A NOTE ON KNOTS WITH H(2)-UNKNOTTING NUMBER ONE

YUANYUAN BAO

(Received February 24, 2012, revised November 13, 2012)

Abstract

We give an obstruction to unknotting a knot by adding a twisted band, derived from Heegaard Floer homology.

1. Introduction

Many unknotting operations have been defined and studied in knot theory. For example, as well-known, (a), (b) (cf. [8, 10]) and (c) in Fig. 1 are three types of unknotting operations. Especially, (c) was introduced by Hoste, Nakanishi and Taniyama [4], which they called $\mathrm{H}(n)$-move. Here n is the number of arcs inside the circle. Note that an $\mathrm{H}(n)$-move is required to preserve the component number of the diagram. The $\mathrm{H}(n)$-unknotting number of a knot is the minimal number of $\mathrm{H}(n)$-moves needed to change the knot into the unknot. In this note, we focus on the special case when n equals two. Given two knots K and K^{\prime}, when K^{\prime} is obtained from K by applying an $\mathrm{H}(2)$-move, we also alternatively say that K^{\prime} is obtained from K by adding a twisted band, as shown in Fig. 2. Following [4], we denote the $\mathrm{H}(2)$-unknotting number of a knot K by $u_{2}(K)$. In this note, we give a necessary condition for a knot K to have $u_{2}(K)=1$, by using a method introduced by Ozsváth and Szabó [15].

The question whether a given knot has $\mathrm{H}(2)$-unknotting number one should be traced back to Riley. He made the conjecture that the figure-eight knot could never be unknotted by adding a twisted band. Lickorish confirmed this conjecture in [7]. Here we give a brief review of his method. Given a knot K, let $\Sigma(K)$ denote the doublebranched cover of S^{3} along K and let $\lambda: H_{1}(\Sigma(K), \mathbb{Z}) \times H_{1}(\Sigma(K), \mathbb{Z}) \rightarrow \mathbb{Q} / \mathbb{Z}$ be the linking form of $\Sigma(K)$. Lickorish proved that if the knot K can be unknotted by adding a twisted band, then $H_{1}(\Sigma(K), \mathbb{Z})$ is cyclic and it has a generator g such that $\lambda(g, g)=$ $\pm 1 / \operatorname{det}(K)$, where $\operatorname{det}(K)$ is the determinant of K. For the figure-eight knot 4_{1}, the linking form has the form $\lambda(g, g)=2 / 5$ for some generator $g \in H_{1}\left(\Sigma\left(4_{1}\right)\right) \cong \mathbb{Z} / 5 \mathbb{Z}$. If there is another generator $g^{\prime}=x g$ such that $\lambda\left(g^{\prime}, g^{\prime}\right)= \pm 1 / 5$, we have $2 x^{2} \equiv \pm 1$ (mod 5), while there is no such an integer x satisfying the condition. Therefore Riley's conjecture holds.

[^0]

Fig. 1. Some unknotting operations.

Fig. 2. Adding a twisted band to a knot diagram.

Fig. 3. The sign convention of a crossing.
Now we turn to the description of our result. Consider a negative-definite symmetric $n \times n$ matrix Q over \mathbb{Z}, and suppose $|\operatorname{det}(Q)|$ is p. Then define a group

$$
G_{Q}:=\mathbb{Z}^{n} / \operatorname{Im}(Q) .
$$

A characteristic vector for Q is an element in

$$
\begin{aligned}
\operatorname{char}(Q) & =\left\{\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)^{t} \in \mathbb{Z}^{n} \mid \xi^{t} v \equiv v^{t} Q v(\bmod 2) \text { for any } v \in \mathbb{Z}^{n}\right\} \\
& =\left\{\xi \in \mathbb{Z}^{n} \mid \xi_{i} \equiv Q_{i i}(\bmod 2) \text { for } 1 \leq i \leq n\right\}
\end{aligned}
$$

Suppose p is odd, and consider the map (cf. [12, 15])

$$
M_{Q}: G_{Q} \rightarrow \mathbb{Q}
$$

defined by

$$
M_{Q}(\alpha)=\max \left\{\left.\frac{\xi^{t} Q^{-1} \xi+n}{4} \right\rvert\, \xi \in \operatorname{char}(Q),[\xi]=\alpha \in G_{Q}\right\} .
$$

