ON SOME LENGTH PROBLEMS FOR ANALYTIC FUNCTIONS

Mamoru NUNOKAWA and Janusz SOKÓŁ

(Received December 6, 2012)

$$
\begin{aligned}
& \text { Let } \mathcal{A} \text { be the class of functions } \\
& \qquad f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
\end{aligned}
$$

which are analytic in the unit disk $\mathbb{D}=\{z:|z|<1\}$. Let $C(r)$ be the closed curve which is the image of the circle $|z|=r<1$ under the mapping $w=f(z), L(r)$ the length of $C(r)$, and let $A(r)$ be the area enclosed by the curve $C(r)$. It was shown in [13] that if $f \in \mathcal{A}, f$ is starlike with respect to the origin, and for $0 \leq r<1$, $A(r)<A$, an absolute constant, then

$$
\begin{equation*}
L(r)=\mathcal{O}\left(\log \frac{1}{1-r}\right) \quad \text { as } \quad r \rightarrow 1 \tag{0.1}
\end{equation*}
$$

It is the purpose of this work to prove, using a modified methods than that in [13], a strengthened form of (0.1) for Bazilevič functions, strongly starlike functions and for close-to-convex functions.

1. Introduction

Let \mathcal{A} be the class of functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Let \mathcal{S} denote the subclass of \mathcal{A} consisting of all univalent in \mathcal{D}.

If $f \in \mathcal{A}$ satisfies

$$
\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, \quad z \in \mathbb{D}
$$

then $f(z)$ is said to be convex in \mathbb{D} and denoted by $f(z) \in \mathcal{K}$.

If $f \in \mathcal{A}$ satisfies

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in \mathbb{D}
$$

then $f(z)$ is said to be starlike with respect to the origin in \mathbb{D} and denoted by $f(z) \in \mathcal{S}^{*}$.
Furthermore, If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{e^{i \alpha} g(z)}\right\}>0, \quad z \in \mathbb{D} \tag{1.2}
\end{equation*}
$$

for some $g(z) \in \mathcal{S}^{*}$ and some $\alpha \in(-\pi / 2, \pi / 2)$, then $f(z)$ is said to be close-to-convex in \mathbb{D} and denoted by $f(z) \in \mathcal{C}$. An univalent function $f \in \mathcal{S}$ belongs to \mathcal{C} if and only if the complement E of the image-region $F=\{f(z):|z|<1\}$ is the union of rays that are disjoint (except that the origin of one ray may lie on another one of the rays).

On the other hand, if $f \in \mathcal{A}$ satisfies

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)}\right\}>0, \quad z \in \mathbb{D}
$$

for some $g(z) \in \mathcal{S}^{*}$ and some $\beta \in(0, \infty)$, then $f(z)$ is said to be a Bazilevič function of type β and denoted by $f(z) \in \mathcal{B}(\beta)$.

Let $\mathcal{S S}^{*}(\alpha)$ denote the class of strongly starlike functions of order $\alpha, 0<\alpha \leq 1$,

$$
\mathcal{S S}^{*}(\alpha):=\left\{f \in \mathcal{A}:\left|\operatorname{Arg} \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\alpha \pi}{2}, z \in \mathbb{D}\right\}
$$

which was introduced in [12] and [1].
Let $C(r)$ be the closed curve which is the image of $|z|=r<1$ under the mapping $w=f(z)$. Let $L(r)$ denote the length of $C(r)$ and let $A(r)$ be the area enclosed by $C(r)$.

Let us define $M(r)$ by

$$
M(r)=\max _{|z|=r<1}|f(z)|
$$

Then F.R. Keogh [4] has shown that

Theorem 1.1. Suppose that $f(z) \in \mathcal{S}^{*}$ and

$$
|f(z)| \leq M<\infty, \quad z \in \mathbb{D}
$$

Then we have

$$
L(r)=\mathcal{O}\left(\log \frac{1}{1-r}\right) \quad \text { as } \quad r \rightarrow 1
$$

where \mathcal{O} means Landau's symbol.
Furthermore, D.K. Thomas in [13] extended this result for bounded close-to-convex functions. Ch. Pommerenke in [9] has shown that

Theorem 1.2. If $f(z) \in \mathcal{C}$, then

$$
L(r)=\mathcal{O}\left\{M(r)\left(\log \frac{1}{1-r}\right)^{5 / 2}\right\} \quad \text { as } \quad r \rightarrow 1
$$

