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Abstract
We give an obstruction to unknotting a knot by adding a twisband, derived
from Heegaard Floer homology.

1. Introduction

Many unknotting operations have been defined and studied on tkeory. For ex-
ample, as well-known, (a), (b) (cf. [8, 10]) and (c) in Fig. e dhree types of unknot-
ting operations. Especially, (c) was introduced by Hostakahishi and Taniyama [4],
which they called Hf)-move. Heren is the number of arcs inside the circle. Note
that an HQ)-move is required to preserve the component number of thgran. The
H(n)-unknotting numberf a knot is the minimal number of Hj-moves needed to
change the knot into the unknot. In this note, we focus on fhecial case whem
equals two. Given two knot& and K’, when K’ is obtained fromK by applying an
H(2)-move, we also alternatively say thit is obtained fromK by adding a twisted
band, as shown in Fig. 2. Following [4], we denote the H(2notting number of a
knot K by uy(K). In this note, we give a necessary condition for a kKotto have
ux(K) = 1, by using a method introduced by Ozsvath and Szab6 [15].

The question whether a given knot has H(2)-unknotting nuntdoee should be
traced back to Riley. He made the conjecture that the figigtat-é&not could never be
unknotted by adding a twisted band. Lickorish confirmed tdosjecture in [7]. Here
we give a brief review of his method. Given a knidt, let (K) denote the double-
branched cover of® along K and leti: Hi(Z(K), Z) x Hi(2(K), Z) — Q/Z be the
linking form of £(K). Lickorish proved that if the knoK can be unknotted by adding
a twisted band, theiid;(2(K), Z) is cyclic and it has a generatgrsuch thati(g,g) =
+1/det(K), where detK) is the determinant oK. For the figure-eight knot 4 the
linking form has the formi(g, g) = 2/5 for some generatog € Hi(X(41)) = Z/5Z.

If there is another generat@’ = xg such thati(g’, g') = +1/5, we have 22 = +1
(mod 5), while there is no such an integesatisfying the condition. Therefore Riley’s
conjecture holds.
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Fig. 1. Some unknotting operations.

Fig. 2. Adding a twisted band to a knot diagram.
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Fig. 3. The sign convention of a crossing.

Now we turn to the description of our result. Consider a niegatefinite symmet-
ric n x n matrix Q over Z, and supposédet(Q)| is p. Then define a group

Go := Z"/Im(Q).
A characteristic vectorfor Q is an element in
char@Q) = {&€ = (&1, &, ..., &) € Z" | £'v = v'Qu (mod 2) for anyv € Z"}
={£€Z"|& = Qi (mod 2) for 1<i <nj.
Supposep is odd, and consider the map (cf. [12, 15])
Mg: Gg —> Q
defined by

-1
Mo(a) = max{m# & echar@Q), [§] =« € GQ}.

Now we recall the definition of Goeritz matrix. Given a knoagiam, color this
diagram in checkerboard fashion such that the unboundednrdms black color. Let
fo, f1,..., fk denote the black regions an@ correspond to the unbounded one. Define

the sign of a crossing as in Fig. 3. Then the Goeritz makiis the k x k symmetric
matrix defined as follows,

~__Jthe signed count of crossings adjacentfto ifi=j,
9 = \minus the signed count of crossings joinifigand f; if i # j

fori,j=1,2,...,k
Our result about H(2)-unknotting number is as follows:
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Theorem 1.1. Let K be an alternating knot withdetK | = p, and let A be the
negative-definite Goeritz matrix corresponding to a redledternating diagram of K
or its mirror image. Since K is a knptve see that p is an odd number. Supposei&
the group presented by A. IL(K) = 1, then there is an isomorphisg: Z/pZ — Ga
and a signe € {+1, —1} with the properties that for all i€ Z/pZ:

i 2
i) = € - Ma@(1) + %(%(W —i) —1) —0 (mod 2)

and
l4.(3) > 0.

Here we abuse i to denote both the elemenZjtpZ and its representative in the set
{0,1,2,...,p—1}.

If one is familiar with the work in [15], the proof is immedat We will give the
proof in Section 2.

