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Abstract

We have two constructions of the lev@: 1) irreducible representation of the
quantum toroidal algebra of typ&. One is due to Nakajima and Varagnolo-Vasserot.
They constructed the representation on the direct sum ofethavariant K-groups
of the quiver varieties of typed. The other is due to Saito-Takemura-Uglov and
Varagnolo-Vasserot. They constructed the representaiiorthe g-deformed Fock
space introduced by Kashiwara-Miwa-Stern.

In this paper we give an explicit isomorphism between thege ¢onstructions.
For this purpose we construct simultaneous eigenvectorth®rmy-Fock space using
the nonsymmetric Macdonald polynomials. Then the isomsmhis given by
corresponding these vectors to the torus fixed points on theigvarieties.
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1. Introduction

Geometry ofquiver varieties introduced by Nakajima, involves rich mathematical
structures.

One of the most notable result is Nakajima'’s constructiorepfesentations of quan-
tum loop algebras ([16]): the direct sum of torus equivarkgroups of the quiver vari-
eties is endowed with a structure of a representation of tltym affinizatiorz (Lg)
of the corresponding Kac-Moody algehgaThe resulting representation is what we call
anl-highest weight representation, that is to say, a “highesght representation” with
respect to the triangular decomposition of the quantum kigpbra ([9]).

Let us concentrate our attention on quiver varieties of affype. They appear in
gauge theory as framed moduli spaces of instantons on ALEespavhich originally
motivated Nakajima to introduce quiver varieties. Theyodtgve interesting connec-
tions with some areas in mathematics such as the theory of Madarespondence
and the representation theory of symplectic reflectiontakge (see [7] and [6] for ex-
ample). In this point of view, more careful study about théicas of the quantum
toroidal algebras, quantum affinizations of the affine KacsMpalgebras, on the equi-
variant K-groups seems to be important.

Schur-Weyl duality is an equivalence between certain caieg of representations
of g, and of &,. Varagnolo-Vasserot show that there exists an analogoaktylie-
tween the quantum toroidal algebra of typeand a certain double affinization of the
Hecke algebra of typé\, called the toroidal Hecke algebra ([22]). The toroidal kiec
algebra has a remarkable representation called Dunkledhés representation. Apply-
ing Schur-Weyl duality for Dunkl-Cherednik representati®Gaito-Takemura-Uglov and
Varagnolo-Vasserot construct the representation of trentgun toroidal algebra ([18],
[23]). The underlying space is so called theFock spacg[11]).

There are much fewer things known about representationsiafitgm toroidal al-
gebras than of quantum affine algebras (see [9], [10], [8] refiekences in [8]). Now,
at least, we have two constructions of the representatioth@fquantum toroidal al-
gebra of typeA. In this paper we give an explicit isomorphism between thipee
constructions. We hope it will be helpful for further anadgsof the representation,
such as study of canonical bases of the representations.

We can describe the representation on the equivariant Kpgran a combinatorial
manner using the localization theorem ([25]). In particuthe torus fixed points corre-
spond to simultaneous eigenvectors for the action of aioestdbalgebra of the quantum
toroidal algebra. Our strategy is to construct simultaseeigenvectors on the g-Fock
space. The isomorphism will be given by corresponding thvestors to the torus fixed
points. For the construction of simultaneous eigenvegtitlrsnonsymmetric Macdonald
polynomialsplays a crucial role. The nonsymmetric Macdonald polynosnake simul-
taneous eigenvectors for Dunkl-Cherednik operators ([B4], [17]).

Takemura-Uglov described the irreducible decompositibrthe g-Fock space as
the representation of a certain subalgebra of the quantumid&d algebra, which is iso-
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morphic to the quantum affine algebra ([20]). They also shb#at each irreducible
components are isomorphic to tensor products of fundarmespaesentations. For this
purpose they introduced specific vectors of the g-Fock spaasg the nonsymmetric
Macdonald polynomials (see Remark of 6.2.2).

In this paper we introduce new vectors. We also use the namggric Macdonald
polynomials, but an additional operation is required (s&1$. They are simultaneous
eigenvectors and the main subject of this paper. These tsinedus eigenvectors al-
low us a combinatorial description of the representationtlum g-Fock space and we
can see this coincides with the combinatorial descriptibthe representation on the
equivariant K-groups.

In [24] and [19], the action of the Hall algebra of the cycligiegr on the g-Fock
space is studied. The Hall algebra of the cyclic quiver i¢ized using perverse sheaves
on the space of representations of the quiver by Lusztig][Dakajima’s construction
of quiver varieties and representations on their K-groups philosophically, parallel to
Lusztig’s construction. We could expect this observatioreg conceptual interpretation
of the isomorphism constructed in this paper. In partiguiais isomorphism would help
us to study of canonical bases of the K-groups of quiver tiag€see [13] and [26], for
quiver varieties of finite type).

In §3—5 we are mainly occupied with review of, and arrangement far wse of,
the results of [25], [22], [18] and [23]. IB6 we construct the simultaneous eigen-
vectors and ing7 we exhibit the isomorphism.

2. Preliminaries

2.1. Quantum toroidal algebra.

2.1.1. Throughout this paper we fix an integerand we setl = {0,..., 1 —1}.
We usually takeR = C(s¥?, t/2) as the coefficient field. We set

p= th q=sY2tY2, =g V2l2,

2.1.2. Let us define theguantum toroidal algebra (sl «or) (I > 2). This is an
R-algebra generated by o, fin, K" andhi, (i €|, neZ, me Z.o). The relations
are expressed using the formal series

e@=Y enz", fi@=) fiaz",

nez nez

Ki*(2) = K exp(i(q -ahH). hﬁmzm)

m>0
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as follows:
Ki'oKio = KoK =1,
[Ki*(@), K (w)] = [K{' (@), K" (w)] = 0
[Ki*(2), &j(w)] = [KF(@), fj(w)]=0 (j #i,i+1),
(r'z—aq 'w)K* @@+ (w) = (°q 2 - w)e(w)K*@) (¢ = +1),
(z— Pw)K* (e (w) = [@°2 - w)e (w)K*(2),
(r°z = qu)KF(@) fise(w) = (°az— w) fire(W)KF@) (e = 1),
@%z — w)KF(2) fi(w) = (2 — 97%w) fi(W)K (),
8” 8(Z/w)
[6(2), fj(w)]= ———"(K'(w) - K (2)),

(r°z— g 'w)a (De(w) = (r q_lz —w)ar(w)a (2 (e==1)
(z - d*w)a (e (w) = (@°2 — w)a (w)a (2,
(rfz—quw) fi(2) fise(w) = (r*'gz— w) fi+. (W) fi(2) (¢ = £1),
(z— g ?w) fi(2 fi(w) = (@ %z — w) fi(w) fi(2),

(& (z)e (Z)a(w) — ([@+9 e (z)e(w)e () + er(w)e (z)e (2)) + {21 < 2)
=0,

{fi(z) fi (z2) fiea(w) — (@ + 97 fi(z0) fiza(w) fi (22) + fiza(w) fi(z22) i (22)} + {7 © 22}
=0,

whered(Z) =), Z"

REMARK. The quantum toroidal algebra in [25] is “twisted” in theiomds, which
may or may not be isomorphic to ours. See Remark of 3.2.2 ferrd¢tation between
these two algebras.

