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Abstract
Consider the problems

�

�1pu D f in �, u D 0 on ��,
�1pv D g in �, v D 0 on ��,

where � is a bounded domain inRn with smooth boundary��, 1pz D

div(jrzjp�2
rz), p > 1. We prove a strong comparison principle that allowsf � g to

change sign. An application to singular asymptoticallyp-linear boundary problems
is given.

1. Introduction

Consider the problems

(1.1)

�

�1pu D f in �, u D 0 on ��,
�1pv D g in �, v D 0 on ��,

where� is a bounded domain inRn with a smooth boundary�� 2 C2,� for some
� 2 (0, 1),1pzD div(jrzjp�2

rz), p > 1, and f, g W �! R.
In this paper, we shall establish a strong comparison principle

u > v in � and
�u

��

<

�v

��

on ��,

without requiring that f � g a.e. in�. Here � denotes the outer unit normal vector
on ��. It should be noted that the assumptionsf � g and f ¥ g in � are needed in
previous literature (see e.g. [9] and the references therein). We also provide an applica-
tion to the existence of positive solutions for a class of singular p-Laplacian boundary
value problems with asymptoticallyp-linear nonlinearity.

Let d(x) D d(x, ��) be the distance fromx to ��, we prove the following result:
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Theorem 1.1. Let f, g, g0 2 L1(�) with g� g0 � 0, and g0 ¥ 0. Suppose there
exist constants C> 0 and  2 (0, 1) such that

j f (x)j, g(x) �
C

d (x)

for a.e. x2�, and there exist a function h2 C(�), h> 0, and constants" � 0, m,M >

0 with m� M such that

f � g � m

�

h �
"

d

�

in �.

Let u, v 2 W1,p
0 (�) be solutions of(1.1). Then there exists a positive constant"0 de-

pending on n, �, p,  , C, M, h, g0 (but not on m), such that

u > v in � and
�u

��

<

�v

��

on ��

for " < "0. If " D 0, the result holds under the weaker condition that h is a nonnegative
nontrivial measurable function in�.

REMARK 1.1. When g � 0, the conclusion of Theorem 1.1 holds under the
weaker assumption thath is a nonnegative nontrivial measurable function in�. In
this case,"0 is independent ofM. Indeed, let Nu, Nv be the solutions of

�1p Nu D Qh �
"

d
in �, Nu D 0 on ��,

�1p Nv D Qh in �, Nv D 0 on ��,

respectively, whereQhD min(h, 1=d ). By the strong maximum principle [12, 14], there
exists a constantÆ > 0 such thatNv � Æd in �. Using Lemma 2.3 in Section 2, we
deduce that

Nu � Nv �
Æ

2
d �

Æ

2
d

if " is sufficiently small. This implies

u � m1=(p�1)
Nu > m1=(p�1) Æ

2
d > 0 in �

and �u=�� < 0 on ��.

As an application of Theorem 1.1, consider the boundary value problem

(1.2)

8

<

:

�1pu D
q(x)

u�
C � f (u) in �,

u D 0 on ��,
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where� 2 (0, 1), q, f satisfy the following assumptions:
(A1) f W (0,1)! R is continuous and there exists a constantk > 0 such that

lim
u!1

f (u)

up�1
D k.

(A2) There exists a constantÆ 2 (0, 1) such that

lim sup
u!0C

uÆj f (u)j <1.

(A3) There exist constantsA, "0 > 0 such that

f (u) � kup�1
C "0 for u > A.

(A4) q W � ! R is measurable and there exist constants�, L > 0 with � C � < 1,
such that

jq(x)j �
L

d�(x)

for a.e. x 2 �.
Let �1 be the first eigenvalue of�1p with Dirichlet boundary condition, and let�1

be the corresponding positive eigenfunction withk�1k1 D 1. Note that, since��1=�� <

0 on ��, Theorem 1.1 holds ifd is replaced by�1. Let �
1

D �1=k. Then we have

Theorem 1.2. Let (A1)–(A4) hold. Then there exists a constantQ" > 0 such that
for �

1

� Q" < � < �

1

, problem (1.2) has a positive solution u
�

2 C1,� ( N�) for some
� 2 (0, 1) with

u
�

�

�

�

1

"0

4k(�
1

� �)

�1=(p�1)

�1 in �.(�)

