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Abstract
The gonality sequence (dr )r�1 of a curve of genusg encodes, forr < g, import-

ant information about the divisor theory of the curve. Mostlyit is very difficult to
compute this sequence. In general it grows rather modestly (made precise below)
but for curves with special moduli some “unexpected jumps” may occur in it. We
first determine all integersg > 0 such that there is no such jump, for all curves of
genusg. Secondly, we compute the leading numbers (up tor D 19) in the gonal-
ity sequence of an extremal space curve, i.e. of a space curveof maximal geometric
genus w.r.t. its degree.

1. Introduction

Let X denote a smooth irreducible projective curve of genusg � 4 defined over
C. The numbersdr D dr (X) WD Min{d W 9gr

d on X}, r D 1, 2, : : : , form the gonality
sequenceof X (called so sinced1 is the gonality of X). We say thatX satisfies the
slope inequalities(for its gonality sequence) ifdr =r � drC1=(r C1) for all r D 1, 2,: : : ,
i.e. if drC1 � dr � dr =r for all r . So the slope inequalities limit the growth of the
gonality sequence, by virtue of shrinking upper bounds.

While the original interest in these inequalities came fromattempts of extending
the notion of Clifford index from line bundles to vector bundles on curves ([13]) we
consider these inequalities here as a tool for the specification of curves with special
moduli. In fact, if X does not satisfy the slope inequalities, i.e. ifdr =r < drC1=(r C 1)
for some r , it is easy to see that theBrill–Noether number�g(dr , r ) WD g � (r C
1)(g � dr C r ) is negative; consequently, by Brill–Noether theory ([1],V), a general
curve X of genusg must satisfy the slope inequalities. But this is also true for “very
special” curves (w.r.t. moduli) like hyperelliptic curves(i.e. d1 D 2) or trigonal curves
(i.e. d1 D 3) or bi-elliptic curves (i.e. double coverings of ellipticcurves). On the other
hand ([12], 4.6), for everyg � 0 mod 3, g > 3 there are curves of gonalityd1 D 4
and genusg violating the slope inequalities. It seems to be a delicate problem to de-
termine the curves violating the slope inequalities, by finding characteristic descriptions
for them. As is indicated in [12], good candidates are smoothcurves inP r of a specific
geometric significance resp. curves whose Clifford index isnot computed by pencils
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only; to be more concrete: extremal curves inP r resp. the normalizations of plane
curves with only few double points provide examples ([12], 4.13; [2]). We will show,
as the first topic of this paper (Section 3), that these examples suffice to answer the
Question(cf. [12], Question 5.4)What is the smallest integer g0 such that for every
integer g� g0 there is a curve of genus g not satisfying the slope inequalities?

Ballico ([2]) showed thatg0 exists and thatg0 � 31. We will prove thatg0 D 14,
and we also identify the sporadic families of curves of genusg< 14 violating the slope
inequalities.

As our second topic we compute, in Section 4, the leading numbers d1, d2, : : : , d19

of the gonality sequence of anextremal space curve, and we determine series “com-
puting” thesedr (i.e. seriesgr

dr
for r � 19). In particular, we show thatd3=3 < d4=4

for extremal space curves of degree at least 10; so for these curves the violation of the
slope inequalities occurs much earlier than observed in [12], 4.13.

NOTATIONS. We basically adopt the notation of [1]; in particular, agr
d on X is

a linear series of degreed and (projective) dimensionr on X. We call agr
d on X very

special if it is complete withr � 1 and if its index of specialityg�dC r is at least 2;
then thegr

d and its dual seriesjKX � gr
dj are both at least pencils. (HerejKXj denotes

the canonical series ofX.) A gr
d on X is called simple if the rational mapX ! P

r

induced by it is birational onto its imageX0; X0 is then an integral curve of degree
at mostd in P

r . We call X an extremal curvein P

r if it has a simplegr
d of degree

d � 3r � 1 and if X has the maximal genus among all curves admitting such a linear
series; then thegr

d is very ample (i.e.X and X0 are isomorphic), and the genusg of
X attains Castelnuovo’s bound (cf. [12], 2).

For a non-negative real numberx we denote by [x] its integer part.

2. Preliminaries

The following result is an useful complement to [12], 3.2.

Proposition 2.1. Assume that X is not a smooth plane curve. Then we have dr D

r C g� 2 for g� d2C 2� r � g� d1.

Proof. Forr D g� d1 this is proved in [12], Remark 4.4. Letg� d2C 2 � r <
g � d1. Then we havedr � dg�d1 � (g � d1 � r ) D r C g � 2. Assume thatdr D

r C g� 2� " for some integer" > 0. Then degjKX � gr
dr
j D 2g� 2� dr D g� r C "

and dimjKX �gr
dr
j D g�1�dr C r D 1C ", i.e. d1C" � g� r C ". Henced2C ("�1)�

d1C" � g� (g� d2C 2)C " D d2 � 2C ", a contradiction.

