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Abstract
We have two constructions of the level-(0, 1) irreducible representation of the

quantum toroidal algebra of typeA. One is due to Nakajima and Varagnolo-Vasserot.
They constructed the representation on the direct sum of theequivariant K-groups
of the quiver varieties of typeÂ. The other is due to Saito-Takemura-Uglov and
Varagnolo-Vasserot. They constructed the representationon the q-deformed Fock
space introduced by Kashiwara-Miwa-Stern.

In this paper we give an explicit isomorphism between these two constructions.
For this purpose we construct simultaneous eigenvectors onthe q-Fock space using
the nonsymmetric Macdonald polynomials. Then the isomorphism is given by
corresponding these vectors to the torus fixed points on the quiver varieties.
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1. Introduction

Geometry ofquiver varieties, introduced by Nakajima, involves rich mathematical
structures.

One of the most notable result is Nakajima’s construction ofrepresentations of quan-
tum loop algebras ([16]): the direct sum of torus equivariant K-groups of the quiver vari-
eties is endowed with a structure of a representation of the quantum affinizationUR(Lg)
of the corresponding Kac-Moody algebrag. The resulting representation is what we call
an l -highest weight representation, that is to say, a “highest weight representation” with
respect to the triangular decomposition of the quantum loopalgebra ([9]).

Let us concentrate our attention on quiver varieties of affine type. They appear in
gauge theory as framed moduli spaces of instantons on ALE spaces, which originally
motivated Nakajima to introduce quiver varieties. They also have interesting connec-
tions with some areas in mathematics such as the theory of McKay correspondence
and the representation theory of symplectic reflection algebras (see [7] and [6] for ex-
ample). In this point of view, more careful study about the actions of the quantum
toroidal algebras, quantum affinizations of the affine Kac-Moody algebras, on the equi-
variant K-groups seems to be important.

Schur-Weyl duality is an equivalence between certain categories of representations
of gll and of Sn. Varagnolo-Vasserot show that there exists an analogous duality be-
tween the quantum toroidal algebra of typeA and a certain double affinization of the
Hecke algebra of typeA, called the toroidal Hecke algebra ([22]). The toroidal Hecke
algebra has a remarkable representation called Dunkl-Cherednik representation. Apply-
ing Schur-Weyl duality for Dunkl-Cherednik representation, Saito-Takemura-Uglov and
Varagnolo-Vasserot construct the representation of the quantum toroidal algebra ([18],
[23]). The underlying space is so called theq-Fock space([11]).

There are much fewer things known about representations of quantum toroidal al-
gebras than of quantum affine algebras (see [9], [10], [8] andreferences in [8]). Now,
at least, we have two constructions of the representation ofthe quantum toroidal al-
gebra of typeA. In this paper we give an explicit isomorphism between thesetwo
constructions. We hope it will be helpful for further analyses of the representation,
such as study of canonical bases of the representations.

We can describe the representation on the equivariant K-groups in a combinatorial
manner using the localization theorem ([25]). In particular, the torus fixed points corre-
spond to simultaneous eigenvectors for the action of a certain subalgebra of the quantum
toroidal algebra. Our strategy is to construct simultaneous eigenvectors on the q-Fock
space. The isomorphism will be given by corresponding thesevectors to the torus fixed
points. For the construction of simultaneous eigenvectors, thenonsymmetric Macdonald
polynomialsplays a crucial role. The nonsymmetric Macdonald polynomials are simul-
taneous eigenvectors for Dunkl-Cherednik operators ([5],[14], [17]).

Takemura-Uglov described the irreducible decomposition of the q-Fock space as
the representation of a certain subalgebra of the quantum toroidal algebra, which is iso-
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morphic to the quantum affine algebra ([20]). They also showed that each irreducible
components are isomorphic to tensor products of fundamental representations. For this
purpose they introduced specific vectors of the q-Fock spaceusing the nonsymmetric
Macdonald polynomials (see Remark of 6.2.2).

In this paper we introduce new vectors. We also use the nonsymmetric Macdonald
polynomials, but an additional operation is required (see 6.2.1). They are simultaneous
eigenvectors and the main subject of this paper. These simultaneous eigenvectors al-
low us a combinatorial description of the representation onthe q-Fock space and we
can see this coincides with the combinatorial description of the representation on the
equivariant K-groups.

In [24] and [19], the action of the Hall algebra of the cyclic quiver on the q-Fock
space is studied. The Hall algebra of the cyclic quiver is realized using perverse sheaves
on the space of representations of the quiver by Lusztig ([12]). Nakajima’s construction
of quiver varieties and representations on their K-groups are, philosophically, parallel to
Lusztig’s construction. We could expect this observation gives conceptual interpretation
of the isomorphism constructed in this paper. In particular, this isomorphism would help
us to study of canonical bases of the K-groups of quiver varieties (see [13] and [26], for
quiver varieties of finite type).

In §3–§5 we are mainly occupied with review of, and arrangement for our use of,
the results of [25], [22], [18] and [23]. In§6 we construct the simultaneous eigen-
vectors and in§7 we exhibit the isomorphism.

2. Preliminaries

2.1. Quantum toroidal algebra.

2.1.1. Throughout this paper we fix an integerl and we setI = f0, : : : , l � 1g.
We usually takeR = C(s1=2, t1=2) as the coefficient field. We set

p = t l , q = s1=2t1=2, r = s�1=2t1=2.

2.1.2. Let us define thequantum toroidal algebra U0R(sll ,tor ) (l > 2). This is an
R-algebra generated byei ,n, fi ,n, K�

i and h�i ,m (i 2 I , n 2 Z, m 2 Z>0). The relations
are expressed using the formal series

ei (z) =
X
n2Z

ei ,nz�n, fi (z) =
X
n2Z

fi ,nz�n,

K�
i (z) = K�

i exp

 
�(q � q�1)

X
m>0

h�i ,mz�m

!



880 K. NAGAO

as follows:

K +
i .0K�

i .0 = K�
i .0K +

i .0 = 1,

[K�
i (z), K�

i (w)] = [ K +
i (z), K�

i (w)] = 0,

[K�
i (z), ej (w)] = [ K�

i (z), f j (w)] = 0 ( j 6= i , i � 1),

(r "z� q�1w)K�
i (z)ei +"(w) = (r "q�1z� w)ei +"(w)K�

i (z) (" = �1),

(z� q2w)K�
i (z)ei (w) = (q2z� w)ei (w)K�

i (z),

(r "z� qw)K�
i (z) fi +"(w) = (r "qz� w) fi +"(w)K�

i (z) (" = �1),

(q�2z� w)K�
i (z) fi (w) = (z� q�2w) fi (w)K�

i (z),

[ei (z), f j (w)] =
Æi j Æ(z=w)

q � q�1
(K +

i (w)� K�
i (z)),

(r "z� q�1w)ei (z)ei +"(w) = (r "q�1z� w)ei +"(w)ei (z) (" = �1),

(z� q2w)ei (z)ei (w) = (q2z� w)ei (w)ei (z),

(r "z� qw) fi (z) fi +"(w) = (r "qz� w) fi +"(w) fi (z) (" = �1),

(z� q�2w) fi (z) fi (w) = (q�2z� w) fi (w) fi (z),

fei (z1)ei (z2)ei�1(w)� (q + q�1)ei (z1)ei�1(w)ei (z2) + ei�1(w)ei (z1)ei (z2)g + fz1$ z2g
= 0,

f fi (z1) fi (z2) fi�1(w)� (q + q�1) fi (z1) fi�1(w) fi (z2) + fi�1(w) fi (z1) fi (z2)g + fz1$ z2g
= 0,

whereÆ(Z) =
P

n2Z Zn.