Now we recall the definition of Goeritz matrix. Given a knot diagram, color this diagram in checkerboard fashion such that the unbounded region has black color. Let $f_{0}, f_{1}, \ldots, f_{k}$ denote the black regions and f_{0} correspond to the unbounded one. Define the sign of a crossing as in Fig. 3. Then the Goeritz matrix A is the $k \times k$ symmetric matrix defined as follows,

$$
q_{i j}= \begin{cases}\text { the signed count of crossings adjacent to } f_{i} & \text { if } i=j \\ \text { minus the signed count of crossings joining } f_{i} \text { and } f_{j} & \text { if } i \neq j\end{cases}
$$

for $i, j=1,2, \ldots, k$.
Our result about $\mathrm{H}(2)$-unknotting number is as follows:

Theorem 1.1. Let K be an alternating knot with $|\operatorname{det} K|=p$, and let A be the negative-definite Goeritz matrix corresponding to a reduced alternating diagram of K or its mirror image. Since K is a knot, we see that p is an odd number. Suppose G_{A} is the group presented by A. If $u_{2}(K)=1$, then there is an isomorphism $\phi: \mathbb{Z} / p \mathbb{Z} \rightarrow G_{A}$ and a sign $\epsilon \in\{+1,-1\}$ with the properties that for all $i \in \mathbb{Z} / p \mathbb{Z}$:

$$
I_{\phi, \epsilon}(i):=\epsilon \cdot M_{A}(\phi(i))+\frac{1}{4}\left(\frac{1}{p}\left(\frac{p+(-1)^{i} p}{2}-i\right)^{2}-1\right)=0 \quad(\bmod 2)
$$

and

$$
I_{\phi, \epsilon}(i) \geq 0
$$

Here we abuse i to denote both the element in $\mathbb{Z} / p \mathbb{Z}$ and its representative in the set $\{0,1,2, \ldots, p-1\}$.

If one is familiar with the work in [15], the proof is immediate. We will give the proof in Section 2.

The $\mathrm{H}(2)$-unknotting number of a knot is an interesting knot invariant. It is closely related to the 3-dimensional and 4-dimensional crosscap numbers of a knot. It can be defined in some different viewpoints, as indicated by Taniyama and Yasuhara [17]. Many researches concerning it can be found in $[18,6,1]$ and other papers.

In order to check that Theorem 1.1 works better in some cases than the existing criteria, we post the knot $P(13,4,11)$ as an example. We determine that it has $\mathrm{H}(2)$ unknotting number 2 , which cannot seem to be detected by the other methods that the author knows.

Corollary 1.2. The pretzel knot $P(13,4,11)$ has $\mathrm{H}(2)$-unknotting number 2 .

2. Proofs

2.1. Preliminaries. Almost all the ingredients contained in this subsection can be found in [15], or an earlier paper [13]. But for intactness, we include them here. If X is an oriented 3- or 4-manifold, the second cohomology $H^{2}(X, \mathbb{Z})$ acts on the set of spin^{c}-structures $\operatorname{Spin}^{c}(X)$ freely and transitively. Each spin^{c}-structure $s \in \operatorname{Spin}^{c}(X)$ has the first Chern class $c_{1}(s) \in H^{2}(X, \mathbb{Z})$, and the relation to the action is $c_{1}(s+h)=$ $c_{1}(s)+2 h$ for any $h \in H^{2}(X, \mathbb{Z})$.

Let Y be an oriented rational homology 3 -sphere and s be a spin^{c}-structure over Y. Then there is Heegaard Floer homology associated with the pair (Y, s). In this note, we use Heegaard Floer homology with coefficients in the field $\mathbb{F}:=\mathbb{Z} / 2 \mathbb{Z}$. There are several versions of this homology. One version is $H F^{+}(Y, s)$, which is a \mathbb{Q}-graded
module over the polynomial algebra $\mathbb{F}[U]$. That is

$$
H F^{+}(Y, s)=\bigoplus_{i \in \mathbb{Q}} H F_{i}^{+}(Y, s)
$$

where multiplication by U lowers the grading by two. In each grading $i \in \mathbb{Q}, H F_{i}^{+}(Y, s)$ is a finite-dimensional \mathbb{F}-vector space. A simpler version is $H F^{\infty}(Y)$, and it satisfies $H F^{\infty}(Y, s)=\mathbb{F}\left[U, U^{-1}\right]$ for each $s \in \operatorname{Spin}^{c}(Y)[14$, Theorem 10.1]. It is also \mathbb{Q}-graded and multiplication by U lowers its grading by two.