Corollary 2.2. Assume that X is not a smooth plane curve. Then we have dr =r �
drC1=(r C1) for r � g�d2C2. (And we have equality here for rD g�1 only, provided
that X is not hyperelliptic.)



ALGEBRAIC CURVES V IOLATING THE SLOPE INEQUALITIES 425

Note that agr
dr

on X is very special if and only if 1� r � g � d1 ([12], 3.2
(b) and 4.4). Recall that the Clifford index of X gives rise to the following non-
existence statement: If 2r > d �  there is no very specialgr

d on X. We call X divi-
sorial completeif also the converse of this statement is true. Obviously thehyper- and
the bi-elliptic curves are divisorial complete but there are also some other examples
([7]). These curves come out when the differencesdr � dr�1, r D 2, 3, : : : , are “too
long” constant:

Proposition 2.3. Let g� 9. Then the differences dr � dr�1 are constant for rD
2, : : : , [(g� d1)=2]C 1 if and only if X is divisorial complete.

Proof. If X is divisorial complete we clearly havedr � dr�1 D 2 for r D 2, : : : ,
g � d1. Let g � 9, and assume thatdr � dr�1 D c with some constantc > 0, for
r D 2, : : : , r0 WD [(g � d1)=2] C 1. This is certainly not true ifX is a smooth plane
curve; so we must haved2 > d1 C 1 whencec � 2. Assume thatc � 3. Sinced1 �

(gC 3)=2 andg � 9 we haver0 � 3 unless (g, d1) D (9, 6) in which latter caser0 D 2
and d2 D d1 C c � 9 contradictingd2 � 8 ([12], 3.2 (c)). Sor0 � 3. In the (d, r )-
plane, for given (d, r ) let (d0, r 0) be the “dual point” defined byd0 WD 2g � 2 � d,
r 0 WD g� 1� dC r . Since the points (dr , r ), r D 1, : : : , r0, lie on a line l with slope
1=c the dual points ((dr )0, r 0) lie on a line l 0 with slope 1� 1=c > 1=c. For r < r0 we
havedrC1 D dr C c � dr C 2 which, by duality, is easily seen to imply thatdr 0 D (dr )0

(i.e. jKX � gr
dr
j is a gr 0

dr 0
). We apply this forr D r0 � 1. Note thatd1 C 2(r0 � 2) is

g� 2 (resp.g� 3) if g� d1 is even (resp. odd). So we havedr0�1 D d1C c(r0 � 2)D
d1 C 2(r0 � 2)C (c� 2)(r0 � 2) � g � 3C (c� 2)(r0 � 2) � g � 2 whence (r0 � 1)0 D
g � 1 � dr0�1 C r0 � 1 � r0. Thus the point (d(r0�1)0 , (r0 � 1)0) D ((dr0�1)0, (r0 � 1)0)
lies on both l and l 0. Since these lines meet on the lined D g � 1 we must have
(dr0�1)0 D g�1, and this implies that (c�2)(r0�2)� 2, i.e. (r0,c)D (3, 3), (3, 4), (4, 3).
For (r0, c) D (4, 3) we haveg� d1 D 7, dr0 D d4 D d1C 3cD d1C 9D gC 2 which,
by duality, contradictsd2 D d1 C c D g � 4: jKX � g2

g�4j is a g5
gC2. Similarly, for

(r0,c)D (3,4) (resp. (r0,c)D (3,3)) we haveg�d1D 5 (resp.g�d1D 4), i.e.d3D gC3
(resp.d3 D gC 2) contradictingd1 D g� 5 (resp.d1 D g� 4). Thus we obtaincD 2,
for g � 9. Sincedr0 D d1 C 2(r0 � 1) � g � 1 and at least onegr

dr
with dr < g must

compute the Clifford index of X (i.e. dr D  C 2r ) all very specialgr
dr

on X do.
This implies thatX is divisorial complete.

In a sense, the next proposition indicates “how special” (w.r.t. moduli) a curve is
which violates the slope inequalities.

Proposition 2.4. dr =r < drC1=(r C 1) implies that�g(dr , r ) � �g=2.

Proof. Let is (1 � s 2 Z) denote the index of speciality of ags
ds

(i.e. is D g �
dsC s) and let Ds WD (sC1)ds� sdsC1 (so Ds < 0 iff ds=s< dsC1=(sC1)). One easily
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computes that

Ds D g� ((sC 1)is � sisC1) D �g(ds, s)C sisC1.

By assumption, we haveDr < 0; then 1< r < g � 1. By [12], 3.2 (c) we have
i rC1 � [g=(r C 2)]. Hence we obtain

�g(dr , r ) D Dr � r i rC1 � �1� r

�

g

r C 2

�

.

We need the following numerical fact:

Claim. Let 1< r < g� 1. Then r[g=(r C 2)] � (g� 3)=2, and we have equality
here iff r D 2 and g� 3 mod 4, or r D (g� 3)=2.

