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Abstract
Let A be the class of functions

f@Q=z+) a2
n=2

which are analytic in the unit dis® = {z: |z| < 1}. Let C(r) be the closed curve
which is the image of the circléz| =r < 1 under the mapping = f(2), L(r) the
length of C(r), and let A(r) be the area enclosed by the cui@é). It was shown
in [13] that if f € A, f is starlike with respect to the origin, and for<Or < 1,
A(r) < A, an absolute constant, then

(0.1) L(r) = O(Iog %) as r — 1.

It is the purpose of this work to prove, using a modified meghdthn that in [13],
a strengthened form of (0.1) for Bazilévfunctions, strongly starlike functions and
for close-to-convex functions.

1. Introduction
Let A be the class of functions
(1.1) f@=2+) a2
n=2

which are analytic in the unit disR = {z€ C: |z| < 1}. Let S denote the subclass of
A consisting of all univalent irD.

If f e A satisfies
sel1+ 2@l o Lep
f'(2)

then f(z) is said to be convex i and denoted byf (z) € K.
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If f e A satisfies

zf'(2)
SRe{ f(z)}>0’ zeD

then f(2) is said to be starlike with respect to the originlinand denoted byf (z) € S*.
Furthermore, Iff € A satisfies

%e{ zf'(2)

(1.2) 879

}>0, zeD

for someg(z) € S* and somex € (—n/2,7/2), then f(2) is said to be close-to-convex
in D and denoted byf (z) € C. An univalent functionf € S belongs toC if and only
if the complementE of the image-regior- = {f(2): |z| < 1} is the union of rays that
are disjoint (except that the origin of one ray may lie on Aeotone of the rays).

On the other hand, iff € A satisfies

zf'(2)
m?{m} >0, zeD

for someg(z) € S* and somes € (0, 00), then f(2) is said to be a Bazile@ifunction
of type B and denoted byf (z) € B(B).
Let SS*(«) denote the class of strongly starlike functions of ordel0 < o <1,

f/
2i') < ﬂ, Ze]D)},

f(2)

SS*(a) := {f e A: ‘Arg 3

which was introduced in [12] and [1].

Let C(r) be the closed curve which is the image |af = r < 1 under the map-
ping w = f(2). Let L(r) denote the length o€(r) and let A(r) be the area enclosed
by C(r).

Let us defineM(r) by

M(r) = max |1(2)]
Then F.R. Keogh [4] has shown that
Theorem 1.1. Suppose that (£) € S* and
[f(2)| <M <00, zeD.

Then we have

L(r):O(Iog%) as r—1,
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where O means Landds symbol.

Furthermore, D.K. Thomas in [13] extended this result fourtmed close-to-convex
functions. Ch. Pommerenke in [9] has shown that

Theorem 1.2. If f(2) € C, then

5/2
L(r)=O{M(r)(Iogﬁ) } as r— 1.

Later, D.K. Thomas in [14] has shown that

Theorem 1.3. If f(2) € §*, then

1
L(r) = O{\/A(r) log ﬁ} as r— 1.
M. Nunokawa in [6, 7] has shown that

Theorem 1.4. If f(2) € K, then
1 1/2
L(r):O{A(r)IogE} as r— 1.

Moreover, D.K. Thomas in [15] has shown the following two trexas

Theorem 1.5. If f(2) € B(B) and |f(2)| < 1 in D, then we
L(r)=0llo ! as r—1
N 91 '
Theorem 1.6. If f(2) € B(B) and0 < 8 <1, then we
1
L(r) = O(M(r) log ﬁ) as r— 1.

M. Nunokawa, S. Owa et al. in [8] have shown that

Theorem 1.7. If f(2) € B(B) and zf(2) = ¥ #(2)g?(2)h(2), then we

2
L(r)=(9{ Al—ﬁ(r)eﬂ(r)(logﬁ)} as 11
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where
r p2m )
6= [ [ clgted’y?ewde
0Jo
or G(r) is the area of the image domain (] <r under the starlike mapping g.
Ch. Pommerenke in [9] has also shown that
Theorem 1.8. If f(2) € S, then

(1.3) M(r) <4 % log % Izl =r < 1).

