬁ—%v
Also, from Lemma 4.7, we have

(4.31) w?Z +Y +Z<Cy

Therefore, the assumption of Lemma 4.1 is satisfied, and weXge Csu 2. It
implies the desired estimate by the log-convexity. ]

4.4. Estimation of time derivatives of¢. Now we estimate time derivatives of
¢. For it, we put|| = ||ﬁ’m =Y ,IVi % ||2. An argument similar to Lemma 4.6 gives
the following

Lemma 4.10. Let {¢, v} be a solution of(4.18) satisfying Assumption 4.5 Let
m > 1 be arbitrary integer. For any integer & 0, there exists a positive constant C
such that

(4.32) |(V>Tvtm§a VQV{“_l(vxnx))l = Cll¢lam + ¢ Intrm-1}vllnm-1
holds on[0, T;]. For any integer n> 2, there exists a positive constant C such that
(4.33) lollnm-1 < C{ Mg Inm + 1 lnszm 1 + 17"

holds on[0, T4].
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Using this, we get

Proposition 4.11. Let {¢, v} be a solution of(4.18) satisfying Assumptiod.5.
For arbitrary integers n> 0 and m> 0, there exists a positive constant C such that

(4.34) I¢lnm < C{p2™te V2 4 =ty

holds for t< T; and sufficiently largeu.

Proof. The claim holds fom = 0 by Proposition 4.9. We pi, := p2™ e #/24
wt. Suppose that the claim holds uprto— 1.

VIV + Ve P

= (VRV{"L, u2Vi VRV + VRIVTE)

(4.38) < (vhvme, VIV W2V + Vig)) + Cap VAV 1 netim

< VRV, VRV H=V¢ + Hi(VEC, Vi, v) + vygx + ' Ga))
+ 2 VRVRE |2 + Cou?l¢ |3

n-1m-

For the terms concerning, we use Lemma 4.10. Lt := max2, n}.
IVRVE H{H1(-, -, v) + o |12
(4.36) < Cafllvl3m 1 + (I lnm + ¢ lnram Dlvllnm 1}

< Caf K2y + 17201 11E o 4 12 Inm( M IS heom + K1)}
< Cs{KZ_; + 1 ¢ N2 m + Km=tl¢ Inm)-
Therefore, the totality

1
. (Z + M‘Z) IVRvie|®
(4.37) + Col Ky 1218 I + 118 W + Kol i)
. i
< (G +n2)Imerer

+ G+ AKZ |+ (wt+ AY(IVEVTE )2 4 V2.
Whenn = 0, we have

d
e LTV
1
< (-5 +2)iwrer?

+Caf(L+ AKE; + (0 + AUV + [V 151,

(4.38)



472 N. Koiso

and whenn > 2, we have
w2 G VIR + 199 P
A R A
+ Co{(1+ AKZ_; + (™ + ADIVEV I + V¢ 112}

By these two inequalitiesZ := |[VI"¢||? + ||[VEV{"¢ ||? satisfies
-2/ 1 -2 2 -1 -1
(4.40) nwZ+2zZ=< ~3 +2u°)Z 4+ Ciof(L+ AKG  + (0 + A)Z).

We chooseA = 4Cyq. Then, foru > 4(2+ Cyq), we haven 2Z' +Z < C11K2 ;. From
this, we see thaZ(t) := ||V{"¢||? satisfies

Z(t) < Z(O)e"‘2t + Cpof M4(m_l)e_“2‘ + 2

(4.41) - 2 2m—3—1i%t/2\2 4(m-1) g—p?t -2 O
= Caa{(up e V5" 4+ e +

4.5. Global convergence. We sum up these results, and get the following

Theorem 4.12. Suppose that there are no closed geodesics of lebig#nd let
yo be a closed curve satisfyingox| = 1. Then for any T > 0 and any vector field,
along yp satisfying dnx, Vxy1) = 0, there existsuo > 0 with the following property If
U > o, then the solutiory* of equationEW* (2.9) with initial data y#(x, 0) = no(x),
7(X,0) = uy(x) exists on0 <t < T. Besideswhenu — oo, y* uniformly converges
to the solution of equationEP (2.11)with initial data n(x,0) = yo(x). More precisely

(4.42) 3730 (yP — nP)| < Clu™t 4+ pdmler 2
holds on each local coordinate.

REMARK 4.13. Even if there is a closed geodesic of length 1, therst®x so-
lution of equation EP (2.11) on some time interval 1g), provided that the initial
curve ng is not a geodesic [8, Theorem 3.1]. In this case, Theorem étill2holds
restricting the time interval to [Olp).

Proof of Theorem 4.12. T; in Proposition 4.11 is bounded from below by the ini-
tial datay(x,0), u 1y (x,0). Therefore, we have constariis> 0 anduo > 0 such that
if y(x,1p) is sufficiently close toy(x,tp) and if u > o, theny can be extended to the
interval [to,to+ To]. Besides,y(x,to+ T,) converges toy(x,to+ T2) with order O(u1).
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Sincen is known to be boundedl, = T,(tp) is uniformly bounded from below and
Mo =

wo(to) is uniformly bounded from above with respectttp Let T3 be the lower

bounds ofT,. We apply Proposition 4.11 on each subintenkals/2, (k + 2)T3/2], and
get (4.42) form = 0. Besides,

(4.43)  [3M30(yP — nP)| < Cafp ™t + ™ expl—pn?(t — kTs/2)/2)} < Copt

holds on k + 1)T3/2 <t < (k + 2)T3/2 for eachk > 0. O
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