The H(2)-unknotting number of a knot is an interesting kmfariant. It is closely
related to the 3-dimensional and 4-dimensional crosscapbets of a knot. It can
be defined in some different viewpoints, as indicated by yeana and Yasuhara [17].
Many researches concerning it can be found in [18, 6, 1] andrqthpers.

In order to check that Theorem 1.1 works better in some cdsas the existing
criteria, we post the knoP(13, 4, 11) as an example. We determine that it has H(2)-
unknotting number 2, which cannot seem to be detected by ttier onethods that the
author knows.

Corollary 1.2. The pretzel knot BL3, 4, 11)has H(2)-unknotting humbep.

2. Proofs

2.1. Preliminaries. Almost all the ingredients contained in this subsection can
be found in [15], or an earlier paper [13]. But for intactnes® include them here.
If X is an oriented 3- or 4-manifold, the second cohomol®td(X, Z) acts on the set
of spirf-structures Spit(X) freely and transitively. Each sgistructures € Spirf(X)
has the first Chern class(s) € H3(X, Z), and the relation to the action &(s+h) =
ci(S) + 2h for any h € H3(X, Z).

Let Y be an oriented rational homology 3-sphere anbe a spifi-structure over
Y. Then there is Heegaard Floer homology associated with dive(, s). In this note,
we use Heegaard Floer homology with coefficients in the figld= Z/27. There are
several versions of this homology. One versionH$="(Y, s), which is aQ-graded
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module over the polynomial algeb#{U]. That is

HF*(Y,s) = D HF (Y, 9),
ieQ

where multiplication byJ lowers the grading by two. In each grading Q, HF(Y,s)
is a finite-dimensionaF-vector space. A simpler version 14 F*(Y), and it satisfies
HF>(Y, s) = F[U, U] for eachs € Spirf(Y) [14, Theorem 10.1]. It is als@-graded
and multiplication byU lowers its grading by two.

For any spifi-structures, there is a naturalF[U]-equivariant map

7 HE®(Y, s) — HF*(Y, 9),

which preserves th®-grading. We user; to denote the restriction of on the grad-
ing i. Thenm; is zero for all sufficiently negative gradings and an isorhism in all
sufficiently positive gradings. Ozsvéath and Szabo defineiheariant d(Y, s) from the
map 7, which is called thecorrection termof the pair {, s). Precisely, we have

d(Y, s) := min{i € Q | =; is non-zerg.

The correction terms fo¥ and —Y, where =" means the reversion of orientation, are
related by the formula

d(-Y, s) = —d(Y, s)

under the natural identification Sp{Y) =~ Spirf(-Y).

The mapn behaves naturally under cobordisms. Mgtand Y, be two oriented
rational homology 3-spheres. We say a smooth connectedtedet-manifoldX is a
cobordism fromY; to Y, if the boundary ofX is given by X = —Y; U Y,. Sup-
pose X is a cobordism fromY; to Y, andt is a spifi-structure ofX. Then there is a
homomorphism

Fi: HE(YL, s1) = HFO(Y2, ),

where H F° denotes any version of Heegaard Floer homology sni@ the restriction
ofttoY fori =1,2 (we simply express it ag = t|y,). The mapz and the map
Fg. fit into the following commutative diagram:

Foe
HF®(Yy, 81) —— HF>®(Y, )

| E

F*K
HFET(Yy, s1) —— HF (Y2, ).
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If X is a negative-definite cobordism, the proof of Theorem 9.[18} (also mentioned
in the proof of [13, Proposition 9.9]) tells us th&g’, is an isomorphism.

Suppose thaly is an oriented rational homology 3-sphere, thatis a negative-
definite simply connected 4-manifold withX = Y and thatt € Spirf(X). Then it is
shown in [13] that

c3(t) + b(X)

1) d(y, tly) = 4 ,
@) d(Y, tly) = w (mod 2).