This claim shows that�g(dr , r ) � �(g � 1)=2, and equality is only possible for
r D 2 or r D (g� 3)=2. But �g(d2, 2)D �(g� 1)=2 would imply that 6d2 D 3gC 13,
and if r D (g�3)=2 equality would imply that (r C1)(dr �3r ) D �1. Hence we obtain
�g(dr , r ) � �g=2.

3. The number g0

In this section we determine the smallest integerg0 such that for every integer
g � g0 there is a curve of genusg not satisfying the slope inequalities. Ballico ([2])
proved thatg0 exists andg0 � 31. We will show thatg0 D 14.

Proposition 3.1. Let Y denote an integral plane curve of degree d� 6 whose
singularities areÆ ordinary double points. Assume thatÆ � 2d � 12. Then we have
d3 � 2d � 4 for the normalization X of Y .

Proof. Let n WD d3, and assume thatn � 2d � 5. Then theg3
n on X cannot be

cut out onY by conics. In fact, letP be a linear series of conics cutting outg3
n on

Y (in the sense of [4]). IfP has a base curve thenP splits off a line, and sog3
n

is already cut out onY by lines which is impossible. LetP1, : : : , Pr be the base
points ofP (r � 0); including infinitely near points. Note that no 3 of these points are
collinear since the line through 3 collinear points would bea base curve ofP . So P
is contained in the linear seriesP 0 WD j2l � P1� � � � � Pr j of P2 with the assigned base
points P1, : : : , Pr where l denotes the class of a line inP2 ([8], V, 4), and we have
3 � dim(P 0) D 5� r ([8], V, 4.2), i.e. r � 2. SinceY has merely double points this
implies thatn � 2d � 2r � 2d � 4 (and equality holds iffr D 2 and P1, P2 both are
double points ofY which can happen forÆ � 2 only). This is a contradiction.

Since n � 2d � 5 and Æ � 2d � 12 we haven C Æ < 4(d � 4) which implies,
according to the main lemma in [4], thatg3

n is cut out onY by a linear seriesP of
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plane cubics. Sinceg3
n is not cut out onY by lines or conicsP has no base curve.

Again, let P1, : : : , Pr be the base points ofP . ThenP j P

0

WD j3l � P1 � � � � � Pr j,
and we have 3� dim(P 0) D 9� r ([8], V, 4.4), i.e. r � 6. SinceY has merely double
points this implies thatn � 3d � 2r � 3d � 12D (2d � 4)C (d � 8), a contradiction
for d � 8. If d D 6 the plane sexticY is smooth; thend3 D 2d � 2D 10 ([12], 4.3).
If d D 7 the plane septicY has, by hypothesis, at most two singular points; hence
n � 3d � 2.2� 4.1D 3d � 8D 13� 10D 2d � 4, again.

Corollary 3.2. In Proposition 3.1let Æ � 2. Then d3 D 2d � 4.

Proof. X has two different base point free pencilsg1
d�2, and their sum is then a

gn
2d�4 for somen� 3 (e.g., [1], III, ex. B-2). Henced3 � 2d�4, and so Proposition 3.1

proves the result.

Corollary 3.3. In Proposition 3.1let Æ D 1. Then d3 D 2d � 3.

Proof. X has a base point freeg1
d�2; then dimjg2

dCg1
d�2j � 4. Henced3 � 2d�3.

If d3 < 2d� 3 we haved3C Æ < 3(d� 3), and according to the main lemma in [4] the
g3

d3
is cut out onY by conics. But then the arguments in the first part of the proofof

Proposition 3.1 (withÆ D 1) give a contradiction.

Corollary 3.4. For g D 6, 10, 14, 15and g� 20 there exists a curve of genus g
such that d2=2< d3=3.

Proof. Forg D (d � 1)(d � 2)=2 andd � 5 (note that this implies the casesg D
6, 10, 15, 21) we use [12], 4.3. For the remainingg � 22 we can writeg D (d �
1)(d� 2)=2� Æ with suitabled � 9, 1� Æ � d� 3 and apply Proposition 3.1 (note that
d � 3 � 2d � 12 andd2 � d). For g D 14 resp.g D 20 we apply Corollary 3.3 (for
d D 7 resp.d D 8).

With some effort one can extend Corollary 3.4 tog D 18 andg D 19; we don’t
need this fact.

Theorem 3.5. (i) There is a curve of genus g violating the slope inequalities if
and only if g� 14, or g 2 {6, 9, 10, 12}.
(ii) More precisely, a curve of genus g< 14 violating the slope inequalities is an ex-
tremal curve, namely

• a smooth plane curve of degree5 or 6 (g D 6 resp. gD 10),
• an extremal space curve of degree8 (g D 9; [12],4.7),
• an extremal space curve of degree9 (gD 12; d1D 4, d2D 8, d3D 9, d4D 12,
d5 D 13, d6 D 16),
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• an extremal curve of degree11 in P

4 (g D 12; d1 D 4, d2 D 7, d3 D 10,
d4 D 11, d5 D 14, d6 D 15).