2.1.3. The horizontal subalgebra I,@’(?[.) is the subalgebra dfl (sl 1or) gener-
ated bye o, fi,o andK® (i €1). This is isomorphic toJ;(sl)) ® R, whereU;(sh) is
the subalgebra of the quantum affine algeblaa(?[o which does not contain the gen-
eratord.

The vertical subalgebra l.,ﬁ) (5[|) is the subalgebra dii;, (s|; m,) generated be n,

fin, K, andh®, (i #0, ne Z, me Z.q). Defineg, i Ki andhi by

a@=) gnz"=a( "),

nez

fi@=) finz"=fi(t7"2),

nez
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K*(2) = R\Ii exp(i(q —-qY Z ﬁzm> = KE(r 2.

m>0

They satisfy the relations in Drinfeld new realization ldg(?h), and soug)/(E\h) is
also isomorphic th(;(s.Ah) ®R.

2.2. Notations for Young diagrams.

2.2.1. Let IT denote the set of all Young diagrams. We identify a Young mdiag
with a subset of Z-0)?. A nodeis an element of Z-0)°.

The contentof a node X, y) is the numberx —y. A node is called an-node if
its content equals td modulol. For A € IT let d; (%) denote the number af-nodes
in A and setd(x) = (di(A))i=0,..1-1 € Z'. We define the order on the set of nodes
according to their contents.

For A € I1 a node &, V) is calledaddableif (x,y) ¢ A and k—1,y),(x,y—1) € A.
A node &, y) is calledremovableif (x,y) e A and k+1,y), (X, y+1)¢ A. Let Ay
(resp. Ryi) denote the set of all addable (removahle)odes ofi.

A hookis a pair((Xn, Yn), (X, Yt)) such thatXn, yn — 1), (%, Yt) € A and &n, yn), (X +
1, yt) ¢ 1. Thehook lengthof a hook (&, ¥h), (X, Yt)) is the numberx;, + yn +X; — V;.
A hook is called an-hookif its length is a multiple of .

2.2.2. A Maya diagramwith chargec is an infinite decreasing sequence of inte-
gersk = (kq, ko, . ..) such thatk, = —a + ¢ for sufficiently largea. A Maya diagram
with chargec can be identified with a Young diagram

r= J] (@-1,b-1)

an>0
1<b<ks+a—c

Let I, denote the set of all Maya diagrams with chamyeThenIT and I, are bijec-
tive.

2.2.3. We sometimes identify a Maya diagrakn= (kq, ko, . . .) with the subset
{kl, ko, .. .} of Z.

If ky—1¢k (aeZ.o), then a nodeg — 1,k, +a—c—1) is a removable node.
Its content equals to — k,. If ky+1¢ Kk (a€ Z.o), then a noded—1,ky +a—c) is
an addable node. Its content equalscte ky — 1.

Note that{(a,b) |a €k, b ¢ k, a > b} is a finite set. Such a pair(b) corresponds
to a hook in term of Young diagram. Its hook lengthais- b.
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3. K-theory of quiver varieties

In this section we review the representation WOf, (sl 1or) On the equivariant
K-groups of the quiver varieties of typA.

A quiver variety, introduced by Nakajima, is a certain modydace of representa-
tions of a quiver. He also introduced a certain subvarietyhef product of two quiver
varieties called the Hecke correspondence. Using the Heokespondence we can
construct an action of the quantum affinization of the Kac-Mpalgebras on the torus
equivariant K-groups of the quiver varieties ([16]).

By the localization theorem, localized equivariant K-grethave bases indexed by
fixed points. The fixed points of the quiver varieties of typeare indexed by Young
diagrams. The action of the quantum toroidal algebra can titeew in terms of Young
diagrams ([25], see Theorem of 3.2.3).

Nakajima’s definition of quiver varieties involves paraerstv and w, wherew
corresponds to thehighest weight of the representation. In this paper we wwrkhe
casew =(1,0.,...,0) only, in other words, we deal with the level 1 represeotadnly.

We do not take the original definition of quiver varieties tkarother equivalent
one, which works only for the case = (1, 0,..., 0).

We used instead ofv.

3.1. Quiver varieties.

3.1.1. Let (C?»M denote the Hilbert scheme of points onC?:
(3 = {J e I(C[x, y] | dmC[x, y]/J = n},
laeal

and SymC? denote then-th symmetric product ofC?:

Syn'C? = {Zaapi ‘ g € Z-o, Za =n, p € Cz]-
Let = denote the Hilbert-Chow morphism:

7 (CHN > sym'C?
J  — suppC[x, y]/J.

We regardZ/IZ as the subgroup of SU(2). The action &flZ on C? induces the
action ofZ/1Z on Sym{C? and (C?)" so thatr is Z/IZ-equivariant. Let (SymC?2)%/'%
and (CHIM?Z/'Z denote the sets of the fixed points.

Note that forJ e ((CH)M)2/'Z, C[x, y]/J has a canonical,/| Z-module structure.
Ford=(do,...,d_1) € Z' such that}_ d; =n we define the quiver varietyn(d) by

M(d) = {J € (CHMZNZ | dim(C[x, y1/I)g) = di},
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where C[x, y]/J)) is the Z/IZ-weight space with weight. Let 2U(d) = @ B(d); be
the Z/1Z-graded vector bundle ofdi(d) such that forJ € 9(d) we have a natural
isomorphism

(B(d)i)s = (C[x, Y1/3)¢)-
We set

1
K1 = Edctd""do, Ko =N —kql,

whereC is the Cartan matrix of typéy_;. Then we have dirfoi(d) = 2 ([15]). Let
¢ € Z/)1Z be a generator of./IZ. We define the closed subvariety

P; GCZ},

of (Sym'C?)%/'Z, Then we haver (M(d)) c Mo(d) (in fact we can checkr (9N(d)) =
Mo(d)).
Ford, d’ € Z' such thatd; < d’ for all i, we have the inclusion given by

IMo(d) = | «2[0] + Z([Pj] +- -+ [ py]) € (Synf'C?)#/Z
j=1

Mo(d) —  Mo(d)
X > X +k3[0],

wherexs =) (d/ — di). We set

m =[] Mm@, M= M),

deZ! deZ!
and
3 =M XMy M.

