Koiso, N. Osaka J. Math. **37** (2000), 905–924

ON MOTION OF AN ELASTIC WIRE AND SINGULAR PERTURBATION OF A 1-DIMENSIONAL PLATE EQUATION

NORIHITO KOISO

(Received March 23, 1999)

1. Introduction and preliminaries

Consider a springy circle wire in the euclidean space \mathbb{R}^3 . We characterize such a wire as a closed curve $\gamma = \gamma(x)$ with unit line element and fixed length. For such a curve, its elastic energy is given by

$$E(\gamma) = \int_0^L |\gamma_{xx}|^2 \, dx.$$

Solutions of the corresponding Euler-Lagrange equation are called *elastic curves*. Closed elastic curves in the euclidean space are classified in [7]. We discuss on motion of a circle wire governed by the elastic energy.

We will see that the equation becomes an initial value problem for $\gamma = \gamma(x, t)$:

(EW)
$$\begin{cases} \gamma_{tt} + \partial_x^4 \gamma + \mu \gamma_t = \partial_x \{ (w - 2|\gamma_{xx}|^2) \gamma_x \}, \\ -w_{xx} + |\gamma_{xx}|^2 w = 2|\gamma_{xx}|^4 - |\partial_x^3 \gamma|^2 + |\gamma_{tx}|^2, \\ \gamma(x, 0) = \gamma_0(x), \quad \gamma_t(x, 0) = \gamma_1(x), \quad (\gamma_{0x}, \gamma_{1x}) = 0. \end{cases}$$

Here, μ is a constant which represents the resistance, and the ODE for w corresponds to the constrained condition $(\gamma_x, \gamma_{tx}) \equiv 0$ (i.e., $|\gamma_x| \equiv 1$.) When the resistance μ is very large, we can analyze the behavior of the solution replacing the time parameter t to $\tau = \mu^{-1}t$. Then, (EW) becomes

(EW^{$$au$$})
$$\begin{cases} \mu^{-2}\gamma_{\tau\tau} + \partial_x^4 \gamma + \gamma_{\tau} = \partial_x \{ (w - 2|\gamma_{xx}|^2)\gamma_x \}, \\ -w_{xx} + |\gamma_{xx}|^2 w = 2|\gamma_{xx}|^4 - |\partial_x^3 \gamma|^2 + \mu^{-2}|\gamma_{\tau x}|^2, \\ \gamma(x, 0) = \gamma_0(x), \quad \gamma_{\tau}(x, 0) = \mu\gamma_1(x), \quad (\gamma_{0x}, \gamma_{1x}) = 0. \end{cases}$$

And, when $\mu \to \infty$, we get, omitting initial data $\gamma_{\tau}(x, 0)$,

¹⁹⁹¹ Mathematics Subject Classification. 35Q72, 53A04, 35B25,

(EP)
$$\begin{cases} \gamma_{\tau} + \partial_x^4 \gamma = \partial_x \{ (w - 2|\gamma_{xx}|^2) \gamma_x \}, \\ -w_{xx} + |\gamma_{xx}|^2 w = 2|\gamma_{xx}|^4 - |\partial_x^3 \gamma|^2, \\ \gamma(x, 0) = \gamma_0(x). \end{cases}$$

The equation (EP), treated in [4] and [5], has a unique all time solution for any initial data, and the solution converges to an elastic curve. In this paper, we will prove:

- 1) The equation (EW) has a unique short time solution for any initial data. (Corollary 3.13.)
- 2) If μ is large, then the solution of (EW^{τ}) exists for long time, and converges to a solution of (EP) when $\mu \rightarrow \infty$. (Corollary 4.10.)
- Note that in 2), the derivative $\gamma_{\tau}(x, 0) = \mu \gamma_1(x)$ diverges when $\mu \to \infty$.

If (EW) contained no 3rd derivatives $\partial_x^3 \gamma$ and was not coupled with ODEs, i.e., if our equation was $\gamma_{tt} + \partial_x^4 \gamma + \mu \gamma_t = F(\gamma, \gamma_x, \gamma_{xx}, \gamma_t)$, it is standard to show the short time existence of solutions. (See [9] Section 11.7.) Being coupled is not main difficulty to solve the equation. We can overcome it by careful estimation similar to [4]. However, the difficulty due to the presence of 3rd derivatives is essential. We will overcome the difficulty using the new unknown variable $\xi := \gamma_x \in S^2$. As we will see in Lemma 2.2, the equation for ξ does not contain 3rd derivatives $\nabla_x^2 \xi_x$. Owing to the lack of the term, we will be able to solve (EW^{ξ}) by a usual method: perturb to a parabolic equation and show the solution of the parabolic equation converges to a solution of the original equation. This will be done in Section 3.

REMARK 1.1. In this paper, we only treat curves in the 3-dimensional euclidean space \mathbb{R}^3 . But, the result holds also on the case of any dimensional euclidean space, with no modification of proofs.

By similarity, we may assume that the length of the initial curve γ_0 is 1. From now on, a closed curve means a map from $S^1 \equiv \mathbf{R}/\mathbf{Z}$ into the euclidean space \mathbf{R}^3 or the unit sphere S^2 . The inner product of vectors is denoted by (*, *), and the norm is denoted by |*|. We also use the covariant derivation ∇ on S^2 . For a tangential vector field X(x) along a curve $\gamma(x)$ on S^2 , the covariant derivative is defined by $\nabla_x X := (X'(x))^T$. The covariant differentiation is non-commutative, because the curvature tensor R of S^2 is non-zero. For example, if X(x, t) is a tangential vector field along a family $\gamma(x, t)$ of curves on S^2 , we have

$$\nabla_{x}\nabla_{t}X - \nabla_{t}\nabla_{x}X = R(\gamma_{x}, \gamma_{t})X = (\gamma_{t}, X)\gamma_{x} - (\gamma_{x}, X)\gamma_{t}.$$

For functions on S^1 and vector fields along a closed curve, we use L_2 -inner product $\langle *, * \rangle$ and L_2 -norm ||*||. Sobolev H^n -norm is denoted by $||*||_n$. For a tensor field along the closed curve on S^2 , $||*||_n$ is defined using covariant derivation. That is, $||\zeta||_n^2 = \sum_{i=0}^n ||\nabla_x^i \zeta||^2$. We also use C^n norm $||*||_{(n)}$. In particular, $||*||_{(0)} = \max|*|$.

2. The equations

To derive the equation of motion, we use Hamilton's principle. For a moving curve $\gamma = \gamma(t, x)$, the velocity energy is given by $\|\gamma_t\|^2$ and the elastic energy is given by $\|\gamma_{xx}\|^2$. (By rescaling, we omit coefficients.) Therefore, the real motion is a stationary point of the integral

$$L(\gamma) := \int_{t_1}^{t_2} \|\gamma_t\|^2 - \|\gamma_{xx}\|^2 dt.$$

That is, the integral

$$L' := \int_{t_1}^{t_2} \langle \gamma_t, \, \delta_t \rangle - \langle \gamma_{xx}, \, \delta_{xx} \rangle \, dt$$

should vanish for all $\delta = \delta(t, x)$ satisfying $\delta(t_1, x) = \delta(t_2, x) = 0$ and the constrained condition $(\gamma_x, \delta_x) \equiv 0$.

From integration by parts, we see

$$L' = \int_{t_1}^{t_2} -\langle \gamma_{tt} + \partial_x^4 \gamma, \delta \rangle \, dt.$$

On the other hand, the orthogonal complement of the space $V := \{\delta \mid (\gamma_x, \delta_x) \equiv 0\}$ at each time t is $V^{\perp} = \{(u\gamma_x)_x \mid u = u(x)\}$. Therefore, γ is stationary if and only if $\gamma_t \in V$ and $\gamma_{tt} + \partial_x^4 \gamma = (u\gamma_x)_x$ for some function u = u(t, x).

REMARK 2.1. Many papers (e.g., [2], [3]) apply Hamilton's principle using $|\gamma_{xt}|^2 + |\gamma_t|^2$ as the kinetic energy, and gets a wave equation. The wave equation is completely different from (EW). A linear version of our equation can be found, for example, in [1] p. 246.

This difference can be explained as follows. We characterize a planer thick wire of length L, of radius R and of unit weight per length as a map $u = u(x, y) : [0, L] \times$ $[-R, R] \rightarrow \mathbb{R}^2$ such that $u(x, y) = \gamma(x) + yJ\gamma_x(x)$, where γ is a curve of unit line element and J is the $\pi/2$ rotation. When u moves, i.e. when we consider a family u = u(x, y, t) of such curves, the velocity energy becomes

$$\frac{1}{2R}\int_0^L dx \int_{-R}^R |u_t(x, y)|^2 dy = \|\gamma_t\|^2 + \frac{1}{3}R^2 \|\gamma_{xt}\|^2.$$

Hence, our wire is infinitely thin, while previous papers treat thick wires.