Later, D.K. Thomas in [14] has shown that
Theorem 1.3. If $f(z) \in \mathcal{S}^{*}$, then

$$
L(r)=\mathcal{O}\left\{\sqrt{A(r)} \log \frac{1}{1-r}\right\} \quad \text { as } \quad r \rightarrow 1
$$

M. Nunokawa in $[6,7]$ has shown that

Theorem 1.4. If $f(z) \in \mathcal{K}$, then

$$
L(r)=\mathcal{O}\left\{A(r) \log \frac{1}{1-r}\right\}^{1 / 2} \quad \text { as } \quad r \rightarrow 1
$$

Moreover, D.K. Thomas in [15] has shown the following two theorems
Theorem 1.5. If $f(z) \in \mathcal{B}(\beta)$ and $|f(z)|<1$ in \mathbb{D}, then we

$$
L(r)=\mathcal{O}\left(\log \frac{1}{1-r}\right) \quad \text { as } \quad r \rightarrow 1 .
$$

Theorem 1.6. If $f(z) \in \mathcal{B}(\beta)$ and $0<\beta \leq 1$, then we

$$
L(r)=\mathcal{O}\left(M(r) \log \frac{1}{1-r}\right) \quad \text { as } \quad r \rightarrow 1
$$

M. Nunokawa, S. Owa et al. in [8] have shown that

Theorem 1.7. If $f(z) \in \mathcal{B}(\beta)$ and $z f^{\prime}(z)=f^{1-\beta}(z) g^{\beta}(z) h(z)$, then we

$$
L(r)=\mathcal{O}\left\{\sqrt{A^{1-\beta}(r) G^{\beta}(r)}\left(\log \frac{1}{1-r}\right)^{2}\right\} \quad \text { as } \quad r \rightarrow 1
$$

where

$$
G(r)=\int_{0}^{r} \int_{0}^{2 \pi} \varrho\left|g^{\prime}\left(\varrho e^{i \theta}\right)\right|^{2} \mathrm{~d} \theta \mathrm{~d} \varrho
$$

or $G(r)$ is the area of the image domain of $|z| \leq r$ under the starlike mapping g.

Ch. Pommerenke in [9] has also shown that

Theorem 1.8. If $f(z) \in \mathcal{S}$, then

$$
\begin{equation*}
M(r) \leq 4 \sqrt{\frac{A(r)}{\pi} \log \frac{3}{1-r}} \quad(|z|=r<1) \tag{1.3}
\end{equation*}
$$

Therefore, we have

$$
M(r)=\mathcal{O}\left\{A(r) \log \frac{1}{1-r}\right\}^{1 / 2} \quad \text { as } \quad r \rightarrow 1
$$

It is the purpose of this work to prove, using a modified methods than that in [13], a strengthened form of (0.1) for Bazilevič functions, strongly starlike functions and for close-to-convex functions.

2. Lemmas

Lemma 2.1. If $h(z)$ is analytic and $\mathfrak{R e}\{h(z)\}>0$ in \mathbb{D} with $h(0)=1$, then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|h\left(r e^{i \theta}\right)\right|^{2} \mathrm{~d} \theta \leq \frac{1+3 r^{2}}{1-r^{2}}<\frac{4}{1-r^{2}}
$$

for $0<r<1$.

Lemma 2.1 can be easily proved using $\left|h^{(n)}(0)\right| \leq 2 n$! and the Gutzmer's theorem, see for example [3, p.31].

Lemma 2.2. If $f(z) \in \mathcal{S}$, then we have

$$
\begin{aligned}
\left|\frac{z f^{\prime}(z)}{f(z)}\right| & \leq \frac{1+|z|}{1-|z|}<\frac{2}{1-|z|} \quad \text { in } \quad \mathbb{D} \\
\left|f^{\prime}(z)\right| & \leq \frac{1+|z|}{(1-|z|)^{3}} \quad \text { in } \quad \mathbb{D} .
\end{aligned}
$$

A proof can be found in [10, p. 21].

