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Abstract
A general construction of braid group actions on coherent sheaves via M. Saito’s

theory of mixed Hodge modules is given.

1. Introduction

Examples of braid group actions on derived categories of coherent sheaves are
abundant in the literature. Much of the interest in these stems from the relation with
homological mirror symmetry, see [15]. The purpose of this note is to give a con-
struction of braid group actions on coherent sheaves (algebraic) via actions on derived
categories ofconstructible sheaves(topological). The bridge between these worlds is
provided by M. Saito’s theory of mixed Hodge modules.

In §3 we review the construction of the main player:Db
m(BnG=B), the Borel equi-

variant derived category of mixed Hodge modules on the flag variety G=B associated
to a reductive groupG. The key points are Proposition 3.3 (braid relations) and The-
orem 3.8 (invertibility of the objects giving the braid relations). The contents of this
section can be found in various forms in the literature, for instance see [16].

Underlying a mixed Hodge moduleM on a smooth varietyX is a filteredD-
module. The associated graded is aC�-equivariant coherent sheafegr M on the co-
tangent bundleT�X. This brings us to the main result, Theorem 4.8, which exploits egr
to obtain a monoidal functor fromDb

m(BnG=B) to an appropriate category of coher-

ent sheaves QH on the Steinberg variety. In view of Proposition 3.3 and Theorem 3.8,
this realizes our goal. Via standard Fourier–Mukai formalism, QH acts on auxilliary
categories of coherent sheaves giving braid group actions on these too.

The idea to exploitegr in this fashion comes from T. Tanisaki’s beautiful paper [17].
This theme was also explored by I. Grojnowski [6]. I. Grojnowski and T. Tanisaki work
at the level of Grothendieck groups, we insist on working at the categorical level. Re-
gardless, all the key ideas are contained in [17]. Furthermore, the key technical result
(Theorem 4.5) that is used to prove Theorem 4.8 is due to G. Laumon [11].

A variant of Theorem 4.8 has also been obtained by R. Bezrukavnikov and S. Riche
[4]. Further, R. Bezrukavnikov and S. Riche were certainly aware of such a result long
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before this note was born (see [3]). Thus, experts in geometric representation theory
have known that such a result must hold for a long time. Certainly V. Ginzburg (see
[5]), I. Grojnowski (see [6]), M. Kashiwara (see [7]), D. Kazhdan (see [8]), G. Lusztig
(see [8]), R. Rouquier (see [13]), and of course T. Tanisaki (see [17]) must have also
known. Undoubtedly this list is woefully incomplete.

2. Conventions

Throughout ‘variety’D ‘separated reduced scheme of finite type over Spec(C)’. A
variety can and will be identified with its set of geometric points. If X is a variety, set
dX D dimC(X). If Y is another variety, setdX=Y D dX � dY.

Write MHM(X) for the abelian category of mixed Hodge modules onX, andDb
m(X)

for its bounded derived category. The constant (mixed Hodge) sheaf is denotedX. Tate
twist is denoted by (1).

Let G be a linear algebraic group acting onX (action will always mean left ac-
tion). Write Db

m(GnX) for the G-equivariant derived category (in the sense of [1]) of
mixed Hodge modules onX. Write ForW Db

m(GnX)! Db
m(X) for the forgetful functor.

We write OX for the structure sheaf ofX, Db(OX) for the (bounded) derived cat-
egory of OX-coherent sheaves and Coh(OX) � Db(OX) for the abelian subcategory
of coherent sheaves. If an algebraic groupG acts on X, we write DG(OX) for the
(bounded) derived category ofG-equivariantOX-coherent sheaves and CohG(OX) �
DG(OX) for the abelian subcategory ofG-equivariant coherent sheaves.

Let f W X ! Y be a morphism of varieties. For coherent sheaves, writef �1 for
the ordinary pullback of sheaves, so that the pullbackf � W Db(OY)! Db(OX) is given
by f �M D OY 


L
f �1OX

f �1M. If X is smooth, write�X for the cotangent sheaf and

set!X D
VdX

�X . If f W X! Y is a morphism between smooth varieties, set!X=Y D

!X 
 f �1OY
f �1
!