In this paper, we treat slightly more general equation, equation with resistance μ . That is,

$$\gamma_{tt} + \mu \gamma_t + \partial_x^4 \gamma = (u \gamma_x)_x,$$

coupled with an ODE for *u*, which is derived from the constrained condition: $|\gamma_x| \equiv 1$. From

$$0 = \partial_t^2 |\gamma_x|^2 = 2(\gamma_{ttx}, \gamma_x) + 2|\gamma_{tx}|^2,$$

the unknown u satisfies

$$\left(-\partial_x^5\gamma+\partial_x^2(u\gamma_x)-\mu\gamma_{tx},\gamma_x\right)=-|\gamma_{tx}|^2.$$

Using $|\gamma_x|^2 \equiv 1$, we can rewrite this to

$$-u_{xx} + |\gamma_{xx}|^2 u = 2\partial_x^2 |\gamma_{xx}|^2 - |\partial_x^3 \gamma|^2 + |\gamma_{tx}|^2,$$

and, putting $w := u + 2|\gamma_{xx}|^2$, we get (EW).

Since the principal part of (EW) is the operator of the plate equation:

$$u_{tt} + \partial_x^4 u$$
,

we perturb it to a parabolic operator:

$$\begin{split} u_{tt} &- 2\varepsilon u_{txx} + (1+\varepsilon^2)\partial_x^4 u \\ &= \left(\partial_t - (\varepsilon+\sqrt{-1})\partial_x^2\right) \left(\partial_t - (\varepsilon-\sqrt{-1})\partial_x^2\right) u \end{split}$$

with $\varepsilon > 0$. It is possible to show that a perturbed equation of (EW)

$$\begin{cases} \gamma_{tt} - 2\varepsilon \gamma_{txx} + (1+\varepsilon^2)\partial_x^4 \gamma + \mu \gamma_t = \partial_x \{(w-2|\gamma_{xx}|^2)\gamma_x\}, \\ -w_{xx} + |\gamma_{xx}|^2 w = 2|\gamma_{xx}|^4 - |\partial_x^3 \gamma|^2 + |\gamma_{tx}|^2, \\ \gamma(x,0) = \gamma_0(x), \quad \gamma_t(x,0) = \gamma_1(x), \quad (\gamma_{0x},\gamma_{1x}) = 0 \end{cases}$$

has a short-time solution. However, we cannot get uniform estimate when $\varepsilon \to 0$, because $\partial_x \{(w-2|\gamma_{xx}|^2)\gamma_x\}$ contains the third derivative of γ . To overcome this difficulty, we convert (EW) to an equation on S^2 , and "remove" the third derivative.

We introduce a new unknown function ξ by $\xi = \gamma_x$. The function ξ is a family of closed curves on S^2 .

Lemma 2.2. The equation (EW) is equivalent to equation

(EW^{\xi})
$$\begin{cases} \nabla_t \xi_t + \nabla_x^3 \xi_x + \mu \xi_t = (w - |\xi_x|^2) \nabla_x \xi_x + 2w_x \xi_x - \frac{3}{2} \partial_x |\xi_x|^2 \xi_x, \\ -w_{xx} + |\xi_x|^2 w = |\xi_t|^2 - |\nabla_x \xi_x|^2 + |\xi_x|^4, \\ \xi(x, 0) = \xi_0(0), \quad \xi_t(x, 0) = \xi_1(x), \quad \int_0^1 \xi_0 \, dx = \int_0^1 \xi_1 \, dx = 0. \end{cases}$$

and (EP) is equivalent to equation

(EP^{\xi})
$$\begin{cases} \xi_{\tau} + \nabla_x^3 \xi_x = (w - |\xi_x|^2) \nabla_x \xi_x + 2w_x \xi_x - \frac{3}{2} \partial_x |\xi_x|^2 \xi_x, \\ -w_{xx} + |\xi_x|^2 w = -|\nabla_x \xi_x|^2 + |\xi_x|^4, \\ \xi(x, 0) = \xi_0(0), \quad \int_0^1 \xi_0 \, dx = 0. \end{cases}$$

Proof. It is straightforward to check the following decomposition:

$$\begin{aligned} \xi_{xx} &= \nabla_x \xi_x - |\xi_x|^2 \xi, \quad \xi_{tt} = \nabla_t \xi_t - |\xi_t|^2 \xi, \\ \partial_x^3 \xi &= \nabla_x^2 \xi_x - |\xi_x|^2 \xi_x - \frac{3}{2} \partial_x |\xi_x|^2 \xi, \\ \partial_x^4 \xi &= \nabla_x^3 \xi_x - |\xi_x|^2 \nabla_x \xi_x - \frac{5}{2} \partial_x |\xi_x|^2 \xi_x + \{|\nabla_x \xi_x|^2 + |\xi_x|^4 - 2 \partial_x^2 |\xi_x|^2\} \xi. \end{aligned}$$

Using these formulas, we see that the x-derivatives of (EW) imply (EW^{ξ}). Conversely, (EW^{ξ}) implies the equation

$$\xi_{tt} + \partial_x^4 \xi + \mu \xi_t = \partial_x^2 \{ (w - 2|\xi_x|^2) \xi \}.$$

Under the assumption: $\int_0^1 \xi_0 dx = \int_0^1 \xi_1 dx = 0$, we see that the closedness condition: $\int_0^1 \xi dx \equiv 0$ is satisfied. Let γ be the solution of an ODE:

$$\begin{aligned} \gamma_{tt} + \mu \gamma_t &= -\partial_x^3 \xi + \partial_x \{ (w - 2|\xi_x|^2) \xi \}, \\ \gamma(x, 0) &= \gamma_0(x), \quad \gamma_t(x, 0) = \gamma_1(x). \end{aligned}$$

Then

$$\gamma_{xtt} + \mu \gamma_{xt} = -\partial_x^4 \xi + \partial_x^2 \{ (w - 2|\xi_x|^2)\xi \} = \xi_{tt} + \mu \xi_t$$

and $(\gamma_x - \xi)_{tt} + \mu(\gamma_x - \xi)_t \equiv 0$. Hence $\gamma_x \equiv \xi$ and γ is a solution of (EW).

A similar calculation gives the equivalence of (EP) and (EP^{ξ}).

3. Short time existence

In this section, we fix $\mu \in \mathbf{R}$.

To perturb (EW^{ξ}), we introduce a function $\rho(x, y)$. Since ξ_0 is the derivative of a closed curve γ_0 in the euclidean space, each component of ξ_0 takes 0 at some x. Therefore, by Wirtinger's inequality, we have $\|\xi_{0x}\|^2 \ge \pi^2 \|\xi_0\|^2 \ge \pi^2$. (It is known in fact that $\|\xi_{0x}\|^2 \ge 4\pi^2$.) Let $\delta(r)$ be a C^{∞} function on **R** such that $\delta(r) = 1$ on $|r| \le \pi^2/8$, $\delta(r) = 0$ on $\pi^2/4 \le |r|$ and $0 \le \delta(r) \le 1$ on $\pi^2/8 \le |r| \le \pi^2/4$. We put

$$\rho(x, y) = \pi^2 + \delta(y^2 - |\xi_{0x}(x)|^2)(y^2 - \pi^2).$$

909

Fix an interval *I* such that $|\xi_{0x}(x)|^2 \ge \pi^2/2$ for any $x \in I$. If $x \in I$ and $|y^2 - |\xi_{0x}(x)|^2| \le \pi^2/4$, then $\rho(x, y) \ge \min\{\pi^2, y^2\} \ge \pi^2/4$. And if $|y^2 - |\xi_{0x}(x)|^2| \ge \pi^2/4$, then $\rho(x, y) = \pi^2$. Therefore, for any function u(x),

$$\int_0^1 \rho(x, u(x)) \, dx \geq \frac{\pi^2}{4} \int_I \, dx.$$

REMARK 3.1. Below, we use the function ρ only to ensure $\rho \ge 0$ everywhere and $\int_0^1 \rho(x, u(x)) dx$ is bounded from below by a positive constant. Note that $\rho(x, y) := y$ satisfies this requirement if $\xi = \gamma_x$ for some closed curve γ in the euclidean space.

Proposition 3.2. Let $\xi_0(x)$ be a C^{∞} closed curve on S^2 with $\|\xi_{0x}\| \ge \pi$ and $\xi_1(x)$ a C^{∞} tangent vector field along ξ_0 . Let ρ be the function defined as above. Then, equation

(EW<sup>\$\xi\$e})
$$\begin{cases} \nabla_t \xi_t - 2\varepsilon \nabla_x^2 \xi_t + (1+\varepsilon^2) \nabla_x^3 \xi_x + \mu \xi_t \\ &= (w - |\xi_x|^2) \nabla_x \xi_x + 2w_x \xi_x - \frac{3}{2} \partial_x |\xi_x|^2 \xi_x, \\ -w_{xx} + \rho(x, |\xi_x|^2) w = |\xi_t|^2 - |\nabla_x \xi_x|^2 + |\xi_x|^4, \\ &\xi(x, 0) = \xi_0(0), \quad \xi_t(x, 0) = \xi_1(x) \end{cases}$$</sup>

has a C^{∞} solution on some interval $0 \le t < T$.