Lemma 2.3 ([2, p. 337]). If $h(z)$ is analytic and $\mathfrak{R e}\{h(z)\}>0$ in \mathbb{D} with $h(0)=$ 1, then we have

$$
\begin{equation*}
\left|h^{\prime}(z)\right| \leq \frac{2 \mathfrak{R e}\{h(z)\}}{1-|z|^{2}}<\frac{2}{1-|z|} \text { in } \mathbb{D} . \tag{2.1}
\end{equation*}
$$

A proof can be found also in [5].
An analytic function f is said to be subordinate to an analytic function F, or F is said to be superordinate to f, if there exists a function an analytic function w such that

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \mathbb{D})
$$

and

$$
f(z)=F(w(z)) \quad(z \in \mathbb{D})
$$

In this case, we write $f \prec F(z \in \mathbb{D})$ or $f(z) \prec F(z)(z \in \mathbb{D})$. If the function F is univalent in \mathbb{D}, then we have

$$
[f \prec F(z \in \mathbb{D})] \Leftrightarrow[f(0)=F(0) \text { and } f(\mathbb{D}) \subset F(\mathbb{D})] .
$$

Lemma 2.4. If $f(z)$ is subordinate to $g(z)$ in \mathbb{D} and if $0<p$, then

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \mathrm{~d} \theta \leq \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{p} \mathrm{~d} \theta
$$

for all $r, 0<r<1$.
W. Rogosinski has shown Lemma 2.4 in [11].

3. Main results

Theorem 3.1. If $f(z) \in \mathcal{S}$ satisfies the condition

$$
\begin{equation*}
\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f(z)}\right\} \geq-\mathfrak{R e}\left\{\frac{1+z}{1-z}\right\} \quad \text { in } \mathbb{D} \tag{3.1}
\end{equation*}
$$

then we have

$$
\begin{equation*}
L(r)=\mathcal{O}\left\{A(r) \log \frac{1}{1-r}\right\}^{1 / 2} \quad \text { as } \quad r \rightarrow 1 \tag{3.2}
\end{equation*}
$$

Proof. For the case $0<r \leq 1 / 2$, from Lemma 2.2 we have

$$
\begin{aligned}
L(r) & =\int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| \mathrm{d} \theta \\
& \leq \int_{0}^{2 \pi} \frac{|z|(1+|z|)}{(1-|z|)^{3}} \mathrm{~d} \theta \\
& <12 \pi .
\end{aligned}
$$

For the case $1 / 2<r<1$, we have

$$
\begin{aligned}
L(r) & =\int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| \mathrm{d} \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{r}\left|f^{\prime}(z)+z f^{\prime \prime}(z)\right| \mathrm{d} \varrho \mathrm{~d} \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{r}\left|f^{\prime}(z)\left(1+\frac{z f^{\prime \prime}(z)}{f(z)}\right)\right| \mathrm{d} \varrho \mathrm{~d} \theta \\
& \leq\left(\int_{0}^{2 \pi} \int_{0}^{r}\left|f^{\prime}(z)\right|^{2} \mathrm{~d} \varrho \mathrm{~d} \theta\right)^{1 / 2}\left(\int_{0}^{2 \pi} \int_{0}^{r}\left|1+\frac{z f^{\prime \prime}(z)}{f(z)}\right|^{2} \mathrm{~d} \varrho \mathrm{~d} \theta\right)^{1 / 2} \\
& <\left(2 \int_{0}^{2 \pi} \int_{0}^{r} \varrho\left|f^{\prime}(z)\right|^{2} \mathrm{~d} \varrho \mathrm{~d} \theta\right)^{1 / 2}\left(\int_{0}^{2 \pi} \int_{0}^{r}\left|1+\frac{z f^{\prime \prime}(z)}{f(z)}\right|^{2} \mathrm{~d} \varrho \mathrm{~d} \theta\right)^{1 / 2} \\
& =\sqrt{2 A(r)}\left(\int_{0}^{2 \pi} \int_{0}^{r}\left|1+\frac{z f^{\prime \prime}(z)}{f(z)}\right|^{2} \mathrm{~d} \varrho \mathrm{~d} \theta\right)^{1 / 2}
\end{aligned}
$$

From the hypothesis (3.1), we have

$$
\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f(z)}+\frac{1+z}{1-z}\right\}>0 \quad \text { in } \quad \mathbb{D}
$$

or

$$
\begin{equation*}
\frac{1+z f^{\prime \prime}(z) / f(z)+(1+z) /(1-z)}{2} \prec \frac{1+z}{1-z} \quad \text { in } \quad \mathbb{D} \tag{3.3}
\end{equation*}
$$