�1
Y .

Write DX for the sheaf of differential operators onX. A DX-module will always
mean a coherent leftDX-module which is quasi-coherent as anOX-module.

We write �X W T�X ! X for the cotangent bundle to a smooth varietyX. We
identify T�(X � X) with T�X � T�X. However, we do this via the usual isomorphism
T�(X � X) ' T�X � T�X composed with the antipode map on the right. This is dic-
tated by requiring that the conormal bundle to the diagonal in X� X be identified with
the diagonal inT�X � T�X.

3. Convolution

Let G be a connected reductive group. Fix a Borel subgroupB � G. Then B
acts onG via b � g D gb�1. The quotient under this action is the flag varietyG=B.
Clearly, B acts onG=B on the left, and we may form the equivariant derived category
Db

m(BnG=B).
Let Qq W G � G=B ! G=B be the projection onG composed with the quotient

map G ! G=B. Let p W G � G=B! G=B denote projection onG=B. Further, write
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q W G � G=B! G
B
� G=B for the quotient map. LetmW G

B
� G=B! G=B denote the

map induced by the action ofG on G=B.

G � G=B G
B
� G=B G=B

G=B G=B
 

!

Qq

 

!

q

 

!

p

 

!

m

The convolutionbifunctor � � �W Db
m(BnG=B) � Db

m(BnG=B) ! Db
m(BnG=B) is de-

fined by the formula

M � N D m!(M Q

� N),

where M Q� N denotes the descent ofQq�M
 p�N[dB] to Db
m(BnG

B
�G=B). This is an

associative operation and endowsDb
m(BnG=B) with a monoidal structure. Convolution

adds weights and commutes with Verdier duality, sincem is proper.

3.1. Another description. The groupG acts onG=B � G=B diagonally. The
map G � G=B ! G=B � G=B, (g, x) 7! ( Qq(g), g � x) induces aG-equivariant iso-
morphism

G=B � G=B
�

�! G
B
� G=B.

Under this isomorphismmW G
B
�G=B! G=B corresponds to projection on the second

factor p2 W G=B �G=B! G=B. Define i W G=B! G=B �G=B, x 7! ( Qq(1), x). Using
equivariant descent (see [12, Lemma 1.4]) we infer

(3.1.1) i �[�dG=B] W Db
m(Gn(G=B � G=B))

�

�! Db
m(BnG=B)

is a t-exact equivalence. IfM 2 Db
m(Gn(G=B � G=B)) is pure of weightn, then

i �M[�dG=B] is pure of weight�dG=B.
Let r D idG=B �1� idG=B, where1W G=B! G=B�G=B is the diagonal embed-

ding. Define a monoidal structure� � � on Db
m(Gn(G=B � G=B)) by

(3.1.2) M � N D p13!r
�(M � N)[�dG=B],

where p13W G=B�G=B�G=B! G=B�G=B denotes projection on the first and third
factor. A diagram chase (omitted) shows that the equivalence (3.1.1) is monoidal. We
will constantly go back and forth between these two descriptions.

3.2. Braid relations. Fix a maximal torusT � B. Let W D NG(T)=T be the
Weyl group. Write l W W ! Z

�0 for the length function. TheB-orbits in G=B are
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indexed byW. Further, writing X
w

for the orbit corresponding tow 2 W, we have
X
w

' Cl (w). For eachw 2 W, let i
w

W X
w

,! G=B be the inclusion map. Set

T
w

D i
w! Xw

and

C
w

D IC(X
w

, X
w

)[�l (w)].

Then Te is the unit for convolution and will be denoted by1. Both T
w

[l (w)] and
C
w

[l (w)] are in MHM(BnG=B).

Write Y
w

for the image ofG
B
� X

w

under the isomorphism (3.1.1). Then theY
w

,
w 2 W, are theG-orbits in G=B � G=B. Furthermore,T

w

D i � j
w!Yw and C

w

D

i � IC(Y
w

, Y
w

)[�l (w)], where j
w

W Y
w

,! G=B � G=B is the inclusion map.

Proposition 3.3. If l (ww0) D l (w)C l (w0), then T
w

� T
w

0

D T
ww

0 .

