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Abstract
Let A be the class of functions

f (z) D zC
1

X

nD2

anzn

which are analytic in the unit diskD D {zW jzj < 1}. Let C(r ) be the closed curve
which is the image of the circlejzj D r < 1 under the mappingw D f (z), L(r ) the
length of C(r ), and let A(r ) be the area enclosed by the curveC(r ). It was shown
in [13] that if f 2 A, f is starlike with respect to the origin, and for 0� r < 1,
A(r ) < A, an absolute constant, then

(0.1) L(r ) D O

�

log
1

1� r

�

as r ! 1.

It is the purpose of this work to prove, using a modified methods than that in [13],
a strengthened form of (0.1) for Bazilevic̆ functions, strongly starlike functions and
for close-to-convex functions.

1. Introduction

Let A be the class of functions

(1.1) f (z) D zC
1

X

nD2

anzn

which are analytic in the unit diskD D {z 2 C W jzj < 1}. Let S denote the subclass of
A consisting of all univalent inD.

If f 2 A satisfies

Re

�

1C
z f 00(z)

f 0(z)

�

> 0, z 2 D

then f (z) is said to be convex inD and denoted byf (z) 2 K.
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If f 2 A satisfies

Re

�

z f 0(z)

f (z)

�

> 0, z 2 D

then f (z) is said to be starlike with respect to the origin inD and denoted byf (z) 2 S�.
Furthermore, If f 2 A satisfies

(1.2) Re

�

z f 0(z)

ei�g(z)

�

> 0, z 2 D

for someg(z) 2 S� and some� 2 (��=2,�=2), then f (z) is said to be close-to-convex
in D and denoted byf (z) 2 C. An univalent function f 2 S belongs toC if and only
if the complementE of the image-regionF D { f (z) W jzj < 1} is the union of rays that
are disjoint (except that the origin of one ray may lie on another one of the rays).

On the other hand, iff 2 A satisfies

Re

�

z f 0(z)

f 1��(z)g�(z)

�

> 0, z 2 D

for someg(z) 2 S� and some� 2 (0,1), then f (z) is said to be a Bazilevic̆ function
of type � and denoted byf (z) 2 B(�).

Let SS�(�) denote the class of strongly starlike functions of order�, 0< � � 1,

SS�(�) WD

�

f 2 A W

�

�

�

�

Arg
z f 0(z)

f (z)

�

�

�

�

<

��

2
, z 2 D

�

,

which was introduced in [12] and [1].
Let C(r ) be the closed curve which is the image ofjzj D r < 1 under the map-

ping w D f (z). Let L(r ) denote the length ofC(r ) and let A(r ) be the area enclosed
by C(r ).

Let us defineM(r ) by

M(r ) D max
jzjDr<1

j f (z)j.

Then F.R. Keogh [4] has shown that

Theorem 1.1. Suppose that f(z) 2 S� and

j f (z)j � M <1, z 2 D.

Then we have

L(r ) D O

�

log
1

1� r

�

as r! 1,
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whereO means Landau’s symbol.

Furthermore, D.K. Thomas in [13] extended this result for bounded close-to-convex
functions. Ch. Pommerenke in [9] has shown that

Theorem 1.2. If f (z) 2 C, then

L(r ) D O

(

M(r )

�

log
1

1� r

�5=2
)

as r! 1.

Later, D.K. Thomas in [14] has shown that

Theorem 1.3. If f (z) 2 S�, then

L(r ) D O

�

p

A(r ) log
1

1� r

�

as r! 1.

M. Nunokawa in [6, 7] has shown that

Theorem 1.4. If f (z) 2 K, then

L(r ) D O

�

A(r ) log
1

1� r

�1=2

as r! 1.

Moreover, D.K. Thomas in [15] has shown the following two theorems

Theorem 1.5. If f (z) 2 B(�) and j f (z)j < 1 in D, then we

L(r ) D O

�

log
1

1� r

�

as r! 1.

Theorem 1.6. If f (z) 2 B(�) and 0< � � 1, then we

L(r ) D O

�

M(r ) log
1

1� r

�

as r! 1.

