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Abstract
We prove that the fundamental quandle of the trefoil knot is isomorphic to the

projective primitive subquandle of transvections of the symplectic spaceZ� Z. The
last quandle can be identified with the Dehn quandle of the torus and the cord
quandle on a 2-sphere with four punctures. We also show that the fundamental
quandle of the long trefoil knot is isomorphic to the cord quandle on a 2-sphere
with a hole and three punctures.

1. Definitions and preliminary facts

DEFINITION 1.1. A quandle, X, is a set with a binary operation (a, b) 7! a � b
such that
(1) For anya 2 X, a � a = a.
(2) For anya, b 2 X, there is a uniquec 2 X such thata = c � b.
(3) For anya, b, c 2 X, (a � b) � c = (a � c) � (b � c) (right distributivity).

Note that the second condition can be replaced with the following requirement: the
operation�b: Q! Q, defined by�b(x) = x � b, is a bijection. The inverse map to�b
will be denoted by�b.

DEFINITION 1.2. A rack is a set with a binary operation that satisfies (2) and (3).

According to [4], the earliest discussion on racks is due to J. Conway and G. Wraith,
who studied racks in the context of the conjugacy operation in a group. They regarded a
rack as the wreckage of a group left behind after the group operation is discarded and only
the notion of conjugacy remains. The notion of quandle was introduced independently by
D. Joyce [6] and S. Matveev [9].

The fundamental quandle of the oriented knot is a classifying invariant of classical
unoriented knots (see [6] for details). Its generators correspond to the arcs of the knot
diagram, and relations correspond to crossings. They are ofthe form: xi � xk = x j or
xi �̄ xk = x j , depending on the type of the crossing, wherexi and x j are generators
assigned to the under-arcs, andxk is assigned to the over-arc of the crossing. Just like
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in the case of the fundamental groups, it is not easy to decidewhether two given knot
quandles are isomorphic.

The following are some of the most common examples of quandles.
– Any group G with conjugation as the quandle operation:

a � b = b�1ab. The quandle (G, �) is denoted byConj(G).
– Let n be a positive integer. For elementsi , j 2 f0, 1,: : : , n�1g, definei � j � 2 j � i
(mod n). Then� defines a quandle structure called thedihedral quandle, Rn. It can be
identified with the set of reflections of a regularn-gon with conjugation as the quandle
operation.
– Any Z[t , t�1]-module M is a quandle witha�b = ta+(1� t)b, for a, b 2 M, called
an Alexander quandle. Moreover, if n is a positive integer, thenZn[t , t�1]=(h(t)) is a
quandle for a Laurent polynomialh(t).

The last example can be vastly generalized [6]; for any groupG and its auto-
morphism� : G! G, G becomes a quandle when equipped with the operationg�h =� (gh�1)h. If we consider the anti-automorphism� (g) = g�1, we obtain another well
known quandle,Core(G), with g � h = hg�1h.

2. Dehn quandles and symplectic quandles

In this section we recall (after J. Zablow [16, 17] and D. Yetter [14, 15]; compare
also [7]) the concept of Dehn quandle of an orientable surface, and related definition
of a symplectic quandle.

Let F be an orientable surface and letC(F) denote the isotopy classes of simple
closed curves inF . For any curvec 2 C(F), we consider the positive (right-handed) or
negative (left-handed) Dehn twist about this curve, denoted as t+

c and t�c respectively.
The following facts are needed when defining the Dehn quandleof a surfaceF .

– t+
c fixes the curvec up to isotopy;

– Positive and negative Dehn twists about the same curve are inverse to each other
up to isotopy;
– Positive Dehn twists along isotopic simple closed curves are isotopic as diffeo-
morphisms;
– The images of simple closed curves under isotopic Dehn twists are isotopic.

Thus, it makes sense to consider the following definition, inwhich the same sym-
bol denotes the isotopy class and a representative curve.

DEFINITION 2.1. The Dehn quandle, Dehn(F), of an orientable surfaceF , is
the set of isotopy classes of simple closed curves inF , equipped with the operations

x � y = t+
y (x),

x �̄ y = t�y (x).