REMARK . The quantum toroidal algebra in [25] is “twisted” in their words, which
may or may not be isomorphic to ours. See Remark of 3.2.2 for the relation between
these two algebras.

2.1.3. The horizontal subalgebra U(2)
R

0
(bsll ) is the subalgebra ofU 0

R(sll ,tor ) gener-
ated byei ,0, fi ,0 and K�

i (i 2 I ). This is isomorphic toU 0
q(bsll )
R, whereU 0

q(bsll ) is

the subalgebra of the quantum affine algebraUq(bsll ) which does not contain the gen-
eratord.

The vertical subalgebra U(1)
R

0
(bsll ) is the subalgebra ofU 0

R(sll ,tor ) generated byei ,n,

fi ,n, K�
i , and h�i ,m (i 6= 0, n 2 Z, m 2 Z>0). Define fei ,n, gfi ,n, gK�

i and gh�i ,m by

gei (z) =
X
n2Z

fei ,nz�n = ei (r
�l+i z),

gfi (z) =
X
n2Z

gfi ,nz�n = fi (r
�l+i z),
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K̃�
i (z) = gK�

i exp

 
�(q � q�1)

X
m>0

gh�i ,mz�m

!
= K�

i (r�l+i z).

They satisfy the relations in Drinfeld new realization ofU 0
q(bsll ), and soU (1)

R

0
(bsll ) is

also isomorphic toU 0
q(bsll )
R.

2.2. Notations for Young diagrams.

2.2.1. Let 5 denote the set of all Young diagrams. We identify a Young diagram
with a subset of (Z�0)2. A node is an element of (Z�0)2.

The contentof a node (x, y) is the numberx � y. A node is called ani -node if
its content equals toi modulo l . For � 2 5 let di (�) denote the number ofi -nodes
in � and setd(�) = (di (�))i =0,:::,l�1 2 Zl . We define the order> on the set of nodes
according to their contents.

For � 25 a node (x, y) is calledaddableif (x, y) =2 � and (x�1, y), (x, y�1)2 �.
A node (x, y) is called removableif (x, y) 2 � and (x + 1, y), (x, y + 1) =2 �. Let A�,i

(resp. R�,i ) denote the set of all addable (removable)i -nodes of�.
A hookis a pair((xh, yh), (xt , yt )) such that (xh, yh�1), (xt , yt ) 2 � and (xh, yh), (xt +

1, yt ) =2 �. Thehook lengthof a hook ((xh, yh), (xt , yt )) is the number�xh + yh + xt � yt .
A hook is called anl-hook if its length is a multiple ofl .

2.2.2. A Maya diagramwith chargec is an infinite decreasing sequence of inte-
gers k = (k1, k2, : : : ) such thatka = �a + c for sufficiently largea. A Maya diagram
with chargec can be identified with a Young diagram

� =
a

a2Z>0
1�b�ka+a�c

(a� 1, b� 1).

Let 5c denote the set of all Maya diagrams with chargec. Then5 and5c are bijec-
tive.

2.2.3. We sometimes identify a Maya diagramk = (k1, k2, : : : ) with the subsetfk1, k2, : : : g of Z.
If ka � 1 =2 k (a 2 Z>0), then a node (a� 1, ka + a� c� 1) is a removable node.

Its content equals toc� ka. If ka + 1 =2 k (a 2 Z>0), then a node (a� 1, ka + a� c) is
an addable node. Its content equals toc� ka � 1.

Note thatf(a,b) j a 2 k, b =2 k, a> bg is a finite set. Such a pair (a,b) corresponds
to a hook in term of Young diagram. Its hook length isa� b.
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3. K-theory of quiver varieties

In this section we review the representation ofU 0
R(sll ,tor ) on the equivariant

K-groups of the quiver varieties of typêA.
A quiver variety, introduced by Nakajima, is a certain moduli space of representa-

tions of a quiver. He also introduced a certain subvariety ofthe product of two quiver
varieties called the Hecke correspondence. Using the Heckecorrespondence we can
construct an action of the quantum affinization of the Kac-Moody algebras on the torus
equivariant K-groups of the quiver varieties ([16]).

By the localization theorem, localized equivariant K-groups have bases indexed by
fixed points. The fixed points of the quiver varieties of typeÂ are indexed by Young
diagrams. The action of the quantum toroidal algebra can be written in terms of Young
diagrams ([25], see Theorem of 3.2.3).

Nakajima’s definition of quiver varieties involves parameters v and w, where w
corresponds to thel -highest weight of the representation. In this paper we workon the
casew = (1, 0,: : : , 0) only, in other words, we deal with the level 1 representation only.

We do not take the original definition of quiver varieties butanother equivalent
one, which works only for the casew = (1, 0,: : : , 0).

We used instead ofv.

3.1. Quiver varieties.

3.1.1. Let (C2)[n] denote the Hilbert scheme ofn points onC2:

(C2)[n] =

�
J �

ideal
C[x, y] dim C[x, y]=J = n

�
,

and SymnC2 denote then-th symmetric product ofC2:

SymnC2 =
nX

ai pi ai 2 Z>0,
X

ai = n, pi 2 C2
o
.

Let � denote the Hilbert-Chow morphism:

� : (C2)[n] ! SymnC2

J 7! suppC[x, y]=J.

We regardZ=lZ as the subgroup of SU(2). The action ofZ=lZ on C2 induces the
action ofZ=lZ on SymnC2 and (C2)[n] so that� is Z=lZ-equivariant. Let (SymnC2)Z=lZ
and ((C2)[n])Z=lZ denote the sets of the fixed points.

Note that for J 2 ((C2)[n])Z=lZ, C[x, y]=J has a canonicalZ=lZ-module structure.
For d = (d0, : : : , dl�1) 2 Zl such that

P
di = n we define the quiver varietyM(d) by

M(d) = fJ 2 ((C2)[n])Z=lZ j dim(C[x, y]=J)(i ) = di g,
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where (C[x, y]=J)(i ) is the Z=lZ-weight space with weighti . Let V(d) =
L

V(d)i be
the Z=lZ-graded vector bundle onM(d) such that forJ 2 M(d) we have a natural
isomorphism

(V(d)i )J ' (C[x, y]=J)(i ).

We set

�1 =
1

2
dCtd + d0, �2 = n� �1l ,

whereC is the Cartan matrix of typêAl�1. Then we have dimM(d) = 2�1 ([15]). Let� 2 Z=lZ be a generator ofZ=lZ. We define the closed subvariety

M0(d) =

8<
:�2[0] +

�1X
j =1

([ p j ] + � � � + [� l�1 p j ]) 2 (SymnC2)Z=lZ p j 2 C2

9=
;,

of (SymnC2)Z=lZ. Then we have�(M(d)) �M0(d) (in fact we can check�(M(d)) =
M0(d)).

For d, d0 2 Zl such thatdi � d0i for all i , we have the inclusion given by

M0(d) ,! M0(d0)
X 7! X + �3[0],

where�3 =
P

(d0i � di ). We set

M =
a
d2Zl

M(d), M0 =
[
d2Zl

M0(d),

and

Z = M�M0 M.

Note that we introduceM0 just only for terminological reason. We work onM andZ,
of which connected components are finite dimensional. LetV denote the locally free
sheaf onM, which is the union ofV(d)’s.

3.1.2. The naturalT = (C�)2-action onC2 induces aT-action onM. The T-fixed
points of M are indexed by5. For � 2 5 the corresponding idealJ� 2 (C2)[deg�] is
the ideal generated byfxayb j (a, b) =2 �g. Then f[xayb] 2 C[x, y]=J j (a, b) 2 �g forms
a basis ofC[x, y]=J.