Therefore we have
1/2
M(r):O{A(r)IogE} as r— 1.

It is the purpose of this work to prove, using a modified meghtithn that in [13],
a strengthened form of (0.1) for Bazilévfunctions, strongly starlike functions and for
close-to-convex functions.

2. Lemmas

Lemma 2.1. If h(2) is analytic andfe{h(z)} > 0 in D with h(0) = 1, then

14 3r? 4
<
1—r2 1—r2

1 2 )
E/o |h(re"’)|2 do <
forO<r < 1.

Lemma 2.1 can be easily proved usiffig”(0)| < 2n! and the Gutzmer’s theorem,
see for example [3, p.31].

Lemma 2.2. If f(2) € S, then we have

zf'(2) 1+ |z 2 .
< D,
(@112 " 1-12 "
14|z .
f'(2))| < ———= in D.
| | (1-12)?

A proof can be found in [10, p. 21].
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Lemma 2.3 ([2, p.337]) If h(z) is analytic andRe{h(z)} > 0 in D with h(0) =
1, then we have
2Re{h(2)} 2

2.1 h'(2)| < in D.
@1) W@Is = <o "

A proof can be found also in [5].
An analytic functionf is said to be subordinate to an analytic functienor F is
said to be superordinate tb, if there exists a function an analytic functiem such that

w(@0)=0 and |w(@)| <1 (zeDb),
and
f(2) = F(w(2) (zeD).

In this case, we writef < F (z € D) or f(2) < F(2) (z € D). If the function F is
univalent inD, then we have

[f <F (zeD)] & [f(0) = F(0) and f (D) C F(D)].

Lemma 2.4. If f(2) is subordinate to €g) in D and if 0 < p, then

/ |f(re'?)|Pdo < / lg(re'?)|P do
0 0
forallr,0<r <1

W. Rogosinski has shown Lemma 2.4 in [11].

3. Main results

Theorem 3.1. If f(2) € S satisfies the condition

zf"(2) 1+z) .
3.1) D%e{l—i— f(z)}z_me{l—z} in D,

then we have
1 12
3.2) L(r) = O{A(r) log E} as r— 1.

Proof. For the case @r < 1/2, from Lemma 2.2 we have

21
L(r) =/O 12f'(2)| d

2

C [,
o (X-1z])

< 12r.
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For the case 2 <r < 1, we have
27
L(r) =/ |zf'(2)| db
0
27 pr
=/ /|f’(z)+zf”(z)|dgd9
0 0

f’(z)(l + Z:(S))‘ do b

B 0 0
< (/Ozn/Or| f’(z)|2 do d0)1/2<
([ [ arere de)”z(

4 /
- 2A(r< Zf (Z) dgde) .

From the hypothesis (3.1), we have

zf”(z)

1/2
do d@)

p 1/2
zf (z) do de)

zf(z2) 14z :
93e{1+ @ 1—Z}>0 in D
or
(3.3) 1+zf”(z)/f(z)—|—(1+z)/(1—z)<1+z in

2 1-z

It follows that
zf"(z2) 14z 1+z

1 2 in D
+ f(2) +1—z< 1-z '

where the symbok means the subordination. Then we have

r p2r 1 2
// 1 zf"(2)
o Jo f(2)
rre z2f"(2) 14z 14z
= 1 _
// ‘+f(z)+ 1-7 1-z
/‘/2” zf”(z) 1—|—z2
f(Z)
i f”(z) 1+z
+z// 1
0Jo f(2)
r p27 2
1+ Z|
-I-// do d
0oJo [1-12 ¢

=l1 42l + Ia.