Proof. If l (ww0) D l (w)C l (w0), then Y
ww

0

D Y
w

�G=B Y
w

0 , where the fibre prod-
uct is over the projection mapsY

w

! G=B and Y
w

0

! G=B on the first and second
factor respectively. Now an application of proper base change and the description of
convolution onDb

m(Gn(G=B � G=B)) yields the result.

Lemma 3.4. T
w

[l (w)] � � is left t-exact, and (DT
w

)[�l (w)] � � is right t-exact.

Proof. It suffices to showT
w

[l (w)] � � is left t-exact, since Verdier duality com-
mutes with convolution. Consider the diagram

BwB � G=B BwB
B
� G=B G=B

X
w

G=B
 

!

Qq
w

 

!

q
w

 

!

p
w

 

!

m
w

where Qq
w

is the the evident quotient map on the first factor followed byprojection,
p
w

W BwB � G=B ! G=B is projection on the second factor,q
w

is the restriction of
q, and m

w

is the restriction ofm. Then T
w

� � D m
w!(Xw

Q

��), where X
w

Q

�� is the

descent ofQq�
w

X
w


 p�
w

(�)[dB] to Db
m(BnBwB

B
�G=B). Now X

w

[l (w)] Q�� is t-exact.
This implies the result, sincem

w

is affine.

Proposition 3.5. Let s2 W be a simple reflection and G=Ps the corresponding
partial flag variety. Let�s W G=B! G=Ps be the projection. ThenCs � M D ��s �s�M,
for all M 2H .

Proof. The closureYs of Ys in G=B�G=B is smooth (it is isomorphic toP1
�P1).

Hence,IC(Ys, Ys) D Qi !Ys[dYs
], where Qi W Ys ,! G=B�G=B is the inclusion. Further,�s
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is a Zariski locally trivialP1-fibration. Using proper base change we deduce

( js!�Ys[dYs � 1]) � N D (idG=B � �s)
�(idG=B � �s)�N

for all N 2 Db
m(Gn(G=B � G=B)). Further, if QM 2 Db

m(Gn(G=B � G=B)) is such that

i � QM [�dG=B] D M, then

i �(idG=B � �s)
�(idG=B � �s)� QM[�dG=B] D ��s �s�M.

Corollary 3.6. Let s2W be a simple reflection. ThenCs �CsD Cs�Cs[�2](�1).

Let

i W Db
m(BnG=B)

�

�! Db
m(BnG=B)

denote the auto-equivalence induced by the automorphism ofG=B�G=B that switches
the factors. Theni(M � N) D iN � iM, for all M, N 2 Db

m(BnG=B). Further, if s 2 W
is a simple reflection, theniT s D Ts. Consequently,iT

w

D T
w

�1 and iC
w

D C
w

�1 for
all w 2 W.

Proposition 3.7. Let s2 W be a simple reflection. Then
(i) Cs � Ts D Cs[�2](�1)D Ts � Cs;
(ii) Ts � DTs D 1D DTs � Ts.

Proof. Proposition 3.5 gives the first equality in (i), and applying the involutioni
gives the second equality. Convolve the distinguished triangleDTs! 1[1]! Cs[3](1)Ý
with Ts, and use (i) along with Lemma 3.4 to get a short exact sequence

0! Ts � DTs! Ts[1] ! Cs[1] ! 0

in MHM( BnG=B). This impliesTs � DTs D 1. That DTs � Ts D 1 follows from Verdier
duality.

Combining Proposition 3.3 with Proposition 3.7 (ii) yields:

Theorem 3.8. Each T
w

, w 2 W, is invertible under convolution.

4. Action on coherent sheaves

Let X be a smooth variety and�X W T�X ! X its cotangent bundle.
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4.1. Filtered D-modules. Let Fi (DX) denote the sub-sheaf ofDX consisting of
differential operators of degree at mosti . This defines a filtration ofDX. Write grDX

for the associated graded sheaf of rings. Then we have a canonical isomorphism

grDX ' �X�OT�X .