Proof. We can prove unique short-time existence of $(EW^{\xi\varepsilon})$ by a similar method with that used in [4]. Here, we mention only two steps. One is an estimation of the ODE for w. Lemma 3.3 with the function ρ ensures estimation of w by ξ . Another, Lemma 3.4, is a crucial point to use the contraction principle.

Lemma 3.3 ([4] Lemma 4.1, Lemma 4.2). Let a and b be L_1 -functions on S^1 such that $a \ge 0$ and $||a||_{L_1} > 0$. Then, the ODE for a function w on S^1

$$-w'' + aw = b$$

has a unique solution w, and the solution w is estimated as

$$\max |w| \le 2\{1 + ||a||_{L_1}^{-1}\} \cdot ||b||_{L_1},$$
$$\max |w'| \le 2\{1 + ||a||_{L_1}\} \cdot ||b||_{L_1}.$$

Moreover, there exists universal constants C > 0 and N > 0 depending on n such that

$$\|w\|_{n+2} \leq C(1+\|a\|_n^N)\|b\|_n,$$

$$\|w\|_{(n+2)} \leq C(1+\|a\|_{(n)}^N)\|b\|_{(n)}$$

Lemma 3.4. We consider a linear PDE for u

$$\begin{cases} u_{tt} - 2\varepsilon u_{txx} + (1 + \varepsilon^2)\partial_x^4 u = f, \\ u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x). \end{cases}$$

If $f \in C^{2\alpha}$, $u_0 \in C_x^{4+2\alpha}$ and $u_1 \in C_x^{2+2\alpha}$, then there is a unique solution $u \in C^{4+2\alpha}$. Moreover, we have an estimation:

$$\|u\|_{C^{4+2\alpha}} \leq C\{\|f\|_{C^{2\alpha}} + \|u_0\|_{C^{4+2\alpha}} + \|u_1\|_{C^{2+2\alpha}}\},\$$

where $\| * \|_{C_x^{n+2\alpha}}$ means the Hölder norm for x-direction, and $\| * \|_{C^{n+2\alpha}}$ means the weighted Hölder norm (t-derivatives are counted twice of x-derivatives.)

Proof. We decompose the equation to a parabolic equation as

$$u_t - (\varepsilon + \sqrt{-1})u_{xx} = v, \quad v_t - (\varepsilon - \sqrt{-1})v_{xx} = f.$$

Using the fundamental solution

$$\Gamma(x,t) = \frac{1}{2\sqrt{\pi}\sqrt{\varepsilon \pm \sqrt{-1}}\sqrt{t}} \exp\left(-\frac{x^2}{4(\varepsilon \pm \sqrt{-1})t}\right)$$

of the parabolic operator $\partial_t - (\varepsilon \pm \sqrt{-1})\partial_x^2$, we can estimate as

$$\begin{aligned} \|u\|_{C^{4+2\alpha}} &\leq C\{\|v\|_{C^{2+2\alpha}} + \|u_0\|_{C^{4+2\alpha}_x}\} \\ &\leq C\{\|f\|_{C^{2\alpha}} + \|v_0\|_{C^{2+2\alpha}_x} + \|u_0\|_{C^{4+2\alpha}_x}\} \\ &\leq C\{\|f\|_{C^{2\alpha}} + \|u_1\|_{C^{2+2\alpha}_x} + \|u_0\|_{C^{4+2\alpha}_x}\}. \end{aligned}$$

When we take the limit $\varepsilon \to 0$ in $(EW^{\xi\varepsilon})$, we should note that the term $\nabla_x^3 \xi_x$ is quasi-linear, and contains the third derivative of ξ . In fact, in local coordinate system,

$$\nabla_x^3 \xi_x = \{\partial_x^4 \xi^p + 4\Gamma_q^{p}{}_r(\xi)\xi_x^q \partial_x^3 \xi^r\} \frac{\partial}{\partial x^p} + [\text{lower order terms}].$$

However, when we integrate it by parts, we can treat it as though it contained no third derivatives.

Lemma 3.5. For any K > 0, there are T > 0 and M > 0 with the following property:

Let ξ be a solution of $(\mathbb{EW}^{\xi\varepsilon})$ with $\varepsilon \in [0, 1]$ on an interval $[0, t_1) \subset [0, T)$. If its initial value satisfies $\|\xi_1\|^2 + \|\xi_{0x}\|_1^2 \leq K$, then $\|\xi_t\|^2 + \|\xi_x\|_1^2 \leq M$ holds on $0 \leq t < t_1$.

Proof. Put

$$f = (w - \rho(x, |\xi_x|^2)) \nabla_x \xi_x + 2w_x \xi_x - \frac{3}{2} \partial_x |\xi_x|^2 \xi_x.$$

We can estimate

$$\begin{aligned} &\frac{1}{2} \frac{d}{dt} \left\{ \|\xi_t\|^2 + (1+\varepsilon^2) \|\nabla_x \xi_x\|^2 \right\} \\ &= \langle \xi_t, \nabla_t \xi_t \rangle + (1+\varepsilon^2) \langle \nabla_x \xi_x, \nabla_t \nabla_x \xi_x \rangle \\ &= \langle \xi_t, \nabla_t \xi_t + (1+\varepsilon^2) \nabla_x^3 \xi_x \rangle + (1+\varepsilon^2) \langle R(\xi_t, \xi_x) \xi_x, \nabla_x \xi_x \rangle \\ &\leq \langle \xi_t, 2\varepsilon \nabla_x^2 \xi_t + f \rangle - \mu \|\xi_t\|^2 + C \max |\xi_x|^2 \|\xi_t\| \|\nabla_x \xi_x\| \\ &\leq -2\varepsilon \|\nabla_x \xi_t\|^2 + \langle \xi_t, f \rangle - \mu \|\xi_t\|^2 + C \|\xi_x\|_1^2 \|\xi_t\| \|\nabla_x \xi_x\| \\ &\leq (1-\mu) \|\xi_t\|^2 + \|f\|^2 + C \|\xi_x\|_1^2 (\|\xi_t\|^2 + \|\nabla_x \xi_x\|^2), \end{aligned}$$

and,

$$\frac{1}{2}\frac{d}{dt}\|\xi_x\|^2 = \langle \xi_x, \nabla_t \xi_x \rangle = -\langle \nabla_x \xi_x, \xi_t \rangle \le \|\nabla_x \xi_x\|^2 + \|\xi_t\|^2.$$

Here, by Lemma 3.3, $||f|| \le C(1 + ||\xi_t||^2 + ||\xi_x||_1^2)^{N_1}$. Therefore, putting $X(t) := 1 + ||\xi_t||^2 + (1 + \varepsilon^2) ||\xi_x||_1^2$, we get

$$X'(t) \le C_1 X(t)^{N_2},$$

and, X(t) is bounded from above by a solution of the ODE: $y'(t) = C_1 y(t)^{N_2}$.

REMARK 3.6. If we use original equation of γ , which contains $\partial_x^3 \gamma$ in the right hand side, the term $\langle \gamma_t, \partial_x^3 \gamma \rangle$ appears in the estimation. Since we need the term $-2\varepsilon \|\gamma_{tx}\|^2$ to cancel $\langle \gamma_t, \partial_x^3 \gamma \rangle$, we cannot get uniform estimate with respect to ε , and the following proof will fail.

Lemma 3.7. For any K > 0 and $n \ge 0$, there is M > 0 with the following property:

Let ξ be a solution of $(\mathbb{EW}^{\xi\varepsilon})$ with $\varepsilon \in [0, 1]$ on [0, T). If its initial value satisfies $\|\xi_1\|_n$, $\|\xi_{0x}\|_{n+1} \leq K$, and if it satisfies $\|\xi_t\|$, $\|\xi_x\|_1^2 \leq K$ on $0 \leq t < T$, then $\|\xi_t\|_n$, $\|\xi_x\|_{n+1}^2 \leq M$ holds on $0 \leq t < T$.