M. Nunokawa, S. Owa et al. in [8] have shown that

Theorem 1.7. If f (z) 2 B(�) and z f0(z) D f 1��(z)g�(z)h(z), then we

L(r ) D O

(

p

A1��(r )G�(r )

�

log
1

1� r

�2
)

as r! 1,
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where

G(r ) D
Z r

0

Z 2�

0
%jg0(%ei � )j2 d� d%

or G(r ) is the area of the image domain ofjzj � r under the starlike mapping g.

Ch. Pommerenke in [9] has also shown that

Theorem 1.8. If f (z) 2 S, then

(1.3) M(r ) � 4

r

A(r )

�

log
3

1� r
(jzj D r < 1).

Therefore, we have

M(r ) D O

�

A(r ) log
1

1� r

�1=2

as r! 1.

It is the purpose of this work to prove, using a modified methods than that in [13],
a strengthened form of (0.1) for Bazilevic̆ functions, strongly starlike functions and for
close-to-convex functions.

2. Lemmas

Lemma 2.1. If h(z) is analytic andRe{h(z)} > 0 in D with h(0)D 1, then

1

2�

Z 2�

0
jh(rei � )j2 d� �

1C 3r 2

1� r 2
<

4

1� r 2

for 0< r < 1.

Lemma 2.1 can be easily proved usingjh(n)(0)j � 2n! and the Gutzmer’s theorem,
see for example [3, p. 31].

Lemma 2.2. If f (z) 2 S, then we have
�

�

�

�

z f 0(z)

f (z)

�

�

�

�

�

1C jzj

1� jzj
<

2

1� jzj
in D,

�

� f 0(z)
�

�

�

1C jzj

(1� jzj)3
in D.

A proof can be found in [10, p. 21].
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Lemma 2.3 ([2, p. 337]). If h(z) is analytic andRe{h(z)} > 0 in D with h(0)D
1, then we have

(2.1) jh0(z)j �
2Re{h(z)}

1� jzj2
<

2

1� jzj
in D.

A proof can be found also in [5].
An analytic function f is said to be subordinate to an analytic functionF , or F is

said to be superordinate tof , if there exists a function an analytic functionw such that

w(0)D 0 and jw(z)j < 1 (z 2 D),

and

f (z) D F(w(z)) (z 2 D).

In this case, we writef � F (z 2 D) or f (z) � F(z) (z 2 D). If the function F is
univalent inD, then we have

[ f � F (z 2 D)] , [ f (0)D F(0) and f (D) � F(D)].

Lemma 2.4. If f (z) is subordinate to g(z) in D and if 0< p, then
Z 2�

0
j f (rei � )jp d� �

Z 2�

0
jg(rei � )jp d�

for all r , 0< r < 1.

W. Rogosinski has shown Lemma 2.4 in [11].

3. Main results

Theorem 3.1. If f (z) 2 S satisfies the condition

(3.1) Re

�

1C
z f 00(z)

f (z)

�

� �Re

�

1C z

1� z

�

in D,

then we have

(3.2) L(r ) D O

�

A(r ) log
1

1� r

�1=2

as r! 1.

Proof. For the case 0< r � 1=2, from Lemma 2.2 we have

L(r ) D
Z 2�

0
jz f 0(z)j d�

�

Z 2�

0

jzj(1C jzj)

(1� jzj)3
d�

< 12� .
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For the case 1=2< r < 1, we have

L(r ) D
Z 2�

0
jz f 0(z)j d�

D

Z 2�

0

Z r

0
j f 0(z)C z f 00(z)j d% d�

D

Z 2�

0

Z r

0

�

�

�

�

f 0(z)

�

1C
z f 00(z)

f (z)

�

�

�

�

�

d% d�

�

�

Z 2�

0

Z r

0
j f 0(z)j2 d% d�

�1=2
 

Z 2�

0

Z r

0

�

�

�

�

1C
z f 00(z)

f (z)

�

�

�

�

2

d% d�

!1=2

<

�

2
Z 2�

0

Z r

0
%j f 0(z)j2 d% d�

�1=2
 

Z 2�

0

Z r

0

�

�

�

�

1C
z f 00(z)

f (z)

�

�

�

�

2

d% d�

!1=2

D

p

2A(r )

 

Z 2�

0

Z r

0

�

�

�

�

1C
z f 00(z)

f (z)

�

�

�

�

2

d% d�

!1=2

.