Proof. (i) Assume thatg � 14 or g 2 {6, 9, 10, 12}. To observe the existence of
a curve of genusg not satisfying the slope inequalities we first apply Corollary 3.4 for
g � 20 and forg D 6, 10, 14, 15. Forg D 9, 12, 16, 18, resp.g D 19 we apply [12],
2.1 and 4.13, resp. [12], 4.15.

To settle the remaining casegD 17 let S denote a general K3-surface inP5. Then
Pic(S) is generated by (the class of) a hyperplane sectionH , deg(S) D H2

D 8, and
S is known to be a complete intersection of three quadrics. LetX denote a smooth
irreducible curve onS contained in the linear seriesj2H j of S. Then X is a complete
intersection of four quadrics inP5, of genusg D 1C (2H )2

=2 D 17 and degreed D
2H .H D 16. The Clifford index of X is computed byg5

16 WD jH jXj ([6], 3.2.6);
hence D 6. We haved1 D 8 ([6], 3.2.1) andd5 D 16. We will show thatd3 D 14
which implies thatd6 � 20 (sincejKX � g6

19j D g3
13) and sod5=5< d6=6. Assume that

d3 < 14. Then we haved3D 12 or d3D 13. First, letd3D 13. Then ag3
13 on X is base

point free and simple, and so we have dimjg5
16� g3

13j � 2.5C (3� 1)� dimjg5
16C g3

13j,
according to [1], III, ex. B-6. Sinced1 > 3 the seriesjg5

16C g3
13j has dimension (16C

13)�gD 12 or (16C13)�gC1D 13. In the first case we see that dimjg5
16�g3

13j � 0.
In the latter case we havejg5

16C g3
13j � jKXj D j2g5

16j, i.e. dimjg5
16 � g3

13j � 0, again.
Hence anyg3

13 on X is obtained by the projection ofX into P3 with center a trisecant
line of X. Similarly, for d3 D 12 (note that ag3

12 on X computes and is therefore
base point free and simple, [11]) an analogous argument shows that theg3

12 is obtained
by the projection ofX into P

3 with center a quadrisecant line ofX. But any tri- or
quadrisecant line ofX is contained in the four quadrics intersecting inX whence it is
a part of X which is impossible. Hence we haved3 D 14 (andd4 D 15).

Conversely, letg � 13, g � {6, 9, 10, 12}; we have to show that every curveX
of genusg satisfies the slope inequalities, then. We may assume thatg > 8, d1 � 4
and thatX is not bi-elliptic ([12], Section 4). Henceg D 11 or g D 13, and we treat
these two cases separately by brutal force (checking all possibilities for the gonality
sequence ofX without claiming that all these possibilities can actuallybe realized).
To begin with, we state the

Claim. Let g2
d be a base point free and simple net on a curve X such that the in-

duced plane model Y of X of degree d has(at least) two double points P, Q (i.e. points
of multiplicity 2). Assume that P and Q are different points ofP

2 or that Q is infinitely
near P2 P2. Then we have d3 � 2d � 4.

To prove the claim, ifP, Q are different points ofP2 the two projectionsY! P

1

with center P resp. Q induce two different base point free pencilsL1, L2 of degree
d � 2 on X such that dimjL1 C L2j � 3 (e.g., [1], III, ex. B-2). Based on this result,
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a semi-continuity argument implies: IfP 2 P2, Q is infinitely near toP on X and L
is the base point free pencil onX defined byP then dimj2Lj � 3.

Let g D 11 or g D 13. ThenX is not a smooth plane curve, and sod2 � d1C 2.
Furthermore,X has nog2

6 (such a series implies thatg � 10 or that X is hyper- or
bi-elliptic or trigonal); henced2 � 7. Note that by duality, it is easy to compute the
dr � g provided that alldr < g are already known. And it suffices to computedr up
to r � g� d2C 2, by Corollary 2.2.

Let g D 11. By Brill–Noether theory ([1], V, (1.1)) we haved1 � 7, d2 � 10 and
d3 � 12. Moreover,d3 � 9 (a g3

8 implies thatg � 9 or that X is hyper- or bi-elliptic),
and d3 D 9 implies d1 D 4 since X—not being trigonal—is then birational equivalent
to a space nonic lying on a quadric surface ([9], 3.13); so oneof the (at most two)
rulings of the quadric induces ag1

4 on X. Keeping this in mind we obtain, ford1 � 5,
one of the following six possibilities for the gonality sequence of X; below the table
we add some arguments.

d1 d2 d3 d4 d5 d6

1 4 7 9 11 13 15
2 4 8 10 or 11 12 14
3 5 7 10 12 13 15
4 5 8 10 or 11 12 14
5 5 9 10 or 11 13
6 5 10 12

As to 1: By [12], 3.1 (d),jg1
4 C g2

7j D g4
11 D jKX � g3

9j; so d3 D 9 whence ag4
10

on X would be very ample thus implyingg � 9, by Castelnuovo’s bound ([12], 2).
As to 2: jKX � g2

8j D g4
12 (so d3 < d4 � 12). Assume that there is ag3

9 on X.
Then (see above)X is birationally equivalent to a space nonicY on a quadric surface;
if Y is singular we obtain ag2

7 on X contradictingd2 D 8. So Y is a smooth space
curve of genus 11 on a quadric which is impossible since 11 is aprime number ([8],
IV, 6.4.1).

