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Abstract
We give an obstruction to unknotting a knot by adding a twisted band, derived

from Heegaard Floer homology.

1. Introduction

Many unknotting operations have been defined and studied in knot theory. For ex-
ample, as well-known, (a), (b) (cf. [8, 10]) and (c) in Fig. 1 are three types of unknot-
ting operations. Especially, (c) was introduced by Hoste, Nakanishi and Taniyama [4],
which they called H(n)-move. Heren is the number of arcs inside the circle. Note
that an H(n)-move is required to preserve the component number of the diagram. The
H(n)-unknotting numberof a knot is the minimal number of H(n)-moves needed to
change the knot into the unknot. In this note, we focus on the special case whenn
equals two. Given two knotsK and K 0, when K 0 is obtained fromK by applying an
H(2)-move, we also alternatively say thatK 0 is obtained fromK by adding a twisted
band, as shown in Fig. 2. Following [4], we denote the H(2)-unknotting number of a
knot K by u2(K ). In this note, we give a necessary condition for a knotK to have
u2(K ) D 1, by using a method introduced by Ozsváth and Szabó [15].

The question whether a given knot has H(2)-unknotting number one should be
traced back to Riley. He made the conjecture that the figure-eight knot could never be
unknotted by adding a twisted band. Lickorish confirmed thisconjecture in [7]. Here
we give a brief review of his method. Given a knotK , let 6(K ) denote the double-
branched cover ofS3 along K and let� W H1(6(K ), Z) � H1(6(K ), Z)! Q=Z be the
linking form of 6(K ). Lickorish proved that if the knotK can be unknotted by adding
a twisted band, thenH1(6(K ),Z) is cyclic and it has a generatorg such that�(g, g)D
�1=det(K ), where det(K ) is the determinant ofK . For the figure-eight knot 41, the
linking form has the form�(g, g) D 2=5 for some generatorg 2 H1(6(41)) � Z=5Z.
If there is another generatorg0 D xg such that�(g0, g0) D �1=5, we have 2x2

� �1
(mod 5), while there is no such an integerx satisfying the condition. Therefore Riley’s
conjecture holds.
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Fig. 1. Some unknotting operations.

H(2)-move

Fig. 2. Adding a twisted band to a knot diagram.
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positive negative

Fig. 3. The sign convention of a crossing.

Now we turn to the description of our result. Consider a negative-definite symmet-
ric n � n matrix Q over Z, and supposejdet(Q)j is p. Then define a group

GQ WD Z
n
=Im(Q).

A characteristic vectorfor Q is an element in

char(Q) D {� D (�1, �2, : : : , �n)t
2 Z

n
j �

t
v � v

t Qv (mod 2) for anyv 2 Zn}

D {� 2 Zn
j �i � Qi i (mod 2) for 1� i � n}.

Supposep is odd, and consider the map (cf. [12, 15])

MQ W GQ ! Q

defined by

MQ(�) D max

�

�

t Q�1
� C n

4
� 2 char(Q), [� ] D � 2 GQ

�

.

Now we recall the definition of Goeritz matrix. Given a knot diagram, color this
diagram in checkerboard fashion such that the unbounded region has black color. Let
f0, f1, : : : , fk denote the black regions andf0 correspond to the unbounded one. Define
the sign of a crossing as in Fig. 3. Then the Goeritz matrixA is the k � k symmetric
matrix defined as follows,

qi j D

�

the signed count of crossings adjacent tofi if i D j ,
minus the signed count of crossings joiningfi and f j if i ¤ j

for i , j D 1, 2, : : : , k.
Our result about H(2)-unknotting number is as follows:
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Theorem 1.1. Let K be an alternating knot withjdetK j D p, and let A be the
negative-definite Goeritz matrix corresponding to a reduced alternating diagram of K
or its mirror image. Since K is a knot, we see that p is an odd number. Suppose GA is
the group presented by A. If u2(K )D 1, then there is an isomorphism�W Z=pZ! GA

and a sign� 2 {C1,�1} with the properties that for all i2 Z=pZ:

I
�,�(i ) WD � � MA(�(i ))C

1

4

 

1

p

�

pC (�1)i p

2
� i

�2

� 1

!

D 0 (mod 2),

and

I
�,�(i ) � 0.

Here we abuse i to denote both the element inZ=pZ and its representative in the set
{0, 1, 2,: : : , p� 1}.