It follows that

$$
1+\frac{z f^{\prime \prime}(z)}{f(z)}+\frac{1+z}{1-z} \prec 2 \frac{1+z}{1-z} \quad \text { in } \quad \mathbb{D}
$$

where the symbol \prec means the subordination. Then we have

$$
\begin{aligned}
& \int_{0}^{r} \int_{0}^{2 \pi}\left|1+\frac{z f^{\prime \prime}(z)}{f(z)}\right|^{2} \mathrm{~d} \theta \mathrm{~d} \varrho \\
&= \int_{0}^{r} \int_{0}^{2 \pi}\left|1+\frac{z f^{\prime \prime}(z)}{f(z)}+\frac{1+z}{1-z}-\frac{1+z}{1-z}\right|^{2} \mathrm{~d} \theta \mathrm{~d} \varrho \\
& \leq \int_{0}^{r} \int_{0}^{2 \pi}\left|1+\frac{z f^{\prime \prime}(z)}{f(z)}+\frac{1+z}{1-z}\right|^{2} \mathrm{~d} \theta \mathrm{~d} \varrho \\
& \quad+2 \int_{0}^{r} \int_{0}^{2 \pi}\left|1+\frac{z f^{\prime \prime}(z)}{f(z)}+\frac{1+z}{1-z}\right|\left|\frac{1+z}{1-z}\right| \mathrm{d} \theta \mathrm{~d} \varrho \\
&+\int_{0}^{r} \int_{0}^{2 \pi} \frac{|1+z|^{2}}{|1-z|^{2}} \mathrm{~d} \theta \mathrm{~d} \varrho \\
&= I_{1}+2 I_{2}+I_{3} .
\end{aligned}
$$

From Lemma 2.4, (3.3) and Lemma 2.1, we have

$$
\begin{aligned}
I_{1} & =\int_{0}^{r} \int_{0}^{2 \pi}\left|1+\frac{z f^{\prime \prime}(z)}{f(z)}+\frac{1+z}{1-z}\right|^{2} \mathrm{~d} \theta \mathrm{~d} \varrho \\
& \leq \int_{0}^{r} \int_{0}^{2 \pi} 4\left|\frac{1+z}{1-z}\right|^{2} \mathrm{~d} \theta \mathrm{~d} \varrho \\
& <32 \pi \int_{0}^{r} \frac{1}{1-\varrho^{2}} \mathrm{~d} \varrho \\
& =16 \pi \log \frac{1+r}{1-r} .
\end{aligned}
$$

By Lemma 2.1, we have

$$
\begin{aligned}
2 I_{2} & =\left(\int_{0}^{r} \int_{0}^{2 \pi}\left|1+\frac{z f^{\prime \prime}(z)}{f(z)}+\frac{1+z}{1-z}\right|^{2} \mathrm{~d} \theta \mathrm{~d} \varrho\right)^{1 / 2}\left(\int_{0}^{r} \int_{0}^{2 \pi}\left|\frac{1+z}{1-z}\right|^{2} \mathrm{~d} \theta \mathrm{~d} \varrho\right)^{1 / 2} \\
& \leq\left(16 \pi \log \frac{1+r}{1-r}\right)^{1 / 2}\left(8 \pi \int_{0}^{r} \frac{1}{1-\varrho^{2}} \mathrm{~d} \varrho\right)^{1 / 2} \\
& =\left(16 \pi \log \frac{1+r}{1-r}\right)^{1 / 2}\left(4 \pi \log \frac{1+r}{1-r}\right)^{1 / 2} \\
& =\mathcal{O}\left(\log \frac{1}{1-r}\right) \text { as } \quad r \rightarrow 1
\end{aligned}
$$

By Lemma 2.1, we have

$$
\begin{aligned}
I_{3} & =\int_{0}^{r} \int_{0}^{2 \pi}\left|\frac{1+z}{1-z}\right|^{2} \mathrm{~d} \theta \mathrm{~d} \varrho \\
& =4 \pi \log \frac{1+r}{1-r} \\
& =\mathcal{O}\left(\log \frac{1}{1-r}\right) \quad \text { as } \quad r \rightarrow 1
\end{aligned}
$$

This shows (3.2) which completes the proof of Theorem 3.1.
Theorem 3.2. If $f(z) \in \mathcal{B}(\beta)$ is a Bazilevic̆ function of type $\beta, 0<\beta \leq 1$, then we have

$$
\begin{equation*}
L(r)=\mathcal{O}\left\{A(r)\left(\log \frac{1}{1-r}\right)^{3 / 2}\right\} \quad \text { as } \quad r \rightarrow 1 \tag{3.4}
\end{equation*}
$$