As to 3: Recall thatd3 D 9 would imply d1 D 4. So our claim (withd D 7)
implies d3 D 10.

If d1 D 6 or d1 D 7 there are no difficulties to compute the possible gonality se-
quences. Again, in all these cases the slope inequalities are satisfied.

Let gD 13. By Brill–Noether theory we haved1 � 8, d2 � 11 andd3 � 13. More-
over, d3 � 10 andd4 � 12 (a g3

9 or g4
11 implies, by Castelnuovo’s bound, thatg � 12,

or that X is hyper- or bi-elliptic or trigonal).
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We have, ford1 � 6, the following possibilities for the gonality sequence ofX;
below the table we add some arguments.

d1 d2 d3 d4 d5 d6 d7 d8

1 4 8 10 12 or 13 14 16 18
2 4 8 11 12 or 13 15 16 18
3 4 8 12 14 15 16 18
4 5 7 10 12 14 16 17 19
5 5 8 10 13 14 16 18
6 5 8 11 13 15 16 18
7 5 9 11 13 15 17
8 5 9 12 or 13 14 15 17
9 5 10 11 13 16
10 5 10 12 or 13 14 16
11 6 8 11 12 or 13 15 16 18
12 6 8 12 14 15 16 18
13 6 9 11 12 or 13 15 17
14 6 9 12 or 13 14 15 17
15 6 10 11 13 16
16 6 10 12 or 13 14 16
17 6 11 12 or 13 15

As to 1, 2, 3 (d1 D 4): Here d2 � 2d1 D 8 and d3 � 3d1 D 12. A g2
7 induces a

g4
11D jg

1
4C g2

7j ([12], 3.1 (d)), a contradiction. Andd3 � 11 means thatd4 � 13 (since
g4

13D jKX � g3
11j).

As to 4: Note that dimj2g2
7j � 5 and dimjg1

5 C g2
7j � 4 ([12], 3.1 (d)).

As to 5, 6: Ford1 D 5, d2 � 8 we haved4 > 12, according to [15], Theorem 1.
For d2 D 8 we havejg1

5 C g2
8j D g4

13D jKX � g3
11j; so d4 D 13, d3 � 11.

As to 7, 8: As before,d4 > 12. If d3 D 10 thend2 D 9 implies thatX is a smooth
space curve of degree 10; forg D 13 it lies on a quadric surface ([9], 3.13) which is
impossible since 13 is a prime number.

As to 9, 10: As before,d4 > 12. Clearly,d2 � 2d1 D 10.
As to 11, 12: SinceX has Clifford index 4 it cannot have ag3

10 ([11]). Hence
we haved3 � 11. We claim thatd3 D 13 is impossible. Assume that ag2

8 on X (we
are in the cased2 D 8) is not simple. Then it is easy to see that it induces a double
covering X ! Y upon a smooth plane quarticY. So X has infinitely many base point
free pencils of degree 6. Taking two different of these pencils, L1, L2 say, we have
dimjL1 C L2j � 3 whenced3 � 12. Assume that ag2

8 on X is simple. Sinced1 D 6,
X is birational equivalent to a plane octic with 8 double points. Applying our Claim
we see thatd3 � 16� 4D 12.

As to 13, 14: As before,d3 � 11.
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As to 15: Sinced5 D 16 it is important in this case thatd4 > 12. But a g4
12 on

X is very ample (sinced3 D 11) whenceX is a smooth curve of degree 12 inP4; as
such it has a trisecant line ([14], Lemma 4), and the projection with center this line
gives us ag2

9 on X contradictingd2 D 10.
If d1 D 7 or d1 D 8 there are no difficulties to compute the possible gonality se-

quences. Again, the slope inequalities are satisfied.
(ii) The assertions (forg D 6, 9, 10, 12) follow from analogous considerations as

in the proof of (i); we omit the details.

4. Extremal space curves

In this section,X denotes anextremal space curveof degreed. We want to com-
pute the first members of the gonality sequence ofX. (By Theorem 3.5 we may as-
sume thatd � 10.) X has genusgD [((d�2)=2)2] and lies on a unique quadric surface;
if this quadric surface is smoothX is of type (d=2, d=2) resp. ((d � 1)=2, (d C 1)=2)
on it if d is even resp. odd ([8], IV, 6.4, 6.4.1). We haved1 D [d=2], d2 D d � 1 and
d3 D d ([12], 4.8, 4.10).

Lemma 4.1. Let � 2 N. If � � (d�2)=2 we havedimj�g3
dj D �(�C2), d

�(�C2) D

�d, and if � < [(d � 2)=2] we have g�(�C2)
d
�(�C2)

D j�g3
dj for the unique web g3d on X.