Note that we introduc@, just only for terminological reason. We work & and 3,
of which connected components are finite dimensional. Vetlenote the locally free
sheaf ont, which is the union ofy(d)’s.

3.1.2. The naturalT = (C*)?-action onC? induces aT -action ondt. The T-fixed
points of M are indexed byll. For A € IT the corresponding ideal, e (C?)9e9% js
the ideal generated bjx2y® | (a, b) ¢ A}. Then{[x2y°] € C[x, y]/J | (a, b) € A} forms
a basis ofC[x, y]/J.

For ¢ € Z/I7Z we have¢ - [x2yP] = ¢ P[x2yP]. So J, € M(d(1)).

For (5,t) € T we have §, t) - [x2y?] = s2tP[x2yP]. So C - [x?yP] = s*tP € R(T) =
Z[sT, t*], where R(T) is the representation ring 6f and we identify the coordinate
functions of T with the generators oR(T). Thus for a nodeX = (a, b), we set[X] =
2t e R(T).



884 K. NAGAO
3.2. Representation on K-theory of quiver varieties.

3.2.1. Let g denote thei-th coordinate vector ifZ'. Ford € Z' we define the
subvariety of3 by

Bi(d)={(J, ) €3] heMd), LeNMd+e), JD b}

This is called theHecke correspondence
Let p. denote the projection frond to the ¢-th factor ¢ = 1, 2) andg. denote its
restriction toB;(d) C 3. We define the tautological bundi@ on B5;(d) by q;%0/a;0.

3.2.2. For aT-equivariant vector bundl& on X, let det8 denote its determi-
nant, A\' B denote itsi-th wedge product, and se, B = Zizo(—z)i A B. These
operators can be extended to operators diiX{. For aZ/IZ-module M we setM; =
Homy,1z(Cgiy, M).

Fori € Z/IZ we set

9 = =i + (S+1)Vi_1 — StWi_o + 8 oW € KT (M),
where 2y is the trivial line bundle oM.
We define an action o), (sl 1or) on KL (9) = KT (91) ® R by

&.n(X) = ¢ (d) pr.(p3x ® (L)), x € KL (M(d +e)),
fi.n(X) = ¢ (d) P2, (P} (x ® detc ™t 7151) ® £"), x € KL (M(d)),

+
K@) (x) = ¢ (d)c’(d) ( /\((s—lt—1 — 1)@*)) X, X e KL(M(d)),

where the index* corresponds taking the dual of a locally free sheaf, thexntle
(resp.”) means the expansion as a formal power seriez in(resp.z) and

¢ (d)= (_1)di (20 —01+1)/2¢ (~ 20 1420 —dh1+1)/2.
Cr(d) — (_1)—di—1+di—di+1s—di—1/2tdi—1/2,

hi(d) =di_1 — 2d; +dj+1.

REMARK. We slightly modify the actions in [25]. In fact we have
€&n= (—1)di+1s(di+1+l)/2t(—di+1+1)/2s2i,n’
fi,n = (—1)d|+1s—d|+1/2td|,1/29i+’n,
Kii(z) = S(idi71+di+1+1)/2t(di’lfdi+1+l)/2®i:t(Z).

Here the operators on right hand side are defined in 3.3 of, [@Blere we should
replace their symbolsg, t, k, s with our symbolst, s, i, n.
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Substitute this to Theorem 2 in [25] and the definition of quamtoroidal algebra
in [25], we can verifyg ,, fi, and Kii(z) satisfy the relation in 2.1.

3.2.3. Let i, denote the inclusion(J,} — 9t and 1 denote the generator of
KT({JA}) We SetbA = |A*(1A) € KT(ED?)
By the localization theorem

KR (@) ~ @ Rb;.

rell

Theorem ([25] Lemma 8). For A € IT such thatd(x) =d we have

@ n(y) = (st 3 { [T (sH72[A]" = (st™2[X])

XER;Mi AEA;”i

< [T (s ™2[RI" - (st *)bx\x:|,

Re Rk\)(,i

fin(0) = (=s¥2712)~4= 3" { [T GtA" - X9

XEA;hi AEA;Lvai

Re Rk,i

X H (RI" - *)_1b,\ux:|,

+
: _ (sH¥2[Al"z — (s) V2 (st 2[RI’z — (sp*/2
Ki @)(by) = (Aghi *Z 1 ReR ®*Z -1 ) b,

where (s*tP)* = s72t~P for s*P e R(T) and the upper indice$ and - stand for the
Taylor expansions at z oo and z= 0 respectively

4. Schur-Weyl duality

In this section we review Schur-Weyl duality.

One can construct representations of the quantum affin@mﬂg%(ﬁ.) from rep-
resentations of the affine Hecke algetia ([2], see 4.1.3). In this construction the
action is given originally in terms of Chevalley generatoBne can rewrite the action
in terms of Drinfeld generators ([22], see Theorem of 4.1.4)

Further, Schur-Weyl duality in [2] can be extended to getr@spntations of the
quantum toroidal algebral; (sl 1or) from representations of the toroidal Hecke algebra
Hn. This is done by extending the action Uf;(;h) to U% (sl tor) Using the rotation

automorphism of the Dynkin diagram of typk ([22], see Theorem of 4.2.2).
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4.1. Schur-Weyl duality for affine algebras.
4.1.1. The finite Hecke algebraHy is the R-algebra generated by,*! (a =
1,..., N —1) with relations:
Tl =T ' Ta=1,
(Ta+1)(Ta—9%) =0,
TaTar1Ta = Tar1TaTas1,
TaTpb=TpTa (la—b| > 1).

The affine Hecke algebrady is the R-algebra generated by,** (@a=1,..., N — 1),
Xa*t (@a=1,..., N) with relations:

TaTa ' =T 'Ta=1,
(Ta+1)(Ta— %) =0,
TaTa+1Ta = Tas1 TaTas1,
TaTb = ToTa (la—b| > 1),
XaXp = XpXa,
TaXaTa = 0°Xas1,
XpTa=TaXp (b#a,a+1l).