If one is familiar with the work in [15], the proof is immediate. We will give the
proof in Section 2.

The H(2)-unknotting number of a knot is an interesting knot invariant. It is closely
related to the 3-dimensional and 4-dimensional crosscap numbers of a knot. It can
be defined in some different viewpoints, as indicated by Taniyama and Yasuhara [17].
Many researches concerning it can be found in [18, 6, 1] and other papers.

In order to check that Theorem 1.1 works better in some cases than the existing
criteria, we post the knotP(13, 4, 11) as an example. We determine that it has H(2)-
unknotting number 2, which cannot seem to be detected by the other methods that the
author knows.

Corollary 1.2. The pretzel knot P(13, 4, 11)has H(2)-unknotting number2.

2. Proofs

2.1. Preliminaries. Almost all the ingredients contained in this subsection can
be found in [15], or an earlier paper [13]. But for intactness, we include them here.
If X is an oriented 3- or 4-manifold, the second cohomologyH2(X,Z) acts on the set
of spinc-structures Spinc(X) freely and transitively. Each spinc-structures 2 Spinc(X)
has the first Chern classc1(s) 2 H2(X,Z), and the relation to the action isc1(sCh) D
c1(s)C 2h for any h 2 H2(X, Z).

Let Y be an oriented rational homology 3-sphere ands be a spinc-structure over
Y. Then there is Heegaard Floer homology associated with the pair (Y,s). In this note,
we use Heegaard Floer homology with coefficients in the fieldF WD Z=2Z. There are
several versions of this homology. One version isH FC(Y, s), which is aQ-graded
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module over the polynomial algebraF [U ]. That is

H FC(Y, s) D
M

i2Q

H FC

i (Y, s),

where multiplication byU lowers the grading by two. In each gradingi 2Q, H FC

i (Y,s)
is a finite-dimensionalF-vector space. A simpler version isH F1(Y), and it satisfies
H F1(Y, s) D F [U, U�1] for eachs 2 Spinc(Y) [14, Theorem 10.1]. It is alsoQ-graded
and multiplication byU lowers its grading by two.

For any spinc-structures, there is a naturalF [U ]-equivariant map

� W H F1(Y, s)! H FC(Y, s),

which preserves theQ-grading. We use�i to denote the restriction of� on the grad-
ing i . Then�i is zero for all sufficiently negative gradings and an isomorphism in all
sufficiently positive gradings. Ozsváth and Szabó defined aninvariant d(Y, s) from the
map � , which is called thecorrection termof the pair (Y, s). Precisely, we have

d(Y, s) WD min{i 2 Q j �i is non-zero}.

The correction terms forY and�Y, where “�” means the reversion of orientation, are
related by the formula

d(�Y, s) D �d(Y, s)

under the natural identification Spinc(Y) � Spinc(�Y).
The map� behaves naturally under cobordisms. LetY1 and Y2 be two oriented

rational homology 3-spheres. We say a smooth connected oriented 4-manifoldX is a
cobordism fromY1 to Y2 if the boundary ofX is given by �X D �Y1 [ Y2. Sup-
pose X is a cobordism fromY1 to Y2 and t is a spinc-structure ofX. Then there is a
homomorphism

Fo
X,t W H Fo(Y1, s1)! H Fo(Y2, s2),

where H Fo denotes any version of Heegaard Floer homology andsi is the restriction
of t to Yi for i D 1, 2 (we simply express it assi D t jYi ). The map� and the map
Fo

X,t fit into the following commutative diagram:

H F1(Y1, s1) H F1(Y2, s2)

H FC(Y1, s1) H FC(Y2, s2).

 

!

F1

X,t

 

!

�

 

!

�

 

!

FC

X,t
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If X is a negative-definite cobordism, the proof of Theorem 9.1 in[13] (also mentioned
in the proof of [13, Proposition 9.9]) tells us thatF1

X,t is an isomorphism.
Suppose thatY is an oriented rational homology 3-sphere, thatX is a negative-

definite simply connected 4-manifold with�X D Y and thatt 2 Spinc(X). Then it is
shown in [13] that

d(Y, t jY) �
c2

1(t)C b2(X)

4
,(1)

d(Y, t jY) D
c2

1(t)C b2(X)

4
(mod 2).(2)

Here (1) follows directly from [13, Theorem 9.6], while (2) is not clearly written. For
readers’ convenience, we explain it here. ConsiderX minus a point as a cobordismW
from S3 to Y. Then we have the following commutative diagram

H F1(S3, t jS3) H F1(Y, t jY)

H FC(S3, t jS3) H FC(Y, t jY),

 

!