Proof. Because $f(z) \in \mathcal{B}(\beta)$, there exists $g(z) \in \mathcal{S}^{*}$ and there exists an analytic function $h(z), h(0)=1, \mathfrak{R e}\{h(z)\}>0$ in \mathbb{D}, such that

$$
\begin{equation*}
z f^{\prime}(z)=f^{1-\beta}(z) g^{\beta}(z) h(z) \tag{3.5}
\end{equation*}
$$

Therefore we have

$$
\begin{aligned}
L(r) & =\int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| \mathrm{d} \theta \\
& =\int_{0}^{2 \pi}\left|f^{1-\beta}(z) g^{\beta}(z) h(z)\right| \mathrm{d} \theta \\
& \leq M^{1-\beta}(r) \int_{0}^{2 \pi}\left|g^{\beta}(z) h(z)\right| \mathrm{d} \theta \\
& \leq M^{1-\beta}(r)\left\{\int_{0}^{r} \int_{0}^{2 \pi} \beta\left|g^{\beta-1}(z) g^{\prime}(z) h(z)\right| \mathrm{d} \theta \mathrm{~d} \varrho+\int_{0}^{r} \int_{0}^{2 \pi}\left|g^{\beta}(z) h^{\prime}(z)\right| \mathrm{d} \theta \mathrm{~d} \varrho\right\} \\
& \leq M^{1-\beta}(r)\left(I_{1}(r)+I_{2}(r)\right) .
\end{aligned}
$$

Applying Ch. Pommerenke's result (1.3), we have

$$
L(r) \leq\left(\frac{16}{\pi} A(r) \log \frac{3}{1-r}\right)^{(1-\beta) / 2}\left(I_{1}(r)+I_{2}(r)\right)
$$

D.K. Thomas in [15] has shown that if $f(z)$ is a Bazilevič function of type $\beta, 0<$ β, then

$$
\begin{align*}
I_{1}(r) & \leq 2 \sqrt{2 \pi} \beta K(\beta)\left(\frac{1}{r} \log \frac{1+r}{1-r}\right)^{1 / 2} \\
& =\mathcal{O}\left\{\left(\log \frac{1}{1-r}\right)^{1 / 2}\right\} \quad \text { as } \quad r \rightarrow 1 \tag{3.6}
\end{align*}
$$

where

$$
\begin{equation*}
K(\beta)=\max \left\{1,(4 / r)^{1-\beta}\right\} \tag{3.7}
\end{equation*}
$$

is a bounded constant not necessarily the same each time. On the other hand

$$
I_{2}(r)=\int_{0}^{r} \int_{0}^{2 \pi}\left|g^{\beta}(z) h^{\prime}(z)\right| \mathrm{d} \theta \mathrm{~d} \varrho
$$

Using (2.1) we obtain

$$
\begin{aligned}
I_{2}(r) & \leq \int_{0}^{r} \int_{0}^{2 \pi}|g(z)|^{\beta} \mathfrak{R e}\{h(z)\} \frac{2}{1-\varrho^{2}} \mathrm{~d} \theta \mathrm{~d} \varrho \\
& \leq 2 \mathfrak{R e}\left\{\int_{0}^{r} \int_{0}^{2 \pi} \frac{\left|g^{\beta}(z)\right|}{g^{\beta}(z)} g^{\beta}(z) h(z) \frac{1}{1-\varrho^{2}} \mathrm{~d} \theta \mathrm{~d} \varrho\right\}
\end{aligned}
$$

Using (3.5) we can write

$$
I_{2}(r) \leq 2 \mathfrak{R e}\left\{\int_{0}^{r} \int_{0}^{2 \pi} z f^{\prime}(z) f^{\beta-1}(z) \frac{e^{-i \beta \arg g(z)}}{1-\varrho^{2}} \mathrm{~d} \theta \mathrm{~d} \varrho\right\}
$$

Because $g(z)$ is a starlike function, then $\arg g\left(\varrho e^{i \theta}\right)$ is an increasing function of θ and maps the interval $[0,2 \pi]$ onto oneself. Applying D. K. Thomas method [15, p.357], after a suitable substitution and integrating by parts, we obtain