For a detailed proof thatDehn(F) satisfies quandle axioms see [16].
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The Dehn twistt+
y acts onH1(F) in a natural way. The action depends only on

the homology class ofy, and preserves the intersection form onH1(F). This motivates
the following definition.

DEFINITION 2.2. Let R be a commutative ring,M be a module overR, and leth , i : M � M ! R be a bilinear form. Consider the operationx � y = x � hx, yiy.
Then:
(i) If h , i is antisymmetric, i.e.,hx, yi = �hy, xi, then (M, � ) is a rack.
(ii) If h , i satisfieshx, xi = 0 for all x, then (M, � ) is a quandle1.
We refer to above quandle assymplecticquandle if M is free and the formh , i is
non-degenerate.

The structure of symplectic quandles was recently studied in [10].

3. Proof of the main theorem

By definition, the fundamental quandle of the trefoil knot,Q(31), has presentation

fa, b, c j a � c = a, b � a = c, c � b = ag = fa, b j a � b � a = b, b � a � b = ag;
compare Fig. 1. An important property ofQ(31) is that it satisfies the braid type relation:

(1) x � a � b � a = x � b � a � b,

for any x 2 Q(31). In particular, it allows a homomorphism from the 3-braid group,
B3, to the group of inner automorphisms ofQ(31), sending�1 to �a and �2 to �b,
where�1, �2 are standard generators ofB3.

Let us first prove relation (1). The equationa�b�a = b is equivalent toa = b�̄a�̄b,
and it follows thatx�a = x�(b�̄a�̄b), for any x 2 Q(31). Thus, x�a = x�b�a�b�̄a�̄b,
and after applying�b�a to both sides of the last equation, we get the required relation
x �a�b�a = x �b�a�b. We remark that we used only relationa�b�a = b to get (1).
It follows that above is true also for the fundamental quandle of the long trefoil knot,
in which the relationb � a � b = a does not hold.

The following theorem suggests that there could be a strong connection between
the fundamental knot quandles and Dehn quandles.

Theorem 3.1. The fundamental quandle of the trefoil knot, Q(31), is isomorphic
to the Dehn quandle of the torus, Dehn(T2).

1hx, xi implies hx, yi = �hy, xi, and the inverse holds if2 is not a zero divisor inR.
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Fig. 1. Generators and relations of the fundamental quandleof
the trefoil knot.

Proof. From the fact that

�1(T2) = H1(T2) = Z� Z,

follows that isotopy classes of unoriented curves onT2 (and Dehn twists assigned to
them) can be identified with relatively prime pairs

�(a, b) 2 Z� Z=�1,

in the space of orbits of the action of the multiplicative group f1,�1g on Z � Z by
scalar multiplication; in other words, with fractionsa=b 2 Q [ 1=0. Furthermore, the
action �� given by the Dehn twist corresponding to the curve with “slope” � = c=d is
a transvection, that is, for� = a=b, we have� � � = (a� Dc)=(b� Dd), where D is
the determinant,D = ad� bc. Indeed, one can easily check that�� is an element of
PSL(2, Z) given by the matrix:

�
1� dc c2

�d2 1 + dc

�
,

and then �
1� dc c2

�d2 1 + dc

��
a
b

�
=

�
a� cD
b� d D

�
.

In particular, for (c, d) = (1, 0), we have

�� =

�
1 1
0 1

�
,

and the matrix for (c, d) = (0, 1) is

�� =

�
1 0�1 1

�
,
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that is, we get generators ofPSL(2, Z).
We remark that the determinantD((a, b), (c, d)) = ad�bc is a symplectic form on

Z� Z, and the symplectic quandle operation is given by

(a, b) � (c, d) = (a� cD, b� d D).

Since Dehn(T2) corresponds to relatively prime (primitive) pairs fromZ � Z=�1, we
can say that it can be identified with the projective primitive subquandle of the sym-
plectic quandle onZ� Z.

The second part of the proof (the correspondence between fractions and elements
of Q(31)) follows from Theorem 3.2.