Theorem 1.3. Let q� 0, q ¥ 0. Suppose f� 0, (A2), (A4) hold, and

lim sup
u!1

f (u)

up�1
D k

for some k2 (0,1). Then problem(1.2) has a positive solution u
�

for � < �
1

. If, in
addition,

f (u) � kup�1 for all u > 0,

then (1.2) has no positive solution for� � �
1

, and

ku
�

k

1

!1 as �! �

�

1

.
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EXAMPLE 1.1. (i) Let f (u) D �1=uÆ C up�1
C uq, where Æ 2 (0, 1) and 0�

q < p�1. Then f satisfies (A1)–(A3) withk D 1, and so (1.2) has a positive solution
when � is sufficiently close to�1 and � < �1, by Theorem 1.2.
(ii) Let f (u)D 1=uÆCup�1(mjsinujCe1=(1Cu)), whereÆ 2 (0,1), m� 0. Then it follows
from Theorem 1.3 that, ifm> 0, (1.2) has a positive solution for� < �1=(mC1), and,
if mD 0, (1.2) has a positive solution if and only if� < �1.

REMARK 1.2. It should be noted that Theorem 1.2 may not be true when"0D 0.
Indeed, by multiplying the equation in (1.2) byu and integrating, we see that (1.2) has
no positive solution for� < �

1

when q � 0 and f (u) D kup�1.

REMARK 1.3. In [15], assuming thatf is continuous and nonnegative on [0,1),
limu!1

f (u)=u D k 2 (0,1), and f satisfies some additional conditions at 0, Zhang
showed via variational method that (1.2) withp D 2 has a positive solution for� 2
(0,�1=k), provided thatq � 0, q ¥ 0, q���1 2 Lr (�), wheren=2< r . The result in [15]
was improved by Hai in [4], using sub- and super solutions approach. The proof in [4]
depends on the linearity of the Laplacian and can not be applied to the general case
where p> 1, except for radial solutions in a ball [6]. Related resultson the case where
f is nonsingular can be found in Ambrosetti, Arcoya, and Buffoni [1], Ambrosetti and
Hess [2], and Ambrosetti, Garcia Azorero, and Peral [3]. Theapproach in [1, 2, 3]
was via bifurcation theory forp D 2 in [1, 2] and p > 1 in [3]. Thus, Theorems 1.2
and 1.3 provide extensions of corresponding results in [1, 2, 3, 4, 6, 15] to the singular
p-Laplacian case. Note that the precise lower bound estimate(�) has not been obtained
in previous literature.

2. Preliminary results

Let D be a bounded domain inRn with a smooth boundary�D.
We shall denote the norm inCk,�( ND) and Lk(D) by j � jk,� and k � kk respectively.

The distance fromx to �D is denoted byd(x, �D).
We first recall the following regularity result in [5, Lemma 3.1], which plays an

important role in the proofs of our main results.

Lemma A. Let h2 L1loc(�) and suppose there exist numbers 2 (0,1) and C> 0
such that

jh(x)j �
C

d (x)
(3.1)

for a.e. x2 �. Let u2 W1,p
0 (�) be the solution of

�

�1pu D h in �,
u D 0 on ��.

(3.2)
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Then there exist constants� 2 (0, 1) and QM > 0 depending only on C,  , � such that
u 2 C1,�( N�) and juj1,� < QM.

Let

Lu D �
n
X

i , jD1

�

�xi

�

ai j (x)
�u

�x j

�

,

whereai j 2 C0,�( ND), 1� i , j � n, for some� 2 (0,1), and suppose there exist constants
m0, m1 > 0 such that

(2.1) jai j j0,� � m1

for 1� i , j � n, and

(2.2)
n
X

i , jD1

ai j �i � j � m0j� j
2

for all � D (�1, : : : , �n) 2 Rn.

Lemma 2.1. Let h 2 L1(D) and suppose there exist constants C> 0 and  2
(0, 1) such that

(2.3) jh(x)j �
C

d (x, �D)

for a.e. x2 D. Let w 2 H1
0 (D) be the solution of

(2.4)

�

Lw D h in D,
w D 0 on �D.

Then there exist constants� 2 (0, 1) and QM > 0 depending only on m0, m1, C,  , D,
n, such thatw 2 C1,�( ND) and

jwj1,� � QM .

Proof. Let� 2 C1( ND) be the solution of

L� D 1 in D, � D 0 on �D.