For � 2 Z=lZ we have� � [xayb] = � a�b[xayb]. So J� 2M(d(�)).
For (s, t) 2 T we have (s, t) � [xayb] = satb[xayb]. So C � [xayb] = satb 2 R(T) =

Z[s�, t�], where R(T) is the representation ring ofT and we identify the coordinate
functions ofT with the generators ofR(T). Thus for a nodeX = (a, b), we set X =
satb 2 R(T).
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3.2. Representation on K-theory of quiver varieties.

3.2.1. Let ei denote thei -th coordinate vector inZl . For d 2 Zl we define the
subvariety ofZ by

Bi (d) = f(J1, J2) 2 Z j J1 2M(d), J2 2M(d + ei ), J1 � J2g.
This is called theHecke correspondence.

Let p" denote the projection fromZ to the "-th factor (" = 1, 2) andq" denote its
restriction toBi (d) � Z. We define the tautological bundleL on Bi (d) by q�2V=q�1V.

3.2.2. For a T-equivariant vector bundleB on X, let detB denote its determi-
nant,

Vi
B denote itsi -th wedge product, and set

V
z B =

P
i�0(�z)i

Vi
B. These

operators can be extended to operators on KT (X). For aZ=lZ-module M we setMi =
HomZ=lZ(C(i ), M).

For i 2 Z=lZ we set

Hi = �Vi + (s + t)Vi�1� stVi�2 + Æi ,0W 2 KT (M),

whereW is the trivial line bundle onM.
We define an action ofU 0

R(sll ,tor ) on KT
R(M) = KT (M)
R by

ei ,n(x) = c�i (d)p1�(p�2x 
 (L)n+hi (d)), x 2 KT
R(M(d + ei )),

fi ,n(x) = c+
i (d)p2�(p�1(x 
 det(s�1t�1Hi )
 Ln), x 2 KT

R(M(d)),

K�
i (z)(x) = c�i (d)c+

i (d)

 ^
z

((s�1t�1� 1)H�
i )

!�
x, x 2 KT

R(M(d)),

where the index� corresponds taking the dual of a locally free sheaf, the index +

(resp.�) means the expansion as a formal power series inz�1 (resp.z) and

c�i (d) = (�1)di s(2di�di +1+1)=2t (�2di�1+2di�di +1+1)=2,

c+
i (d) = (�1)�di�1+di�di +1s�di�1=2tdi�1=2,

hi (d) = di�1 � 2di + di +1.

REMARK . We slightly modify the actions in [25]. In fact we have

ei ,n = (�1)di +1s(di +1+1)=2t (�di +1+1)=2��
i ,n,

fi ,n = (�1)di +1s�di +1=2tdi�1=2�+
i ,n,

K�
i (z) = s(�di�1+di +1+1)=2t (di�1�di +1+1)=22�

i (z).

Here the operators on right hand side are defined in 3.3 of [25], where we should
replace their symbolsq, t , k, s with our symbolst , s, i , n.
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Substitute this to Theorem 2 in [25] and the definition of quantum toroidal algebra
in [25], we can verifyei ,n, fi ,n and K�

i (z) satisfy the relation in 2.1.

3.2.3. Let i� denote the inclusionfJ�g ,! M and 1� denote the generator of
KT (fJ�g). We setb� = i��(1�) 2 KT (M).

By the localization theorem

KT
R(M) 'M�25 Rb�.

Theorem ([25] Lemma 8). For � 2 5 such thatd(�) = d we have

ei ,n(b�) = (�s1=2t�1=2)di�1
X

X2R�,i

2
4 X

n Y
A2A�,i

((st)1=2 A
� � (st)1=2 X

�
)�1

� Y
R2R�nX,i

((st)�1=2 R
� � (st)1=2 X

�
)b�nX

3
5,

fi ,n(b�) = (�s1=2t�1=2)�di�1
X

X2A�,i

2
4 X

n Y
A2A�[X,i

(st A
� � X

�
)

� Y
R2R�,i

( R
� � X

�
)�1b�[X

3
5,

K�
i (z)(b�) =

0
� Y

A2A�,i

(st)1=2 A
�
z� (st)�1=2

A
�
z� 1

Y
R2R�,i

(st)�1=2 R
�
z� (st)1=2

R
�
z� 1

1
A
�

b�,

where (satb)� = s�at�b for satb 2 R(T) and the upper indices+ and � stand for the
Taylor expansions at z=1 and z= 0 respectively.

4. Schur-Weyl duality

In this section we review Schur-Weyl duality.
One can construct representations of the quantum affine algebra U 0

q(bsll ) from rep-

resentations of the affine Hecke algebraḢN ([2], see 4.1.3). In this construction the
action is given originally in terms of Chevalley generators. One can rewrite the action
in terms of Drinfeld generators ([22], see Theorem of 4.1.4).

Further, Schur-Weyl duality in [2] can be extended to get representations of the
quantum toroidal algebraU 0

R(sll ,tor ) from representations of the toroidal Hecke algebra
ḦN . This is done by extending the action ofU 0

q(bsll ) to U 0
R(sll ,tor ) using the rotation

automorphism of the Dynkin diagram of typêA ([22], see Theorem of 4.2.2).
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4.1. Schur-Weyl duality for affine algebras.

4.1.1. The finite Hecke algebraHN is the R-algebra generated byTa
�1 (a =

1, : : : , N � 1) with relations:

TaTa
�1 = Ta

�1Ta = 1,

(Ta + 1)(Ta � q2) = 0,

TaTa+1Ta = Ta+1TaTa+1,

TaTb = TbTa (ja� bj > 1).

The affine Hecke algebrȧHN is theR-algebra generated byTa
�1 (a = 1, : : : , N � 1),

Xa
�1 (a = 1, : : : , N) with relations:

TaTa
�1 = Ta

�1Ta = 1,

(Ta + 1)(Ta � q2) = 0,

TaTa+1Ta = Ta+1TaTa+1,

TaTb = TbTa (ja� bj > 1),

Xa Xb = XbXa,

Ta XaTa = q2Xa+1,

XbTa = Ta Xb (b 6= a, a + 1).

4.1.2. Let V = Rl with a basisfv0, : : : , vl�1g. We define
v
T 2 End(V
2) by

v
T(vi1 
 vi2) =

8<
:

q2vi1 
 vi2 if i1 = i2,
qvi2 
 vi1 if i1 < i2,
qvi2 
 vi1 + (q2 � 1)vi1 
 vi2 if i1 > i2.

Then we have a left action ofHN on V
N defined by

Ta 7! v
Ta = 1
a�1
 v

T 
 1
N�a�1.

4.1.3. Let M be a right ḢN-module. We define the following operators on
M 
HN V
N :

ei (m
 v) =
NX

a=1

mXÆi ,0
a 
 (K i

1)�1 � � � (K i
a�1)�1Ei ,i�1

a v,

fi (m
 v) =
NX

a=1

mX�Æi ,0
a 
 Ei�1,i

a K i
a+1 � � � K i

Nv,

hi (m
 v) = m
 K i
1 � � � K i

Nv.
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Here Ei , j
a = 1
a�1 
 Ei , j 
 1
N�a

, where Ei , j 2 End(V) is the matrix unit with respect
to the basisv0, : : : ,vl�1 and K i

a = qEi�1,i�1
a �Ei ,i

a . These operators give a leftU 0
q(bsll )-action

on M 
HN V
N ([2]).