Proof. The claim holds for n = 0 by taking M = K. We prove the claim by induction. Suppose that the claim holds for n. In particular, we know bounds of $\|\xi_x\|_{(n)}$,

 $\|\xi_t\|_{(n-1)}, \|w\|_{n+2}$ and $\|w\|_{(n+1)}$. Therefore, we have

$$\begin{aligned} \|\nabla_{t}\nabla_{x}^{n+1}\xi_{t} - \nabla_{x}^{n+1}\nabla_{t}\xi_{t}\| &= \left\|\sum_{i=0}^{n}\nabla_{x}^{i}(R(\xi_{t},\xi_{x})\nabla_{x}^{n-i}\xi_{t})\right\| \\ &\leq C\sum_{i+j\leq n}\left\||\nabla_{x}^{i}\xi_{t}||\nabla_{x}^{j}\xi_{t}|\right\| \leq C\sum_{i+j\leq n}\left\|\xi_{t}\right\|_{i}\left\|\xi_{t}\right\|_{j+1} \leq C\left\|\xi_{t}\right\|_{n+1}, \\ \|\nabla_{t}\nabla_{x}^{n+2}\xi_{x} - \nabla_{x}^{n+3}\xi_{t}\| &= \left\|\sum_{i=0}^{n+1}\nabla_{x}^{i}(R(\xi_{t},\xi_{x})\nabla_{x}^{n+1-i}\xi_{x})\right\| \\ &\leq C\left(\left\||\xi_{t}||\nabla_{x}^{n+1}\xi_{x}|\right\| + \sum_{i=0}^{n+1}\left\|\nabla_{x}\xi_{t}\right\|\right) \leq C\left(\|\xi_{t}\|_{1}\|\xi_{x}\|_{n+1} + \|\xi_{t}\|_{n+1}\right). \end{aligned}$$

$$\leq C \|\xi_t\|_{n+1},$$

$$\|w\|_{n+2} \leq C(1+\|\rho(x,|\xi_x|^2)\|_n^N) \||\xi_t|^2 - |\nabla_x \xi_x|^2 + |\xi_x|^4 \|_n$$

$$\leq C \left(\sum_{i+j \leq n} \|\xi_t\|_i \|\xi_t\|_{j+1} + \sum_{i+j \leq n, \ i \leq j} \|\nabla_x \xi_x\|_i \|\nabla_x \xi_x\|_{j+1} + 1 \right)$$

 $\leq C(\|\xi_t\|_{n+1} + \|\xi_x\|_1\|\xi_x\|_{n+2} + 1) \leq C(\|\xi_t\|_{n+1} + \|\xi_x\|_{n+2} + 1).$

Put

$$f := (w - |\xi_x|^2) \nabla_x \xi_x + 2w_x \xi_x - \frac{3}{2} \partial_x |\xi_x|^2 \xi_x.$$

Then,

$$\|f\|_{n+1} \le C(1 + \|\xi_x\|_{n+2} + \|\xi_x\|_{n+2} \|\xi_x\|_1 + \|w\|_{n+2} \|\xi_x\|_1 + \|w\|_2 \|\xi_x\|_{n+1})$$

$$\le C(1 + \|\xi_x\|_{n+2} + \|w\|_{n+2}) \le C(1 + \|\xi_x\|_{n+2} + \|\xi_t\|_{n+1}).$$

Using these, we have

$$\begin{aligned} &\frac{1}{2} \frac{d}{dt} \left\{ \|\nabla_x^{n+1} \xi_t\|^2 + (1+\varepsilon^2) \|\nabla_x^{n+2} \xi_x\|^2 \right\} \\ &= \langle \nabla_x^{n+1} \xi_t, \nabla_t \nabla_x^{n+1} \xi_t \rangle + (1+\varepsilon^2) \langle \nabla_x^{n+2} \xi_x, \nabla_t \nabla_x^{n+2} \xi_x \rangle \\ &\leq \langle \nabla_x^{n+1} \xi_t, \nabla_x^{n+1} \nabla_t \xi_t \rangle + (1+\varepsilon^2) \langle \nabla_x^{n+2} \xi_x, \nabla_x^{n+3} \xi_t \rangle \\ &+ C(\|\xi_t\|_{n+1} + \|\xi_x\|_{n+2})(1+\|\xi_t\|_{n+1}) \\ &\leq \langle \nabla_x^{n+1} \xi_t, \nabla_x^{n+1} (f+2\varepsilon \nabla_x^2 \xi_t - \mu \xi_t) \rangle + C(1+\|\xi_t\|_{n+1}^2 + \|\xi_x\|_{n+2}^2) \\ &\leq \langle \nabla_x^{n+1} \xi_t, 2\varepsilon \nabla_x^{n+3} \xi_t \rangle + C(1+\|\xi_t\|_{n+1}^2 + \|\xi_x\|_{n+2}^2) \\ &\leq C\{1+\|\nabla_x^{n+1} \xi_t\|^2 + (1+\varepsilon^2) \|\nabla_x^{n+2} \xi_x\|^2\}. \end{aligned}$$

Lemma 3.8. For any smooth initial data $\{\xi_0, \xi_1\}$, K > 0, T > 0 and m, $n \ge 0$, there is M > 0 with the following property:

Let ξ is a solution of $(\mathbb{E}W^{\xi\varepsilon})$ with $\varepsilon \in [0, 1]$ on [0, T). If $\|\xi_t\|$, $\|\xi_x\|_1 \leq K$ on $0 \leq t < T$, then ξ is smooth on $S^1 \times [0, T)$, and the derivatives are bounded as $\|\nabla_t^m \xi\|_{(n)} \leq M$.

Proof. By Lemma 3.7, the claim holds for $m \le 1$. Suppose that the claim holds up to *m*. In particular, we have C_x^{∞} bounds of ξ and $\nabla_t^{m-1}\xi_t$. Therefore, using

$$-(\partial_t^j w)_{xx} + \partial_t^j w = \partial_t^j f - \sum_{0 < i \le j} \binom{j}{i} \partial_t^i \rho \, \partial_t^{j-i} w$$

for $0 \le j \le m-1$, we have C_x^{∞} bounds of $\partial_t^{m-1} w$. Since $\nabla_t^{m+1} \xi_t$ is expressed as a polynomial of these lower derivatives, we get the result.

Proposition 3.9. The equation (EW^{ξ}) has a short time solution for any smooth initial data.

Proof. We put $K := \|\xi_1\|^2 + \|\xi_{0x}\|_1^2$ and take T > 0 in Lemma 3.5. Then, by Lemma 3.8, any solution has a priori estimate on $0 \le t < T$.

Let $[0, T_{\varepsilon})$ be the maximal interval such that a solution exists for ε . If $T_{\varepsilon} < T$, then ξ is smoothly and uniformly bounded on $[0, T_{\varepsilon})$, hence can be continued beyond T_{ε} . This contradicts to the definition of T_{ε} , therefore we see that $T_{\varepsilon} \ge T$. We conclude that a solution ξ exists on the interval [0, T) for each $\varepsilon > 0$, and these ξ 's have smooth uniform bounds on $S^1 \times [0, T)$.

Therefore, taking a sequence $\varepsilon_i \rightarrow 0$, we get a solution of

$$\begin{cases} \nabla_t \xi_t + \nabla_x^3 \xi_x + \mu \xi_t = (w - |\xi_x|^2) \nabla_x \xi_x + 2w_x \xi_x - \frac{3}{2} \partial_x |\xi_x|^2 \xi_x, \\ -w_{xx} + \rho(x, |\xi_x|^2) w = |\xi_t|^2 - |\nabla_x \xi_x|^2 + |\xi_x|^4, \\ \xi(x, 0) = \xi_0(0), \quad \xi_t(x, 0) = \xi_1(x). \end{cases}$$

Since $\rho(x, |\xi_x|^2) = |\xi_x|^2$ when ξ_x is sufficiently close to ξ_{0x} , we have a solution ξ of (EW^{ξ}) on some time interval. Once we have a short time solution ξ of (EW^{ξ}), we can estimate the solution as Lemma 3.8, and the solution ξ can be continued to the interval [0, *T*).

Proposition 3.10. Let ξ and $\tilde{\xi}$ be solutions of (EW^{ξ}) on [0, T). If ξ and $\tilde{\xi}$ have same smooth initial data, then they identically coincide.

Proof. To express the difference of two solutions, we use local coordinates. We fix the initial value $\{\xi_0, \xi_1\}$, and take a local coordinate U which contains the initial

value ξ_0 . In U, (EW^{ξ}) is expressed as:

$$\begin{cases} \xi_{tt}^{p} + \partial_{x}^{4}\xi^{p} + 4\Gamma_{q}^{p}r(\xi)\xi_{x}^{q}\partial_{x}^{3}\xi^{r} = F^{p}[\xi_{xx}, w_{x}, \xi_{t}], \\ -w_{xx} + g_{qr}(\xi)\xi_{x}^{q}\xi_{x}^{r}w = G[\xi_{xx}, \xi_{t}], \end{cases}$$

where $F^p[\xi_{xx}, w_x, \xi_t]$ is a polynomial of ξ_x^q , ξ_{xx}^q , w, w_x , ξ_t^q , functions of ξ^q , and $G[\xi_{xx}, \xi_t]$ is a polynomial of ξ_x^q , ξ_{xx}^q , ξ_t^q , functions of ξ^q . (We only note highest derivatives.)