Theorem 3.2. Q(31) is a quandle isomorphic to the quandle of fractions(Q [
1=0,�), where(a=b)�(c=d) = (a�Dc)=(b�Dd), where D= ad�bc is the determinant.
The isomorphism� : Q(31)! (Q [ 1=0, � ) is given by�(a) = 0=1, �(b) = 1=0.

Proof. The map� is a quandle homomorphism because

�(a) � �(b) � �(a) =
0

1
� 1

0
� 0

1
=

1

1
� 0

1
=

1

0
= �(b) = �(a � b � a),

and similarly,

�(b) � �(a) � �(b) =
1

0
� 0

1
� 1

0
=

1�1
� 1

0
=

0�1
=

0

1
= �(a) = �(b � a � b).

In order to prove that� is an epimorphism, we are going to represent rational
numbers as continued fractions. We write [k1; k2, k3, : : : , kn] to denote the continued
fraction

k1 +
1

k2 +
1

k3 + � � � + 1

kn

.

Let us recall the algorithm for expanding any rational number r into a continued frac-
tion. Let k1 = [r ] be the greatest integer not exceedingr . It follows that Æ = r � k1 < 1
and Æ � 0. If Æ = 0, the algorithm ends. Otherwise, letr2 = 1=Æ, k2 = [r2], andÆ = r2 � k2 < 1. It is not difficult to show that after a finite number of such steps
we obtainÆ = 0 and the algorithm ends.

In the continued fraction representation of� that we obtain from the above algo-
rithm, k1 is an integer,k2, : : : , kn are positive integers, andkn > 1. In fact, we have
the following lemma [8].
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Lemma 3.3. The correspondence between
(1) finite continued fractions[k1; k2, k3, : : : , kn] with an integer k1, positive integers
k2, : : : , kn and kn > 1
and
(2) rational numbers
is one-to-one.

We will use the convention thatu�wk = u�w �w � � � � �w (k-times�w) for k > 0
and u � wk = u �̄ w �̄ w �̄ � � � �̄ w (�k-times �̄w) for k < 0.

Lemma 3.4. Let [k1; k2, k3, : : : , kn] be a continued fraction satisfying the condi-
tions of Lemma 3.3corresponding to a rational number p=q. If n is odd, then

�(a � bkn � a�kn�1 � � � � � bk1) =
p

q
.

If n is even, then

�(b � a�kn � bkn�1 � � � � � bk1) =
p

q
.

Proof. In the proof, the following formulas will be useful.

p

q
� �s

t

�k
=

p� kDs

q � kDt
,

wherek > 0 and D = pt � sq;

p

q
� �s

t

�k
=

p + kDs

q + kDt
,

wherek < 0 and D is as above. Below we perform the inductive step in the proof of
the first formula (the proof of the second formula is analogous):

p

q
� �s

t

�k
=

p

q
� �s

t

�k�1 � s

t
=

p� (k� 1)Ds

q � (k� 1)Dt
� s

t
=

p� (k� 1)Ds� Ds

q � (k� 1)Dt � Dt
,

because (p� (k� 1)Ds)t � s(q � (k� 1)Dt) = D.
It follows that for positivek:

(i) ( p=q) � (0=1)k = p=(q � kp) = 1=((q � kp)=p) = 1=(�k + q=p),
(ii) p=q �̄ =(0=1)k = p=(q + kp) = 1=((q + kp)=p) = 1=(k + q=p),
(iii) p=q � (1=0)k = (p + kq)=q = k + p=q,
(iv) p=q �̄ (1=0)k = (p� kq)=q = �k + p=q.
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We will use induction onn to prove formulas from Lemma 3.4. Assume that
p=q = [k1; k2, k3, : : : , kn], where n is odd. Then, by inductive assumption,

�(a � bkn � a�kn�1 � � � � � bk3) = [k3; k4, k5, : : : , kn] = r .