For any spin c-structure s, there is a natural $\mathbb{F}[U]$-equivariant map

$$
\pi: H F^{\infty}(Y, s) \rightarrow H F^{+}(Y, s)
$$

which preserves the \mathbb{Q}-grading. We use π_{i} to denote the restriction of π on the grading i. Then π_{i} is zero for all sufficiently negative gradings and an isomorphism in all sufficiently positive gradings. Ozsváth and Szabó defined an invariant $d(Y, s)$ from the map π, which is called the correction term of the pair (Y, s). Precisely, we have

$$
d(Y, s):=\min \left\{i \in \mathbb{Q} \mid \pi_{i} \text { is non-zero }\right\} .
$$

The correction terms for Y and $-Y$, where " - " means the reversion of orientation, are related by the formula

$$
d(-Y, s)=-d(Y, s)
$$

under the natural identification $\operatorname{Spin}^{c}(Y) \cong \operatorname{Spin}^{c}(-Y)$.
The map π behaves naturally under cobordisms. Let Y_{1} and Y_{2} be two oriented rational homology 3 -spheres. We say a smooth connected oriented 4-manifold X is a cobordism from Y_{1} to Y_{2} if the boundary of X is given by $\partial X=-Y_{1} \cup Y_{2}$. Suppose X is a cobordism from Y_{1} to Y_{2} and t is a spin^{c}-structure of X. Then there is a homomorphism

$$
F_{X, t}^{o}: H F^{o}\left(Y_{1}, s_{1}\right) \rightarrow H F^{o}\left(Y_{2}, s_{2}\right)
$$

where $H F^{o}$ denotes any version of Heegaard Floer homology and s_{i} is the restriction of t to Y_{i} for $i=1,2$ (we simply express it as $s_{i}=\left.t\right|_{Y_{i}}$). The map π and the map $F_{X, t}^{o}$ fit into the following commutative diagram:

If X is a negative-definite cobordism, the proof of Theorem 9.1 in [13] (also mentioned in the proof of [13, Proposition 9.9]) tells us that $F_{X, t}^{\infty}$ is an isomorphism.

Suppose that Y is an oriented rational homology 3-sphere, that X is a negativedefinite simply connected 4-manifold with $\partial X=Y$ and that $t \in \operatorname{Spin}^{c}(X)$. Then it is shown in [13] that

$$
\begin{align*}
& d\left(Y,\left.t\right|_{Y}\right) \geq \frac{c_{1}^{2}(t)+b_{2}(X)}{4} \tag{1}\\
& d\left(Y,\left.t\right|_{Y}\right)=\frac{c_{1}^{2}(t)+b_{2}(X)}{4} \quad(\bmod 2) \tag{2}
\end{align*}
$$

Here (1) follows directly from [13, Theorem 9.6], while (2) is not clearly written. For readers' convenience, we explain it here. Consider X minus a point as a cobordism W from S^{3} to Y. Then we have the following commutative diagram

and $F_{W, t}^{\infty}$ is an isomorphism. There is an element $\xi \in H F^{\infty}\left(Y,\left.t\right|_{Y}\right)$ with the property that its \mathbb{Q}-grading $\operatorname{gr}(\xi)$ is $d\left(Y,\left.t\right|_{Y}\right)$. Suppose the preimage of ξ in $H F^{\infty}\left(S^{3},\left.t\right|_{S^{3}}\right)$ is η. Then we have

$$
d\left(Y,\left.t\right|_{Y}\right)-\operatorname{gr}(\eta)=\operatorname{gr}(\xi)-\operatorname{gr}(\eta)=\frac{c_{1}^{2}(t)-2 \chi(W)-3 \sigma(W)}{4}=\frac{c_{1}^{2}(t)+b_{2}(X)}{4}
$$