Proof. The uniqueness of theg3
d and the claim for� < [(d � 2)=2] follows from

[12], 2.3. Let � D [(d � 2)=2]. Then �(� C 2) � g and so ([12], 3.2 (a))d
�(�C2) D

�(� C 2)C g D �d, and j�g3
dj is non-special of dimension�d � g D �(� C 2).

If the quadric surface containingX is not smooth (i.e. is a quadric cone) then,
according to [10],X is doubly covered by a smooth plane curveC of the same degree
d; in that case we can try to relate the divisor theory ofC ([5]) to that of X. To do
so we recall from [5] the following notion:

DEFINITION. A base point free and very specialgr
n on a smooth plane curveC

of degreed is called trivial if it is some multiple of the unique netg2
d minus some

points which impose independent linear conditions, i.e. ifwe havegr
n D j�g2

d � Ej
for � 2 N and an effective divisorE of C such thatr D dimj�g2

dj � deg(E). (Note
that the latter condition implies thatj�g2

dj is special sincegr
n is; in particular, we have

� � d � 3 and dimj�g2
dj D �(�C 3)=2.)

Proposition 4.2. Let X denote an extremal space curve of degree d lying on a
quadric cone. Let d� 21, and for � 2 N let r (�) WD [�(� C 4)=4]. Assume that� � 7.
Then we have dr (�) D [�d=2], and for r(��1)< r < r (�) we have dr D dr (�)� (r (�)�r )
(� � 2). (Furthermore, this remains true for dD 10, 11, 12,resp. dD 13, 14, 15, 16,
resp. dD 17, 18, 19, 20if � � 4, resp. � � 5, resp. � � 6.)
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Proof. By [10], there is a smooth plane curveC of degreed having an auto-
morphism� of order 2 such that the quotient curveC=h� i is isomorphic toX. Let
� W C ! X be the resulting double covering. Using affine coordinates,� can be de-
fined by (x, y) 7! (x, �y) and � by (x, y) 7! (x, y2) where, by [10],C is defined by
the affine equation

yd
C a1(x)yd�2

C a2(x)yd�4
C � � � C am(x) D 0

if d D 2m is even, resp. by

xyd�1
C a1(x)yd�3

C a2(x)yd�5
C � � � C am(x) D 0

if d D 2mC 1 is odd. Herea j (x) denotes a polynomial of degree at most 2j for even
d, resp. of degree at most 2j C 1 for odd d, and am(x) is separable of degreed.

� hasd fixed pointsP1, : : : , Pd lying on the lineyD 0 (thus being defined by the
d zeroes ofam(x)), and for oddd there is still another fixed pointP

1

corresponding
to x ¤1, y D1.

For � 2 N let V (�) be the vector space of (inhomogeneous) polynomials inx, y of
degree at most� and V (�)

e (resp.V (�)
o ) be the subspace ofV (�) consisting of� -invariant

(resp.� -anti-invariant) polynomials. Lete(�) WD dim(V (�)
e ). Since V (�)

o is isomorphic
to V (��1)

e we havee(�) C e(� � 1) D dim(V (�)) D (� C 1)(� C 2)=2 whencee(�) D
[((� C 2)=2)2]. Note thate(�) � 1 is the numberr (�) defined in the statement of the
proposition, and note thatr (�) � [�=2] D r (� � 1)C 1 (� � 2).

Since the� -invariant part ofj�g2
dj D g�(�C3)=2

�d can be pushed forward to agr (�)
[�d=2]

on X we havedr (�) � [�d=2], and sodr (�)� j � [�d=2] � j for j D 0, 1, : : : , [�=2]. If
we can show that we have equality here forj D [�=2] (i.e. dr (��1)C1 D dr (�)�[�=2] D

[�d=2] � [�=2]) then we have equality for allj D 0, 1, : : : , [�=2]. For doing so, let

r WD r (�) �

�

�

2

�

D

��

� C 1

2

�2�

,

and we consider the seriesj��(gr
dr

)j on C in the following claims.

Claim 1. Let r be as above. If d� 10 and � < d=2 then j��(gr
dr

)j is very special.

To see this, observe thatj��(gr
dr

)j is a grC"
2dr

on C (" � 0) of degree 2dr �

2([�d=2]� [�=2]) � �d � � C 1 (where 2dr D �d � � C 1 is only possible ifd is even
and � is odd). This series has index of specialityh1(j��(gr

dr
)j) D g(C)� 2dr C r C " �

(d � 1)(d � 2)=2� 2dr C r ; plugging in for 2dr and r one easily computes that

4h1(j��(gr
dr

)j) � 2d(d � 3)� 4�dC �2
C 6� C 1,
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and since�2
C 6� � 12� � 9 we obtain

h1(j��(gr
dr

)j) � (d � 3)(d � 2�)=2� 2.

Hence for 2� < d we see thath1(j��(gr
dr

)j) > 1 if d � 10.

Claim 2. Let r be as above. Ifj��(gr
dr

)j is a trivial series on C then dr D
[�d=2] � [�=2] (as wanted).