4.1.4. An isomorphism between the algebras defined by Chevalley generators and
by Drinfeld new realization is given in [1].

For j = ( j1, : : : , jN) 2 f0, : : : , l � 1gN let vj denotev j1 
 � � � 
 v jN 2 V
N .
For 1� a, b � N we define

Ta,b =

8<
:

TaTa+1 � � � Tb�1, a < b,
1, a = b,
Ta�1Ta�2 � � � Tb, a > b.

Theorem ([22] Theorem 3.3). Assumej is an non-decreasing sequence. We put
ni = ℄fa j ja = i g and n̄i =

Pi
i 0=1 ni 0 . Let us writej = [n0, n1, : : : ].

For m
 vj 2 M 
HN V
N the actions of Drinfeld generators of U0q(bsll ) are de-
scribed as follows:

gei (z)(m
 vj ) = q1�ni m

0
� n̄iX

a=n̄i�1+1

Ta,n̄i�1+1

1
AÆ(ql�i Yn̄i�1+1z)
 vj� ,

gfi (z)(m
 vj ) = q1�ni�1m

0
� n̄i�1X

a=n̄i�2+1

Ta,n̄i�1

1
AÆ(ql�i Yn̄i�1z)
 vj+ ,

K̃�
i (z)(m
 vj ) = m

Y
ja=i�1

��1 (ql�i +1Yaz)
Y
jb=i

���1(ql�i�1Ybz)
 vj .

Here j� = [ : : : , ni�1 + 1, ni � 1, : : : ], j+ = [ : : : , ni�1 � 1, ni + 1, : : : ] and �+
m(z) and��m (z) stand for the Taylor expansions of�m(z) = (qmz�1)=(z�qm) at z=1 and z= 0

respectively.

4.2. Schur-Weyl duality for toroidal algebras.

4.2.1. The toroidal Hecke algebraḦN is the R-algebra generated byTa
�1 (a =

1, : : : , N � 1), Xa
�1 (a = 1, : : : , N), Ya

�1 (a = 1, : : : , N) with relations:

TaTa
�1 = Ta

�1Ta = 1,

(Ta + 1)(Ta � q2) = 0,

TaTa+1Ta = Ta+1TaTa+1,

TaTb = TbTa (ja� bj > 1),
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Xa Xb = XbXa,

Ta XaTa = q2Xa+1,

XbTa = Ta Xb (b 6= a, a + 1),

YaYb = YbYa,

T�1
a YaT�1

a = q�2Ya+1,

YbTa = TaYb (b 6= a, a + 1),

X0Y1 = pY1X0,

X2Y�1
1 X�1

2 Y1 = q�2T2
1 ,

where X0 = X1 � � � XN .
Let Ḣ(1)

N (resp.Ḣ(2)
N ) denote the subalgebra generated byfTa

�1g andfYag (resp.fTa
�1g

and fXag). They are isomorphic tȯHN .

REMARK . The toroidal Hecke algebräHN has the double affine Hecke algebra
of type glN , which has the one more relation

Y0X1 = p�1X1Y0

whereY0 = Y1 � � � YN , as its quotient.

4.2.2. Let M be a right ḦN-module. RegardingM as a rightḢ(1)
N -module we

have the action ofU 0
q(bsll ) on M 
HN V
N by 4.1.3.

We define an operator� on M 
HN V
N by

�(m
 vi1 
 � � � 
 vi N ) = mX
Æ0,l1
1 � � � XÆ0,i N

N 
 vi1�1
 � � � 
 vi N�1.

Lemma ([22] Proposition 3.4). We setXi (z) = ˜Xi (r l�i z) (X = e, f , K�). Then
we have

Xi�1(z) = ��1 Æ Xi (q
�1r�1z) Æ �.

Theorem ([22] Theorem 3.5). The action of U0q(bsll ) 
 R ' U (1)
R

0
(bsll ) on

M 
HN V
N can be extended to an action of U0R(sll ,tor ) so that the actions ofX0

(X = e, f , K�) are are given by

X0(z) = ��1 Æ X1(q�1r�1z) Æ �.
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5. Representation on the q-Fock space

In this section we review the action ofU 0
R(sll ,tor ) on the q-Fock space following

[18] and [23].
As a q-analogue of the permutation representation,R[z�1 , : : : , z�N ] has a right

HN-module structure. We define the q-wedge space byR[z�1 , : : : , z�N ] 
HN V
N . This

is the q-analogue of the classical wedge space
NN V(z)= � Ker(id + �i ), where�i is

the generator ofSN .
We define the q-Fock space taking “limit” of the q-wedge space. In other words

the q-Fock space is the q-analogue of the classical semi-infinite wedge space.
It is known the rightHN-module structure onR[z�1 , : : : , z�N ] can be extended to a

right ḦN-module structure called Dunkl-Cherednik representation. By Schur-Weyl du-
ality described in 4.2.2, we have an action ofU 0

R(sll ,tor ) on the q-wedge space. This
can be naturally lifted to an action on the q-Fock space.

5.1. The q-Fock space. Here we review the definition of the q-Fock space. The
reader can refer to [11] for detail.

5.1.1. For 1� a < b � N let us define an operatorgab on R[z�1
1 , : : : , z�1

N ] by

gab =
q�1za � qzb

za � zb
(�ab� 1) + q,

where�ab is the operator defined by the permutation of variablesza and zb.
Then we have a right action ofHN on R[z�1

1 , : : : , z�1
N ] defined by

Ta 7! p
Ta = (q2 � 1)� qga,a+1.

5.1.2. Let V(z) = R[z�1] 
 V . We define

N̂

V(z) = R[z�1
1 , : : : , z�1

N ] 
HN V
N

=
NO

V(z)

,
N�1X
a=1

Im

�
p
Ta 
 1V
N � 1R[z�1

1 ,:::,z�1
N ] 
 v

Ta

�
.

This is called theq-wedge space.

5.1.3. We write uk = zm 
 v j for k = j � l (m + 1). Let uk1 ^ � � � ^ ukN denote
the image ofuk1 
 � � � 
 ukN for the quotient map. We sayuk1 ^ � � � ^ ukN is normally
ordered if ka > kb for a < b.

For N = 2 we can verify that ifk � k0 then

uk ^ uk0 = �uk0 ^ uk,
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and if k < k0 and k� k0 � i (1� i � l � 1) then

uk ^ uk0 = �quk0 ^ uk

+ (q2 � 1)(uk0�i ^ uk+i � quk0�l ^ uk+l + q2uk0�l�i ^ uk+l+i � � � � )
where the summation continues as long as the wedge is normally ordered.

The set of all normally ordered wedges forms a basis of
VN V(z).

5.1.4. For c 2 Z and 0< N < N 0 we define

�cN,N 0 : ZN ! ZN 0
(k1, : : : , kN) 7! (k1, : : : , kN , �N + c� 1, : : : , �N 0 + c).

For k = (k1, : : : , kN) 2 ZN let us write uk = uk1 ^ � � � ^ ukN . We can check the well-
definedness of the map

N̂

V(z)! N 0̂
V(z)

uk 7! u�c
N,N0 (k) .

We write �cN,N 0 for this map as well.

5.1.5. We define

F(c) = lim�!�c
N,N0

N̂

V(z), F =
M
c2Z

F(c),

and �cN,1 by the canonical map from
VN V(z) to F(c). F (resp. F(c)) is called the

q-Fock space(with chargec). An element ofF (resp. F(c)) is called asemi-infinite
wedge(with chargec).