Identify grDX with �X�OT�X via this isomorphism. Afiltered DX-module is a pair
(M, F), where M is a DX-module andF is an exhaustive filtration ofM by sub-
sheaves such thatFi (DX)F j M � FiC j M. The filtration F is a good filtration if gr(M)
is coherent as a grDX-module. The support ofOT�X 


�

�1
X grDX

gr(M) is the character-
istic variety of M.

A mixed Hodge moduleM 2 MHM( X) is a tuple (M, F, rat(M), W), where M is
a regular holonomicDX-module, F is a good filtration onM (the Hodge filtration),
rat(M) is a perverse sheaf onX with Q-coefficients (therational structure) such that
DR(M) D C 
Q rat(M), where DR is the de Rham functor, andW is the weight
filtration on (M,F,rat(M)). This data is required to satisfy several compatibilities which
we only recall as needed. Morphisms in MHM(X) respect the filtrationsF and W
strictly. Given (M, F, rat(M), W) 2 MHM( X),

M(n) D (M, F
��n, Q(n)
Q rat(M), W

�C2n),

whereQ(n) D (2�
p

�1)nQ.
The weight filtrationW and rational structure rat(M) are not particularly relevant

for us in this section. Consequently, we omit them from our notation from here on and
focus on the filteredD-module structure underlying a mixed Hodge module.

4.2. The functor egr. Let (M, F) 2MHM( X). Taking the associated graded with
respect toF gives a coherent gr(DX)-module gr(M). Hence, we obtain an exact func-
tor from MHM(X) to graded coherent gr(DX)-modules. We haveC� acting on T�X
via dilation of the fibres of�X . As �X is affine,�X� gives an equivalence betweenC�-
equivariant quasi-coherentOT�X-modules and graded quasi-coherent�X�OT�X-modules.
Thus, we obtain an exact functor

egrW MHM( X)! CohC�

(OT�X), M 7! OT�X 

�

�1
X grDX

�

�1
X gr(M),

with C� action onegr(M) defined by

z � ( f (x, � )
mi ) D f (x, z�1
� )
 z�i mi ,

wherez 2 C�, f (x, � ) 2 OT�X , and mi is in the i -th component of gr(M).

4.3. Tate twist and egr. For n 2 Z let qn
2 CohC�

(pt) be the one dimensional
C�-module with the action ofz 2 C� given by multiplication byzn. Let aW T�X ! pt
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be the obvious map. ForM 2 DC�

(OT�X), set M(n) D a�q�n

OT�X

M. Evidently, if
N 2 Db

m(X), then

egr(N(n)) D egr(N)(n).

4.4. Correspondences. Let f W X! Y be a morphism of smooth varieties. As-
sociated to f we have the diagram

T�X
fd
 � T�Y �Y X

f
�

�! T�Y,

where f
�

is the base change off along T�Y ! Y, and fd is the map dual to the
derivative. LetT�

X X � T�X denote the zero section. Set

T�

X Y D f �1
d (T�

X X).

If f is the inclusion of a closed subvariety, thenT�

X Y is the conormal bundle toX in
T�Y. Let 3 � T�Y be a conic (i.e.C�-stable) subvariety. Thenf is non-characteristic
for 3 if

f �1
�

(3) \ T�

X Y � T�

Y Y �Y X.

This is equivalent to fdj f �1
�

(3) being finite. We sayf is non-characteristic forM 2
MHM( X) if f is non-characteristic for the characteristic variety ofM.

Let X
f
 � Z

g
�! Y be a diagram of smooth varieties such that the canonical map

Z ! X �Y is a closed immersion. We call such a diagram acorrespondencebetween
X and Y. Associated to a correspondence we have a functor

8XjY W Db
m(X)! Db

m(Y), M 7! g
�

f �M.

We also have a commutative diagram

T�

Z (X � Y)

T�X �X Z T�Y �Y Z

T�X T�Z T�Y

 

!

qX

 

!

 

!

 

!

qY

 

!

 

!

f
�

 

!

fd
 

!

gd  

!

g
�

with middle square cartesian. So we obtain a correspondence

T�X
qX
 � T�

Z (X � Y)
qY
�! T�Y.