$$
\begin{aligned}
& I_{2}(r) \leq \frac{2}{\beta} \mathfrak{\Re e}\left\{\int_{0}^{r} \int_{|z|=\varrho} z\left(\frac{\mathrm{~d} f^{\beta}(z)}{\mathrm{d} z}\right) \frac{e^{-i \beta \arg g(z)}}{1-\varrho^{2}} \frac{\mathrm{~d} z}{i z} \mathrm{~d} \varrho\right\} \\
& =2 \mathfrak{R e}\left\{\int_{0}^{r} \int_{|z|=\varrho} \frac{1}{i \beta} \frac{e^{-i \beta \arg g(z)}}{1-\varrho^{2}}\left(\frac{\mathrm{~d} f^{\beta}(z)}{\mathrm{d}_{\theta} \arg g(z)}\right) \mathrm{d}_{\theta} \arg g(z) \mathrm{d} \varrho\right\} \\
& =2 \mathfrak{R e}\left\{\int_{0}^{r} \frac{\mathrm{~d} \varrho}{i \beta\left(1-\varrho^{2}\right)} \int_{|z|=\varrho} e^{-i \beta \arg g(z)}\left(\frac{\mathrm{d} f^{\beta}(z)}{\mathrm{d}_{\theta} \arg g(z)}\right) \mathrm{d}_{\theta} \arg g(z)\right\} \\
& =2 \mathfrak{R e}\left\{\int _ { 0 } ^ { r } \frac { \mathrm { d } \varrho } { i \beta (1 - \varrho ^ { 2 }) } \left\{\left[f^{\beta}(z) e^{-i \beta \arg g(z)}\right]_{\arg g(z)=0}^{\arg g(z)=2 \pi}\right.\right. \\
& \left.\left.+\int_{0}^{r} \int_{|z|=\varrho} i \beta f^{\beta}(z) e^{-i \beta \arg g(z)} \mathrm{d}_{\theta} \arg g(z)\right\}\right\} \\
& =2 \mathfrak{R e}\left\{\int_{0}^{r} \int_{|z|=\varrho} f^{\beta}(z) e^{-i \beta \arg g(z)} \frac{1}{1-\varrho^{2}} \mathrm{~d}_{\theta} \arg g(z) \mathrm{d} \varrho\right\} \\
& \leq 4 \pi \int_{0}^{r} M^{\beta}(\varrho) /\left(1-\varrho^{2}\right) \mathrm{d} \varrho \text {. }
\end{aligned}
$$

Applying Ch. Pommerenke's result (1.3), we have

$$
\begin{aligned}
I_{2}(r) & \leq 16 \sqrt{\pi} \int_{0}^{r}\left(A(\varrho) \log \frac{3}{1-\varrho}\right)^{\beta / 2} /\left(1-\varrho^{2}\right) \mathrm{d} \varrho \\
& \leq 16 \sqrt{\pi} A^{\beta / 2}(r) \int_{0}^{r}\left(\log \frac{3}{1-\varrho}\right)^{\beta / 2} \frac{1}{1-\varrho} \mathrm{d} \varrho \\
& =16 \sqrt{\pi} A^{\beta / 2}(r) \frac{2}{\beta+2} \int_{0}^{r}\left\{\left(\log \frac{3}{1-\varrho}\right)^{(\beta+2) / 2}\right\}^{\prime} \mathrm{d} \varrho \\
& =\mathcal{O}\left\{A^{\beta / 2}(r)\left(\log \frac{1}{1-r}\right)^{(\beta+2) / 2}\right\} \text { as } r \rightarrow 1 .
\end{aligned}
$$

Applying it together with (3.6) we obtain (3.4).
Theorem 3.3. If $f(z) \in \mathcal{B}(\beta)$ is a Bazilevic̆ function of type $\beta, 1<\beta$, then we have

$$
\begin{equation*}
L(r)=\mathcal{O}\left\{A^{\beta}(r)\left(\log \frac{1}{1-r}\right)^{\beta+2}\right\}^{1 / 2} \quad \text { as } \quad r \rightarrow 1 \tag{3.8}
\end{equation*}
$$

Proof. For the case $0<r \leq 1 / 2$, because $\mathcal{B}(\beta) \subset \mathcal{S}$, by Lemma 2.2 we have

$$
\begin{aligned}
L(r) & =\int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| \mathrm{d} \theta \\
& \leq \int_{0}^{2 \pi} \frac{r(1+r)}{(1-r)^{3}} \mathrm{~d} \theta \\
& <12 \pi
\end{aligned}
$$

where $r=|z|$. Assume that

$$
h(z)=\frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)}, \quad \mathfrak{R e}\{h(z)\}>0, z \in \mathbb{D}, g \in \mathcal{S}^{*}
$$