Here (1) follows directly from [13, Theorem 9.6], while (2 hot clearly written. For
readers’ convenience, we explain it here. Consideminus a point as a cobordiskV
from S® to Y. Then we have the following commutative diagram

oo (3 it 00
HFE>(S, tlgs) —— HF>(Y, t|y)

S

F
HF(S tls) —— HF*(Y, tly),

and Fg}; is an isomorphism. There is an elemént HF>(Y, t|y) with the property
that its Q-grading gr€) is d(Y, t|y). Suppose the preimage 6fin HF>(S% t|g) is
n. Then we have

ci(t) — 2x (W) — 35(W) _ ci(t) + ba(X)
4 4 '

d(Y, tly) —gr(n) = gr) — gr(n) =

The first equality follows from our choice of, the second one follows from Equa-
tion (4) in [13], and the last one holds because of the fact thdW) + 30(W) +
by(X) = 0. Precisely we have

2x (W) + 3o (W) + by(X)

= 2(bo(W) — by (W) + bz(W) — b3(W) + ba(W)) — 3b2(W) + ba(W)

= 2(bo(W) — by (W) — bg(W) + bs(W))

= 2(bp(W) — 2b1 (W) — 1 + by(W)) = 0.
Here bj (W) denotes tha-th Betti number ofW. The first equality comes from our
assumption thatX is negative-definite. The third equality follows from thectfahat
bs(W) = by (W) + 1, obtained from the relatiofs(W) = Hs(W, SSUY) @ Z, Poincaré

duality and the universal coefficient theorem. The last kiyuaomes from the facts
that bo(W) = 1 andbs(W) = 0, and our assumption tha{ is simply connected. For
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the 3-sphereS®, as anF-vector space, we know that ([14, Theorem 10.1))

HF>(S, tlg) = @ Fei),

I=—00

wherelF ;) denotes the summand supported on gradingherefore we see that g =
0 (mod 2). Now (2) follows.

Remember thatl(S®, t|ss) = 0 and thatH F>(S%, t|s) = F[U, U 1], and therefore
we obtain grg) =0 (mod 2). Now (2) follows obviously.

Suppose further for simplicity thaK is simply-connected and that the order of
H2(Y, Z) is odd. Then there exists a group structure on the spac&(Spiby identi-
fying s € Spirf(Y) with cy(s) € H(Y, Z). In the following, we denote the correction
term d(Y, s) by d(Y, c.(s)) if necessary. Let denote the second Betti number Xf
Then we have the following exact sequence:

0— Ho(X) = Z' 5 HY(X) = Z' 1> H2(Y) — Hy(X) = O.

Fix a basis forH,(X) and let B be the matrix of the intersection form of. Then
B is a symmetric negative-definite x r integer matrix with|detB| = |H(Y, Z)|. A
spirf-structures € Spirf(Y) is the restriction of a spfastructuret € Spirf(X) on Y if
and only if j*(cy(t)) = cai(s).

In fact, the mapt under the given basis oH,(X) is presented by the matrix

B. We definep as the map Coker] = Gg 4, H2(Y), where j; is the map in-
duced fromj* on the cokernel ofr. It is obvious from the exact sequence thais
an isomorphism. Undep the set of characteristic vectors cHa)(is equal to the set
{ci(t) | t € Spirf(X)} € H?(X,Z). If we suppose the first Chern clasgt) corresponds
to the characteristic vectdr, thenc(t) is equal tog'B~1¢.

Under these identifications, (1) and (2) can be written akv@. For anys e
Spirf(Y) and anyé € char®) with ci(s) = ¢([£]), there are

-1
AWy, sy = L EET
and
1
d(Y, ci(s)) = gtB# (mod 2).

This is equivalent to say under the isomorphigmGg — H?(Y, Z) the following hold
for any o € Gg:

d(Y, ¢(«)) = Mg(),

©)
d(Y, ¢()) = Mg(e) (mod 2).
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2.2. Proof of Theorem 1.1. WhenK is an alternating knot ir§°, the correction
terms for £(K) have an extremely easy combinatorial description as\allo

Theorem 2.1 (Ozsvath—Szab6 [15, 16]) If K is an alternating knot and A de-
notes a Goeritz matrix associated to a reduced alternatirgjeption of K, and G, is
the group presented by,Ahen there is an isomorphism: H?(Z(K), Z) — Ga, with
the property that

d(Z(K), B) = Ma(¥(8))

for all B € H3(Z(K), Z).
For knots with H(2)-unknotting number one, we have the feilg lemma.