do do

1+

do do

1+z
1-z

do do
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From Lemma 2.4, (3.3) and Lemma 2.1, we have

21
=[]
E/[ 4‘1+z
0Jo 1-z

o1

zf”(z) 1+ z|
1-z

do do

do do

= 167 Iog 14
By Lemma 2.1, we have
1/2
re zf(2) 1+ z| 14z
2|=// 1 d9 do //‘ a9 do
? ( o Jo e
1+r o1 12
(1671 log —) (871 12 )
1+ 14r\¥?
=0llo ! as r -1
N S '
By Lemma 2.1, we have
2
h—// HJdMQ
=4rlo +r
g —r
=0|lo 1 as r—>1
N 91 '
This shows (3.2) which completes the proof of Theorem 3.1. ]

Theorem 3.2. If f(2) € B(B) is a Bazilevt function of type8, 0 < 8 <1, then
we have

3/2
(3.4) L(r) = (’){A(r)(log ﬁ) } as r— 1.

Proof. Becausef (z) € B(8), there existsg(z) € S* and there exists an analytic
function h(z), h(0) = 1, Re{h(2)} > 0 in D, such that

(3.5) 2t'@) = 1 (20 (D)h(2).



702 M. NUNOKAWA AND J. SOKOL

Therefore we have
2
L(r)=/ 12f'(2)| d
0
27
- / 1112 (Qh(2) db
0

21
< M (r) /0 1 @h(@)| &

A

r 21 r 2
1-8 p—1 / B ’
<M (r){/0 [~ bio (z)g(z)h(z)|ded@+/0/0 9 (z)h(z)|dedg}
MEAE)(14() + 12(7)).

Applying Ch. Pommerenke’s result (1.3), we have

IA

1-B)/2
L(r) < (1—6A(r) log i) (1) + 12(1)).
T 1—r

D.K. Thomas in [15] has shown that if (z) is a Bazilevt function of typepg, 0 <
B, then

172
ll(r)<2d_ﬂK(ﬁ)( Iogl“)

1 \Y2
:O{(Iogﬁ) } as r — 1,

3.7) K(B) = max(1, (4/r)" ")

is a bounded constant not necessarily the same each timeheOother hand

(3.6)

where

r 2
Io(r) = [ f @M (D) b do.
0JO
Using (2.1) we obtain

Ia(r) < / / 91" Relh(@) = & do

s [ 'Sﬂizi'

Using (3.5) we can write
e-igargg(d)
I(r) < 2%Re {// zf'(2) P~ 1(z) do dg}
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Becausey(z) is a starlike function, then agfe€?) is an increasing function of and
maps the interval [0,72] onto oneself. Applying D. K. Thomas method [15, p.357],
after a suitable substitution and integrating by parts, Ww&io

2 r dff(z)\ e #a99@ ¢z
Io(r) < = Re // Z( ) —d}
20 B {o lzl=¢ dz 1-g% iz *
r 1 e Pa9d@ 1 dfh(z)
= 2%Re // — ( )d argg(z) d }
{ 0Jig= iB 1—0? \dyargg(2) b arg9(2) de

" do y dtf(2)
=2 —_— ig argg(Z)( ) d }
9{e{/(; |,3(1 — Q2) lzl=o € d9 arg g(z) 0 argg(z)

' dQ _j =2
=2l [ 1

+ /r/|z . ipfh(z)e'Fae9@ g, argg(z)}}

_29%{ / / fA(z)e'# 299 dg argg(2) dg}
=0 1-

< 4x fo M (0)/(1 - 0?) do.

Applying Ch. Pommerenke’s result (1.3), we have

r B/2
a0 < 1607 [ (M@ 1oa ;=) /-

B/2 1
) e
1-¢
3 (B+2)/2
910 0

1\ (4272
=0 Aﬂ/z(r)(log E) as r — 1.