4.1.2. LetV =R' with a basis{vo, . .., v_1}. We defineT € End(v®2) by
) q2ui, ® v, if iy =iy,
T(Ui1®viz): qui, ® vi, if il < i2,

qui, ® vi, +(@% — Vi, @ v, if ig > o,

Then we have a left action dfly on V&N defined by
v v
Tal> Ta=1921@ T g18N-231

4.1.3. Let M be a right Hy-module. We define the following operators on
M QHy \/®N-

N
aMm®v)=Y mXge® Kyt (Ki ) "By M,
a=1
film®v) = Z mX;(Si,O ® E;—lJ Kioi - Kio,
a=1

h(m®v)=me K] .. K\v.
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Here ' = 19" @ Bl @ 18", where El' € End(V) is the matrix unit with respect

to the basisy, ..., v_1 andK! = qua’l'i’l‘Eia'i. These operators give a Idﬂ,;(s’.\[o-action
on M ®y, V&N ([2)).

4.1.4. An isomorphism between the algebras defined by Chevallegrg&ors and
by Drinfeld new realization is given in [1].

Forj=(ji, ..., jn) €{0,...,1 = 1}N let v; denotevj, ® - - - ® vj,, € V&N,
For 1<a, b <N we define

TaTass - To—1, a<Db,
Ta,b =11, a=bh,
Ta_j_Ta_z g Tb, a>b.

Theorem ([22] Theorem 3.3). Assumgj is an non-decreasing sequenc&/e put
n=t{al ja=i} andn =Y, ni.. Let us writej = [ng, Ny, . ..].

For m®v; € M ®y, VEN the actions of Drinfeld generators ofé(ﬁ.) are de-
scribed as follows

N
e,?i)(m@vj)qunim( Z T+ |80 ' Ya_ 12 ® V-,

a=n_1+1
Ni_1
i@mev) =" m| > Tan, [5@ Va2 @V,
a=n;_»+1

K/i£(/z)(m @v)=m [] 5@ Va2 [[ 050" YD @ V.

jazi~1 Jo

Herej_=[....n_1+1,n—1,...] j+=[....n_1—1,n+1,...] and 65(2) and
0, (2) stand for the Taylor expansions @f(z) = (Q™z—1)/(z—q™) at z=occ and z=0
respectively

4.2. Schur-Weyl duality for toroidal algebras.
4.2.1. The toroidal Hecke algebraHy is the R-algebra generated by,*! (a =
1,...,N=1), X,* @a=1,..., N), Ya*! (@a=1,..., N) with relations:
TaTail = TailTa =1,
(Ta+D(Ta—0q%) =0,
TaTar1Ta = Tas1 TaTas,
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XaXp = XpXa,
TaXaTa = 0*Xas1,
XpTa=TaXp (b#a,a+1),
YaYb = YpYa,
T YaTyt = 07 Yan,
YoTa=TaYy (b#a,a+1l),
XoY1 = pY1Xo,
XaY XY = q 72T,
where Xg = X1 - - - Xn.

Let H(,j) (resp.H (,\f)) denote the subalgebra generated Ty**} and {Ya} (resp.{T.*!}
and {X3}). They are isomorphic tdédy.

REMARK. The toroidal Hecke algebrBiy has the double affine Hecke algebra
of type gly, which has the one more relation

YoX1 = p~tX1Yo
whereYp =Y; --- Yy, as its quotient.

4.2.2. Let M be a rightHy-module. Regarding\l as a rightH(,\l,)—moduIe we
have the action oUé(;h) on M ®y, V&N by 4.1.3.
We define an operatgs on M ®y, V®N by

p(MRv, ®--- i) = mxio’Il e Xf\?’iN ® Vij—1 Q- - - @ Viy—1.
Lemma ([22] Proposition 3.4). We setXj(z) = XR-r\'jz) (X =e f,K%). Then
we have

X 12)=p o X r 2o p.

Theorem ([22] Theorem 3.5). The action of lg(?u) ® R ~ U%)/(?h) on
M ®u, V®N can be extended to an action of -5 tor) SO that the actions oft
(X =e, f, K*) are are given by

Xo(2)=p o (@12 0 p.
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5. Representation on the g-Fock space

In this section we review the action &f; (sl 1or) on the g-Fock space following
[18] and [23].

As a g-analogue of the permutation representati@izf, Cey zf\j] has a right
Hn-module structure. We define the g-wedge spaceRpy:, ..., zﬁ] ®u, VEN. This
is the g-analogue of the classical wedge sp@@ V(2)/ & Ker(id + 07), whereo; is
the generator of5y.

We define the g-Fock space taking “limit” of the g-wedge spdceother words
the g-Fock space is the g-analogue of the classical semitmfivedge space.

It is known the rightHy-module structure orR[zf, ey zﬁ] can be extended to a
right Hy-module structure called Dunkl-Cherednik representatiyp Schur-Weyl du-
ality described in 4.2.2, we have an actionf (sl 1or) on the g-wedge space. This
can be naturally lifted to an action on the g-Fock space.

5.1. The g-Fock space. Here we review the definition of the g-Fock space. The
reader can refer to [11] for detail.

5.1.1. For 1<a<b< N let us define an operat@,, on R[Z, ..., z5'] by
—1
Za — Q%
Oab = %(Oab —1)+q,

where oy, is the operator defined by the permutation of varialdesnd z,.
Then we have a right action ¢y on R[z;%, . .., zi] defined by

P
Tar> Ta=(@° — 1) — qGas1.
5.1.2. Let V(2) =R[z] ® V. We define
N
AV@=RIZ" ..., 5] ®n, VO
N N—-1
P v
=QV@ /[ > Im (Ta ® Lyen — e iy ® Ta>.
a=1l

This is called theg-wedge space

5.1.3. We writeu, = 2" ® vj for k=j —I(m+1). Letug A --- A U, denote
the image ofuy, ® - - - ® Uk, for the quotient map. We sayi, A - - - A Uy, is normally
orderedif ky > ky for a < b.

For N =2 we can verify that itk = k' then

Uk A U = —Ug A Uk,
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and ifk <k andk—kK =i (1<i <I|—1) then
Uk A Uk = —QqQUx A Uk
+ (0% — 1)(Uk—i A Uksi — QUic—1 A Ukl + QU1 A Ugeatai — -~ -)

where the summation continues as long as the wedge is ngroraléred.
The set of all normally ordered wedges forms a basis\(')\'f V(2).