The first equality follows from our choice of ξ, the second one follows from Equation (4) in [13], and the last one holds because of the fact that $2 \chi(W)+3 \sigma(W)+$ $b_{2}(X)=0$. Precisely we have

$$
\begin{aligned}
& 2 \chi(W)+3 \sigma(W)+b_{2}(X) \\
& =2\left(b_{0}(W)-b_{1}(W)+b_{2}(W)-b_{3}(W)+b_{4}(W)\right)-3 b_{2}(W)+b_{2}(W) \\
& =2\left(b_{0}(W)-b_{1}(W)-b_{3}(W)+b_{4}(W)\right) \\
& =2\left(b_{0}(W)-2 b_{1}(W)-1+b_{4}(W)\right)=0
\end{aligned}
$$

Here $b_{i}(W)$ denotes the i-th Betti number of W. The first equality comes from our assumption that X is negative-definite. The third equality follows from the fact that $b_{3}(W)=b_{1}(W)+1$, obtained from the relation $H_{3}(W) \cong H_{3}\left(W, S^{3} \cup Y\right) \oplus \mathbb{Z}$, Poincaré duality and the universal coefficient theorem. The last equality comes from the facts that $b_{0}(W)=1$ and $b_{4}(W)=0$, and our assumption that X is simply connected. For
the 3 -sphere S^{3}, as an \mathbb{F}-vector space, we know that ([14, Theorem 10.1])

$$
H F^{\infty}\left(S^{3},\left.t\right|_{S^{3}}\right)=\bigoplus_{i=-\infty}^{\infty} \mathbb{F}_{(2 i)}
$$

where $\mathbb{F}_{(j)}$ denotes the summand supported on grading j. Therefore we see that $\operatorname{gr}(\eta)=$ $0(\bmod 2)$. Now (2) follows.

Remember that $d\left(S^{3},\left.t\right|_{S^{3}}\right)=0$ and that $H F^{\infty}\left(S^{3},\left.t\right|_{S^{3}}\right)=\mathbb{F}\left[U, U^{-1}\right]$, and therefore we obtain $\operatorname{gr}(\eta)=0(\bmod 2)$. Now (2) follows obviously.

Suppose further for simplicity that X is simply-connected and that the order of $H^{2}(Y, \mathbb{Z})$ is odd. Then there exists a group structure on the space $\operatorname{Spin}^{c}(Y)$ by identifying $s \in \operatorname{Spin}^{c}(Y)$ with $c_{1}(s) \in H^{2}(Y, \mathbb{Z})$. In the following, we denote the correction term $d(Y, s)$ by $d\left(Y, c_{1}(s)\right)$ if necessary. Let r denote the second Betti number of X. Then we have the following exact sequence:

$$
0 \rightarrow H_{2}(X)=\mathbb{Z}^{r} \xrightarrow{\tau} H^{2}(X)=\mathbb{Z}^{r} \xrightarrow{j^{*}} H^{2}(Y) \rightarrow H_{1}(X)=0
$$

Fix a basis for $H_{2}(X)$ and let B be the matrix of the intersection form of X. Then B is a symmetric negative-definite $r \times r$ integer matrix with $|\operatorname{det} B|=\left|H^{2}(Y, \mathbb{Z})\right|$. A spin^{c}-structure $s \in \operatorname{Spin}^{c}(Y)$ is the restriction of a spin^{c}-structure $t \in \operatorname{Spin}^{c}(X)$ on Y if and only if $j^{*}\left(c_{1}(t)\right)=c_{1}(s)$.

In fact, the map τ under the given basis of $H_{2}(X)$ is presented by the matrix B. We define φ as the map $\operatorname{Coker}(\tau)=G_{B} \xrightarrow{j_{1}^{*}} H^{2}(Y)$, where j_{1}^{*} is the map induced from j^{*} on the cokernel of τ. It is obvious from the exact sequence that φ is an isomorphism. Under φ the set of characteristic vectors $\operatorname{char}(B)$ is equal to the set $\left\{c_{1}(t) \mid t \in \operatorname{Spin}^{c}(X)\right\} \subset H^{2}(X, \mathbb{Z})$. If we suppose the first Chern class $c_{1}(t)$ corresponds to the characteristic vector ξ, then $c_{1}^{2}(t)$ is equal to $\xi^{t} B^{-1} \xi$.