Let k = (k1,k2,:::) be a Maya diagram with chargec (we usek both for an element
of ZN and for an infinite sequence of integers by abuse of notations), then uk = uk1 ^
uk2 ^ � � � is a semi-infinite wedge with chargec. Note thatfuk j k 2 5cg forms a basis
of F(c).

5.2. Representation on the q-Fock space.

5.2.1. Let us consider the following operators onR[z�1 , : : : , z�N ]:

Y(N)
a = g�1

a,a+1�a,a+1 � � � g�1
a,N�a,N pDa�1,ag1,a � � � �a�1,aga�1,a (a 2 f1, : : : , Ng)

where pDa is the difference operator given by

pDa f (z1, : : : , za, : : : , zN) = f (z1, : : : , pza, : : : , zN), f 2 R[z�1
1 , : : : , z�1

N ].
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The operatorY(N)
a is calledDunkl-Cherednik operator. Then the action ofḢN defined

in 4.1.2 can be extended to the action ofḦN by

Ta 7! p
Ta, Xi 7! za, Ya 7! q1�NY(N)

a .

This is calledDunkl-Cherednik representation([3], [4], [5]).
By the Schur-Weyl duality explained in 4.2.2, we have an action of U 0

R(sll ,tor ) onVN V(z) = R[z�1
1 , : : : , z�1

N ] 
HN V
N .

5.2.2. For k 2 ZN we definem 2 ZN and j 2 f0, : : : , l �1g by ka = ja� l (ma + 1).
Note thatzm
vj = uk . We identifyk 2 ZN with the pair (m, j ). Let mc = (m1,:::,mN) 2
ZN denote the sequence obtained fromkc = (c� a)1�a�N .

Let Mc,r
N,l denote the set of allm such that

• m is non-decreasing with no more thanl elements of any given value, and
• ma � mc

a for all a and
P

(ma �mc
a) = 
 .

For m 2M
c,

N,l we define

J (m) = fj 2 f0, : : : , l � 1gN j ja < jb for a < b such thatma = mbg.
We define

Vc,

N =

M
m2Mc,


N,l

M
j2J (m)

Ruk � N̂

V(z).

We can check this is invariant under theU (1)
R

0
(bsll )-action.

We can see that for�, � 2 Z such that�l + c > 
 l and � > � the restriction

�c,
�l+c,�l+c = �c�l+c,�l+cjVc,
�l+c
: Vc,
�l+c! Vc,
�l+c

is an isomorphism as vector spaces.

Theorem ([20] Proposition 6). �c,
�l+c,�l+c is an isomorphism as U(1)
R

0
(bsll )-modules.

5.2.3. For k 2 5c we set degk =
P

(ma � mc
a). Note that this is well-defined.

We set

F(c)
 =
M

25c

degk=

Ruk � F(c).

For � 2 Z such that�l + c > 
 l the restriction

�c,
�l+c,1 = �c�l+c,1jVc,
�l+c
: Vc,
�l+c! F(c)
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is an isomorphism as vector space. By Theorem of 5.2.2 we can extend theU (1)
R

0
(bsll )-

action to F(c)r , and so toF(c).

5.2.4. We define

�N : ZN ! ZN

(k1, : : : , kN) 7! (k1 � 1, : : : , kN � 1).

We write �N as well for the map
VN V(z)!VN V(z) given by uk 7! u�N (k). We can

see this is compatible with the construction of� in 4.2.2.
We also define

�1 : 5c ! 5c�1

(k1, k2, : : : ) 7! (k1� 1, k2 � 1, : : : ).
and �1 : F(c)! F(c� 1).

For 0< N < N 0 � 1 we have

�c�1
N,N 0 Æ �N = �N 0 Æ �cN,N 0 .

Thus the action ofU 0
R(sll ,tor ) on

VN V(z) can be extended toF so that

X0(z) = ��11 Æ X1(q�1r�1z) Æ �1 (X = e, f , K�).

6. Simultaneous eigenvectors

In this section we construct simultaneous eigenvectors forthe actions ofK�
i (z)’s

on the q-Fock space, which are the main subjects of this paper.
In §6.1 we review the nonsymmetric Macdonald polynomials ([5], [14], [17]). For

m 2 ZN , the nonsymmetric Macdonald polynomial8m 2 C[z�1 , : : : , z�N ] is a simulta-
neous eigenvector of Dunkl-Cherednik operators. The transition matrix between mono-
mials and the nonsymmetric Macdonald polynomials is upper triangular with respect
to the Bruhat order onZN . The actions of the finite Hecke algebra generatorsTa

on the nonsymmetric Macdonald polynomials can be simply described (see Proposi-
tion of 6.1.4).

For k = (k1 > � � � > kN) we define a vector9k = 8m 
 vj in the q-wedge space
(Definition of 6.2.2), wherem and j are given by “renumbering” of (k1, : : : , kN) so

that j is non-decreasing (6.2.1). It follows immediately from Theorem 4.1.4 that9k is

a simultaneous eigenvector for the actions ofK�
i (z)’s (i 6= 0). We can check

• the eigenvalues are multiplicity free (Proposition of 6.2.5), and
• the transition matrix between normally ordered wedges andf9kg is upper triangular
(Proposition of 6.2.3), in particularf9kg forms a basis of the q-wedge space.
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So the vector9k is characterized in term of the actions ofK�
i (z)’s (i 6= 0) (Corol-

lary of 6.2.5). Further, using them we can verify
• 9k is also a simultaneous eigenvector forK�

0 (z) (Corollary of 6.2.6), and
• 9k can be lifted to the q-Fock space (Definition of 6.2.8).
We can see the eigenvalues coincide with the eigenvalues of the torus fixed points in
the representation on the equivariant K-groups of the quiver varieties.

6.1. Nonsymmetric Macdonald polynomials.

6.1.1. Let us define theBruhat order. This is the partial order onZN given by
the transitive closure of the following two relations:

For x = (x1, : : : , xN) 2 ZN

• if 1 � i < j � N and xi > x j then x � �i j x, and
• 1� i < j � N and xi �x j > 1 then�i j x � x+ei�ej whereei is the i -th coordinate
vector.

6.1.2. For x 2 ZN let �x denote the unique element ofSN satisfying the follow-
ing conditions:
• if �x(a) < �x(a0) then x�x(a) � x�x(a0), and
• if a < a0 and x�x(a) = x�x(a0) then �x(a) < �x(a0).

6.1.3. We can see thatR[z�1
1 , : : : , z�1

N ] has the basisf8m(z) j m 2 ZNg such that
• 8m(z) = zm +

P
n�m c(m, n)zn (9c(m, n) 2 R),

• 8m(z)Y(N)
a = �a(m)8m(z), where�a(m) = pmaq2�m(a)�N�1.8m(z) is called thenonsymmetric Macdonald polynomial([5], [14], [17]).

6.1.4.

Proposition (see [21]§1.5).

8m(z) � p
Ta =

8>>>>>>><
>>>>>>>:

(�q2 + 1)

x � 1
8m(z)� (x � q2)(q2x � 1)

(x � 1)2
8�am(z) (ma > ma+1),

(�q2 + 1)

x � 1
8m(z) (ma = ma+1),

(�q2 + 1)

x � 1
8m(z)�8�am(z) (ma < ma+1),

where�am = ( : : : , ma+1, ma, : : : ) and x = �a+1(m)=�a(m).
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6.2. Simultaneous eigenvectors and its properties.

6.2.1. For � 2 SN we define ˆ� 2 SN by �̂ (a) = N � � (a) + 1.
For k 2 ZN

+ = fk 2 ZN j k1 > � � � > kNg we definem = (m1, : : : , mN) 2 ZN and
j = ( j

1
, : : : , j

N
) 2 f0, : : : , l � 1gN by

ma = mb�j (a), j
a

= jb�j (a).