From the hypothesis (3.1), we have

Re

�

1C
z f 00(z)

f (z)
C

1C z

1� z

�

> 0 in D

or

(3.3)
1C z f 00(z)= f (z)C (1C z)=(1� z)

2
�

1C z

1� z
in D.

It follows that

1C
z f 00(z)

f (z)
C

1C z

1� z
� 2

1C z

1� z
in D,

where the symbol� means the subordination. Then we have
Z r

0

Z 2�

0

�

�

�

�

1C
z f 00(z)

f (z)

�

�

�

�

2

d� d%

D

Z r

0

Z 2�

0

�

�

�

�

1C
z f 00(z)

f (z)
C

1C z

1� z
�

1C z

1� z

�

�

�

�

2

d� d%

�

Z r

0

Z 2�

0

�

�

�

�

1C
z f 00(z)

f (z)
C

1C z

1� z

�

�

�

�

2

d� d%

C 2
Z r

0

Z 2�

0

�

�

�

�

1C
z f 00(z)

f (z)
C

1C z

1� z

�

�

�

�

�

�

�

�

1C z

1� z

�

�

�

�

d� d%

C

Z r

0

Z 2�

0

j1C zj2

j1� zj2
d� d%

D I1C 2I2C I3.
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From Lemma 2.4, (3.3) and Lemma 2.1, we have

I1 D

Z r

0

Z 2�

0

�

�

�

�

1C
z f 00(z)

f (z)
C

1C z

1� z

�

�

�

�

2

d� d%

�

Z r

0

Z 2�

0
4

�

�

�

�

1C z

1� z

�

�

�

�

2

d� d%

< 32�
Z r

0

1

1� %2
d%

D 16� log
1C r

1� r
.

By Lemma 2.1, we have

2I2 D

 

Z r

0

Z 2�

0

�

�

�

�

1C
z f 00(z)

f (z)
C

1C z

1� z

�

�

�

�

2

d� d%

!1=2 
Z r

0

Z 2�

0

�

�

�

�

1C z

1� z

�

�

�

�

2

d� d%

!1=2

�

�

16� log
1C r

1� r

�1=2�

8�
Z r

0

1

1� %2
d%

�1=2

D

�

16� log
1C r

1� r

�1=2�

4� log
1C r

1� r

�1=2

D O

�

log
1

1� r

�

as r ! 1.

By Lemma 2.1, we have

I3 D

Z r

0

Z 2�

0

�

�

�

�

1C z

1� z

�

�

�

�

2

d� d%

D 4� log
1C r

1� r

D O

�

log
1

1� r

�

as r ! 1.

This shows (3.2) which completes the proof of Theorem 3.1.

Theorem 3.2. If f (z) 2 B(�) is a Bazilevĭc function of type�, 0< � � 1, then
we have

(3.4) L(r ) D O

(

A(r )

�

log
1

1� r

�3=2
)

as r! 1.

Proof. Becausef (z) 2 B(�), there existsg(z) 2 S� and there exists an analytic
function h(z), h(0)D 1, Re{h(z)} > 0 in D, such that

(3.5) z f 0(z) D f 1��(z)g�(z)h(z).
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Therefore we have

L(r ) D
Z 2�

0
jz f 0(z)j d�

D

Z 2�

0
j f 1��(z)g�(z)h(z)j d�

� M1��(r )
Z 2�

0
jg�(z)h(z)j d�

� M1��(r )

�

Z r

0

Z 2�

0
�jg��1(z)g0(z)h(z)j d� d%C

Z r

0

Z 2�

0
jg�(z)h0(z)j d� d%

�

� M1��(r )(I1(r )C I2(r )).