Under these identifications, (1) and (2) can be written as follows. For any $s \in$ $\operatorname{Spin}^{c}(Y)$ and any $\xi \in \operatorname{char}(B)$ with $c_{1}(s)=\varphi([\xi])$, there are

$$
d\left(Y, c_{1}(s)\right) \geq \frac{\xi^{t} B^{-1} \xi+r}{4}
$$

and

$$
d\left(Y, c_{1}(s)\right)=\frac{\xi^{t} B^{-1} \xi+r}{4} \quad(\bmod 2)
$$

This is equivalent to say under the isomorphism $\varphi: G_{B} \rightarrow H^{2}(Y, \mathbb{Z})$ the following hold for any $\alpha \in G_{B}$:

$$
\begin{align*}
& d(Y, \varphi(\alpha)) \geq M_{B}(\alpha), \tag{3}\\
& d(Y, \varphi(\alpha))=M_{B}(\alpha) \quad(\bmod 2) .
\end{align*}
$$

2.2. Proof of Theorem 1.1. When K is an alternating knot in S^{3}, the correction terms for $\Sigma(K)$ have an extremely easy combinatorial description as follows.

Theorem 2.1 (Ozsváth-Szabó [15, 16]). If K is an alternating knot and A denotes a Goeritz matrix associated to a reduced alternating projection of K, and G_{A} is the group presented by A, then there is an isomorphism $\psi: H^{2}(\Sigma(K), \mathbb{Z}) \rightarrow G_{A}$, with the property that

$$
d(\Sigma(K), \beta)=M_{A}(\psi(\beta))
$$

for all $\beta \in H^{2}(\Sigma(K), \mathbb{Z})$.

For knots with $\mathrm{H}(2)$-unknotting number one, we have the following lemma.

Lemma 2.2 (Montesinos's trick [9]). If the $\mathrm{H}(2)$-unknotting number of a knot K is one, then $\Sigma(K)=\epsilon \cdot S_{-p}^{3}(C)$ for some knot $C \subset S^{3}$ and $\epsilon \in\{+1,-1\}$. Here $p=$ $|\operatorname{det}(K)|$ and $S_{-p}^{3}(C)$ denotes the $-p$-surgery of S^{3} along the knot C.

Proof of Theorem 1.1. If the $\mathrm{H}(2)$-unknotting number of K is one, then by Lemma $2.2 \Sigma(K)=\epsilon \cdot S_{-p}^{3}(C)$ for some knot $C \subset S^{3}$ and $\epsilon \in\{+1,-1\}$ and $p=$ $|\operatorname{det}(K)|$. Therefore $\epsilon \cdot \Sigma(K)=S_{-p}^{3}(C)$ bounds a 4-manifold X, which is obtained by attaching a 2-handle to the 4-ball along C with framing $-p$. The intersection form of X is $B=(-p)$. In this case $G_{B}=\mathbb{Z} / p \mathbb{Z}$, and X is a simply-connected negativedefinite 4-manifold.

By (3), there exists a group isomorphism $\varphi: G_{B}=\mathbb{Z} / p \mathbb{Z} \rightarrow H^{2}\left(S_{-p}^{3}(C), \mathbb{Z}\right)$ with

$$
d\left(S_{-p}^{3}(C), \varphi(i)\right)=d(\epsilon \cdot \Sigma(K), \varphi(i))=\epsilon \cdot d(\Sigma(K), \varphi(i)) \geq M_{B}(i)
$$

and

$$
\epsilon \cdot d(\Sigma(K), \varphi(i)) \equiv M_{B}(i) \quad(\bmod 2)
$$

Theorem 2.1 implies that for the map $\phi=\psi \circ \varphi: \mathbb{Z} / p \mathbb{Z} \rightarrow G_{A}$ (here we automatically identify $H^{2}\left(S_{-p}^{3}(C), \mathbb{Z}\right)$ with $H^{2}(\Sigma(K), \mathbb{Z})$) we have

$$
\epsilon \cdot M_{A}(\phi(i)) \geq M_{B}(i)
$$

and

$$
\epsilon \cdot M_{A}(\phi(i)) \equiv M_{B}(i) \quad(\bmod 2)
$$

for all $i \in \mathbb{Z} / p \mathbb{Z}$. In the following calculation, we abuse i to denote both the element in $\mathbb{Z} / p \mathbb{Z}$ and its representative in the set $\{0,1,2, \ldots, p-1\}$. By definition we see that