Let $\{\tilde{\xi}, \tilde{w}\}$ be another solution of (EW^{ξ}) on $[0, t_1)$ $(t_1 \leq T)$. Applying Lemma 3.5 and Lemma 3.8 with $\varepsilon = 0$, we have smooth bounds of ξ and $\tilde{\xi}$. We put $\zeta := \tilde{\xi} - \xi$, $u := \tilde{w} - w$. Then, we see that

$$\zeta_{tt}^{p} + \partial_{x}^{4}\zeta^{p} + 4\Gamma_{q}{}^{p}{}_{r}(\xi)\xi_{x}^{q}\partial_{x}^{3}\zeta^{r}$$

equals to a sum of terms containing at least one of ζ_x , ζ_{xx} , u, u_x , ζ_t or the difference of the values of a function at $\tilde{\xi}$ and ξ . Similarly,

$$-u_{xx} + g_{qr}(\xi)\xi_x^q\xi_x^r u$$

equals to a sum of terms containing at least one of ζ_x , ζ_{xx} , ζ_t or the difference of the values of a function at ξ and ξ .

Therefore, we can estimate ζ and u linearly:

$$\begin{aligned} \left| \zeta_{tt}^{p} + \partial_{x}^{4} \zeta^{p} + 4 \Gamma_{q}^{p}{}_{r}(\xi) \xi_{x}^{q} \partial_{x}^{3} \zeta^{r} \right| &\leq C \left(|\zeta| + |\zeta_{x}| + |\zeta_{xx}| + |u| + |u_{x}| + |\zeta_{t}| \right), \\ \left| -u_{xx} + g_{qr}(\xi) \xi_{x}^{q} \xi_{x}^{q} u \right| &\leq C \left(|\zeta| + |\zeta_{x}| + |\zeta_{xx}| + |\zeta_{t}| \right). \end{aligned}$$

Regarding ζ as a vector field along ξ , these inequalities can be written using covariant derivation along ξ :

$$\|\nabla_t^2 \zeta + \nabla_x^4 \zeta\| \le C\{\|\zeta\|_2 + \|u\|_1 + \|\nabla_t \zeta\|\},\$$

$$\|-u_{xx} + |\xi_x|^2 u\| \le C\{\|\zeta\|_2 + \|\nabla_t \zeta\|\}.$$

Thus we have $||u||_1 \le C(||\zeta||_2 + ||\nabla_t \zeta||)$, and

$$\begin{aligned} &\frac{d}{dt} \{ \|\nabla_t \zeta\|^2 + \|\zeta\|_2^2 \} \\ &= 2 \langle \nabla_t \zeta, \nabla_t^2 \zeta \rangle + 2 \langle \zeta, \nabla_t \zeta \rangle + 2 \langle \nabla_x \zeta, \nabla_t \nabla_x \zeta \rangle + 2 \langle \nabla_x^2 \zeta, \nabla_t \nabla_x^2 \zeta \rangle \\ &\leq 2 \langle \nabla_t \zeta, \nabla_t^2 \zeta + \nabla_x^4 \zeta \rangle + 2 \langle \nabla_x \zeta, \nabla_x \nabla_t \zeta \rangle + C(\|\zeta\|_2^2 + \|\nabla_t \zeta\|^2) \\ &\leq C_1(\|\nabla_t \zeta\|^2 + \|\zeta\|_2^2), \end{aligned}$$

from which we see that $(\|\nabla_t \zeta\|^2 + \|\zeta\|_2^2)e^{-C_1t}$ is non-increasing, hence identically vanishes.

This proof applies at any time t_0 such that $\tilde{\xi}(t_0) = \xi(t_0)$. Therefore, the set $\{t \mid \tilde{\xi}(t) = \xi(t)\}$ is open and closed in [0, T), hence agrees to [0, T).

Combining Proposition 3.9 and Proposition 3.10, we get the following

Theorem 3.11. The equation (EW^{ξ}) has a unique short time solution for any smooth initial data.

REMARK 3.12. To show this theorem, we did not assume that $\mu \ge 0$. Hence the result is time-invertible. That is, a unique solution exists on some open time interval (-T, T) containing t = 0.

Corollary 3.13. The equation (EW) has a unique short time solution for any smooth initial data.

4. Singular perturbation

In this section, we assume that $\mu > 0$ and change the time variable t of (EW^{ξ}) to $\mu^{-1}t$.

$$(\mathrm{EW}^{\xi\mu}) \qquad \begin{cases} \mu^{-2}\nabla_t \xi_t + \nabla_x^3 \xi_x + \xi_t = (w - |\xi_x|^2)\nabla_x \xi_x + 2w_x \xi_x - \frac{3}{2}\partial_x |\xi_x|^2 \xi_x, \\ -w_{xx} + |\xi_x|^2 w = \mu^{-2} |\xi_t|^2 - |\nabla_x \xi_x|^2 + |\xi_x|^4, \\ \xi(x,0) = \xi_0(0), \quad \xi_t(x,0) = \mu \xi_1(x), \quad \int_0^1 \xi_0 \, dx = \int_0^1 \xi_1 \, dx = 0. \end{cases}$$

First, we show uniform existence and boundedness of solutions with respect to large μ . Constants T, M below are independent of μ .

Lemma 4.1. For any K > 0, there are T > 0 and M > 0 with the following property:

If ξ is a solution of $(\mathbb{EW}^{\xi\mu})$ on an interval $[0, t_1) \subset [0, T)$ and if its initial value satisfies $\|\xi_0\|$, $\|\xi_1\| \leq K$, then $\|\xi_x\|_1$, $\mu^{-1}\|\xi_t\| \leq M$ holds on $0 \leq t < t_1$.

Proof. It is similar to the proof of Lemma 3.5. We put

$$f = (w - |\xi_x|^2) \nabla_x \xi_x + 2w_x \xi_x - \frac{3}{2} \partial_x |\xi_x|^2 \xi_x,$$

and we have

$$\begin{split} &\frac{1}{2}\frac{d}{dt}\left\{\mu^{-2}\|\xi_t\|^2 + \|\nabla_x\xi_x\|^2\right\} + \|\xi_t\|^2 = \langle\xi_t, f\rangle + \langle\nabla_x\xi_x, R(\xi_t, \xi_x)\xi_x\rangle \\ &\leq \left(\frac{1}{4} + \frac{1}{4}\right)\|\xi_t\|^2 + \|f\|^2 + C(\|\xi_x\|_1^2\|\nabla_x\xi_x\|)^2. \end{split}$$

Here, $||f||^2$ is bounded by a polynomial of $X := \mu^{-2} ||\xi_t||^2 + ||\nabla_x \xi_x||^2 + ||\xi_x||^2$. Combining it with $d||\xi_x||^2/dt \le ||\xi_t||^2 + ||\nabla_x \xi_x||^2$, we have a μ -independent estimate of time derivative of X by a polynomial of X. Therefore, there is a μ -independent time T > 0 such that $||\xi_t|| \le C\mu$ and $||\xi_x||_1 \le C$ on [0, T).

Lemma 4.2. For any K > 0 and n > 0, there are M > 0 and $\mu_0 > 0$ with the following property:

Let ξ be a solution of $(\mathbb{EW}^{\xi\mu})$ on [0, T) with $\mu \ge \mu_0$. If its initial value satisfies $\|\xi_0\|_{n+1}$, $\|\xi_1\|_n \le K$ and if it satisfies $\|\xi_x\|_1$, $\mu^{-1}\|\xi_t\| \le K$ on [0, T), then it holds that $\|\xi_x\|_{n+1}$, $\|w\|_{n+1}$, $\mu^{-1}\|\xi_t\|_n \le M$ on [0, T).

Proof. It is similar to the proof of Lemma 3.7. Suppose that we have bounds: $\|\xi_x\|_{n+1}$, $\mu^{-1}\|\xi_t\|_n \leq M$. They imply that $\|\xi_x\|_{(n)}$, $\mu^{-1}\|\xi_t\|_{(n-1)} \leq C$, and,

$$||w||_{n+2}, ||f||_{n+1} \le C(1+\mu^{-1}||\xi_t||_{n+1}+||\xi_x||_{n+2})$$

$$\le C(1+\mu^{-1}||\nabla_x^{n+1}\xi_t||+||\nabla_x^{n+2}\xi_x||).$$

Using this, we have

$$\begin{split} &\frac{1}{2} \frac{d}{dt} \left\{ \mu^{-2} \| \nabla_x^{n+1} \xi_t \|^2 + \| \nabla_x^{n+2} \xi_x \|^2 \right\} + \| \nabla_x^{n+1} \xi_t \|^2 \\ &= \langle \nabla_x^{n+1} \xi_t, \mu^{-2} \nabla_t \nabla_x^{n+1} \xi_t \rangle + \langle \nabla_x^{n+2} \xi_x, \nabla_t \nabla_x^{n+2} \xi_x \rangle + \| \nabla_x^{n+1} \xi_t \|^2 \\ &\leq \langle \nabla_x^{n+1} \xi_t, \mu^{-2} \nabla_x^{n+1} \nabla_t \xi_t \rangle + \langle \nabla_x^{n+2} \xi_x, \nabla_x^{n+3} \xi_t \rangle + \| \nabla_x^{n+1} \xi_t \|^2 \\ &+ C \mu^{-2} \| \nabla_x^{n+1} \xi_t \| \cdot \mu \| \xi_t \|_{n+1} + C \| \xi_x \|_{n+2} \| \xi_t \|_{n+1} \\ &\leq \langle \nabla_x^{n+1} \xi_t, \nabla_x^{n+1} f \rangle + \left(C \mu^{-1} + \frac{1}{8} \right) (\| \nabla_x^{n+1} \xi_t \|^2 + \| \xi_t \|^2) + C \| \xi_x \|_{n+2}^2 \\ &\leq \left(C_1 \mu^{-1} + \frac{1}{4} \right) (\| \nabla_x^{n+1} \xi_t \|^2 + \| \xi_t \|^2) + C (1 + \| \nabla_x^{n+2} \xi_x \|^2). \end{split}$$