Note that
• m is non-decreasing, and ifa < b, ma = mb then ja > jb,
• j is non-decreasing, and ifa < b, j

a
= j

b
then ma > mb,

• b�j
�1 = 
�m.

EXAMPLE . For k = (5, 3, 1,�6,�7,�8,�9,�10) we have�
m
j

�
=

� �2 �1 �1 1 1 1 1 1
0 3 1 4 3 2 1 0

�
,

�
m
j

�
=

�
1 �2 1 �1 1 1 �1 1
0 0 1 1 2 3 3 4

�
.

In the following figure,
• enumerate the boxes from lower rows to upper rows and from right to left in a
row, then (ja, ma) is the coordinate of thea-th box, and
• enumerate the boxes from left columns to right columns and from the top to the
bottom in a column, then (j

a
, ma) is the coordinate of thea-th box.

...
...

...
...

...
...

1 �10 �9 �8 �7 �6
0 �5 �4 �3 �2 �1�1 0 1 2 3 4�2 5 6 7 8 9
...

...
...

...
...

..." 0 1 2 3 4  j
m

We define a partial order⊳ on ZN
+ by

k0 ⊳ k () j 0 = j and m0 � m.

6.2.2.

DEFINITION. For k 2 ZN
+ we define9k = 8m 
 vj 2VN V(z).
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REMARK . Takemura-Uglov introduced vectors8m
vj 2VN V(z) in [20], which
are different from ours.

Proposition. 9k is a simultaneous eigenvector for the actions of K�
i (z)’s (i 2f1, : : : , l � 1g).

Proof. It follows from Theorem of 4.1.4 and the definition of8m in 6.1.3.

6.2.3. For k 2 ZN
+ we define

"(k) = ℄f(a, b) j a < b, 
�m(a) > 
�m(b)g.
Proposition.

9k = (�q)"(k)uk +
X
k0⊳k

c(k, k0)uk0 (9c(k, k0) 2 R).

Proof. By the definition of the nonsymmetric Macdonald polynomials in 6.1.3,

8m 
 vj = zm 
 vj +
X

m0�m

c(m, m0)zm0 
 vj (9c(m, m0) 2 R).

On the other hand by the relation in 5.1.2 we can verify

zm0 
 vj = (�q)c(m0,j )zd�m0 (m0) 
 vd�m0 (j )
+
X

m00�m0 c0(m0, m00)z
� 00m(m00) 
 vd�m00 (j ) (9c0(m0, m00) 2 R)

and c(m, j ) = "(k). Then the statement follows.

We define

ZN
+,
 = fk 2 ZN

+ j m 2M
c,

N,l g.

Note that if k 2 ZN
+,
 and k0 ⊳ k, then k0 2 ZN

+,
 .

Corollary. If N > 
 l , then f9k j k 2 ZN
+,
 g is a basis of Vc,


N .

6.2.4. For k 2 Z�l+c
+,
 (�l +c> 
 l ), let � denote the Young diagram corresponding

to �c�l+c,1(k) 2 5c.
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Proposition. For i = 1, : : : , l � 1 we have

K�
i (z)(9k)

=

0
� Y

A2A�,i

(st)1=2 A
�
t�c�1z� (st)�1=2

A
�
t�c�1z� 1

Y
R2R�,i

(st)�1=2 R
�
t�c�1z� (st)1=2

R
�
t�c�1z� 1

1
A
�
9k .

Proof. By Theorem of 4.1.4 and the defining relationsK�
i (z) = ˜K�

i (r l�i z), it is
sufficient to show

8m
Y

ja=i�1

��1 (ql�i +1r l�i Yaz)
Y
jb=i

���1(ql�i�1r l�i Ybz)

=

0
� Y

A2A�,i

(st)1=2 A
�
t�cz� (st)�1=2

A
�
t�cz� 1

Y
R2R�,i

(st)�1=2 R
�
t�cz� (st)1=2

R
�
t�cz� 1

1
A
�
8m.

First we have

8mql�i +1r l�i Ya = ql�i +1r l�i q1�N pmaq�m(a)�N�18m

= s�m(a)�N+1=2t�m(a)�N�i +l (ma+1)+1=28m

= s�b�j
�1(a)+3=2t�b�j

�1(a)�ka+1=28m,

8mql�i�1r l�i Yb = s�m(b)�N�1=2t�m(b)�N�i +l (mb+1)�1=28m

= s�b�j
�1(b)+1=2t�b�j

�1(b)�kb+1=28m.

We classify the elements offa j ja = i � 1g [ fb j jb = i g into three types:
(1) a and b such thatma = mb, ja = i � 1, jb = i ,
(2) a such that ja = i � 1 and (ma, i ) =2 k, and
(3) b such that jb = i and (mb, i � 1) =2 k.
In the case of type (1), we haveb�j

�1(a)� 1 = b�j
�1(b), ka + 1 = kb. Thus

8mql�i r l�i�1Ya = 8mql�i�2r l�i�1Yb,

and so

8m�1(ql�i Yar l�i�1z)��1(ql�i�2Ybr
l�i�1z) = 8m.

In the case of type (2), the nodeA = (b�j
�1(a)�1,b�j

�1(a)+ka�c) is an addablei -node.
We have

8m�1(ql�i Yar l�i�1z) = �1(s�b�j
�1(a)+3=2t�b�j

�1(a)�ka+1=2z)8m

= �1(s1=2t�c+1=2 A
�
z)8m

=
(st)1=2 A

�
t�cz� (st)�1=2

A
�
t�cz� 1

8m.
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In the case of type (3), the nodeR = (b�j
�1(b)� 1,b�j

�1(b) + kb� c� 1) is a removable
i -node. We have

8m�1(ql�i�2Ybr l�i�1z) = �1(s�b�j
�1(b)+1=2t�b�j

�1(b)�kb+1=2z)8m

= �1(s�1=2t�c�1=2 R
�
z)8m

=
(st)�1=2 R

�
t�cz� (st)1=2

R
�
t�cz� 1

8m.

Thus the claim follows.

6.2.5.

Proposition. If k, k0 2 Z�l+c
+,
 (�l + c > 
 l ) and the eigenvalues of K�i (z) for 9k

and 9k0 coincide for all i 2 f1, : : : , l � 1g, then k = k0.
Proof. The coincidence of the eigenvalues ofK�

i (z) impliesY
A2A�,i

(st)1=2 A
�
t�cz� (st)�1=2 Y

R2R�,i

(st)�1=2 R
�
t�cz� (st)1=2

� Y
A2A�0 ,i A

�
t�cz� 1

Y
R2R�0 ,i R

�
t�cz� 1

=
Y

A2A�,i

A
�
t�cz� 1

Y
R2R�,i

R
�
t�cz� 1

� Y
A2A�0 ,i (st)1=2 A

�
t�cz� (st)�1=2 Y

R2R�0 ,i (st)�1=2 R
�
t�cz� (st)1=2.

Since jf(s, t) j s� t = ng \ (A� [ R�)j < 1 for any n 2 Z, we haveY
A2A�,i

((st)1=2 A
�
t�cz� (st)�1=2)

� Y
R2R�,i

((st)�1=2 R
�
t�cz� (st)1=2)jz= X tc 6= 0

for any X 2 A�,i [ R�,i . So we haveX 2 A�0,i [ R�0,i , and it follows thatA�,i [ R�,i =
A�0,i [ R�0,i .