Fig. 4. The pretzel knot $P(13,4,11)$.
for any $i \in \mathbb{Z} / p \mathbb{Z}$,

$$
\begin{aligned}
M_{B}(i) & =\max \left\{\left.\frac{u^{t} B^{-1} u+1}{4} \right\rvert\, u \text { is odd, }[u]=i\right\} \\
& =\max \left\{\left.\frac{-u^{2}+p}{4 p} \right\rvert\, u \text { is odd, }[u]=i\right\} \\
& = \begin{cases}\frac{-(p-i)^{2}+p}{4 p} & \text { if } i \text { is even, } \\
\frac{-(i)^{2}+p}{4 p} & \text { if } i \text { is odd. }\end{cases}
\end{aligned}
$$

Writing these two cases in one form we have $M_{B}(i)=-(1 / 4)\left((1 / p)\left(\left(p+(-1)^{i} p\right) / 2-\right.\right.$ $i)^{2}-1$). This completes the proof of Theorem 1.1.
2.3. An example: proof of Corollary 1.2. The pretzel knot $K=P(13,4,11)$ is an alternating knot as shown in Fig. 4. A negative-definite Goeritz matrix associated with the mirror image of this diagram is

$$
A=\left(\begin{array}{cc}
-17 & 4 \\
4 & -15
\end{array}\right)
$$

and the determinant is $\operatorname{det}(A)=\operatorname{det}(K)=239$. Suppose G_{A} is the group presented by A. In fact, the group G_{A} is isomorphic to $\mathbb{Z} / 239 \mathbb{Z}$. In the following calculation, we take the vector $(0,1)^{t}$ as a generator of G_{A}. The inverse of the matrix A is

$$
A^{-1}=\frac{1}{239}\left(\begin{array}{cc}
-15 & -4 \\
-4 & -17
\end{array}\right) .
$$

Then by definition for any $0 \leq r \leq 238$ it holds that

$$
\begin{aligned}
& M_{A}\left((0, r)^{t}\right) \\
& =\max \left\{\left.\frac{(u, v)^{t} A^{-1}(u, v)+2}{4} \right\rvert\,(u, v)^{t} \in \operatorname{char}(A),\left[(u, v)^{t}\right]=(0, r)^{t} \in G_{A}\right\} \\
& =\max \left\{\left.\frac{478-\left(15 u^{2}+8 u v+17 v^{2}\right)}{956} \right\rvert\, u \text { and } v \text { are odd, }\left[(u, v)^{t}\right]=(0, r)^{t} \in G_{A}\right\} .
\end{aligned}
$$

From this expression, we see that in order to obtain the maximum we only need to focus on those representatives $(u, v)^{t}$ satisfying $|u| \leq 17$ and $|v| \leq 15$.

By calculation, it is easy to see that for any isomorphism $\phi: \mathbb{Z} / 239 \mathbb{Z} \rightarrow \mathbb{Z} / 239 \mathbb{Z}$ there is

$$
I_{\phi, \epsilon}(0)=\epsilon \cdot M_{A}(\phi(0))+\frac{119}{2}=\epsilon \cdot M_{A}\left((0,0)^{t}\right)+\frac{119}{2}=\frac{\epsilon \cdot(-11)+119}{2}
$$