Assuming that $\mu \ge 4C_1$ and combining it with the first estimation:

$$\frac{1}{2}\frac{d}{dt}\left\{\mu^{-2}\|\xi_t\|^2+\|\nabla_x\xi_x\|^2\right\}\leq -\frac{1}{2}\|\xi_t\|^2+C,$$

we can estimate

$$X(t) := \mu^{-2} (\|\nabla_x^{n+1}\xi_t\|^2 + \|\xi_t\|^2) + (\|\nabla_x^{n+2}\xi_x\|^2 + \|\nabla_x\xi_x\|^2)$$

by $X'(t) \le C(1 + X(t))$. Hence we have $\|\xi_x\|_{n+2} \le C$, $\|\xi_t\|_{n+1} \le C\mu$. Substituting it to the estimate of $\|w\|_{n+2}$, we get $\|w\|_{n+2} \le C$.

Proposition 4.3. For any initial data ξ_0 and ξ_1 , there is T > 0 such that $(EW^{\xi\mu})$ has a solution on [0, T) for each $\mu > 0$. Moreover, for any $n \ge 0$, there are $\mu_0 > 0$

and M > 0 such that the solution with $\mu \ge \mu_0$ satisfies $\|\xi_x\|_n$, $\|w\|_n \le M$ and $\|\xi_t\|_n \le M\mu$ on [0, T).

Proof. Using Lemma 4.1 and Lemma 4.2, the proof is similar to that of Proposition 3.9. $\hfill \Box$

Let $\{\eta, v\}$ be a solution of the limiting equation $(\mu \to \infty)$ of $(EW^{\xi\mu})$ omitting initial data $\xi_t(x, 0)$.

(EP^{$$\eta$$})
$$\begin{cases} \eta_t + \nabla_x^3 \eta_x = (v - |\eta_x|^2) \nabla_x \eta_x + 2v_x \eta_x - \frac{3}{2} \partial_x |\eta_x|^2 \eta_x, \\ -v_{xx} + |\eta_x|^2 v = -|\nabla_x \eta_x|^2 + |\eta_x|^4, \\ \eta(x, 0) = \xi_0(0). \end{cases}$$

In [4] (Theorem 7.5), we know that the corresponding equation for closed curves in the euclidean space has a unique all time solution. Therefore, (EP^{η}) has a unique all time solution, via Lemma 2.2.

We regard function η as the 0-th approximation of ξ for $\mu \to \infty$. To compare ξ and η , we divide the interval $[0, \infty)$ so that the image $\eta(S^1 \times I)$ of each subinterval Iis contained in a local coordinate U of S^2 . For a solution ξ and an interval $[t_0, t_1) \subset I$ such that $\xi(S^1 \times [t_0, t_1))$ is contained in U, we denote by $\{\zeta, u\}$ the difference between ξ and η in the local coordinate, i.e., $\zeta^p := \xi^p - \eta^p$, u := w - v. We use the local expression of $(\mathbb{E}W^{\xi\mu})$:

$$\begin{cases} \mu^{-2} \left(\xi_{tt}^{p} + \Gamma_{q}{}^{p}{}_{r}(\xi)\xi_{t}^{q}\xi_{t}^{r} \right) + \partial_{x}^{4}\xi^{p} + 4\Gamma_{q}{}^{p}{}_{r}(\xi)\xi_{x}^{q}\partial_{x}^{3}\xi^{r} + \xi_{t}^{p} = F^{p}[\xi_{xx}, w_{x}], \\ -w_{xx} + g_{qr}(\xi)\xi_{x}^{q}\xi_{x}^{r}w = \mu^{-2}g_{qr}(\xi)\xi_{t}^{q}\xi_{t}^{r} + G[\xi_{xx}], \\ \xi(x, 0) = \xi_{0}(0), \quad \xi_{t}(x, 0) = \mu\xi_{1}(x), \quad \int_{0}^{1}\xi_{0} \, dx = \int_{0}^{1}\xi_{1} \, dx = 0, \end{cases}$$

where $F^p[\xi_{xx}, w_x]$ are polynomials of ξ_x , ξ_{xx} , w, w_x , functions of ξ , and $G[\xi_{xx}]$ is a polynomial of ξ_x , ξ_{xx} , functions of ξ . (We only note highest derivatives.) Since the local expression of (EP^{η}) is given by the above equations substituting $\mu^{-1} = 0$, $\{\zeta, u\}$ satisfies

$$\begin{cases} \mu^{-2} \left(\zeta_{tt}^{p} + 2\Gamma_{q}{}^{p}{}_{r}(\eta) \eta_{t}^{q} \zeta_{t}^{r} \right) + \partial_{x}^{4} \zeta^{p} + 4\Gamma_{q}{}^{p}{}_{r}(\eta) \eta_{x}^{q} \partial_{x}^{3} \zeta^{r} + \zeta_{t}^{p} \\ = F^{p} [\xi_{xx}, w_{x}] - F^{p} [\eta_{xx}, v_{x}] - 4\Gamma_{q}{}^{p}{}_{r}(\xi) \zeta_{x}^{q} \partial_{x}^{3} \xi^{r} - 4 \left(\Gamma_{q}{}^{p}{}_{r}(\xi) - \Gamma_{q}{}^{p}{}_{r}(\eta)\right) \eta_{x}^{q} \partial_{x}^{3} \xi^{r} \\ - \mu^{-2} \{\eta_{tt}^{p} + \Gamma_{q}{}^{p}{}_{r}(\xi) \eta_{t}^{q} \eta_{t}^{r} + \Gamma_{q}{}^{p}{}_{r}(\xi) \zeta_{t}^{q} \zeta_{t}^{r} + 2 (\Gamma_{q}{}^{p}{}_{r}(\xi) - \Gamma_{q}{}^{p}{}_{r}(\eta)) \eta_{t}^{q} \zeta_{t}^{r} \}, \\ - u_{xx} + g_{qr}(\xi) \xi_{x}^{q} \xi_{x}^{r} u = \mu^{-2} g_{qr}(\xi) \xi_{t}^{q} \xi_{t}^{r} + G[\xi_{xx}] - G[\eta_{xx}], \\ \zeta(x, 0) = 0, \quad \zeta_{t}(x, 0) = \mu \xi_{1}(x). \end{cases}$$

We regard ζ as a vector field along η . Then, we can rewrite the above expression as

$$(EW^{\zeta}) \\ \begin{cases} \mu^{-2} \nabla_{t}^{2} \zeta + \nabla_{x}^{4} \zeta + \nabla_{t} \zeta \\ = L_{1} [\nabla_{x}^{2} \zeta, u_{x}] + Q_{1} [\nabla_{x}^{2} \zeta, u_{x}; \nabla_{x}^{3} \zeta, u_{x}] - \mu^{-2} \{\nabla_{t} \eta_{t} + L_{2} [\zeta] + Q_{2} [\nabla_{t} \zeta; \nabla_{t} \zeta] \}, \\ -u_{xx} + |\xi_{x}|^{2} u \\ = \mu^{-2} \{ |\eta_{x}|^{2} + L_{3} [\nabla_{t} \zeta] + Q_{3} [\nabla_{t} \zeta; \nabla_{t} \zeta] \} + L_{4} [\nabla_{x}^{2} \zeta] + Q_{4} [\nabla_{x}^{2} \zeta; \nabla_{x}^{2} \zeta], \\ (|\xi_{x}|^{2} = |\eta_{x}|^{2} + L_{5} [\nabla_{x} \zeta] + Q_{5} [\nabla_{x} \zeta; \nabla_{x} \zeta]), \\ \zeta(x, 0) = 0, \quad \nabla_{t} \zeta(x, 0) = \mu \xi_{1}(x), \end{cases}$$

where L_i are linear, $|Q_i(\alpha; \beta)| \le C |\alpha| |\beta|$. (We only note highest derivatives.) To get estimate of $\{\zeta, u\}$, we need following

Lemma 4.4 ([5] Lemma 1.5). For any K_1 , $K_2 > 0$ and any T > 0, there are M > 0 and $\mu_0 > 0$ with the following property:

If $\mu \ge \mu_0$ and X(t), Y(t) and Z(t) are non-negative functions on [0, T) such that

$$X(0) \le K_1 \mu^{-2}, \quad |X'(0)| \le K_1, \quad Y(0) \le K_1, \quad Z(0) \le K_1 \mu^2,$$

and that

$$\begin{aligned} \mu^{-2} X''(t) + X'(t) &\leq K_1 \big(X(t) + \mu^{-2} Z(t) + \mu^{-2} \big) - K_2 Y(t), \\ Y'(t) + \mu^{-2} Z'(t) &\leq K_1 \big(Y(t) + 1 \big) - K_2 Z(t), \end{aligned}$$

on [0, T), then they satisfy

$$X(t) < M\mu^{-2}$$
, $Y(t) < M$ and $Z(t) < M\mu^{2}$

on [0, T).