It is easy to see the set
S

i 6= 0(A�,i [ R�,i ) determines�. So the claim follows.

Corollary. If X 2VN V(z) is a simultaneous eigenvector for the actions of K�
i (z)’s

(i 2 f1, : : : , l � 1g) and

X = (�q)"(k)uk +
X
k0⊳k

c(k0)uk0 (9c(k0) 2 R),
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for k 2 Z�l+c
+,
 (�l + c > 
 l ), then X= 9k .

Proof. It follows from Corollary of 6.2.3 and the previous proposition.

6.2.6.

Proposition. For k 2 Z�l+c
+,
 (�l + c > 
 l ), 9k is a simultaneous eigenvector for

the actions of K�i (z)’s (i 2 f0, : : : , l � 1g).
Proof. By definitionK�

i (z)’s commute with each other. Notice that a matrix which
commutes with a diagonal matrix with diagonal elements different from each other
is diagonal. It follows from Proposition of 6.2.2, Corollary of 6.2.3 and Proposition
of 6.2.5 that9k is also a simultaneous eigenvector for the action ofK�

0 (z).

6.2.7.

Proposition. For k 2 Zal+c
+,
 (al + c > 
 l ), we have

�(q�"(k)9k) = q�"(�(k))9�(k).

Proof. By Lemma of 4.2.2 and Theorem of 4.2.2,�(9k) is also a simultaneous
eigenvector ofK�

i (z)’s (i 2 f0, : : : , l � 1g). Note that

�(q�"(k)9k) = �(uk) +
X
k0⊳k

c(k, k0)�(uk0 )
= u�(k) +

X
k0⊳k

c(k, k0)u�(k0)
and � preserves the order⊳. Then the statement follows from Corollary of 6.2.5.

Corollary. For k 2 Z�l+c
+,
 (�l + c > 
 l ), the eigenvalue of9k for K�

0 (z) is given
by the same formula as inProposition of 6.2.4.

6.2.8. For � > � we write simply �c�,� for �c�l+c,�l+c.

Lemma. For k 2 Z�l+c
+,
 (�l + c > 
 l ), we have

�c�,� (q�"(k)9k) = q�"(�c�,� (k))9 �c�,� (k).
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Proof. By Theorem of 5.2.2,�c�,�(9k) 2V�l+c V(z) is also a simultaneous eigen-
vector. Note that

�c�,� (q�"(k)9k) = �c�,�(uk) +
X
k0⊳k

c(k, k0)�c�,�(uk0 ) (9c(k, k0) 2 R)

= u�c�,� (k) +
X
k0⊳k

c(k, k0)u�c�,� (k0),
and �c�,� preserves the order⊳. The claim follows from Corollary of 6.2.5.

This lemma assures us of the well-definedness for the following definition:

DEFINITION. For a Young diagram�, take k 2 Z�l+c
+,
 (�l + c > 
 l ) such that�c�l+c,1(k) 2 5c corresponds to�. We define

9�
c = �c�l+c,1(q�"(k)9k) 2 F(c).

7. Isomorphism

In this section we construct an isomorphism between the equivariant K-groups of
the quiver varieties and the q-Fock space.

First we express the actions ofei .n’s on 9k , which can be done completely in
terms of Young diagrams (Theorem of 7.1.2). This is basically due to Proposition
of 6.1.4 although we need the residue theorem and a little complicated induction.

After suitable renormalizations, we arrive at the isomorphism.

7.1. Formula for the representation on the q-Fock space.

7.1.1. We will give a formula for the action ofei ,n on 9k . For this the following
proposition is essential:

Proposition. (1) For m1 < � � � < mN and j1 < j2 = � � � = jN we have

8m

 
NX

a=1

Ta,1

!

 vj =

NX
a=1

 
NY

b=a+1

��b(m) + q2�a(m)�b(m)� �a(m)

!
8m(a) 
 vj

wherem(a) = (ma, m1, : : : , m̂a, : : : ).
(2) For m1 < � � � < mN�1, mN = ma (1� a < N) and j1 = j2 = � � � = jN we have

8m 
 vj = 0.
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(3) For k such that m1 < � � � < mN�1, ma < mN < ma+1 and j1 = j2 = � � � = jN

we have

8m 
 vj =

 
N�1Y

b=a+1

��b(n) + q2�a(n)�b(n)� �a(n)

!
8m 
 vj

wherem = ( : : : , ma, mN , ma+1, : : : ).
Proof. If ja = ja+1 and ma > ma+1 we have

q28m 
 vj = 8m 
 v
Tavj (by 4.1.2)

= 8m
p
Ta 
 vj

=
(�q2 + 1)

x � 1
8m 
 vj � (x � q2)(q2x � 1)

(x � 1)2
8�am 
 vj .

(by 6.1.4)

where�am = (: : : , ma+1, ma, : : : ) and x = �a+1(m)=�a(m). Thus

8m 
 vj =
��a+1(m) + q2�a(m)�a+1(m)� �a(m)

8�am 
 vj .

The statement of (3) follows this.
If ja = ja+1 and ma = ma+1 then x = �a+1(m)=(�a(m)) = q2. Thus we have

q28m 
 vj = 8m 
 v
Tavj (by 4.1.2)

= 8m
p
Ta 
 vj

=
(�q2 + 1)

x � 1
8m 
 vj (by 6.1.4)

= �8m 
 vj ,

and so8m 
 vj = 0. This shows (2).
We will prove (1) by induction forN. Assume the statement is true forN 0 < N.

Then

8m

 
NX

a=1

Ta,1

!

 vj = 8m

  
NX

a=2

Ta,2

! v
T1 + 1

!

 vj

=

"
NX

a=2

 
NY

b=a+1

��b(k) + q2�a(k)�b(k)� �a(k)

!
8m̃(a)

v
T1 +8m

#

 vj ,
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wherem̃(a) = m(a) = (m1,ma,m2,:::,m̂a,:::). Here we use the assumption of induction.

Although the situations are not exactly same, commutativity of
v
T1 with

v
Ta (a � 3)

allows us a parallel argument.
Further we have

8m̃(a)
v
T1
 vj =

(�q2 + 1)

x � 1
8m̃(a) 
 vj �8�1m̃(a) 
 vj

=
(�q2 + 1)�1(m)�a(m)� �1(m)

a�1Y
b=2

��b(m) + q2�a(m)�b(m)� �a(m)
8m 
 vj �8m(a) 
 vj .

We can see the coefficients ofm(a) (a � 2) coincide with required ones. For the co-
efficient of m we need to check

 
NY

b=2

�b(k)� q2�1(k)�b(k)� �1(k)

!
=

NX
a=2

0
� (�q2 + 1)�1(m)�a(m)� �1(m)

Y
b6= a

�b(k)� q2�a(k)�b(k)� �a(k)

1
A + 1.

This follows the next lemma.

Lemma.

NX
a=1

0
��q2 + 1

x1 � 1

Y
b6= a

xb � q2xa

xb � xa

1
A =

 
NY

a=1

xa � q2

xa � 1

!
� 1.

Proof. Apply the residue theorem for a rational function

f (Z) =
1

Z(Z � 1)

NY
a=1

xa � q2Z

xa � Z
.

7.1.2.