5.1.4. ForceZ and O< N < N’ we define

AN zN - N
(kl,...,kN)l—> (k]_,...,kN,—N +C—1,...,—N,+C).
For k = (K, ..., ky) € ZN let us write uy = U, A - -+ AUg,. We can check the well-

definedness of the map
N N’
AV@ - A\V©@
Uk = U,?\LN/(k).
We write «f, , for this map as well.

5.1.5. We define

N
F(c) = lim AV@. F=EPF(©),

NN ceZ

and { , by the canonical map fron;{\N V(2) to F(c). F (resp.F(c)) is called the
g-Fock spacegwith chargec). An element ofF (resp. F(c)) is called asemi-infinite
wedge(with chargec).

Let k = (ky, kz,...) be a Maya diagram with charge(we usek both for an element
of ZN and for an infinite sequence of integers by abuse of notdtighen uy = uy, A
ug, A- -+ is a semi-infinite wedge with charge Note that{uy | k € I1;} forms a basis
of F(c).

5.2. Representation on the g-Fock space.

5.2.1. Let us consider the following operators ®{z;, . .., Z5]:

YN = ga_,;+1aa,a+1 - OanOanP01a01a  Oa-1a0a-1a (@€ {l,..., N})
where pP= is the difference operator given by

PP f(ze, ..., Zay...s2n) = F(20, ..., PZay. .. h 2n),  f eRIZY ..., Z{Y
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The operatorY{N) is called Dunkl-Cherednik operatorThen the action oHy defined
in 4.1.2 can be extended to the actiontdf; by

p
Tar> Ta, Xi>Za, Yars gt NYNV,

This is calledDunkl-Cherednik representatiofi3], [4], [5]).
By the Schur-Weyl duality explained in 4.2.2, we have ancctf Uz (sl tor) ON
AV V@) =RIZE, ..., 54 ®n, VEN.

5.2.2. Fork e ZN we definem € ZN andj € {0,...,| —1} by Ky = ja—I(mg+1).
Note thatz"®v; = ux. We identifyk € ZN with the pair (n,j). Letm®=(my,...,my) €
ZN denote the sequence obtained fré&f= (C — a)1<a<n-

Let My, denote the set of alin such that
e m is non-decreasing with no more tharelements of any given value, and
e my>m§ forallaand) (myg—mS) =y
Form € My} we define

Jm={€{0,...,1 =1}N | ja < jp for a < b such thatm, = my}.
We define

W= P Rukc/\V(z)

meMy| i€ (m)

We can check this is invariant under thé?’(?h)-action.
We can see that fo#, 8 € Z such thatel +¢c > vyl and 8 > « the restriction

37 _c LGy cy
Lalre,plc = Lal+e,plclVey, - Vi e =V, Bl+c

is an isomorphism as vector spaces.

Theorem ([20] Proposition 6). Lgﬂc’mﬂ: is an isomorphism as gi)/(?[o-modules

5.2.3. For k € I1° we set dek = > (my — mS). Note that this is well-defined.
We set

F(©), = @ Rux C F(0).
yell®
degk=y

For « € Z such thatal + ¢ > yl the restriction

CV V

_c
= c
Lal+c,00 Lal+c,oo|Va,fc' al+c

— F(c),
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is an isomorphism as vector space. By Theorem of 5.2.2 we mmndatheU%)/(Eh)-
action to F(c),, and so toF(c).

5.2.4. We define
ON zN — zN
(k]_,...,kN)l—>(k]_—l,...,kN—l).

We write py as well for the mapA\" V(2) > A" V(2) given by uy > u,,«). We can
see this is compatible with the construction @fin 4.2.2.
We also define

Poo - I¢ g IMe 1
(kl, kg,...)}—) (kj_—l,kz—l,...).

and p: F(c) —> F(c—1).
For 0< N < N’ < oo we have

L(l:\li,&l’ O PN = PN’ © Lf\,]N,.
Thus the action ol (sl 1or) ON /\N V(2) can be extended t& so that
Xo(2) = pe 0 Xa(@ T 12 0 e (X =8 f, KF),

6. Simultaneous eigenvectors

In this section we construct simultaneous eigenvectorstHeractions ofKii(z)’s
on the g-Fock space, which are the main subjects of this paper

In §6.1 we review the nonsymmetric Macdonald polynomials ([3§][ [17]). For
m e ZN, the nonsymmetric Macdonald polynomi@™ e C[z, ..., zy] is a simulta-
neous eigenvector of Dunkl-Cherednik operators. The ifiansmatrix between mono-
mials and the nonsymmetric Macdonald polynomials is uppangular with respect
to the Bruhat order orZN. The actions of the finite Hecke algebra generattys
on the nonsymmetric Macdonald polynomials can be simply rileest (see Proposi-

tion of 6.1.4).
Fork = (ky > - -- > ky) we define a vectok = o7 ® vj in the g-wedge space
(Definition of 6.2.2), wherem and | are given by “renumbering” ofkg, ..., ky) so

thatj is non-decreasing (6.2.1). It follows immediately from dhem 4.1.4 thatX is
a simultaneous eigenvector for the actionsl@’f(z)’s (i #0). We can check

e the eigenvalues are multiplicity free (Proposition of 6)2.and

e the transition matrix between normally ordered wedges (@nd is upper triangular
(Proposition of 6.2.3), in particulap¥’¥} forms a basis of the g-wedge space.
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So the vector¥ is characterized in term of the actions Ef"(2)'s (i # 0) (Corol-
lary of 6.2.5). Further, using them we can verify

e WK js also a simultaneous eigenvector ﬂéff(z) (Corollary of 6.2.6), and

e UK can be lifted to the g-Fock space (Definition of 6.2.8).

We can see the eigenvalues coincide with the eigenvaluekeofarus fixed points in
the representation on the equivariant K-groups of the quiegieties.

6.1. Nonsymmetric Macdonald polynomials.

6.1.1. Let us define theBruhat order This is the partial order oZN given by
the transitive closure of the following two relations:

For x = (X1, ..., Xn) € ZN
o ifl<i<j<Nandx >x;thenx> oj;x, and
e 1<i<j<Nandx —x;>1thenojx>x+e —e; whereg is thei-th coordinate
vector.

6.1.2. Forx e ZN let oy denote the unique element &fy satisfying the follow-
ing conditions:
o if oy(a) < ox(&) then Xg, @) > Xy (@), and
o if a<a andX, () = Xo@) thenoy(a) < ox(a).