The vector which realizes the value of $M_{A}\left((0,0)^{t}\right)$ is $(u, v)^{t}=(13,11)^{t}$ or $(-13,-11)^{t}$.
We assume that $u_{2}(K)=1$. Then by Theorem 1.1 the value $I_{\phi, \epsilon}(0)$ has to be an even number, and therefore $\epsilon=1$. Next by calculation we have $I_{\phi, 1}(1)=M_{A}(\phi(1))-$ $119 / 478$. Since 239 is a prime number, any $\phi_{j}=$ "multiplication by j " is an automorphism of $\mathbb{Z} / 239 \mathbb{Z}$. To guarantee that $I_{\phi_{j}, 1}(1)$ is an even number, the isomorphism ϕ_{j} has to be either ϕ_{15} or ϕ_{224}. By calculation, we see that

$$
I_{\phi_{1}, 1}(1)=M_{A}\left((0,15)^{t}\right)-\frac{119}{478}=-4 .
$$

The vector which realizes the value of $M_{A}\left((0,15)^{t}\right)$ is $(u, v)^{t}=(-9,-11)^{t}$. Same calculation tells us that $I_{\nmid 224,1}(1)=-4$ as well, which is realized by the vector $(u, v)^{t}=$ $(9,11)^{t}$. Now we see -4 is a negative number, which conflicts with the necessary condition stated in Theorem 1.1. Therefore the $\mathrm{H}(2)$-unknotting number of $P(13,4,11)$ has to be at least two. On the other hand, the knot $P(13,4,11)$ can be changed into the unknot by adding two twisted bands as shown in Fig. 4. Hence the $H(2)$-unknotting number of $P(13,4,11)$ is two. This completes the proof of Corollary 1.2.
2.4. Comparisons with other criterions. There have been many criterions and properties which can be used to bound the $\mathrm{H}(2)$-unknotting number of a knot. We want to apply them to the knot $P(13,4,11)$ and compare the results with Corollary 1.2.

The first one is Lickorish's obstruction that we recalled in the beginning. It does not work for the pretzel knot $K=P(13,4,11)$ because of the following reason. It is known that the Goeritz matrix A is a presentation matrix of $H_{1}(\Sigma(K), \mathbb{Z})$, and A^{-1} represents the linking form λ. It is not hard to see that $H_{1}(\Sigma(K))$ is cyclic of order 239, and that the generator $g=(0,1)^{t}$ satisfies $\lambda(g, g)=-17 / 239$. Then we see $\lambda(15 g, 15 g)=(225 \times(-17)) / 239=-3825 / 239=-1 / 239$ over \mathbb{Q} / \mathbb{Z}. Since 239 is a prime number, the vector $g^{\prime}=(0,15)^{t}$ can work as a generator of $H_{1}(\Sigma(K), \mathbb{Z})$.

There are two invariants of knots which are closely related to $\mathrm{H}(2)$-unknotting number. Given a knot $K \subset S^{3}$, the crosscap number of K [2] is defined as follows:

$$
\gamma(K)=\min \left\{\beta_{1}(F) \mid F \text { is a non-orientable connected surface in } S^{3} \text { and } \partial F=K\right\}
$$

where $\beta_{1}(F)$ denotes the rank of the first homology group of F. The 4-dimensional crosscap number of K [11], which we denote $\gamma^{*}(K)$ here, is by name defined as follows:

$$
\gamma^{*}(K)=\min \left\{\begin{array}{l|l}
\beta_{1}(F) & \begin{array}{l}
F \text { is a non-orientable connected smooth surface in } B^{4} \text { and } \\
\partial F=K \subset \partial B^{4}=S^{3}
\end{array}
\end{array}\right\}
$$

Their relation with $\mathrm{H}(2)$-unknotting number is as follows.
Lemma 2.3. Given a knot $K \subset S^{3}$, we have $\gamma^{*}(K) \leq u_{2}(K) \leq \gamma(K)$.
Proof. The knot K can be reconstructed from the unknot by adding $u_{2}(K)$ twisted bands successively. Let D be a disk bounded by the unknot and $b_{1}, b_{2}, \ldots, b_{u_{2}(K)}$ be the bands added to the boundary of D. Then $F:=D \cup \bigcup_{i=1}^{u_{2}(K)} b_{i}$ is a non-orientable surface in B^{4} with $\partial F=K$. We have $\gamma^{*}(K) \leq \beta_{1}(F)=u_{2}(K)$. The second inequality is proved as follows. Suppose S is a non-orientable surface in S^{3} which realizes the crosscap number of K. Namely we have $\beta_{1}(S)=\gamma(K)$ and $\partial S=K$. Then there are $\gamma(K)$ disjoint essential arcs in S, say $\tau_{1}, \tau_{2}, \ldots, \tau_{\gamma(K)}$, such that $S-\tau_{i}$ has one boundary component for $i=1,2, \ldots, \gamma(K)$ and $S-\bigcup_{i=1}^{\gamma(K)} \tau_{i}$ is a disk. If we add twisted bands to K along τ_{i} for $i=1,2, \ldots, \gamma(K)$, the resulting knot is the unknot. Therefore we have $u_{2}(K) \leq \gamma(K)$.