Theorem.

ei ,n(9�
c ) =

X
X2R�,i

(tc X )n

0
B� Y

A2A�,i
A>X

�(st)�1=2 X
�

+ (st)1=2 A
�

X
� � A

�
1
CA

�
0
BB� Y

R2R�nX,i
R>X

�(st)�1=2 R
�

+ (st)1=2 X
�

R
� � X

�
1
CCA9�nX

c ,
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fi ,n(9�
c ) =

X
X2A�,i

(tc X )n

0
B� Y

A2A�[X ,i
A<X

�(st)�1=2 X
�

+ (st)1=2 A
�

X
� � A

�
1
CA

�
0
B� Y

R2R�,i
R<X

�(st)�1=2 R
�

+ (st)1=2 X
�

R
� � X

�
1
CA9�[X

c ,

K�
i (z)(9�

c ) =

0
� Y

A2A�,i

(st)1=2 A
�
t�cz� (st)�1=2

A
�
t�cz� 1

Y
R2R�,i

(st)�1=2 R
�
t�cz� (st)1=2

R
�
t�cz� 1

1
A
�
9�

c .

Proof. The formulas forK�
i (z)’s are nothing but Proposition of 6.2.4 and Corol-

lary of 6.2.7. We will check forei ,n’s.
For a, b 2 f1, : : : , Ng we put

f (a, b) =
q�1�b(m)� q�a(m)�b(m)� �a(m)

.

Then we have

ei ,n(8m 
 vj )

=
4.1.4

q1�ni8m

0
� n̄iX

a=n̄i�1+1

Ta,n̄i�1+1

1
A(ql�i Yn̄i�1+1r

l�i )�n 
 vj�

=
7.1.1 (1)

q1�ni

n̄iX
a=n̄i�1+1

 
n̄iY

b=a+1

�q f (a, b)

!
8m(a)(ql�i Yn̄i�1+1r

l�i )�n 
 vj�

=
see 6.2.4

q1�ni

n̄iX
a=n̄i�1+1

�
tc Xa

�n n̄iY
b=a+1

�q f (a, b)

!
8m(a) 
 vj�

=
7.1.1 (2)

q1�ni
X

n̄i�1<a�n̄i
(ma,i�1)=2k

�
tc Xa

�n n̄iY
b=a+1

�q f (a, b)

! 
n̄i�1Y

b=a0+1

�q f (b, a)

!
8m(a) 
 vj�

=
X

n̄i�1<a�n̄i
(ma,i�1)=2k

qn+
i�1(a)�n�i (a)�tc Xa

�n n̄iY
b=a+1

� f (a, b)

! 
n̄i�1Y

b=a0+1

� f (b, a)

!
8m(a) 
 vj� ,

where
• m(a) = (: : : , mn̄i

, ma, mn̄i +1, : : : , m̂a, : : : ), m(a) = (: : : , ma0 , ma, ma0+1, : : : , m̂a, : : : ),
• Xa = (b�j

�1(a)� 1,b�j
�1(a) + ka� c) denote the top node on thea-th line of �, and

• n+
i�1(a) = n̄i � a0, n�i (a) = a� n̄i � 1.
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Since"(m, j )� "(m(a), j�) = n+
i�1(a)� n�i (a) we have

ei ,n
�
q�"(m,j )8m 
 vj

�
=

X
n̄i�1<a�n̄i
(ma,i�1)=2k

�
tc Xa

�n n̄iY
b=a+1

� f (a, b)

! 
n̄i�1Y

b=a0+1

� f (b, a)

!
q�"(m(a),j�)8m(a) 
 vj� .

As in the proof of Proposition of 6.2.4 we can arrange the right hand side of the above
equation by classify the element offa + 1, : : : , n̄i g [ fa0 + 1, : : : , n̄i�1g into three types,
and finally we get

ei ,n(9�
c ) =

X
X2R�,i

(tc X )n

0
B� Y

A2A�,i
A>X

�(st)�1=2 X
�

+ (st)1=2 A
�

X
� � A

�
1
CA

�
0
BB� Y

R2R�nX,i
R>X

�(st)�1=2 R
�

+ (st)1=2 X
�

R
� � X

�
1
CCA9�nX

c .

7.2. Normalizations.

7.2.1.

DEFINITION. For � 2 5 we define

N(�) =
Y

(sxh�xt t yh�yt � 1),

where the product runs over alll -hooks ((xh, yh), (xt , yt )).

We can easily verify the following lemma:

Lemma. If X is a removable i-node of�, then we have

N(�)=N(�nX) =
Y

A2A�,i
A<X

( A X
� � 1)

Y
A2A�,i
A>X

(st X A
� � 1)

� Y
R2R�,i
R<X

(st R X
� � 1)�1

Y
R2R�,i
R>X

( X R
� � 1)�1.

REMARK . From geometrical point of view,N(�) is derived from the Kozsul com-
plex of the unstable manifold, with respect to a specificC�-action, on which points
converge to the fixed point�.
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7.2.2. For � 2 5 we will define M(�) 2 R inductively. First we setM(;) = 1.
Let Y = (a, b) be the most right node of the top row of�. Then we set

M(�) = M(�nY)(s�1=2t1=2)di�1(�) Y
Æ(b�0)

� Y
A2A�,i
A<Y

((st)�1=2 A )
Y

R2R�nY,i
R<Y

((st)�1=2 R
�
).

Lemma. If X is a removable i-node of� 2 5, then we have

M(�) = M(�nX)(s�1=2t1=2)di�1(�)

� Y
A2A�,i
A<X

((st)�1=2 A )
Y

A2A�,i
A>X

X

� Y
R2R�nX,i

R<X

((st)�1=2 R
�
)
Y

R2R�nX,i
R>X

X
�
.

Proof. We divide� into �l and �r by the vertical line on the right ofX.

Let us write� < � if we can get� from � by successive removing the nodes on
the top of the most right line of diagrams. Take� 2 5 such that�l � � < �. Let Y
be the node on the top of the most right line of�.

Then we can verify

M(�)

M(�nY)

�
M(�nX)

M(�n(X [ Y))

= (s�1=2t1=2)Æ( j�1�i )((st)�1=2 X
�
)Æ( j�i )((st)�1=2 X )�Æ( j�i )

� ((st)�1=2 X t)Æ( j�i�1)((st)�1=2 X s)Æ( j�i +1)

= (s�1=2t1=2)Æ( j�1�i ) X
Æ( j�i�1)�2Æ( j�i )+Æ( j�i +1)

.

So we have

M(�)

M(�l )

�
M(�nX)

M(�lnX)
= (s�1=2t1=2)di�1(�r ) X

�i�1(�r )�2�i (�r )+�i +1(�r )
.
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Let j denote the content of the node on the bottom of the most left line be j of �r .
Note that we haveÆ(b � 0) = Æ( j � i ) and

jA�r ,i j � jR�r ,i j = �i�1(�r )� 2�i (�r ) + �i +1(�r ) + Æ( j � i ).

Finally we have

M(�)

M(�nX)

= (s�1=2t1=2)di�1(�r ) X
�i�1(�r )�2�i (�r )+�i +1(�r )

� (s�1=2t1=2)di�1(�l ) X
Æ(b�0) Y

A2A�l ,i

A<X

((st)�1=2 A )
Y

R2R�l nX,i

R<X

((st)�1=2 R
�
)

= (s�1=2t1=2)di�1(�) X
jA�r ,i j�jR�r ,i j Y

A2A�,i
A<X

((st)�1=2 A )
Y

R2R�nX,i
R<X

((st)�1=2 R
�
).

So the claim follows.

7.3. Main theorem. Now we arrive at the main theorem:

Theorem. K T
R(M) and F(0) is isomorphic as representations of U0R(sll ,tor ). The

isomorphism is given by

N(�)b� 7! M(�)9�
0 .

Proof. This follows from Theorem of 3.2.3, Theorem of 7.1.2,Lemma of 7.2.1
and Lemma of 7.2.2.
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