6.1.3. We can see thaR[z", ..., z;] has the basig®™(2) | m € ZN} such that
o P"NZ=Z"+> _.,c(m nz" (3c(m, n) e R),
o DYV = ca(M)D™(2), wherea(m) = pTagm@-N-1L,
®M(2) is called thenonsymmetric Macdonald polynomigb], [14], [17]).

6.1.4.

Proposition (see [21]§1.5).

(—g*+1) . (x—9)@°x—=1) ,.m
o ® (2 — x 17 ©%"(2) (Mg > Mas1),
ORI %Zl)q’m(z) (Mg = Mee1),

whereoam = (..., Mas1, Ma, ...) and X= Zasr(M)/Za(m).
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6.2. Simultaneous eigenvectors and its properties.

6.2.1. Foro € Gy we definec”e Gy by 6(a) =N —o(a) + 1.
Fork e ZN ={k € ZN | kg > --- > kn} we definem = (my, ..., my) € ZN and
j_:(ll,...,lN)e{O,...,l—1}“ by

M, =Ms@, 1, = ls@-

Note that

e m is non-decreasing, and & < b, my =m, then j; > jp,

e jlisnon-decreasing, and & <b, j =] thenm,>m,,
Ail -_—

° oj =O0Om-

ExampPLE. Fork =(5, 3, 1,—6, -7, -8, -9, —10) we have
my (-2 -1 -1 11111
i) \o 3 1 43210/
my (1 -2 1 -1 11 -11
i 0O 0 1 1 2 3 3 4)
In the following figure,
e enumerate the boxes from lower rows to upper rows and fromt itig left in a
row, then (., m,) is the coordinate of tha-th box, and

e enumerate the boxes from left columns to right columns anchfthe top to the
bottom in a column, thenj(, m,) is the coordinate of the-th box.

1 [ o) 8] 7] [e]

0 -5 -4 -3 -2 -

-1 0 2 4

-2 6 7 8 9

0 0 1 2 3 4 <«
m

We define a partial ordes on ZN by
K'ak <= j' =j andm’' <m.

6.2.2.

DEFINITION.  Fork € Z) we definewk = o™ ®v; e A" V(2).
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REMARK. Takemura-Uglov introduced vectos™ ®v; € ANV (2) in [20], which
are different from ours.

Proposition. WK is a simultaneous eigenvector for the actions q’f(x)’s (i e
a,...,1=1}).

Proof. It follows from Theorem of 4.1.4 and the definition ®® in 6.1.3. [
6.2.3. Fork € ZN we define

e(k) =2{(a, b) | a < b, om(a) > om(b)}.
Proposition.

Wk = (—q)*®uyy + Z ck, K)ue  (3c(k, k') € R).
k’<k

Proof. By the definition of the nonsymmetric Macdonald poiynals in 6.1.3,

PTRV =Z"®V + > cm m)z" vy, (Ic(m, m) e R).

m'<m
On the other hand by the relation in 5.1.2 we can verify
Zm/ R VL = (_q)c(m,'j,)zq?(m,) Q Vt?r'n\'(l)

+ Z C/(m/, m//)zﬂ(mw) ® V@(l) (EC/(m/, m//) e R)

m’<m’
and c(m, j) = e(k). Then the statement follows. ]
We define
Zy, =k e ZY | me My}

Note that ifk € ZN

Y, andk’ <k, thenk’ € Z, .

Corollary. If N > yl, then{W* [k e ZY } is a basis of \{”.

6.2.4. Fork e Zﬁ[;c (@l +c > yl), let A denote the Young diagram corresponding
to & (k) € M.

al+c,00
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Proposition. Fori=1,...,1 —1 we have
K (2)(w")
+
_ (sH2[A]"t—c1z — (st)~2 I (s)~V2[RI"t°"1z — (st)¥/2 ok
AcA; [Al't=e-1z —1 ReR., [RIt—c1z -1 .

Proof. By Theorem of 4.1.4 and the defining relatidts(z) = K=(r'-12), it is
sufficient to show

oM l_[ Gf(q|7i+lr|7i YaZ) Heitl(qlfiflrlfi sz)

ja=i—1 jo=i
(17 (sHY2[A]'t=Cz— (sty~%/2 (sH~Y2[R]"tz — (st)1/?
- *, _ *,

AcAi tez-1 ReRy [RItez-1

First we have
q)mql—i+1rl—iYa — ql—i+1rl—iq1—N pmaqam(a)—N—lcbm
= gm(@)—N+1/2{om(@)~N—i+(Mma+1)+1/2 pm
= g0 (@325 @—katl/2gm
@mql—i—lrl—i Y, = gm(b)=N=1/2om(b)—N—i+ (Mp+1)-1/2 pm

=g ’l(b)+1/2t *(?j’l(b)*khﬂ/zq)m

We classify the elements da | ja=1 —1}U{b| jp =i} into three types:
(1) a andb such thatmy =my, ja=i —1, jp =1,

(2) a such thatj, =i —1 and (g, i) ¢ k, and

(3) b such thatj, =i and fp, i — 1) ¢ k.

In the case of type (1), we havg *(@) — 1 =5, 1(b), ka +1 =ks. Thus

omg! i1y, = gmgl 21y,
and so
®191(q' 7 Yar' " 12)0_1(g' T 2Yr' T 12) = o™,

In the case of type (2), the node= (5, *(a) - 1,5, *(a)+ka—C) is an addablé-node.
We have

<I>m91(q' —i Yar I—i 712) — el(sfc?j*l(a)+3/2t 7(?1-*1(a)—ka+1/22) o

_ YAz = (s
[Al't—cz—1
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In the case of type (3), the node = (5,71(b) — 1,5, *(b) + k, — c — 1) is a removable
i-node. We have
cpmel(qlfifZYbrlfiflz) — el(sfz?j’l(b)+l/2t7(?i’l(b)fkb+l/22)cbm
= 9y (s~ Y212 ®*Z)4>m
_ (9 2[RItz — (s

[RI't-cz—1

Thus the claim follows. OJ

6.2.5.

Proposition. If k, k' € Z{*¢ (al +¢ > y1) and the eigenvalues of ;Kz) for wk
and WX coincide for all ie {1,...,1 — 1}, thenk = K'.

Proof. The coincidence of the eigenvaluesl@’f(z) implies

[T s02[A"tz— (st)y ™2 T (st 2[RI't °z— (st)*/?