Thus,

�(a � bkn � a�kn�1 � � � � � bk3 � a�k2) = r � �(a)�k2 = r � �0

1

��k2

=
1

k2 + 1=r ,

from (ii), and

�(a � bkn � a�kn�1 � � � � � bk3 � a�k2 � bk1)

=

�
1

k2 + 1=r
� � �(b)k1 =

�
1

k2 + 1=r
� � �1

0

�k1

= k1 +
1

k2 + 1=r = k1 +
1

k2 + 1=(k3 + � � � + 1=kn)
.

In this case we use (iii) ifk1 > 0 and (iv) if k1 < 0. The proof of the second formula
is similar. It follows that� is an epimorphism.

The fact that� is a monomorphism follows from the following lemma.

Lemma 3.5. Each element of Q(31) can be uniquely written in one of the fol-
lowing forms.
(1) a or b or a� b or b� a;
(2) a � bkn � a�kn�1 � � � � � bk1, where n is odd, k2, : : : , kn are positive integers and
kn > 1;
(3) b � a�kn � bkn�1 � � � � � bk1, where n is even, k2, : : : , kn are positive integers and
kn > 1.

Proof. The following (operator level) relations are consequences of the relations
a � b � a = b and b � a � b = a that are satisfied inQ(31). To shorten the expressions
in this proof, we will denote�a as a, �̄a as ā, �b as b, and �̄b as b̄.
(R1) � � � bab� � � = � � � aba � � � ,
(R2) � � � b̄āb̄ � � � = � � � āb̄ā � � � ,
(R3) � � � bab̄ � � � = � � � āba � � � ,
(R4) � � � bāb̄ � � � = � � � āb̄a � � � ,
(R5) � � � b̄ab� � � = � � � abā � � � ,
(R6) � � � b̄āb � � � = � � � ab̄ā � � � .
If we assume that the word satisfies all conditions of Lemma 3.5, except the condition
kn > 1 (i.e., we assumekn = 1), then we can fix this situation using the equalities
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below and, if necessary, the induction on the length of the word (i.e., the total number
of a’s and b’s appearing in the word representing the given element ofQ(31)).
(1) abā = bāā,
(2) bāb = abb,
(3) bāb̄ = abb̄ = a.

Let us also note that our condition for the parity ofn follows from the first quandle
axiom, xx = x (or xx̄ = x), and the assumption that the words in the second and third
class end inbk1.

Now we use induction on the length of the word to prove that theremaining con-
ditions are also achievable. We assume that our claim holds for any wordw of length
m. We can also assume thatw is in the second or third class (the first class is easy
to deal with). Let us extendw by a or ā or b or b̄. Adding b or b̄ at the end ofw
will not spoil our normal form. Also, addinḡa if w ends inbs, wheres is positive,
is permittable, as we allowk1 to be 0. Let us consider the three remaining cases.

CASE 1. Assume thatw ends in b̄s, where s is positive, and we consider the
word wa. We have the following (operator level) relation in which weuse brackets [ ]
to indicate on which part of the word our relations are used.

� � � b̄sa = � � � b̄s�1a[āb̄a] = � � � b̄s�1abāb̄ = � � � b̄s�2a[āb̄a]bāb̄

= � � � b̄s�2abāb̄bāb̄ = � � � b̄s�2abāāb̄ = � � � = � � � b̄s�i abāi b̄ = � � �
= � � � b̄abās�1b̄ = � � � a[āb̄a]bās�1b̄ = � � � abāb̄bās�1b̄ = � � � abāsb̄.

The lasts + 2 letters ofwa are now in the normal form. Thea that precedes these
letters will cancel withā that appears beforēbs (if there are no such̄a it means thatw was of the formab̄s

and we can use the first axiom of quandle).
CASE 2. Assume thatw ends inbs, where s is positive, and we consider the

word wa. We are going to use the following relation.

� � � ābs = � � � b[b̄āb]bs�1 = � � � bab̄ābs�1 = � � � ba[b̄āb]bs�2 = � � � baab̄ābs�2 = � � �
= � � � bai b̄ābs�i = � � � = � � � bas�1[b̄āb] = � � � bas�1ab̄ā = � � � basb̄ā.