Then there exists a constantC0 > 0 independent ofai j such that�(x) � C0d(x, �D)
for all x 2 D. Let a D 21=(1� )

k�k

1

and h0 W [0, a] ! R satisfy

8

<

:

�h000 D
1

t
, 0< t < a,

h0(0)D 0, h00(a) D 0.
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Note thath0(t) D (t=(1�  ))(a1�
� t1�

=(2�  )). A calculation shows that

L(h0(�)) D �h000(�)
n
X

i , jD1

ai j
��

�xi

��

�x j
C h00(�)

�

m0

�



jr�j

2
C

a1�
� �

1�

1� 
�

m0

�



jr�j

2
C

a1�

2(1�  )
�

m2

d (x, �D)
,

wherem2 is independent ofai j . By the weak comparison principle ([11, Lemma A.2],
[13, Lemma 3.1]),

jwj �

C

m2
h0(�) in D,

i.e. w is bounded inD. By Lemma A, the problem

�

�1zD h in D,
zD 0 on �D,

has a solutionz 2 C1,�( ND) for some� 2 (0, 1). Sincew satisfies

�div(A(x, rw) � rz) D 0 in D,

where A D (A1, : : : , An), Ai (x, �) D
Pn

jD1 ai j (x)� j , � D (�1, : : : , �n), the result now
follows from Lieberman [8, Theorem 1].

Lemma 2.2. Let h satisfy(2.3), h � 0, h¥ 0, and letw 2 H1
0 (D) be the solution

of (2.4). Then there exists a constant k0 > 0 depending only on h, m0, m1, C,  , D,
n such that

w(x) � k0d(x, �D)

for all x 2 D.

Proof. Let3 be the set of all solutionsw of (2.4) among the coefficientsai j that
satisfy (2.1) and (2.2). By the strong maximum principle,w > 0 in � and �w=�� < 0
on �D. By Lemma 2.1,w 2 C1,�( ND) and there exists a constantQM > 0 such that
jwj1,� � QM for all w 23. Since3 is closed inC1( ND), 3 is compact inC1( ND). Define
G W 3! R by

Gw D inf
x2D

w(x)

d(x, �D)
.

Then G is continuous and positive on3, and therefore has a positive minimum, which
completes the proof.
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Lemma 2.3. Let f, g 2 L1(D) satisfy

j f (x)j, jg(x)j �
C

d (x, �D)

for a.e. x2 � for some constant C> 0. Let u, v be the solutions of(1.1). Then
ju � vj0,1! 0 as k f � gk1! 0.

Proof. Note that f, g 2 L1(�) (see [7, p. 6]). By Lemma A,u, v 2 C1,�( ND) for
some� 2 (0,1), and there exists a constantQM > 0 independent ofu,v, such thatjuj1,�,
jvj1,� � QM . Multiplying the equation

�(1pu �1pv) D f � g in �

by u � v and integrating, we obtain

Z

�

(jrujp�2
ru � jrujp�2

ru) � r(u � v) dx D
Z

�

( f � g)(u � v) dx.

Using the inequality [10, Lemma 30.1],

(jxj C jyj)2�min(p,2)(jxjp�2x � jyjp�2y) � (x � y) � cjx � yjmax(p,2)

for x, y 2 Rn, wherec is a positive constant depending only onp, we obtain

Z

�

jr(u � v)jr dx � c1k f � gkL1
ku � vk

1

� c2k f � gkL1,

where r D max(p, 2) andc1, c2 are constants depending only onp, QM .
Hence

ku � vk2! 0

as k f � gk1 ! 0, and sinceC1,�( ND) is compactly imbedded inC1( ND), Lemma 2.3
follows.

3. Proofs of the main results

Proof of Theorem 1.1. By the strong maximum principle, thereexists a constant
Æ > 0 such thatv � Æd in �. Let " 2 [0, 1), m

"

D min(m, ") and Qh D min(h, 1=d ).
Then

f � gCm
"

Qh�
M"

d
�

Qf in �.

Let Qu satisfy

�1p Qu D Qf in �, Qu D 0 on ��.
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Then u � Qu in �, by the weak comparison principle. Since

j

Qf j �
C C 1C M

d
�

QC

d

and
Z

�

j

Qf � gj dx � "(1C M)
Z

�

1

d
dx,

it follows that Qf ! g in L1(�) as " ! 0. Here we have used the fact that 1=d 2
L1(�) (see e.g. [7, p. 6]). Using Lemma 2.3, we see thatQu! v in C1( N�) as " ! 0.
Hence

u � Qu �
Æd

2
in �

if " is sufficiently small, which we shall assume.
By Lemma A, there exist constantsQM > 0 and� 2 (0, 1) independent ofu, v such

that juj1,�, jvj1,� � QM. Thus

(3.1)
Æd

2
� u, v �

QMd in �,

and therefore

u � c0v in �,

wherec0 D Æ=(2 QM).
Let c be the largest number such thatu � cv in �, and suppose thatc � 1. From

(3.1), it follows that
�u

��

,
�v

��

� �

Æ

2
on ��.