AeA,i ReR;i
x [] A'tez-1 J] [R't°z-1
AcAy; ReRy;
= H [Al't°z—1 l_[ [RI"t °z—1
AeA, i ReRy;i
< [ 0"2[A'tez— (st [T s[RIt~z — (sp)*2
AcAy ReRy/

Sincel{(s,t) |s—t=n}N(A,UR)| <1 for anyn € Z, we have

[ (sHY?[A't°z - (sty /2

AcAyi

> l_[ ((St)—l/Z @*t—cz _ (St)l/z)lz:tc # 0

Re Rk,i

forany X € A, UR, ;. So we haveX € Ay i UR,/;, and it follows thatA;, i UR,; =
A}in U R;Lr’i.
It is easy to see the s@i¢o(Ak,i UR, ;) determines.. So the claim follows. [

Corollary. If X € AN V(2) is a simultaneous eigenvector for the actions of(®'s
ie{1,...,1 =1} and

X = (=q)Pug + Y c)ue  (3ck) € R),
k’<k
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for k € Z$3° (al +c > yl), then X= wk,

Proof. It follows from Corollary of 6.2.3 and the previousoposition. ]
6.2.6.

Proposition. For k € Zﬁ[;c (al +c > yl), WK is a simultaneous eigenvector for
the actions of K(2)'s (i € {0,...,1 —1}).

Proof. By definitionKii(z)’s commute with each other. Notice that a matrix which
commutes with a diagonal matrix with diagonal elementsediffit from each other
is diagonal. It follows from Proposition of 6.2.2, Corolaof 6.2.3 and Proposition
of 6.2.5 thatw* is also a simultaneous eigenvector for the actiorK@T(z). O

6.2.7.

Proposition. For k € Zi'j,c (al +c > yl), we have

o(q —&(k) \Ijk) = q*s(ﬂ(k))\yp(k)_

Proof. By Lemma of 4.2.2 and Theorem of 4.2WK) is also a simultaneous
eigenvector ofKii(z)’s (i €{0,...,1 —1}). Note that

p(a M wk) = p(u) + D ek, K)p(uk)
k’<k
= Uyt *+ D ok, K)Uogey
k' <k

and p preserves the order. Then the statement follows from Corollary of 6.2.50]

Corollary. For k € Z{*¢ (al +c > y1), the eigenvalue oft* for Kg(2) is given

by the same formula as iRroposition of 6.2.4.

6.2.8. For g >« we write simply.; 5 for (g .. 5.c-

Lemma. For k € Z{*¢ (al +¢ > yl), we have

Lg]ﬁ(q—s(k)\pk) - q—s(tg,,,(k))\w;v#(k)'
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Proof. By Theorem of 5.2.21,2’ﬂ(\11k) € /\ﬁ'+°V(z) is also a simultaneous eigen-
vector. Note that

5@ MW =& s + D ek, K 5(ue)  (Felk, K) € R)

k'<k
= u[g,ﬁ(k) + Z C(k, k/)utgvﬁ(k'),
k’'<k
and; , preserves the order. The claim follows from Corollary of 6.2.5. O

This lemma assures us of the well-definedness for the faligvdefinition:

DEFINITION. For a Young diagram., takek e Z‘i[;c (al + ¢ > yl) such that
114000 (K) € TIc corresponds to.. We define

W2 =180 0@ WX € F(0).

7. Isomorphism

In this section we construct an isomorphism between thevagant K-groups of
the quiver varieties and the g-Fock space.

First we express the actions ef,’s on WK, which can be done completely in
terms of Young diagrams (Theorem of 7.1.2). This is basicdlle to Proposition
of 6.1.4 although we need the residue theorem and a littleptoated induction.

After suitable renormalizations, we arrive at the isoméph

7.1. Formula for the representation on the g-Fock space.

7.1.1. We will give a formula for the action o& , on WK, For this the following
proposition is essential:

Proposition. (1) Form; <---<my and jj < j,=---= jy We have
N N N
—&b(M) +G°¢a(m)
" Y Tar| @V = "W @y,
() o =2 (1T, ol !
wherem(a) = (Mg, My, .. ., rﬁa, co)
(2 Form <---<my_1, my=my (L<a<N)and j=j,=---=jy we have

(I)m®Vj =0.
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(3) For k suchthat m < --- < mMn_1, Mg < My < Mgeg @Nd = jo = -+ = |y
we have
N—-1

(M e )
ve (i}lgam—gm)>¢ Y

wherem = (..., Mg, My, Masq, ... ).
Proof. If j; = ja+1 and my > m,4; we have
Po"RVv, =d"® -ll)-an (by 4.1.2)

p
= q)mTa Q® V;

_(—9%+1)
T ox—1

(x — g?)(g?x — 1)

" Qv —
BV x— 17

oM ® Vj.

(by 6.1.4)
whereoom = (..., Ma+1, My, ... ) and X = £a+1(M)/2a(M). Thus

—Zar2(M) + G2¢a(M)

" Qv =
T () — ca(m)

P" ® V.

The statement of (3) follows this.
If ja= jars @ndmg = Maeg then x = Zar1(M)/(Ca(M)) = g2. Thus we have

Po"RVv, =d"® -f—an (by 4.1.2)
p
(_q2 + 1) m
=—" \ by 6.1.4
<—1 ®Vj (by )

and so®™ @ v; = 0. This shows (2).
We will prove (1) by induction forN. Assume the statement is true fi < N.

Then
N N v
oM <Z Ta,1> ®V = w((z Ta,2>T1 + 1) ®V

a=1 a=2

N N
~ —2n(K) + d%%a(K) \ - @ m ,
‘[Z<Hm>® T1+¢}®V“

a=2 \b=at+l
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whereﬁ(\a/) =m(a) = (my, My, mz,...,rﬁa,...). Here we use the assumption of induction.

Although the situations are not exactly same, commutgtioit T; with T, (a > 3)
allows us a parallel argument.
Further we have

(q)
-1

_ (=02 + 1)z (m) 1—[1 — (M) + 9%¢a(M)
Za(m) = &1(m) L5 (M) — Za(m)

CD%-F]_ ®Vj = Cbm(a) QVj — @Gla?a/) ® V;

om QVj — oM@ ® V.

We can see the coefficients of(a) (a > 2) coincide with required ones. For the co-
efficient of m we need to check

N N
5(K) = 01K | _ g [ (02 + Dea(m) 17 6(k) — 4a(k)
(H (k) — 21(K) )‘22: (ga(m)—cl(m) L1700 0 )”'

b=2 bza

This follows the next lemma. OJ

Lemma.