For M 2 DC�

(OT�X) set

Q

8XjY(M) D qY�(q�X M 
OT�Z (X�Y)
�

�

!Z=Y)[dZ=X ](�dZ=Y),
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where� W T�

Z (X � Y)! Z is the evident map.

Theorem 4.5 ([11, Théorème 3.1.1]). Let X
f
 � Z

g
�! Y be a correspondence with

g projective. If f is non-characteristic for M2 Db
m(X), then

egr Æ8XjY(M) D Q8XjY Æ egr(M).

REMARK 4.6. Let f W X! Y be a morphism between smooth varieties, and write
0 f � X � Y for the graph of f . Let pX W 0 f ! X and pY W 0 f ! Y be the projection
maps. Then we have the correspondence

X
pX
 � 0 f

pY
�! Y,

and8XjY D f
�

. If f is projective, then Theorem 4.5 implies

egr f
�

D f
��

f !
d egr[dX=Y](�dX=Y).

Similarly, for the correspondence

Y
pY
 � 0 f

pX
�! X,

one has8YjX D f �. If f is smooth, then Theorem 4.5 implies

egr f � D fd� f �
�

egr[dX=Y].

Although we have obtained the above formulae as consequences of Theorem 4.5, the
proof of Theorem 4.5 proceeds by first obtaining these formulae. Further, in [10] and
[11] the formulae do not keep track of theC�-equivariant structure. Regardless, the
(equivariant) formula for non-characteristic pullback isimmediate from the definitions.
The (equivariant) formula for proper pushforward requiresa bit more work which is done
in [17, Lemma 2.3]. With these in hand the proof of Theorem 4.5proceeds exactly as
that of [11, Théorème 3.1.1]. We also note that [10] and [11] are written purely in the
context of filteredD-modules. In this generality [11, Théorème 3.1.1] does not quite
hold - a crucial ‘strictness’ assumption that is required for the formula foregr f

�

is miss-
ing. However, this is not a problem for us: if the filteredD-module structure is one un-
derlying a mixed Hodge module, then this strictness assumption holds [14, Théorème 1].

4.7. The Steinberg variety. Let � W QN ! G=B denote the cotangent bundle of
G=B. Then G�C� acts on QN (the map� is G-equivariant andC� acts via dilations
of the fibres of�). Under our conventions, QN �

QN is the cotangent bundle ofG=B�
G=B. Further,G �C� acts on QN �

QN via the diagonal action. TheSteinberg variety
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Z � QN �

QN is defined by

Z D
[

w2W

T�

Y
w

(G=B � G=B).

It is a closedG � C� stable subvariety of QN �

QN . The projectionZ ! QN to either
of the two factors is projective.

Denote by Qp13 W
QN �

QN �

QN !

QN �

QN the projection on the first and third
factor, and letp2 W

QN �

QN �

QN !

QN be projection on the second factor. Define
Qr W QN �

QN �

QN !

QN �

QN �

QN �

QN by

Qr D id
QN
�1 � id

QN
,

where1 W QN !

QN �

QN is the diagonal embedding. LetQH � DC�

(O
QN �

QN
) be the

full subcategory consisting of complexes whose cohomologysheaves are supported on
Z. Define a bifunctor� � �W QH �

QH !

QH by the formula

M � N D Qp13� Qr
�(M � N).

This endows QH with a monoidal structure. The unit is1
�

O
1

.
Define  W Db(Gn(G=B � G=B))! QH by

 (M) D egr For(M)
O
QN �

QN
1

�

�

�

!

�1
G=B(�dG=B).

Theorem 4.8.  is monoidal.

Proof. That preserves the unit object can be seen directly. Now apply The-
orem 4.5 to the correspondence

G=B � G=B � G=B � G=B
r
 � G=B � G=B � G=B

p13
��! G=B � G=B.

The G-equivariance ofM and N implies that the characteristic variety ofM � N is
contained inZ. Further,r is non-characteristic forM � N. Consequently,

 (M � N) D  (M) �  (N).

To complete the proof we need to argue that the associativityconstraints on both sides
are compatible. The associativity constraint on either side is defined via the usual ad-
junction maps and base change (iso)morphisms. These are compatible with each other
by [11, §2.6].
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