Applying Ch. Pommerenke’s result (1.3), we have

L(r ) �

�

16

�

A(r ) log
3

1� r

�(1��)=2

(I1(r )C I2(r )).

D.K. Thomas in [15] has shown that iff (z) is a Bazilevĭc function of type�, 0 <
�, then

I1(r ) � 2
p

2��K (�)

�

1

r
log

1C r

1� r

�1=2

D O

(

�

log
1

1� r

�1=2
)

as r ! 1,

(3.6)

where

(3.7) K (�) D max{1, (4=r )1��}

is a bounded constant not necessarily the same each time. On the other hand

I2(r ) D
Z r

0

Z 2�

0
jg�(z)h0(z)j d� d%.

Using (2.1) we obtain

I2(r ) �
Z r

0

Z 2�

0
jg(z)j� Re{h(z)}

2

1� %2
d� d%

� 2Re

�

Z r

0

Z 2�

0

jg�(z)j

g�(z)
g�(z)h(z)

1

1� %2
d� d%

�

.

Using (3.5) we can write

I2(r ) � 2Re

�

Z r

0

Z 2�

0
z f 0(z) f ��1(z)

e�i� argg(z)

1� %2
d� d%

�

.
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Becauseg(z) is a starlike function, then argg(%ei � ) is an increasing function of� and
maps the interval [0, 2� ] onto oneself. Applying D. K. Thomas method [15, p. 357],
after a suitable substitution and integrating by parts, we obtain

I2(r ) �
2

�

Re

�

Z r

0

Z

jzjD%
z

�

d f �(z)

dz

�

e�i� argg(z)

1� %2

dz

iz
d%

�

D 2Re

�

Z r

0

Z

jzjD%

1

i�

e�i� argg(z)

1� %2

�

d f �(z)

d
�

argg(z)

�

d
�

argg(z) d%

�

D 2Re

�

Z r

0

d%

i�(1� %2)

Z

jzjD%
e�i� argg(z)

�

d f �(z)

d
�

argg(z)

�

d
�

argg(z)

�

D 2Re

�

Z r

0

d%

i�(1� %2)

�

[ f �(z)e�i� argg(z)]argg(z)D2�
argg(z)D0

C

Z r

0

Z

jzjD%
i� f �(z)e�i� argg(z) d

�

argg(z)

��

D 2Re

�

Z r

0

Z

jzjD%
f �(z)e�i� argg(z) 1

1� %2
d
�

argg(z) d%

�

� 4�
Z r

0
M�(%)=(1� %2) d%.

Applying Ch. Pommerenke’s result (1.3), we have

I2(r ) � 16
p

�

Z r

0

�

A(%) log
3

1� %

�

�=2

=(1� %2) d%

� 16
p

�A�=2(r )
Z r

0

�

log
3

1� %

�

�=2 1

1� %
d%

D 16
p

�A�=2(r )
2

� C 2

Z r

0

(

�

log
3

1� %

�(�C2)=2
)

0

d%

D O

(

A�=2(r )

�

log
1

1� r

�(�C2)=2
)

as r ! 1.

Applying it together with (3.6) we obtain (3.4).

Theorem 3.3. If f (z) 2 B(�) is a Bazilevĭc function of type�, 1< �, then we have

(3.8) L(r ) D O

(

A�(r )

�

log
1

1� r

�

�C2
)1=2

as r! 1.
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Proof. For the case 0< r � 1=2, becauseB(�) � S, by Lemma 2.2 we have

L(r ) D
Z 2�

0
jz f 0(z)j d�

�

Z 2�

0

r (1C r )

(1� r )3
d�

< 12� ,

wherer D jzj. Assume that

h(z) D
z f 0(z)

f 1��(z)g�(z)
, Re{h(z)} > 0, z 2 D, g 2 S�.