We have:

wa = � � � ābsa = � � � basb̄āa = � � � basb̄.

The length of the last expression ism + 1. By inductive assumption, the firstm letters
can be transformed into the word in the normal form, and sincethe m + 1-st letter is
b, we are done.

CASE 3. Assume thatw ends in b̄s, where s is positive, and we consider the
word wā. We will need the following relation.

� � � ab̄s = � � � b̄[bab̄]b̄s�1 = � � � b̄ā[bab̄]b̄s�2 = � � � b̄āābab̄s�2 = � � � = b̄āi bab̄s�i

= � � � = � � � b̄ās�1[bab̄] = � � � b̄ās�1āba = � � � b̄āsba.
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We will also use the relation

� � � bāt = � � � āb̄tab

that follows from the first relation and the fact that relations (R1)–(R6) are symmetric
with respect toa and b.

wā = � � � bāk2b̄sā = � � � bāk2ā[ab̄s]ā = � � � bāk2+1b̄āsbaā = � � � bāk2+1b̄āsb.

The last expression is still too long to use induction (it hasm+ 3 letters). That is why
we use the second relation.

� � � [bāk2+1]b̄āsb = � � � āb̄k2+1abb̄āsb = � � � āb̄k2+1ās�1b.

Now the last word hasm + 1 letters and the last letter isb, so we can use induction
to end the proof.

The uniqueness follows from the Lemma 3.3 and the fact that the map� is well
defined.

The proof of Lemma 3.5 ends the proof of Theorem 3.2.

REMARK 3.6. In the proof of Theorem 3.2, we could have used Ryder’s theorem
stating that for a prime knot, its fundamental quandle can beembedded into conjuga-
tion quandle of the fundamental group [13], together with the fact that�1(31) = B3

is a centralZ-extension ofPSL(2, Z). Our goal, however, was to prove the theorem
using elementary steps, on the level of quandles, so that thecorrespondence between
elements of the two quandles becomes explicit.

4. Structure of the fundamental quandle of the long trefoil knot

Our goal, in this section, is to prove that the quandle of the long trefoil knot can
be viewed as a quandle of cords on the sphere with a hole and three punctures. In
order to prove our theorem, we use Eisermann’s description of quandles of long knots
[3]. For the convenience of the reader, we recall the facts from [3] that we are going
to use.

4.1. Eisermann’s description of the fundamental quandles of long knots. Let�1 be the fundamental group of a closed prime knotK , m its meridian,� 01 its com-
mutator subgroup, and letQ denote the conjugacy class ofm in �1 with conjugation
as a quandle operation. From the work of Ryder [13], it is known that in the case of
prime knots, such aQ is isomorphic to the fundamental quandle of the knotK . In
[3], the author considers the set

Q̃(�1, m) = f(x, g0) 2 �1 � � 01 j x = mg0g.
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Here, we use the exponential notation to denote the conjugation, xy = y�1xy; later such
notation will also be used for an action of the fundamental group on a cord quandle.

Q̃(�1, m) becomes a connected quandle when equipped with the operations

(x, g0) � (y, h0) = (xy, g0x�1y) = (xy, m�1g0(h0)�1mh0),
and

(x, g0) �̄ (y, h0) = (xy, g0xy�1) = (xy, mg0(h0)�1m�1h0).
Such operations already appear in the work of Joyce [6]. The quandle Q̃(�1, m) turns
out to be isomorphic to the fundamental quandle,QL , of the long knot obtained from
K by breaking it at some point and extending the endpoints to infinity [3]. The map
p : Q̃(�1, m)! Q given by p(mg0 , g0) = mg0 is a covering in the following sense.

DEFINITION 4.1. A surjective quandle homomorphismp : Q̃ ! Q is called a
covering if p(x̃) = p(ỹ) implies ã � x̃ = ã � ỹ for all ã, x̃, ỹ 2 Q̃.

Using the terminology from [6], we can say thatx̃ and ỹ are behaviorally equivalent,
that is, they act in the same way as operators.