Lemma 4.5. For any $n \ge 0$ and any K > 0, there are M > 0 and $\mu_0 > 0$ with the following property:

Let $\{\zeta, u\}$ be the solution of $(\mathbb{E}W^{\zeta})$ with $\mu \ge \mu_0$, defined on $[t_0, t_1) \subset [0, T)$. If $\|\zeta\|_n \le K\mu^{-1}$ at $t = t_0$, then $\|\zeta\|_n \le M\mu^{-1}$ holds on $[t_0, t_1)$.

Proof. Note that we have bounds of $\{\xi, w\}$ and $\{\eta, v\}$ by Proposition 4.3. Therefore, we know $\|\zeta\|_n \leq C$, $\|\nabla_t \zeta\|_n \leq C\mu$ and $\|u\|_n \leq C$. We may assume that $\mu \geq \mu_0 \geq 1$. For

$$h := \mu^{-2}(|\eta_x|^2 + L_3[\nabla_t \zeta] + Q_3[\nabla_t \zeta; \nabla_t \zeta]) + L_4[\nabla_x^2 \zeta] + Q_4[\nabla_x^2 \zeta; \nabla_x^2 \zeta],$$

we have

$$\|h\|_{n} \leq C\{\mu^{-2}(1+\|\nabla_{t}\zeta\|_{n}+\|\nabla_{t}\zeta\|_{1}\|\nabla_{t}\zeta\|_{n})+\|\zeta\|_{n+2}+\|\zeta\|_{3}\|\zeta\|_{n+2}\}$$

$$\leq C(\mu^{-2}+\mu^{-1}\|\nabla_{t}\zeta\|_{n}+\|\zeta\|_{n+2}),$$

and, $\|u\|_{n+2} \leq C \|h\|_n \leq C(\mu^{-2} + \mu^{-1} \|\nabla_t \zeta\|_n + \|\zeta\|_{n+2})$. And, for

$$f := L_1[\nabla_x^2\zeta, u_x] + Q_1[\nabla_x^2\zeta, u_x; \nabla_x^3\zeta, u_x] - \mu^{-2}(\nabla_t \eta_t + L_2[\zeta] + Q_2[\nabla_t \zeta; \nabla_t \zeta]),$$

we have

$$\|f\|_{n} \leq C\{\|\zeta\|_{n+2} + \|u\|_{n+1} + \mu^{-2}(1 + \|\nabla_{t}\zeta\|_{1} \|\nabla_{t}\zeta\|_{n})\}$$

$$\leq C\{\|\zeta\|_{n+2} + \mu^{-2} + \mu^{-1} \|\nabla_{t}\zeta\|_{n}\}.$$

Put $X_n(t) := \|\nabla_x^n \zeta\|$ and $Z_n(t) := \|\nabla_x^n \nabla_t \zeta\|$. Then, we see that

$$\begin{split} (X_0^{2})' &= 2\langle \zeta, \nabla_t \zeta \rangle \leq 2X_0 Z_0, \\ (X_1^{2})' &= 2\langle \nabla_x \zeta, \nabla_t \nabla_x \zeta \rangle \leq -2\langle \nabla_x \zeta, \nabla_x \nabla_t \zeta \rangle + C \|\zeta\|_1 \|\zeta\| \\ &\leq 2X_2 Z_0 + C(X_0^2 + X_1^2), \\ \mu^{-2}(Z_i^{2})' + 2Z_i^2 + (X_{i+2}^2)' \\ &= 2\langle \nabla_x^i \nabla_t \zeta, \mu^{-2} \nabla_t \nabla_x^i \nabla_t \zeta + \nabla_t \nabla_x^i \zeta \rangle + 2\langle \nabla_x^{i+2} \zeta, \nabla_t \nabla_x^{i+2} \zeta \rangle \\ &\leq 2\langle \nabla_x^i \nabla_t \zeta, \nabla_x^i f \rangle + C \|\nabla_x^i \nabla_t \zeta\| (\mu^{-2} \|\nabla_t \zeta\|_{i-1} + \|\zeta\|_{i-1}) + C \|\nabla_x^{i+2} \zeta\| \|\zeta\|_{i+1} \\ &\leq C Z_i \{X_{i+2} + X_0 + \mu^{-2} + \mu^{-1} (Z_i + Z_0)\} + C(X_{i+2}^2 + X_0^2). \end{split}$$

Therefore,

$$\begin{split} \mu^{-2}(\|\nabla_{t}\zeta\|_{n}^{2})' + (\|\zeta\|_{n+2}^{2})' + 2\|\nabla_{t}\zeta\|_{n}^{2} \\ &\leq C\|\zeta\|_{n+2}^{2} + C\mu^{-1}\|\nabla_{t}\zeta\|_{n}^{2} + C\mu^{-2} + C\sum_{i=0}^{n} Z_{i}(X_{i+2} + X_{0}) \\ &\leq \frac{1}{2}\|\nabla_{t}\zeta\|_{n}^{2} + C\|\zeta\|_{n+2}^{2} + C_{1}\mu^{-1}\|\nabla_{t}\zeta\|_{n}^{2} + C\mu^{-2}, \\ \mu^{-2}(\|\nabla_{t}\zeta\|_{n}^{2})' + (\|\zeta\|_{n+2}^{2})' \leq C(\|\zeta\|_{n+2}^{2} + \mu^{-2}) - \|\nabla_{t}\zeta\|_{n}^{2} \end{split}$$

if $\mu \geq 2C_1$.

We also have,

$$\begin{split} \mu^{-2}(X_{i}^{2})'' + (X_{i}^{2})' + 2X_{i+2}^{2} \\ &= 2\mu^{-2} \|\nabla_{t} \nabla_{x}^{i} \zeta\|^{2} + 2\langle \nabla_{x}^{i} \zeta, \mu^{-2} \nabla_{t}^{2} \nabla_{x}^{i} \zeta + \nabla_{t} \nabla_{x}^{i} \zeta + \nabla_{x}^{i+4} \zeta \rangle \end{split}$$

MOTION OF AN ELASTIC WIRE

$$\leq 3\mu^{-2} \|\nabla_{x}^{i}\nabla_{t}\zeta\|^{2} + 2\langle\nabla_{x}^{i}\zeta,\nabla_{x}^{i}f\rangle + C\mu^{-2} \|\zeta\|_{i-1}^{2} + C\|\nabla_{x}^{i}\zeta\|\{\mu^{-2}(\|\nabla_{t}\zeta\|_{i-1} + \|\zeta\|_{i-2}) + \|\zeta\|_{i-1}\} \leq 3\mu^{-2}Z_{i}^{2} + CX_{i}\{X_{i+2} + X_{0} + \mu^{-2} + \mu^{-1}(Z_{i} + Z_{0})\} + C\mu^{-2}(X_{i}^{2} + X_{0}^{2}) + CX_{i}\{\mu^{-2}(Z_{i} + Z_{0}) + X_{i} + X_{0}\} \leq X_{i+2}^{2} + C\{X_{i}^{2} + X_{0}^{2} + \mu^{-2}(Z_{i}^{2} + Z_{0}^{2}) + \mu^{-4}\}, \mu^{-2}(\|\zeta\|_{n}^{2})'' + (\|\zeta\|_{n}^{2})' \leq C\{\|\zeta\|_{n}^{2} + \mu^{-2}\|\nabla_{t}\zeta\|_{n}^{2} + \mu^{-4}\} - \|\zeta\|_{n+2}^{2}.$$

Setting $X := \|\zeta\|_n^2$, $Y := \|\nabla_x^{n+2}\zeta\|^2$ and $Z := \|\nabla_t\zeta\|_n^2$ in Lemma 4.4, we have $\|\zeta\|_n \le C\mu^{-1}$.

Lemma 4.6. For any $n, m \ge 0$ and K > 0, there are M > 0 and $\mu_0 > 0$ with the following property:

Let $\{\zeta, u\}$ be the solution of (EW^{ζ}) with $\mu \ge \mu_0$, defined on $[t_0, t_1) \subset [0, T)$. If $\|\nabla_t^m \zeta\|_n \le K \mu^{2m-1}$ at $t = t_0$, then

$$\begin{aligned} \|\nabla_t^m \zeta\|_{(n)} &\leq M(\mu^{-1} + \mu^{2m-1} e^{-\mu^2 t/2}), \\ \|\partial_t^m u\|_{(n)} &\leq M(\mu^{-1} + \mu^{2m} e^{-\mu^2 t/2}) \end{aligned}$$

hold on $[t_0, t_1)$.