F1

W,t

 

!

�

 

!

�

 

!

FC

W,t

and F1

W,t is an isomorphism. There is an element� 2 H F1(Y, t jY) with the property

that itsQ-grading gr(� ) is d(Y, t jY). Suppose the preimage of� in H F1(S3, t jS3) is
�. Then we have

d(Y, t jY) � gr(�) D gr(� ) � gr(�) D
c2

1(t) � 2�(W) � 3� (W)

4
D

c2
1(t)C b2(X)

4
.

The first equality follows from our choice of� , the second one follows from Equa-
tion (4) in [13], and the last one holds because of the fact that 2�(W) C 3� (W) C
b2(X) D 0. Precisely we have

2�(W)C 3� (W)C b2(X)

D 2(b0(W) � b1(W)C b2(W) � b3(W)C b4(W)) � 3b2(W)C b2(W)

D 2(b0(W) � b1(W) � b3(W)C b4(W))

D 2(b0(W) � 2b1(W) � 1C b4(W)) D 0.

Here bi (W) denotes thei -th Betti number ofW. The first equality comes from our
assumption thatX is negative-definite. The third equality follows from the fact that
b3(W) D b1(W)C 1, obtained from the relationH3(W) � H3(W, S3

[Y)�Z, Poincaré
duality and the universal coefficient theorem. The last equality comes from the facts
that b0(W) D 1 and b4(W) D 0, and our assumption thatX is simply connected. For
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the 3-sphereS3, as anF-vector space, we know that ([14, Theorem 10.1])

H F1(S3, t jS3) D
1

M

iD�1

F(2i ),

whereF( j ) denotes the summand supported on gradingj . Therefore we see that gr(�) D
0 (mod 2). Now (2) follows.

Remember thatd(S3, t jS3) D 0 and thatH F1(S3, t jS3) D F [U, U�1], and therefore
we obtain gr(�) D 0 (mod 2). Now (2) follows obviously.

Suppose further for simplicity thatX is simply-connected and that the order of
H2(Y, Z) is odd. Then there exists a group structure on the space Spinc(Y) by identi-
fying s 2 Spinc(Y) with c1(s) 2 H2(Y, Z). In the following, we denote the correction
term d(Y, s) by d(Y, c1(s)) if necessary. Letr denote the second Betti number ofX.
Then we have the following exact sequence:

0! H2(X) D Zr �

�! H2(X) D Zr j �

�! H2(Y)! H1(X) D 0.

Fix a basis forH2(X) and let B be the matrix of the intersection form ofX. Then
B is a symmetric negative-definiter � r integer matrix withjdetBj D jH2(Y, Z)j. A
spinc-structures 2 Spinc(Y) is the restriction of a spinc-structuret 2 Spinc(X) on Y if
and only if j �(c1(t)) D c1(s).

In fact, the map� under the given basis ofH2(X) is presented by the matrix

B. We define' as the map Coker(� ) D GB
j �1
�! H2(Y), where j �1 is the map in-

duced from j � on the cokernel of� . It is obvious from the exact sequence that' is
an isomorphism. Under' the set of characteristic vectors char(B) is equal to the set
{c1(t) j t 2 Spinc(X)} � H2(X,Z). If we suppose the first Chern classc1(t) corresponds
to the characteristic vector� , then c2

1(t) is equal to� t B�1
� .

Under these identifications, (1) and (2) can be written as follows. For anys 2
Spinc(Y) and any� 2 char(B) with c1(s) D '([� ]), there are

d(Y, c1(s)) �
�

t B�1
� C r

4
and

d(Y, c1(s)) D
�

t B�1
� C r

4
(mod 2).

This is equivalent to say under the isomorphism' W GB! H2(Y,Z) the following hold
for any � 2 GB:

(3)
d(Y, '(�)) � MB(�),

d(Y, '(�)) D MB(�) (mod 2).
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2.2. Proof of Theorem 1.1. When K is an alternating knot inS3, the correction
terms for6(K ) have an extremely easy combinatorial description as follows.