For the case 1=2< r < 1, we have

L(r ) D
Z 2�

0
jz f 0(z)j d�

D

Z 2�

0
j f 1��(z)g�(z)h(z)j d�

�

Z 2�

0

�

�

�

�

(1C r )2

r

�

�

�

�

��1

jg�(z)h(z)j d�

�

�

9

2

�

��1 Z 2�

0
jg�(z)h(z)j d�

�

�

9

2

�

��1�Z 2�

0

Z r

0
�jg0(z)g��1(z)h(z)j d% d� C

Z 2�

0

Z r

0
jg�(z)h0(z)j d% d�

�

D

�

9

2

�

��1

(I1(r )C I2(r )).

Using the result (3.7) for 1=2< r < 1, we have

I1(r ) � 2
p

2��K1(�)

�

2 log
1

1� r

�1=2

,

where K1(�) � max
{

1, 81��
}

. Furthermore, in the same way as in the previous proof,
we obtain

I2(r ) D
Z 2�

0

Z r

0
jg�(z)h0(z)j d% d�

D O

(

(A(r ))�=2
�

log
1

1� r

�(�C2)=2
)

as r ! 1,

where K2(r ) is a bounded function of�. This completes the proof.
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REMARK 3.4. D.K. Thomas in [15] has shown that iff (z) is a Bazilevĭc func-
tion of type �, 0< � � 1, then

L(r ) � K (�)M(r ) log
1

1� r
,

where K (�) is a bounded function of�. On the other hand, from Ch. Pommerenke’s
result [9], we have

L(r ) � K (�)
p

A(r )

�

log
1

1� r

�3=2

.

From Theorems 3.2 and 3.3 we have that iff (z) is a Bazilevĭc function of type�,
0< � � 1, then

L(r ) D

8

�

�

�

�

<

�

�

�

�

:

O

(

A�=2(r )

�

log
1

1� r

�

�C2=2
)

for 1< �,

O

(

A1=2(r )

�

log
1

1� r

�3=2
)

for 0< � � 1,

as r ! 1.

Theorem 3.5. Let f 2 SS�(�) be strongly starlike function of order�, 0< � <
1. Then we have

(3.9) L(r ) D O

(

A(r )

�

log
1

1� r

�1=2
)

as r! 1.

Proof. From the hypothesis of the Theorem and applying Ch. Pommerenke’s [9]
and Rogosinski’s [11] results, we have

L(r ) D
Z 2�

0
jz f 0(z)j d�

D

Z 2�

0
j f (z)j

�

�

�

�

z f 0(z)

f (z)

�

�

�

�

d�

� M(r )
Z 2�

0

�

�

�

�

z f 0(z)

f (z)

�

�

�

�

d�

�

p

�K A(r ) log(1� r )
Z 2�

0

�

�

�

�

1C z

1� z

�

�

�

�

�

d�

�

p

�K A(r ) log(1� r )
Z 2�

0

2

j1� zj�
d�

D O

(

A(r )

�

log
1

1� r

�1=2
)

as r ! 1,
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where K is a bounded constant and because we have

Z 2�

0

2

j1� zj�
d� <1 for 0< � < 1.

Corollary 3.6. Let f 2 C be close-to-convex function, satisfy (1.2) with � D 0 in
D and mapD onto a domain of finite area A. Then byTheorem 3.2,� D 1, we have

L(r ) D O

(

�

log
1

1� r

�3=2
)

as r! 1.

Notice that D.K. Thomas in Theorem 2 [13, p. 431]. has shown that

L(r ) D O

��

log
1

1� r

��

as r ! 1.

when f 2 C, satisfies (1.2) with� D 0 and f is bounded inD.

Corollary 3.7. Let f 2 C be close-to-convex function, satisfy (1.2) with � D 0 in
D. Then by Theorem3.2, � D 1, we have

L(r ) D O

(

A(r )

�

log
1

1� r

�3=2
)

as r! 1.

In [13] it was shown that

L(r ) D O

�

M(r )

�

log
1

1� r

��

as r ! 1,

when f 2 C, satisfies (1.2) with� D 0. Compare also Theorems 1.1–1.8 in the
introduction.
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Al. Powstánców Warszawy 12
35-959 Rzeszów
Poland
e-mail: jsokol@prz.edu.pl