To prove the claim, letj��(gr
dr

)j D j�g2
d � Ej for an effective divisorE of C and

some� � d�3 such thatrC" D dimj��(gr
dr

)j D �(�C3)=2�deg(E). The (incomplete)

linear subseries��(gr
dr

)CE of j�g2
dj with base locusE is cut out onC by � -invariant

polynomials passing throughE; since its moving part��(gr
dr

) is � -invariant so is its
fixed part E, i.e. � (E) D E.

Let V (�)(E) denote the subspace ofV (�) consisting of polynomials of degree at most
� which pass throughE, and letV (�)

e (E) (resp.V (�)
o (E)) be the� -invariant (resp.� -anti-

invariant) subspace ofV (�)(E). Since� (E)D E we haveV (�)(E)D V (�)
e (E)�V (�)

o (E);
hence dim(V (�)

e (E)) D r C 1 and dim(V (�)
o (E)) D ". We clearly haveV (�)

e (E) � V (�)
e ,

i.e. [((� C 1)=2)2] C 1D r C 1� e(�) D [((�C 2)=2)2] which implies that� � �.
Let Q be a point inE. Then � (Q) 2 E. Assume thatQ is a fixed point of� .

If Q 2 {P1, : : : , Pd}, since the tangent line toC at Q is � -invariant, the intersection
multiplicity of it and C at Q is even; so 2Q� E. If d is odd thenQD P

1

is possible,
too. By the equation ofC for odd d it is easy to see: IfQ D P

1

and deg(E) D
�d � 2dr is even then 2Q � E, again, and ifQ D P

1

and deg(E) is odd we even
have 2Q � E � Q.

Now, take a pointQ1 2 E (resp. Q1 2 E � P
1

iff deg(E) is odd), and letQ2 WD

� (Q1). Since j�g2
d � Ej is trivial so is j�g2

d � (E � Q1 � Q2)j which implies that
dim(j�g2

d � (E � Q1 � Q2)j) D r C " C 2. On the other hand, since�(Q1) D �(Q2)

and V (�)
o (E) is isomorphic toV (��1)

e (E) we have dim(V (�)
e (E� Q1� Q2)) � r C 2 and

dim(V (�)
o (E � Q1 � Q2)) � " C 1. Hence we obtain dim(V (�)

e (E � Q1 � Q2)) D r C 2.
Repeating this process until we have exhausted the points inE (resp. in E � P

1

)
we havee(�) D r C 1C [deg(E)=2] D e(�) � [�=2]C [(�d � 2dr )=2], i.e.

r (�) � r (�) D

�

�d

2

�

�

�

�

2

�

� dr .

If � D � we obtain dr D [�d=2] � [�=2], as wanted. So assume that� < �.
Note that

r (�) � r (�) D

�

�(�C 4)

4

�

�

�

�(� C 4)

4

�

�

�

2
� �

2
C 4(� � �)C 1

4
.

So we havedr � [�d=2]� [�=2]� ((�� �)(�C � C 4)C 1)=4. It suffices to show
that the right hand side of this inequality is at least [�d=2] � [�=2], i.e. to show that
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[�d=2]� [�d=2] � ((�� �)(�C �C4)C1)=4. But [�d=2]� [�d=2] � ((�� �)d�1)=2,
and we have ((�� �)d � 1)=2� ((�� �)(�C � C 4)C 1)=4 since this latter inequality
just means that (� � �)(2d � 4� � � �) � 3 which is true for� < � � d � 3. This
proves the claim.

The next claim proves the proposition.

Claim 3. Let r be as above, and assume that� � 4 for 10� d � 12, � � 5 for
13� d � 16, � � 6 for 17� d � 20, and � � 7 for d � 21. Then dr D [�d=2]� [�=2].

In fact, our assumptions on� imply that � < d=2, and so Claim 1 implies that
j�

�(gr
dr

)j is very special. Write ourr D [((� C 1)=2)2] in the form r D (x C 1)(x C
2)=2 � � with non-negative integersx and � � x. If we then have deg(��(gr

dr
)) D

2dr < d(r ) WD (x C 3)(d � 3)� � then, according to the main result in [5], the series
j�

�(gr
dr

)j is even trivial.
Now assume thatdr < [�d=2] � [�=2], i.e. 2dr � �d � � � 1 if d is even and� is

odd, and 2dr � �d� � � 2 for the other parities ofd and �. Then it turns out (by our
hypotheses ond and �) that 2dr < d(r ). (In fact, we note thatr D 1, 2, 4, 6, 9, 12, 16
for � D 1, : : : , 7, and one computesd(1)D 3d � 9, d(2)D 4d � 13, d(4)D 5d � 17,
d(6) D 5d � 15, d(9) D 6d � 19, d(12) D 7d � 24, d(16) D 8d � 29.) By [5], we
consequently see thatj��(gr

dr
)j is trivial (r � 16). But then Claim 2 implies thatdr D

[�d=2] � [�=2], a contradiction.