Theorem 2.1 (Ozsváth–Szabó [15, 16]). If K is an alternating knot and A de-
notes a Goeritz matrix associated to a reduced alternating projection of K, and GA is
the group presented by A, then there is an isomorphism W H2(6(K ), Z)! GA, with
the property that

d(6(K ), �) D MA( (�))

for all � 2 H2(6(K ), Z).

For knots with H(2)-unknotting number one, we have the following lemma.

Lemma 2.2 (Montesinos’s trick [9]). If the H(2)-unknotting number of a knot K
is one, then6(K ) D � � S3

�p(C) for some knot C� S3 and � 2 {C1,�1}. Here pD

jdet(K )j and S3
�p(C) denotes the�p-surgery of S3 along the knot C.

Proof of Theorem 1.1. If the H(2)-unknotting number ofK is one, then by
Lemma 2.26(K ) D � � S3

�p(C) for some knotC � S3 and � 2 {C1, �1} and p D

jdet(K )j. Therefore� � 6(K ) D S3
�p(C) bounds a 4-manifoldX, which is obtained by

attaching a 2-handle to the 4-ball alongC with framing �p. The intersection form
of X is B D (�p). In this caseGB D Z=pZ, and X is a simply-connected negative-
definite 4-manifold.

By (3), there exists a group isomorphism' W GB D Z=pZ! H2(S3
�p(C), Z) with

d(S3
�p(C), '(i )) D d(� �6(K ), '(i )) D � � d(6(K ), '(i )) � MB(i )

and

� � d(6(K ), '(i )) � MB(i ) (mod 2)

Theorem 2.1 implies that for the map� D  Æ' W Z=pZ! GA (here we automatically
identify H2(S3

�p(C), Z) with H2(6(K ), Z)) we have

� � MA(�(i )) � MB(i )

and

� � MA(�(i )) � MB(i ) (mod 2)

for all i 2 Z=pZ. In the following calculation, we abusei to denote both the element
in Z=pZ and its representative in the set{0, 1, 2,: : : , p�1}. By definition we see that
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Fig. 4. The pretzel knotP(13, 4, 11).

for any i 2 Z=pZ,

MB(i ) D max

�

ut B�1uC 1

4
u is odd, [u] D i

�

D max

�

�u2
C p

4p
u is odd, [u] D i

�

D

8

�

�

<

�

�

:

�(p� i )2
C p

4p
if i is even,

�(i )2
C p

4p
if i is odd.

Writing these two cases in one form we haveMB(i ) D �(1=4)((1=p)((pC (�1)i p)=2�
i )2
� 1). This completes the proof of Theorem 1.1.

2.3. An example: proof of Corollary 1.2. The pretzel knotK D P(13, 4, 11)
is an alternating knot as shown in Fig. 4. A negative-definiteGoeritz matrix associated
with the mirror image of this diagram is

AD

�

�17 4
4 �15

�

,

and the determinant is det(A) D det(K ) D 239. SupposeGA is the group presented by
A. In fact, the groupGA is isomorphic toZ=239Z. In the following calculation, we
take the vector (0, 1)t as a generator ofGA. The inverse of the matrixA is

A�1
D

1

239

�

�15 �4
�4 �17

�

.
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Then by definition for any 0� r � 238 it holds that

MA((0, r )t )

D max

�

(u, v)t A�1(u, v)C 2

4
(u, v)t

2 char(A), [(u, v)t ] D (0, r )t
2 GA

�

D max

�

478� (15u2
C 8uv C 17v2)

956
u and v are odd, [(u, v)t ] D (0, r )t

2 GA

�

.

From this expression, we see that in order to obtain the maximum we only need to
focus on those representatives (u, v)t satisfying juj � 17 andjvj � 15.

By calculation, it is easy to see that for any isomorphism� W Z=239Z! Z=239Z
there is

I
�,�(0)D � � MA(�(0))C

119

2
D � � MA((0, 0)t )C

119

2
D

� � (�11)C 119

2
.

The vector which realizes the value ofMA((0, 0)t ) is (u, v)t
D (13, 11)t or (�13,�11)t .