For t 2 [0, 1], let wt D truC (1� t)crv. Then

wt � � D t
�u

��

C (1� t)c
�v

��

� �

tcÆ

2
�

(1� t)cÆ

2

D �

cÆ

2
� �

c0Æ

2
on ��,

which implies

(3.2) jwt j �
c0Æ

2
� c1 on ��

for all t 2 [0, 1].
Let x 2 � and x0 2 �� be such thatd(x) D jx � x0j. Since jwt j0,� � QM , it fol-

lows that

jwt (x) � wt (x0)j � QMd�(x),
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which, together with (3.2), implies

(3.3) jwt (x)j � c1 � QMd�(x) �
c1

2
� c2

for x 2 �
�

� {x 2 � W d(x) < �}, where� D (c1=2 QM)1=�.
Next, we have

(3.4) �(1pu �1p(cv)) D f � cp�1g in �,

and the left hand side of (3.4) can be linearized asL(u � cv), where

Lw D �
n
X

i , jD1

�

�xi

�

ai j (x)
�w

�x j

�

and ai j (x) D
R 1

0 (�ai
=�zj )(truC (1� t)crv) dt, ai (z) D jzjp�2z.

Note that, in view of (3.3) and the fact thatjwt j0,� � QM for t 2 [0, 1], the co-

efficientsai j satisfy (2.1) and (2.2) in�
�

with m0 D (p� 1) min( QM p�2, cp�2
2 ).

Let w0, w1 be the solutions of

Lw0 D Qh in �

�

, w0 D 0 on ��
�

,

and

Lw1 D
1

d (x, ��
�

)
in �

�

, w1 D 0 on ��
�

respectively. By Lemmas 2.1 and 2.2, there exist positive constantsM0 andk0 such that

(3.5) w0 � k0d(x, ��
�

), w1 � M0d(x, ��
�

) in �

�

.

Sincec � 1 andd(x) � d(x, ��
�

) for x 2 �
�

,

L(u � cv) � f � g � m

�

Qh �
"

d (x, ��
�

)

�

in �

�

,

and sinceu � cv on ��
�

, it follows from the weak comparison principle and (3.5)
that, for x 2 �

�=2,

(3.6)

u � cv � m(w0 � "w1) � m(k0 � "M0)d(x, ��
�

) D m(k0 � "M0)d(x)

� m

�

k0

2

�

d(x)

if " < k0=2M0. In particular,

u � cv � m

�

k0

2

�

�

2
� mk1 when d(x) D

�

2
.
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If " D 0 then it follows from

�1pu D f � cp�1g D �1p(cv Cmk1) in �

and u � cv Cmk1 on �(� n�
�=2) that

(3.7) u � cv Cmk1 in � n�

�=2.

Suppose" > 0 andh � a > 0 in � n�
�=2. Then we have

�1pu D f � gCm

�

a�
"

d (x)

�

� gCm

�

a�
"

(�=2)

�

� g in � n�

�=2,

if " is sufficiently small. Hence (3.7) holds by the weak comparison principle. This,
together with (3.6), gives the existence of a constantQc > c such thatu � Qcv in �, a
contradiction. Hencec > 1 and thereforeu > v in � and

�(u � v)

��

� (c� 1)
�v

��

< 0 on ��,

which completes the proof.

Proof of Theorem 1.2. Let� > 0 be such that�
1

=2 < � < �

1

. Let c D
(�
1

"0=(4k(�
1

� �)))1=(p�1) and M be a constant such thatM > c. Define

K D v 2 C( N�) W c�1 � v � M�1 in �}.