Applying it together with (3.6) we obtain (3.4). O

<16fAﬂ/2(r)/ (Iog

=167 Aﬂ/z(r)ﬂ i

Theorem 3.3. If f(2) € B(B) is a Bazilevt function of types, 1 < 8, then we have

1 B+2 1/2
(3.8) L(r) = O{Aﬂ(r)(log E) } as r— 1.
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Proof. For the case @r < 1/2, becausé3(8) C S, by Lemma 2.2 we have
2n
L(r) = / |zf'(2)| do
0

- 2 r(L+r)
_/0 a—rne ¥

< 127,

wherer = |z|. Assume that

zf'(2)

T Tere

Re{h(z2)} >0,zeD, ge S*.
For the case 2 <r < 1, we have
21
L(r)=/ |zf'(z)| dO
0
2
- [ 11 g @) @
0

p—1
< [T geneie

B—1 21
s(g) /0 ¥ @h(2)| b

() [ poee @naises + [ [ g@n@es)

- (g)ﬂ_l(ll(r) + 12(r)).

Using the result (3.7) for 2 <r < 1, we have
1 1/2
() = 2vZnpa(p) (2109 17 )

where Ky(8) < max{1, 8#}. Furthermore, in the same way as in the previous proof,
we obtain

2T pr
Io(r) = /0 /0 0*@N (@) do b
1\ (22
:O{(A(r))ﬂ/z(logﬁ) } as r —1,

where K,(r) is a bounded function oB. This completes the proof. ]
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ReEMARK 3.4. D.K. Thomas in [15] has shown that ff(z) is a BazilevE func-
tion of type 8, 0 < 8 <1, then

L) = K(M()log

where K(B) is a bounded function oB. On the other hand, from Ch. Pommerenke’s
result [9], we have

1 \¥2
L(r) < K(ﬂ)\/A(r)(Iog E) .

From Theorems 3.2 and 3.3 we have thatfifz) is a BazilevE function of typep,

0< B <1, then
1 \FH22
(’){Aﬂ/z(r)(log ﬁ) } for 1<p,

1 3/2
O{Al/Z(r)(log E) } for 0<pB <1,

Theorem 3.5. Let f € S§*(«) be strongly starlike function of order, 0 < a <
1. Then we have

L(r) = as r — 1.

1 1/2
3.9 L(r)=O{A(r)(IogE) } as r— 1.

Proof. From the hypothesis of the Theorem and applying CmrRerenke’s [9]
and Rogosinski’'s [11] results, we have

2
L(r) :/0 12t(2)| &9

[T 2f'(2)

—/0 @5
2T

< M(r)/(;

zf'(2)
2
— | _
VRAGoGE=T) |

do

do

f(2)

o

do

1+z
1—-2z

2 2
< \/—KA(r)Iog(l—r)/O iz

1 1/2
=O{A(r)(logﬁ) } as r -1,

IA

do
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where K is a bounded constant and because we have

2 2
/ ad0<oo for O0<a <1. O
0

Corollary 3.6. Let f € C be close-to-convex functipsatisfy (1.2) with « = 0 in
D and mapD onto a domain of finite area A. Then Bjheorem 3.28 = 1, we have

1 3/2
L(r)=0{(logﬁ) } as r— 1.

Notice that D.K. Thomas in Theorem 2 [13, p.431]. has shovat th

L(r) = (’){(Iog &)} as r — 1.

when f € C, satisfies (1.2) withe = 0 and f is bounded inD.

Corollary 3.7. Let f € C be close-to-convex functipsatisfy (1.2) with « = 0 in
D. Then by Theorer8.2, 8 = 1, we have

1 3/2
L(r):O{A(r)(IogE) } as r— 1.

In [13] it was shown that

L(r):O{M(r)(Iog %)} as r — 1,

when f € C, satisfies (1.2) withe = 0. Compare also Theorems 1.1-1.8 in the
introduction.
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