N 2 N2 N A2
Z q+1l—[Xb a™a | _ HXa q _1
X1 —1 Xp — Xa a:1Xa_1

a=1 b7a
Proof. Apply the residue theorem for a rational function

_ qu
"2)= 2(z nl H —z =

7.1.2.

Theorem.

_(st)~1/2 * + (st)/2 *
an(w)= Y exy| [ 28X 6D
XeRyj AcA, i o

A>X

H —(sty V2[R]" + (s)V2[X]" X
* * c 1
ReRu\x,i @ -

R>X
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fi,n(\yé) = Z (tC )n 1_[ _(St)71/2 +(St)l/2

* *
XeAyi AcAyux,i -
A<X
[ —(sty V2[R + (2 [X]" PAUX
* ¥ c s
RERM @ -
R<X

+
(sH)2[A]"t°z — (st)~1/2 (st)~Y2[R]*t—°z — (st)V/2
Kii(Z)(\IJé) = l_[ I l_[ S \Ijé
AcAy i tcz-1 ReR;; @ t—cz—-1

Proof. The formulas forKii(z)’s are nothing but Proposition of 6.2.4 and Corol-
lary of 6.2.7. We will check forg p’s.
Fora,be{1,..., N} we put

f(a b) — q_lgb(_) CICa(m)

¢o(M) — La(m)
Then we have
&,n(2"® V)
n . '
414 g o Z Ta i+l Ch Yﬁi—l‘*‘lrl_l)_n ® Vj-
a=n_1+1
n n
= g™ Mm@ (gl-iy- -1 @y
7.1._1(1)q " Z < l_[ —af(a, b)> PG Y a1l )T ® V-
a=n;_;+1 \b=a+1
n i
= qg'™" X )" _ m@) gy
see_6.2.4q _Z (t ) ( l_[ af(a b)) P ® V-
a=nj_1+1 b=a+1
ni_1
= 1-n; c _ o) .
7_11(2)q Z t (l_[ —qf(a, b))(l_[ qf(b, a))d) ®VJ;
ni_;<as<n b=a+1 b=a'+1
(m,,i—1)¢k
i M1 o
= Z qnitl(a)—nf(a) (tc)n< l_[ _f (a, b)) < l_[ _f (b, a)) (Dm(a) V-,
Ni-p<a<m b=a+1 b=a’+1 =
(m,, i —1)¢k
where
A
) m(a)_( nimaimn+1;--.1_a|- ) m(a)_( -,_a/,_a,ma/+1,...,ma,...),

o Xz= (o,‘l(a) 1,5;7}(a) + ka — ) denote the top node on treth line of A, and
e n ,(@=n—-a,n(@=a—-n—1
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Sincee(m, j) —e(m(@),j ) = n_,(@) — n; (a) we have

e n(a " ™on @y

= > (t°)“<ﬁ ~f(a, b))( 1‘[ —t(b, a)>q—f<m@~i>q>rw &V, .

ni_i<a<n b=a+1 b=a'+1

(m,,i —1)¢k
As in the proof of Proposition of 6.2.4 we can arrange thetriggnd side of the above
equation by classify the element @+ 1,...,n}uUf{a’ +1,...,n_1} into three types,
and finally we get

—(st -1/2 * + (st 1/2 *
enwl) = Y ey | T S8 26
XeRyi AcA,,i -

A>X

B ~(s) 2[R+ (692X | x
* * c
ReR\x,i @ _

R>X

O

7.2. Normalizations.
7.2.1.
DEFINITION. For A € IT we define
N@) = [ [ e - 1),
where the product runs over dlhooks (&n, Yn), (X, Vt))-
We can easily verify the following lemma:

Lemma. If X is a removable i-node of, then we have

NA)/N@X) = [T (AKX -1) [] stXIA-1)

AcA, AcA, i

A<X A>X

< [T tRX -0 [[(XIR -1
ReR;; ReRi
R<X R>X

REMARK. From geometrical point of viewN (%) is derived from the Kozsul com-
plex of the unstable manifold, with respect to a spectficaction, on which points
converge to the fixed poirk.
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7.2.2. For p € I1 we will define M(u) € R inductively. First we setM(9) = 1.
Let Y = (a, b) be the most right node of the top row pf Then we set

M(un) =M (M\Y)(S—1/2t1/2)di,1(“) a(bEO)
< [T «so™[A) [] (so 2R

AEA“‘i Re R“\y_i
A<Y R<Y

Lemma. If X is a removable i-node of € I1, then we have
M(@3) = M(\X)(s™ 2t t2)3

< [T s A) []

AeA, AcA,i
A<X A>X
_ * *
< T o 2Ry [T X"
ReRy\x,i ReRy\x,i
R<X R>X

Proof. We dividex into A, and A, by the vertical line on the right oK.

.

M Ar

Let us writepu < A if we can getu from A by successive removing the nodes on
the top of the most right line of diagrams. Takee IT such thath; < u < A. LetY
be the node on the top of the most right line (of

Then we can verify

M () M (\ X)
M(\Y)/ M(u\(XUY))
= (7220120 (s ~H2 [X] 0= (s M2 [X]) U=
X ((St)71/2 t)s(jzi 71)((St)7l/2 S)a(jzi+1)
= (5—1/2t1/2)8(j—15i) 5(J5i71)728(j5i)+5(j5i+1).

So we have

()\') M( \X) - 71/2tl 2\di_1(A ai—1(Ar)—20i (A )+ais1(Ar)
A p =6 /2)da€ r) A n e .
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Let j denote the content of the node on the bottom of the most ledt tie j of A;.
Note that we havé(b=0)=6§(j =i) and

|A/\,,i | — |er,i| = ‘Xi—l()»r) — 20 (}\r) +0li+1()\r) + 5(] = i)-

Finally we have

M(2)
M(2\X)
— (Sfl/ztl/Z)di,l()L,) ai—l(lr)—zai (A )*aisa(hr)

x (s 2200 X' TT (s *2[A) [T (s 2[RI

AEAAN RERA|\X.i
A<X R<X
— (Sfl/Ztl/Z)di,l(A) |Axr,i =R il 1_[ ((St)71/2 ) l—[ ((St)il/z @*)
AeA, i ReRy\x,i
A<X R<X
So the claim follows. O

7.3. Main theorem. Now we arrive at the main theorem:

Theorem. K (1) and F(0) is isomorphic as representations of (5l 1or). The
isomorphism is given by

N()by = M)W

Proof. This follows from Theorem of 3.2.3, Theorem of 7.1lZmma of 7.2.1
and Lemma of 7.2.2. O
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