For eachv 2 K , it follows from Lemma A that the problem

8

<

:

�1pu D
q(x)

v

�

C � f (v) in �,

u D 0 on ��,

has a unique solutionu � Tv 2 C1,�( N�) for some� 2 (0, 1) such thatjuj1,� < QM ,
where�, QM are independent ofv 2 K . We shall show thatT W K ! C( N�) is a compact
operator. In view of the compact embedding ofC1,�( N�) into C1( N�), we need only to
show thatT is continuous. Let (vn) be a sequence inK such thatvn ! v in C( N�),
and letun D Tvn, u D Tv. Let G(w) D q(x)=w� C � f (w) for w 2 K . Then

G(vn)! G(v) pointwise in �,

and it follows from (A2) and (A4) that there exist constantsK , C0 > 0 such that

jG(vn)j �
q(x)

(c�1)�
C

�

1

K

(c�1)Æ
�

C0

d
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for all n, where D max(� C �, Æ). HenceG(vn)! G(v) in L1(�), and Lemma 2.3
implies un ! u in C1( N�), i.e., T is continuous onK .

Next, we shall show that if� is sufficiently close to�
1

and M is large enough
then T mapsK into K . By (A2) and (A3), there exists a constantM0 > 0 such that

(3.8) f (z) � kzp�1
C "0 �

M0

zÆ

for all z> 0. Let v 2 K and u D Tv. Then (3.8) and (A4) imply

�1pu � �
L

(c�1)�d�
C �

�

k(c�1)p�1
C "0 �

M0

(c�1)Æ

�

in �.

Consequently,

�1p

�

u

c

�

� �

L1

cp�1C�
�



1

�

�

1

M0

cp�1CÆ
�



1

C �

�

k� p�1
1 C

"0

cp�1

�

� fc,� in �,

where L1 is a positive constant such thatd=�1 � (L=L1)1=�.
Let Nuc, Nzc be the solutions of

�1p Nuc D fc,� in �, Nuc D 0 on ��,

and

�1pNzc D �

�

k� p�1
1 C

"0

2cp�1

�

� gc,� in �, Nzc D 0 on ��,

respectively. Thenu � cNuc in �. Note that

j fc,�j, jgc,�j �
QC

�



1

,

where QC > 0 depends only on"0, k, p, L1, �
1

, M0. Since

fc,� � gc,� �
1

cp�1

�

�

1

"0

4
�

�

L1

c�
C

�

1

M0

cÆ

�

1

�



1

�

in �,

and

c1�p
�

2k

"0
,

it follows from Theorem 1.1 withm D c1�p, M D 2k="0, h D �

1

"0=4, g0 D

(�
1

=2)k� p�1
1 , that Nuc > Nzc in � for c� 1, which implies

(3.9) u � cNzc � Qzc in �.
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By the choice ofc,

(�1 � �k)cp�1
D

�

1

"0

4
�

�"0

2
.

Hence

�1pQzc D �k

�

(c�1)p�1
C

"0

2k

�

� �1(c�1)p�1 in �,

and since

�1p(c�1) D �1(c�1)p�1 in �,

it follows that

(3.10) Qzc � c�1 in �.

Hence, if � is sufficiently close to�
1

, it follows from (3.9) and (3.10) thatu � c�1

in �.
Next, let Q�

1

> 0 and b > 1 be such that�b < Q�
1

< �

1

. In view of (A1) and
(A2), there exists a constantD > 0 such that

f (z) � kbzp�1
C

D

zÆ

for all z> 0. Hence

�1pu � �kb(M�1)p�1
C

�

1

D C L1

�



1

in �,

for c > 1, which implies

�1p

�

u

M

�

� �kb� p�1
1 C

�

1

D C L1

M p�1
�



1

� fM in �.

Let NuM be the solution of

�1p( NuM ) D fM in �, NuM D 0 on ��.

Then u � M NuM in �. Since

�1p�1 D �1�
p�1
1 in �,

and

�1�
p�1
1 � fM D (�1 � �kb)� p�1

1 �

�

1

D C L1

M p�1
�



1

� k(�
1

�

Q

�

1

)� p�1
1 �

�

1

D C L1

M p�1
�



1

,
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it follows from Theorem 1.1 withu D �1, v D NuM , mD 1, h D k(�
1

�

Q

�

1

)� p�1
1 that

NuM � �1 in � for M � 1. Henceu � M�1 in � for M � 1. Thus T W K ! K and
the result now follows from the Schauder fixed point theorem.

Proof of Theorem 1.3. Letz 2 C1( N�) be the solution of

�1pzD
cq(x)

�

�

1

in �, zD 0 on ��,

where c 2 (0, 1). By Lemma 2.3,z � �1 in � if c is sufficiently small, which we
assume. LetM > 1 be a large constant to be determined later and define

C D {v 2 C( N�) W v � M�1 in �}.