Lemma 2.2 (Montesinos's trick [9]) If the H(2)-unknotting number of a knot K
is one then £(K) = ¢ - Sip(C) for some knot Cc S® and € € {+1,—1}. Here p=
|det(K)| and SP(C) denotes the-p-surgery of 8 along the knot C.

Proof of Theorem 1.1. If the H(2)-unknotting number &f is one, then by
Lemma 2.2%(K) = € - $(C) for some knotC C S* ande € {+1,—1} and p =
|det(K)|. Thereforee - X(K) = Sip(C) bounds a 4-manifoldX, which is obtained by
attaching a 2-handle to the 4-ball alo with framing —p. The intersection form
of X is B = (—p). In this caseGg = Z/pZ, and X is a simply-connected negative-
definite 4-manifold.

By (3), there exists a group isomorphism Gg = Z/pZ — H*(S?,(C), Z) with

d(S*,(C), ¢(i)) = d(e - (K), ¢(i)) = € - d(E(K), ¢(i)) > Mz(i)
and
€-d(Z(K), ¢(i)) = Mg(i) (mod 2)

Theorem 2.1 implies that for the map= v op: Z/pZ — G (here we automatically
identify HZ(SEp(C), Z) with H?(Z(K), Z)) we have

€+ Ma(#(i)) = Ms(i)
and
€ - Ma(¢(i)) = Mg(i) (mod 2)

for all i € Z/pZ. In the following calculation, we abuseto denote both the element
in Z/pZ and its representative in the g, 1, 2,..., p—1}. By definition we see that
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Fig. 4. The pretzel knoP(13, 4, 11).

for anyi € Z/pZ,

tp-1
Mg(i) = max{% uis odd, U] = i}
2
_ max{ “4;“ Pl uis odd, pi] = i}
_ A Y4
—(p=i)"+p if i is even,
_ 4p
=3 _6y2
—0)°+p if i is odd.
4p

Writing these two cases in one form we havis(i) = —(1/4)((1/p)((p + (—1) p)/2 —
i)2 —1). This completes the proof of Theorem 1.1. ]

2.3. An example: proof of Corollary 1.2. The pretzel knotk = P(13, 4, 11)
is an alternating knot as shown in Fig. 4. A negative-defi@iteeritz matrix associated
with the mirror image of this diagram is

-17 4
A= ( 4 —15)’
and the determinant is d&¥] = det(K) = 239. Supposé& , is the group presented by

A. In fact, the groupG, is isomorphic toZ/23%. In the following calculation, we
take the vector (0, 1)as a generator oG 4. The inverse of the matriA is

1 (-15 —4
-1 _ =
A _239( —4 —17)'
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Then by definition for any G r < 238 it holds that

Ma((0, 1)")

= max{ u, v)tA*:(u, v +2 (u, v)' € char(d), [(u,v)'] =(0,r)" € GA}

{ 478— (1502 + 8uv + 17v?)
= max

956

u andv are odd, [¢, v)'] = (0,r)' € GA}.

From this expression, we see that in order to obtain the maxinve only need to
focus on those representativas ¢)' satisfying|u| < 17 and|v| < 15.

By calculation, it is easy to see that for any isomorphigmZz /239 — Z /239
there is

100 = € MA@(O) + 27 = € - Ma(0, 0f) 4+ 10 = Y

The vector which realizes the value bfA((0, 0f) is (u,v)! = (13,11} or (—13,—11}.