For the case $1 / 2<r<1$, we have

$$
\begin{aligned}
L(r) & =\int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| \mathrm{d} \theta \\
& =\int_{0}^{2 \pi}\left|f^{1-\beta}(z) g^{\beta}(z) h(z)\right| \mathrm{d} \theta \\
& \leq \int_{0}^{2 \pi}\left|\frac{(1+r)^{2}}{r}\right|^{\beta-1}\left|g^{\beta}(z) h(z)\right| \mathrm{d} \theta \\
& \leq\left(\frac{9}{2}\right)^{\beta-1} \int_{0}^{2 \pi}\left|g^{\beta}(z) h(z)\right| \mathrm{d} \theta \\
& \leq\left(\frac{9}{2}\right)^{\beta-1}\left\{\int_{0}^{2 \pi} \int_{0}^{r} \beta\left|g^{\prime}(z) g^{\beta-1}(z) h(z)\right| \mathrm{d} \varrho \mathrm{~d} \theta+\int_{0}^{2 \pi} \int_{0}^{r}\left|g^{\beta}(z) h^{\prime}(z)\right| \mathrm{d} \varrho \mathrm{~d} \theta\right\} \\
& =\left(\frac{9}{2}\right)^{\beta-1}\left(I_{1}(r)+I_{2}(r)\right) .
\end{aligned}
$$

Using the result (3.7) for $1 / 2<r<1$, we have

$$
I_{1}(r) \leq 2 \sqrt{2 \pi} \beta K_{1}(\beta)\left(2 \log \frac{1}{1-r}\right)^{1 / 2}
$$

where $K_{1}(\beta) \leq \max \left\{1,8^{1-\beta}\right\}$. Furthermore, in the same way as in the previous proof, we obtain

$$
\begin{aligned}
I_{2}(r) & =\int_{0}^{2 \pi} \int_{0}^{r}\left|g^{\beta}(z) h^{\prime}(z)\right| \mathrm{d} \varrho \mathrm{~d} \theta \\
& =\mathcal{O}\left\{(A(r))^{\beta / 2}\left(\log \frac{1}{1-r}\right)^{(\beta+2) / 2}\right\} \quad \text { as } \quad r \rightarrow 1
\end{aligned}
$$

where $K_{2}(r)$ is a bounded function of β. This completes the proof.

Remark 3.4. D.K. Thomas in [15] has shown that if $f(z)$ is a Bazilevič function of type $\beta, 0<\beta \leq 1$, then

$$
L(r) \leq K(\beta) M(r) \log \frac{1}{1-r},
$$

where $K(\beta)$ is a bounded function of β. On the other hand, from Ch. Pommerenke's result [9], we have

$$
L(r) \leq K(\beta) \sqrt{A(r)}\left(\log \frac{1}{1-r}\right)^{3 / 2} .
$$

From Theorems 3.2 and 3.3 we have that if $f(z)$ is a Bazilevič function of type β, $0<\beta \leq 1$, then

$$
L(r)= \begin{cases}\mathcal{O}\left\{A^{\beta / 2}(r)\left(\log \frac{1}{1-r}\right)^{\beta+2 / 2}\right\} & \text { for } 1<\beta, \\ \mathcal{O}\left\{A^{1 / 2}(r)\left(\log \frac{1}{1-r}\right)^{3 / 2}\right\} \quad \text { for } \quad 0<\beta \leq 1, & \text { as } \quad r \rightarrow 1\end{cases}
$$

Theorem 3.5. Let $f \in \mathcal{S S}^{*}(\alpha)$ be strongly starlike function of order $\alpha, 0<\alpha<$ 1. Then we have

$$
\begin{equation*}
L(r)=\mathcal{O}\left\{A(r)\left(\log \frac{1}{1-r}\right)^{1 / 2}\right\} \quad \text { as } \quad r \rightarrow 1 \tag{3.9}
\end{equation*}
$$

Proof. From the hypothesis of the Theorem and applying Ch. Pommerenke's [9] and Rogosinski's [11] results, we have

$$
\begin{aligned}
L(r) & =\int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| \mathrm{d} \theta \\
& =\int_{0}^{2 \pi}|f(z)|\left|\frac{z f^{\prime}(z)}{f(z)}\right| \mathrm{d} \theta \\
& \leq M(r) \int_{0}^{2 \pi}\left|\frac{z f^{\prime}(z)}{f(z)}\right| \mathrm{d} \theta \\
& \leq \sqrt{-K A(r) \log (1-r)} \int_{0}^{2 \pi}\left|\frac{1+z}{1-z}\right|^{\alpha} \mathrm{d} \theta \\
& \leq \sqrt{-K A(r) \log (1-r)} \int_{0}^{2 \pi} \frac{2}{|1-z|^{\alpha}} \mathrm{d} \theta \\
& =\mathcal{O}\left\{A(r)\left(\log \frac{1}{1-r}\right)^{1 / 2}\right\} \quad \text { as } r \rightarrow 1,
\end{aligned}
$$

where K is a bounded constant and because we have

$$
\int_{0}^{2 \pi} \frac{2}{|1-z|^{\alpha}} \mathrm{d} \theta<\infty \quad \text { for } \quad 0<\alpha<1
$$