We assume thatu2(K ) D 1. Then by Theorem 1.1 the valueI
�,�(0) has to be an

even number, and therefore� D 1. Next by calculation we haveI
�,1(1)D MA(�(1))�

119=478. Since 239 is a prime number, any� j D “multiplication by j ” is an auto-
morphism ofZ=239Z. To guarantee thatI

� j ,1(1) is an even number, the isomorphism
� j has to be either�15 or �224. By calculation, we see that

I
�15,1(1)D MA((0, 15)t ) �

119

478
D �4.

The vector which realizes the value ofMA((0, 15)t ) is (u, v)t
D (�9,�11)t . Same cal-

culation tells us thatI
�224,1(1)D �4 as well, which is realized by the vector (u, v)t

D

(9, 11)t . Now we see�4 is a negative number, which conflicts with the necessary con-
dition stated in Theorem 1.1. Therefore the H(2)-unknotting number ofP(13,4,11) has
to be at least two. On the other hand, the knotP(13, 4, 11) can be changed into the
unknot by adding two twisted bands as shown in Fig. 4. Hence the H(2)-unknotting
number of P(13, 4, 11) is two. This completes the proof of Corollary 1.2.

2.4. Comparisons with other criterions. There have been many criterions and
properties which can be used to bound the H(2)-unknotting number of a knot. We want
to apply them to the knotP(13, 4, 11) and compare the results with Corollary 1.2.

The first one is Lickorish’s obstruction that we recalled in the beginning. It does
not work for the pretzel knotK D P(13, 4, 11) because of the following reason. It is
known that the Goeritz matrixA is a presentation matrix ofH1(6(K ), Z), and A�1

represents the linking form�. It is not hard to see thatH1(6(K )) is cyclic of or-
der 239, and that the generatorg D (0, 1)t satisfies�(g, g) D �17=239. Then we see
�(15g, 15g) D (225� (�17))=239D �3825=239D �1=239 overQ=Z. Since 239 is a
prime number, the vectorg0 D (0, 15)t can work as a generator ofH1(6(K ), Z).
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There are two invariants of knots which are closely related to H(2)-unknotting num-
ber. Given a knotK � S3, the crosscap number ofK [2] is defined as follows:

 (K ) D min{�1(F) j F is a non-orientable connected surface inS3 and �F D K },

where �1(F) denotes the rank of the first homology group ofF . The 4-dimensional
crosscap number ofK [11], which we denote �(K ) here, is by name defined as follows:



�(K ) D min

(

�1(F)
F is a non-orientable connected smooth surface inB4 and

�F D K � �B4
D S3

)

.

Their relation with H(2)-unknotting number is as follows.

Lemma 2.3. Given a knot K� S3, we have �(K ) � u2(K ) �  (K ).

Proof. The knotK can be reconstructed from the unknot by addingu2(K ) twisted
bands successively. LetD be a disk bounded by the unknot andb1, b2, : : : , bu2(K ) be

the bands added to the boundary ofD. Then F WD D [
Su2(K )

iD1 bi is a non-orientable
surface inB4 with �F D K . We have �(K ) � �1(F) D u2(K ). The second inequality
is proved as follows. SupposeS is a non-orientable surface inS3 which realizes the
crosscap number ofK . Namely we have�1(S) D  (K ) and �SD K . Then there are
 (K ) disjoint essential arcs inS, say�1,�2, : : : ,�

 (K ), such thatS��i has one boundary

component fori D 1, 2,: : : ,  (K ) and S�
S

 (K )
iD1 �i is a disk. If we add twisted bands

to K along �i for i D 1, 2, : : : ,  (K ), the resulting knot is the unknot. Therefore we
haveu2(K ) �  (K ).

Ichihara and Mizushima [5] calculated the crosscap numbers of pretzel knots. Ac-
cording to their calculation, the crosscap number ofP(13, 4, 11) is two. Gilmer and
Livingston [3] studied the 4-dimensional crosscap number of a knot by using Heegaard
Floer homology. Their method and our result in this note are both in spirit derived
from Theorem 9.6 in [13]. The author does not know whether their method can verify
that the 4-dimensional crosscap number ofP(13, 4, 11) is 2 or not.

Yasuhara [18], and Kanenobu and Miyazawa [6] introduced somemethods for de-
tecting the H(2)-unknotting number of a knot, but simple calculation shows that their
methods cannot be applied to the knotP(13, 4, 11). Taniyama and Yasuhara[17] es-
tablished the equivalence between H(2)-unknotting numberand other two invariants of
knots, but there seems no obvious way to apply their relationto the calculation of
H(2)-unknotting number.
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