Recall thatr (�) D [�(� C 4)=4] and that, by Lemma 4.1, dimj�g3
dj D �(� C 2)D

r (2�) for � � (d � 2)=2. Here we add

Lemma 4.3. dimj�g3
d C g1

d1
j D r (2� C 1) if � � (d � 2)=2. In particular, dr (�) �

((� � 1)=2)dC d1 D [�d=2] for odd � � d � 1.

Proof. If � D [(d � 2)=2] then j�g3
d C g1

d1
j is non-special, and the claim follows

from the Riemann–Roch theorem. So let� < [(d� 2)=2]. First, let X lie on a smooth
quadric surface. Since this surface has two rulingsX has a pencil of degreed1 different
from our choseng1

d1
resp. a base point free pencilg1

d1C1 if d D 2d1 resp.d D 2d1C 1.

Call this pencil L; we then haveg3
d D jg

1
d1
C Lj. By the base point free pencil trick

([1], III. ex. B-4),

2 dimj�g3
d C g1

d1
j � dimj(�g3

d C g1
d1

)C Lj C dimj(�g3
d C g1

d1
) � Lj,

and

2 dimj�g3
d � g1

d1
j � dimj(�g3

d � g1
d1

)C Lj C dimj(�g3
d � g1

d1
) � Lj.

Observe thatj�g3
d C g1

d1
C Lj D j(� C 1)g3

dj, j�g3
d � g1

d1
� Lj D j(� � 1)g3

dj and

degj�g3
d C g1

d1
� Lj � �d. But j�g3

d � g1
d1
C Lj has degree�d resp. �d C 1 if d is
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even resp. odd. Letgr
�dC1 WD j�g3

d � g1
d1
C Lj for odd d. By Lemma 4.1 we know that

r � r (2�)C1. Assume thatr D r (2�)C1. Then, for someP 2 X, jgr
�dC1�Pj D gr (�)

�d D

j�g3
dj, by Lemma 4.1, which implies thatjKX��g3

dj has the base pointP; but we have
jKX�((d�5)=2)g3

dj D g1
d1

, and so the seriesjKX��g3
dj D j(((d�5)=2)g3

dCg1
d1

)��g3
dj D

j((d � 5)=2� �)g3
d C g1

d1
j is base point free. Hence we haver � r (2�).

Now Lemma 4.1 gives us

2 dimj�g3
d C g1

d1
j � r (2� C 2)C (r (2�) � 1)

D (� C 1)(� C 3)C �(� C 2)� 1D 2�2
C 6� C 2D 2r (2� C 1),

2 dimj�g3
d � g1

d1
j � r (2�)C r (2� � 2)

D �(� C 2)C (� � 1)(� C 1)D 2�2
C 2� � 1D 2r (2� � 1)C 1,

i.e. dimj�g3
d C g1

d1
j � r (2� C 1) and dimj�g3

d � g1
d1
j � r (2� � 1).

On the other hand, it follows that dimj�g3
d C g1

d1
j � 2 dimj�g3

dj � dimj�g3
d � g1

d1
j �

2r (2�) � r (2� � 1) D 2�(� C 2)� (�2
C � � 1) D �

2
C 3� C 1 D r (2� C 1), and this

proves our claim.
Let X lie on a quadric cone. ThenX has a uniqueg1

d1
, and j2g1

d1
j D g3

d

resp. j2g1
d1
C Pj D g3

d for some point P 2 X if d D 2d1 resp. d D 2d1 C 1. Since
X is a specialization of an extremal space curve of degreed on a smooth quadric
surface we have dimj�g3

d C g1
d1
j � r (2� C 1), by semi-continuity. On the other hand,

2 dimj�g3
d C g1

d1
j � dimj(�g3

d C g1
d1

)C g1
d1
j C dimj(�g3

d C g1
d1

) � g1
d1
j,

and j�g3
dC g1

d1
C g1

d1
j is j(�C 1)g3

dj resp.j(�C 1)g3
d � Pj if d is even resp. odd. Hence

we have

2 dimj�g3
d C g1

d1
j � (� C 1)(� C 3)C �(� C 2)D 2r (2� C 1)C 1,

i.e.

dimj�g3
d C g1

d1
j � r (2� C 1).

An extremal space curve on a smooth quadric surface is a generization of an ex-
tremal space curve of the same degree on a quadric cone, and the numbers in the go-
nality sequence can only grow by generization ([12], 3.4). Hence our previous results
in this section imply the

Theorem 4.4. The claims ofProposition 4.2hold for any extremal space curve
X of degree d.

Corollary 4.5. Let d � 10. Then d3=3 < d4=4 and d8=8 < d9=9, and if d> 10
we also have d5=5< d6=6.
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In [3], Ballico already observed, in a broader context, thatd3=3< d4=4 for d� 0.

QUESTIONS. How far does the pattern in the gonality sequence ofX (observed
in its first part) continue to hold? And can Corollary 4.5 be generalized to an extremal
curve of degreed� 0 in P r ; in particular, do we havedr =r < drC1=(r C 1) (r � 4)?
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