As stated in [3], covering transformations forp: Q̃(�1, m)! Q are given by the
left action of3 = C(m) \ � 01 = h�i, whereC(m) denotes the centralizer ofm, and �
is the longitude ofK (see [2] for details on computing�). The action is defined by� � (mg0 , g0) = (mg0 , �g0), and h�i acts freely and transitively on each fibrep�1(mg0 ).

DEFINITION 4.2. A representationof a quandleQ on a groupG is a map�: Q!
G such that�(a � b) = �(b)�1�(a)�(b) for all a, b 2 Q. The map� : Q ! Inn(Q),
sending each quandle elementq to the corresponding operator�q, is called the natural
representation ofQ. An augmentationconsists of a representation� : Q! G together
with a group homomorphism�: G! Inn(Q) such that�� = �. If G is generated by the
image�(Q) (as in the case of knot groups), then the action ofG on Q given by� is
uniquely determined by the representation�, so we can say for simplicity that� : Q!
G is an augmentation.

As proven in [3], p: Q̃(�1, m)! Q � �1 gives an augmentation. Here, the fundamen-
tal group acts onQ̃(�1, m) by

(mg0 , g0)h := (mg0h, m��(h)g0h),

where h 2 �1 and � : �1! Z is a homomorphism sending each elementq 2 Q to 1.
Furthermore, this action is by inner automorphisms.
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Fig. 2. Generatorsa and b of the cord quandleQ̂.

Fig. 3. Curves of Dehn half-twists�a = �1 and �b = �2.

4.2. Quandle of the long trefoil knot as a cord quandle. We will define a
quandle generated by the two cordsa andb on a 2-sphere with four holes,F0,4, �F0,4 =fÆ0, Æ1, Æ2, Æ3g, see Fig. 2.

Consider the mapping class group ofF0,4 modulo the componentÆ0; other com-
ponents can be rotated and exchanged. With this assumption,the mapping class group
is the three-braid group,B3 = f�1, �2 j �1�2�1 = �1�2�1g, where�1 is the Dehn half-
twist (in the counter-clockwise direction) exchangingÆ1 and Æ2 and keepingÆ0 fixed.
Similarly, �2 is the Dehn half-twist (in the counter-clockwise direction) exchangingÆ2

andÆ3 and keepingÆ0 fixed; see Fig. 3 and [1].
Now, consider the quandlêQ generated by the two arcs,a and b, with one end-

point at a fixed base point atÆ0, as illustrated in the Fig. 2. That is,̂Q consists of all
arcs from the base point tofÆ1, Æ2, Æ3g, with the convention that�a = �1 and �b = �2.
The reader may wish to compare our definition with the definition of cord quandles
given in [7]. The group of inner automorphisms ofQ̂ is B3. Since B3 = �1(31), the
fundamental group of the trefoil knot acts on̂Q by inner authomorphisms, and this
action will be denoted using exponential notation.
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Fig. 4. a� = a � a�4 � b � a � a � b—full twist along Æ0 of the
cord a.

The most important identity inQ̂ is a�b�a = b. The elementa�a�4�b�a�a�b
is obtained froma by one clockwise twist alongÆ0; see Fig. 4. Note that� = a�4baab
is a longitude for the trefoil knot.

We remark that given two elements�, � 2 Q̂, the quandle operation� � � can
be realized as�� [�], where � [�] is the Dehn half-twist along the boundary of the
regular neighborhood of�, exchanging the holes that are outside this neighborhood in
the clockwise direction.

Our goal is the following theorem.

Theorem 4.3. The quandle described above is isomorphic to the fundamental
quandle of the long trefoil knot.

Proof. In our proof,�1 denotes the fundamental group of the trefoil knot, and� 01
denotes its commutator subgroup. Recall that�1 = B3 acts onQ̃(�1, m) by

(x, g0)g := (xg, g0x��(g)g) = (xg, m��(g)g0g),

where x = mg0 , and it acts onQ̂ as a group of inner automorphisms. Both quandles
Q̃(�1, m) and Q̂ are connected. Connectedness ofQ̂ can be seen from the relation
a � b � a = b, and the fact thata and b are the only generators. Connectedness of
Q̃(�1, m) follows from the transitivity of the action of� 01 and the fact that such action
can be viewed as an action by inner automorphisms [3].