Corollary 3.6. Let $f \in \mathcal{C}$ be close-to-convex function, satisfy (1.2) with $\alpha=0$ in \mathbb{D} and map \mathbb{D} onto a domain of finite area A. Then by Theorem $3.2, \beta=1$, we have

$$
L(r)=\mathcal{O}\left\{\left(\log \frac{1}{1-r}\right)^{3 / 2}\right\} \quad \text { as } \quad r \rightarrow 1
$$

Notice that D.K. Thomas in Theorem 2 [13, p. 431]. has shown that

$$
L(r)=\mathcal{O}\left\{\left(\log \frac{1}{1-r}\right)\right\} \quad \text { as } \quad r \rightarrow 1
$$

when $f \in \mathcal{C}$, satisfies (1.2) with $\alpha=0$ and f is bounded in \mathbb{D}.

Corollary 3.7. Let $f \in \mathcal{C}$ be close-to-convex function, satisfy (1.2) with $\alpha=0$ in \mathbb{D}. Then by Theorem $3.2, \beta=1$, we have

$$
L(r)=\mathcal{O}\left\{A(r)\left(\log \frac{1}{1-r}\right)^{3 / 2}\right\} \quad \text { as } \quad r \rightarrow 1
$$

In [13] it was shown that

$$
L(r)=\mathcal{O}\left\{M(r)\left(\log \frac{1}{1-r}\right)\right\} \quad \text { as } \quad r \rightarrow 1
$$

when $f \in \mathcal{C}$, satisfies (1.2) with $\alpha=0$. Compare also Theorems $1.1-1.8$ in the introduction.

References

[1] D.A. Brannan and W.E. Kirwan: On some classes of bounded univalent functions, J. London Math. Soc. (2) 1 (1969), 431-443.
[2] G. Goluzin: Geometrische Functionentheorie, V.E.B. Deutscher Verlag der Wissenscheften, Berlin 1957.
[3] A.W. Goodman: Univalent Functions, I, II Mariner, Tampa, FL, 1983.
[4] F.R. Keogh: Some theorems on conformal mapping of bounded star-shaped domains, Proc. London Math. Soc. (3) 9 (1959), 481-491.
[5] T.H. MacGregor: The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963), 514-520.
[6] M. Nunokawa: On Bazilevič and convex functions, Trans. Amer. Math. Soc. 143 (1969), 337-341.
[7] M. Nunokawa: A note on convex and Bazilevič functions, Proc. Amer. Math. Soc. 24 (1970), 332-335.
[8] M. Nunokawa, S. Owa, T. Hayami and K. Kuroki: Some properties of univalent functions, Int. J. Pure Appl. Math. 52 (2009), 603-609.
[9] Ch. Pommerenke: Über nahezu konvexe analytische Funktionen, Arch. Math. (Basel) 16 (1965), 344-347.
[10] Ch. Pommerenke: Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[11] W. Rogosinski: On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48-82.
[12] J. Stankiewicz: Quelques problèmes extrémaux dans les classes des fonctions α-angulairement étoilées, Ann. Univ. Mariae Curie-Skłodowska Sect. A 20 (1966), 59-75.
[13] D.K. Thomas: On starlike and close-to-convex univalent functions, J. London Math. Soc. 42 (1967), 427-435.
[14] D.K. Thomas: A note on starlike functions, J. London Math. Soc. 43 (1968), 703-706.
[15] D.K. Thomas: On Bazilevič functions, Trans. Amer. Math. Soc. 132 (1968), 353-361.

Mamoru Nunokawa
University of Gunma
Hoshikuki-cho 798-8
Chuou-Ward, Chiba, 260-0808
Japan
e-mail: mamoru_nuno@doctor.nifty.jp
Janusz Sokół
Department of Mathematics
Rzeszów University of Technology
Al. Powstańców Warszawy 12
35-959 Rzeszów
Poland
e-mail: jsokol@ prz.edu.pl