We assume thati(K) = 1. Then by Theorem 1.1 the valug (0) has to be an
even number, and therefore= 1. Next by calculation we havé, 1(1) = Ma(¢(1)) —
119/478. Since 239 is a prime number, apy = “multiplication by j” is an auto-
morphism ofZ/239%. To guarantee thaly, 1(1) is an even number, the isomorphism
¢; has to be eitheps or ¢4 By calculation, we see that

le1(1) = MAO, 1)) — 722 = 4.
The vector which realizes the value bfA((0, 15¥) is (u, v)! = (—9, —11). Same cal-
culation tells us that,,, 1(1) = —4 as well, which is realized by the vectau, p)' =
(9,11}. Now we see—4 is a negative number, which conflicts with the necessary con
dition stated in Theorem 1.1. Therefore the H(2)-unkngttimumber ofP(13,4,11) has
to be at least two. On the other hand, the kiR{tL3, 4, 11) can be changed into the
unknot by adding two twisted bands as shown in Fig. 4. HeneeH{R2)-unknotting
number of P(13, 4, 11) is two. This completes the proof of Corollary 1.2.

2.4. Comparisons with other criterions. There have been many criterions and
properties which can be used to bound the H(2)-unknottingbar of a knot. We want
to apply them to the knoP(13, 4, 11) and compare the results with Corollary 1.2.

The first one is Lickorish’s obstruction that we recalled le toeginning. It does
not work for the pretzel knoK = P(13, 4, 11) because of the following reason. It is
known that the Goeritz matri¥A is a presentation matrix oH(Z(K), Z), and A™!
represents the linking form.. It is not hard to see thaH;(X(K)) is cyclic of or-
der 239, and that the generatgr= (0, 1) satisfiesA(g, g) = —17/239. Then we see
A(15g, 159) = (225x% (—17))/239 = —3825239= —1/239 overQ/Z. Since 239 is a
prime number, the vectay = (0, 15} can work as a generator di1(2Z(K), Z).
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There are two invariants of knots which are closely relate#i)-unknotting num-
ber. Given a knoK C S?, the crosscap number & [2] is defined as follows:

y(K) = min{1(F) | F is a non-orientable connected surfaceShand dF = K},

where B1(F) denotes the rank of the first homology group ef The 4-dimensional
crosscap number df [11], which we denote *(K) here, is by name defined as follows:

v (K) = min{ﬂl(F)

F is a non-orientable connected smooth surfac&fnand
IF=KcCoiB*=¢ '

Their relation with H(2)-unknotting number is as follows.
Lemma 2.3. Given a knot KC S?, we havey*(K) < ux(K) < y(K).

Proof. The knotK can be reconstructed from the unknot by addin(K) twisted
bands successively. Léd be a disk bounded by the unknot ahgd by, ..., by,k) be
the bands added to the boundary f ThenF := D U Ui“i(f) bi is a non-orientable
surface inB* with 9F = K. We havey*(K) < B1(F) = ux(K). The second inequality
is proved as follows. Supposs is a non-orientable surface i8® which realizes the
crosscap number oK. Namely we havesi(S) = y(K) anddS = K. Then there are
v (K) disjoint essential arcs i§, say i, to,..., T, (k), such thatS—r; has one boundary
component fori =1, 2,...,y(K) and S— Ui”z(’? 7, is a disk. If we add twisted bands
to K alongt fori =1, 2,...,y(K), the resulting knot is the unknot. Therefore we
have uy(K) < y(K). 0

Ichihara and Mizushima [5] calculated the crosscap numbemeaizel knots. Ac-
cording to their calculation, the crosscap numberR{i3, 4, 11) is two. Gilmer and
Livingston [3] studied the 4-dimensional crosscap numbes &not by using Heegaard
Floer homology. Their method and our result in this note awéhkin spirit derived
from Theorem 9.6 in [13]. The author does not know whetheir thieethod can verify
that the 4-dimensional crosscap numberR{fL3, 4, 11) is 2 or not.

Yasuhara [18], and Kanenobu and Miyazawa [6] introduced sorathods for de-
tecting the H(2)-unknotting number of a knot, but simplecoédtion shows that their
methods cannot be applied to the knB{13, 4, 11). Taniyama and Yasuhara[l7] es-
tablished the equivalence between H(2)-unknotting nunalmer other two invariants of
knots, but there seems no obvious way to apply their relatmnhe calculation of
H(2)-unknotting number.
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