Define a map9 : Q̃(�1, m)! Q̂ by

9(mg0 , g0) = ag0 .
In particular,9(m, 1) = a, and (mg0 , �kg0) is sent to a cord wrapped around the holeÆ0

k times (in the clockwise direction ifk is positive, and counterclockwise otherwise),
followed by a piece corresponding toag0 .
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We can also define a map in the opposite direction,8: Q̂! Q̃(�1, m), as follows.
Every elementq 2 Q̂ can be written asaw, wherew 2 �1. Because�1=� 01 is generated
by the image of the meridianm, �1 = hmi� 01, and everyw 2 �1 can be uniquely written
in the formw = m jw0, where j 2 Z andw0 2 � 01. Now, assume thataw1 = aw2, wherew1 = miw0

1, w2 = m jw0
2, and w0

1 6= w0
2. The image of the elementaw1 = aw2 in �1

equals (w0
1)�1mw0

1 = (w0
2)�1mw0

2, so elements (mw01,w0
1), (mw02,w0

2) 2 Q̃(�1,m) are in the
same fiber of the coveringp: Q̃(�1, m)! Q(31). As noted in [3], the grouph�i acts
transitively on each fiber (the action is given by�(mw0 , w0) = (mw0 , �w0)). Therefore,w0

2 = �kw0
1, for some nonzero integerk. It follows that aw1 = amiw01 cannot represent the

same cord asaw2 = am jw02 because they differ by exactlyk twists aroundÆ0. Therefore,
the map8 : Q̂! Q̃(�1, m) given by

8(aw) = (mw0 , w0),
wherew0 2 � 01 is as above, is well defined.

We check that it is a homomorphism:

8(aw1 � aw2) = 8�amiw01mmj w02 � = 8(amiw01(w02)�1mw02) = 8(ami +1m�1w01(w02)�1mw02)
= (mw01(w02)�1mw02, m�1w0

1(w0
2)�1mw0

2),

wherew1 = miw0
1, w2 = m jw0

2, for somew0
1, w0

2 2 � 01, and m�1w0
1(w0

2)�1mw0
2 2 � 01

because the sum of exponents in this word is zero

8(aw1) �8(aw2) = (mw01, w0
1) � (mw02, w0

2) =
�
mw01mw02 , m�1w0

1(w0
2)�1mw0

2

�
,

as required.
We will show that both maps9 and8 are equivariant with respect to the action

of �1. Let x 2 �1.

9((mg0 , g0)x) = 9(mg0x, m��(x)g0x) = am��(x)g0x = ag0x = (9(mg0 , g0))x.

For the equivariance of the map8, it is enough to consider the case whenx is an
image of the quandle elementq = aw = amiw0 (it follows from the fact that�1 = hm�1i),
and it acts on an arbitrary elementav = am j v0 2 Q̂, wherev0 2 � 01.

8((av)x) = 8(am j v0 ) �8(q) = (mv0 , v0) � (mw0 , w0)
=
�
mv0mw0

, m�1v0(w0)�1mw0� =
�
mv0mw0

, m��(x)v0(w0)�1mw0�
= (mv0 , v0)mw0

= (mv0 , v0)x = (8(av))x.

We notice that89(m, 1) = (m, 1) and98(a) = a. From the equivariance of the maps8 and9, and the fact that�1 acts transitively on both quandles, follows that89 =
IdQ̃(�1,m) and98 = IdQ̂. Therefore,8 : Q̂! Q̃(�1, m) is an isomorphism.
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Fig. 5. Generators of “the fundamental quandle of the closedtre-
foil knot.”

From the above analysis it is clear that if we allowÆ0 to be rotated, we obtain the
quandle of the closed trefoil knot.

Corollary 4.4. The fundamental quandle of the closed trefoil knot is isomorphic
to the cord quandle on a2-sphere with four punctures, generated by two arcs, a and
b, as shown in theFig. 5.
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