Fix � 2 (0, �
1

) and chooseb > 1 so that�b < �
1

. For eachv 2 C, the problem

8

<

:

�1pu D
q(x)

max�(v, z)
C � f (max(v, z)) in �,

u D 0 on ��,

has a unique solutionu � Sv 2 C1,�( N�) for some� 2 (0, 1) such thatjuj1,� < QM ,
where�, QM are independent ofv 2 C. Sincez� "1d in � for some"1 > 0, it follows
as in the proof of Theorem 1.2 thatSW C ! C( N�) is a compact operator. We shall
show thatSW C! C if M is large enough. Note that any fixed point ofS is positive
in �, by the strong maximum principle. Letv 2 C and u D Sv. Since there exists a
constantD > 0 such that

f (t) � kbtp�1
C

D

t Æ

for t > 0, it follows that

�1pu �
L1

z�C�
C �

�

kb(M�1)p�1
C

D

zÆ

�

in �,

where L1 is defined in the proof of Theorem 1.2. This implies

�1p

�

u

M

�

� �kb� p�1
1 C

�

L1C �1D

M p�1

�

1

z
� gM ,

where D max(� C �, Æ). Let uM be the solution of

�1p(uM ) D gM in �, uM D 0 on ��.

Then u � MuM in �. Since

�1�
p�1
1 � gM � k(�

1

� �b)� p�1
1 �

�

L1C �1D

M p�1

�

1

z
,
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it follows from Theorem 1.1 thatuM � �1 in � for M � 1, which implies

u � MuM � M�1 in �

i.e. u 2 C for M � 1. By the Schauder fixed point theorem,S has a fixed pointu
�

in C. We claim thatu
�

� z in �. Let D D {x 2 � W u
�

(x) < z(x)} and suppose that
D ¤ ¿. Then, sincef � 0,

�1pu
�

�

q(x)

u�
�

�

q(x)

z�
�

q(x)

�

�

1

� �1pz in D.

Since u
�

D z on �D, this implies u
�

� z in D, a contradiction. HenceD D ¿ and
thereforeu

�

� z in � as claimed. Thusu
�

is a positive solution of (1.2).
Next, supposef (u) � kup�1 for u> 0. Let � � �

1

and letu be a positive solution
of (1.2). Thenu > 0 in � and �u=�� < 0 on �� by the strong maximum principle.
Let c > 0 be the largest number so thatu � c�1 in �. Then

�1pu �
q(x)

kuk�
1

C �k(c�1)p�1
�

q(x)

kuk�
1

C �1(c�1)p�1 in �,

and since

�1p(c�1) D �1(c�1)p�1 in �,

it follows from Theorem 1.1 with" D 0 that u > c�1 in � and

�u

��

<

�(c�1)

��

< 0 on ��.

Hence there exists a constantQc > c such thatu � Qc�1 in �, a contradiction. Thus
(1.2) has no positive solution for� � �

1

. We shall verify next that lim
�!�

�

1

ku
�

k

1

D1.

Suppose otherwise, then there exist a sequence (�n) � (0, �
1

) and a constantC > 0
such that�n ! �

�

1

and kunk1 < C for all n, whereun � u
�n . Since

�1pun �
q(x)

u�n
�

q(x)

C�

in �,

it follows that there exists a constantQk > 0 such thatun � Qk�1 in � for all n. Hence
there exists a constantQC > 0 such that

q(x)

u�n
C � f (un) �

QC

�



1

in �

for all n. By Lemma A, there exist constants� 2 (0, 1) and QM > 0 such thatun 2

C1,�( N�) and junj1,� < QM for all n. By going to a subsequence, we assume that there
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existsu 2 C1( N�) such thatun ! u in C1( N�). Let  2 W1,p
0 (�). Then

(3.11)
Z

�

jrunj
p�2
run � r dx D

Z

�

�

q(x)

u�n
C �n f (un)

�

 dx

for all n. Let n ! 1 in (3.11) and using the Lebesgue dominated convergence
theorem, we obtain

Z

�

jrujp�2
ru � r dx D

Z

�

�

q(x)

u�
C �

1

f (u)

�

 dx

i.e. u is a positive solution of

8

<

:

�1pu D
q(x)

u�
C �

1

f (u) in �,

u D 0 on ��,

a contradiction. This completes the proof of Theorem 1.3.
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