Ichihara and Mizushima [5] calculated the crosscap numbers of pretzel knots. According to their calculation, the crosscap number of $P(13,4,11)$ is two. Gilmer and Livingston [3] studied the 4 -dimensional crosscap number of a knot by using Heegaard Floer homology. Their method and our result in this note are both in spirit derived from Theorem 9.6 in [13]. The author does not know whether their method can verify that the 4 -dimensional crosscap number of $P(13,4,11)$ is 2 or not.

Yasuhara [18], and Kanenobu and Miyazawa [6] introduced some methods for detecting the $\mathrm{H}(2)$-unknotting number of a knot, but simple calculation shows that their methods cannot be applied to the knot $P(13,4,11)$. Taniyama and Yasuhara[17] established the equivalence between $\mathrm{H}(2)$-unknotting number and other two invariants of knots, but there seems no obvious way to apply their relation to the calculation of $\mathrm{H}(2)$-unknotting number.

References

[1] T. Abe, R. Hanaki and R. Higa: The unknotting number and band-unknotting number of a knot, Osaka J. Math. 49 (2012), no. 2, 523-550.
[2] B.E. Clark: Crosscaps and knots, Internat. J. Math. Math. Sci. 1 (1978), no. 1, 113-123.
[3] P. Gilmer and C. Livingston: The nonorientable four-genus of knots, J. London Math. Soc., doi:10.1112/jlms/jdr024 (2011).
[4] J. Hoste, Y. Nakanishi and K. Taniyama: Unknotting operations involving trivial tangles, Osaka J. Math. 27 (1990), 555-566.
[5] K. Ichihara and S. Mizushima: Crosscap numbers of pretzel knots, Topology Appl. 157 (2010), 193-201.
[6] T. Kanenobu and Y. Miyazawa: H(2)-unknotting number of a knot, Commun. Math. Res. 25 (2009), 433-460.
[7] W.B.R. Lickorish: Unknotting by adding a twisted band, Bull. London Math. Soc. 18 (1986), 613-615.
[8] S.V. Matveev: Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987), 268-278, 345.
[9] J.M. Montesinos: Surgery on links and double branched covers of S^{3}; in Knots, Groups, and 3-Manifolds (Papers dedicated to the memory of R.H. Fox), Ann. of Math. Studies 84, Princeton Univ. Press, Princeton, NJ, 1975, 227-259.
[10] H. Murakami and Y. Nakanishi: On a certain move generating link-homology, Math. Ann. 284 (1989), 75-89.
[11] H. Murakami and A. Yasuhara: Four-genus and four-dimensional clasp number of a knot, Proc. Amer. Math. Soc. 128 (2000), 3693-3699.
[12] B. Owens: Unknotting information from Heegaard Floer homology, Adv. Math. 217 (2008), 2353-2376.
[13] P. Ozsváth and Z. Szabó: Absolutely graded Floer homologies and intersection forms for fourmanifolds with boundary, Adv. Math. 173 (2003), 179-261.
[14] P. Ozsváth and Z. Szabó: Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), 1159-1245
[15] P. Ozsváth and Z. Szabó: Knots with unknotting number one and Heegaard Floer homology, Topology 44 (2005), 705-745.
[16] P. Ozsváth and Z. Szabó: On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), 1-33.
[17] K. Taniyama and A. Yasuhara: On C-distance of knots, Kobe J. Math. 11 (1994), 117-127.
[18] A. Yasuhara: Connecting lemmas and representing homology classes of simply connected 4-manifolds, Tokyo J. Math. 19 (1996), 245-261.

Graduate School of Mathematical Science the University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914 Japan
e-mail: bao@ms.u-tokyo.ac.jp

[^0]: 2010 Mathematics Subject Classification. 57M27, 57M25.
 The author was supported by scholarship from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