Proof. We put $V_j := \mu^{-1} + \mu^j e^{-\mu^2 t/2}$. Note the log-convexity:

$$V_j^2 \le V_{j-1}V_{j+1}$$
 and $V_j V_k \le V_0 V_{j+k} \le (1+\mu_0^{-1})V_{j+k}$ for $j, k \ge 0$.

We know that $\|\nabla_t \zeta\|_{(n)} \leq C\mu$, $\|u\|_{(n)} \leq C$ by Proposition 4.3, and $\|\zeta\|_{(n)} \leq C\mu^{-1}$ by Lemma 4.5. In particular, $\|\zeta\|_{(n)} \leq CV_{-1}$ holds. We prove the estimate of $\partial_t^m u$ and the estimate of $\nabla_t^{m+1}\zeta$, assuming the estimate of $\partial_t^j u$ and $\nabla_t^{j+1}\zeta$ for j < m.

First, we estimate $\partial_t^m u$. Put

$$h := \mu^{-2}(|\eta_x|^2 + L_3[\nabla_t \zeta] + Q_3[\nabla_t \zeta; \nabla_t \zeta]) + L_4[\nabla_x^2 \zeta] + Q_4[\nabla_x^2 \zeta; \nabla_x^2 \zeta].$$

It is estimated as

$$\begin{aligned} \|\partial_t^m h\|_{(n)} &\leq C\{\mu^{-2}(1+\|\nabla_t^{m+1}\zeta\|_{(n)}+V_{2m-1}\\ &+\|\nabla_t\zeta\|_{(n)}\|\nabla_t^{m+1}\zeta\|_{(n)}+V_3^*V_{2m-1}\}+V_{2m-1}\}\\ &\leq C\{\mu^{-1}\|\nabla_t^{m+1}\zeta\|_{(n)}+V_{2m}\},\end{aligned}$$

where V_3^* appears only if $m \ge 2$. Therefore, we have

$$\begin{aligned} \|\partial_t^m u\|_{(n+2)} &\leq \|\partial_t^m h\|_{(n)} + C \sum_{j=1}^m \|\partial_t^j |\xi_x|^2 \|_{(n)} \|\partial_t^{m-j} u\|_{(n)} \\ &\leq C\{\mu^{-1} \|\nabla_t^{m+1} \zeta\|_{(n)} + V_{2m}\} + C \sum_{j=1}^m (1+V_{2j-1}) V_{2(m-j)} \\ &\leq C\{\mu^{-1} \|\nabla_t^{m+1} \zeta\|_{(n)} + V_{2m}\}. \end{aligned}$$

Now, we estimate $\nabla_t^{m+1}\zeta$. Put

$$f := L_1[\nabla_x^2 \zeta, u_x] + Q_1[\nabla_x^2 \zeta, u_x; \nabla_x^3 \zeta, u_x] - \mu^{-2}(\nabla_t \eta_t + L_2[\zeta] + Q_2[\nabla_t \zeta; \nabla_t \zeta]).$$

Then,

$$\begin{split} \|\nabla_t^m f\|_{(n)} &\leq C\{V_{2m-1} + \|\partial_t^m u\|_{(n+1)} + \|u\|_{(n+1)}\|\partial_t^m u\|_{(n+1)} \\ &+ \mu^{-2}(1 + V_{2m-1} + \|\nabla_t \zeta\|_{(n)}\|\nabla_t^{m+1}\zeta\|_{(n)} + V_3^* V_{2m-1})\} \\ &\leq C\{\mu^{-1}\|\nabla_t^{m+1}\zeta\|_{(n)} + V_{2m}\}, \end{split}$$

where V_3^* appears only if $m \ge 2$. Therefore,

$$\begin{aligned} \|\nabla_t^m (\mu^{-2} \nabla_t^2 \zeta + \nabla_t \zeta)\|_{(n)} &\leq \|\nabla_t^m \zeta\|_{(n+4)} + \|\nabla_t^m f\|_{(n)} \\ &\leq C\{\mu^{-1} \|\nabla_t^{m+1} \zeta\|_{(n)} + V_{2m}\}. \end{aligned}$$

Thus,

$$\begin{split} \mu^{-2} \frac{\partial}{\partial t} |\nabla_x^n \nabla_t^{m+1} \zeta|^2 + 2 |\nabla_x^n \nabla_t^{m+1} \zeta|^2 \\ &= 2 \big(\nabla_x^n \nabla_t^{m+1} \zeta, \, \mu^{-2} \nabla_t \nabla_x^n \nabla_t^{m+1} \zeta + \nabla_x^n \nabla_t^{m+1} \zeta \big) \\ &\leq 2 \big(\nabla_x^n \nabla_t^{m+1} \zeta, \, \nabla_x^n (\mu^{-2} \nabla_t^{m+2} \zeta + \nabla_t^{m+1} \zeta) \big) \\ &+ C \mu^{-2} |\nabla_x^n \nabla_t^{m+1} \zeta| ||\nabla_t^{m+1} \zeta||_{(n-1)} \\ &\leq C |\nabla_x^n \nabla_t^{m+1} \zeta| \{ \mu^{-1} ||\nabla_t^{m+1} \zeta||_{(n)} + V_{2m} \}. \end{split}$$

From this, for $X(t) := \|\nabla_t^{m+1}\zeta\|_{(n)}^2$, we have

$$\mu^{-2}X'(t) + 2X(t) \le C_1\mu^{-1}X(t)^2 + CV_{2m}X(t) \le \left(\frac{1}{2} + C_1\mu^{-1}\right)X(t)^2 + CV_{2m}^2,$$

where $X'(t) = \limsup_{\delta \to +0} \{X(t+\delta) - X(t)\}/\delta$. We set $\mu_0 \le 2C_1$. Then,

$$\mu^{-2}X'(t) + X(t) \le C_2(\mu^{-2} + \mu^{4m}e^{-\mu^2 t}),$$

MOTION OF AN ELASTIC WIRE

$$X(t) \le X(t_0)e^{-\mu^2 t} + C_2(\mu^{-2} + \mu^{4m+2}e^{-\mu^2 t})$$

$$\le C(\mu^{-2} + \mu^{4m+2}e^{-\mu^2 t}),$$

that is, $\|\nabla_t^{m+1}\zeta\|_{(n)}^2 \leq CV_{2m+1}$.

Substituting it to the estimate of $\|\partial_t^m u\|_{(n+2)}$, we get the estimation of $\partial_t^m u$.

Proposition 4.7. For any initial data $\{\xi_0, \xi_1\}$, any interval $[t_0, t_1) \subset [0, T)$ and any local coordinate U of S^2 such that the image $\eta(S^1 \times [t_0, t_1))$ is contained in U, there exists $\mu_0 > 0$ with the following property:

If ξ is a solution of $(\mathbb{EW}^{\xi\mu})$ on [0, T), then the image $\xi(S^1 \times [t_0, t_1))$ is contained in U. Moreover, ξ uniformly converges to η on [0, T) when $\mu \to \infty$.

Proof. We divide the interval [0, T) so that the image $\eta(S^1 \times I)$ of each subinterval I is included to a local coordinate U_I .

Note that ζ is defined only on each short time interval.

Starting from t = 0 and applying this Lemma on each time interval where $\{\zeta, u\}$ is defined, we see that $\|\zeta\|_n$ is small for large μ .

We sum up these results, and get the following

Theorem 4.8. For any non-negative integers m, n and any positive number T, there are positive numbers μ_0 and M with the following properties:

For each $\mu \ge \mu_0$, there exists a solution ξ of $(EW^{\xi\mu})$ on [0, T), and ξ uniformly converges to η when $\mu \to \infty$. More precisely,

$$|\partial_t^m \partial_x^n (\xi^p - \eta^p)| \le M(\mu^{-1} + \mu^{2m-1} e^{-\mu^2 t/2})$$

holds on each local coordinate.

REMARK 4.9. In general, we cannot expect uniform estimation on the whole time $[0, \infty)$. The limit $\eta(\infty)$ can be an unstable elastic curve, and in that case, $\xi(\infty)$ and $\eta(\infty)$ discontinuously depend on the initial data.

Corollary 4.10. For any positive number T, there exists a unique solution γ of (EW^{τ}) on [0, T) for sufficiently large $\mu > 0$. Moreover, the solution converges to a solution η of (EP) when $\mu \to \infty$.

References

- [1] R. Courant and D. Hilbert: Methods of mathematical physics Vol. I, Interscience publishers INC, New York, (1966).
- [2] R. Caflisch and J. Maddocks: *Nonlinear dynamical theory of the elastica*, Proc of the Royal Society of Edinburgh, **99A** (1984), 1–23.
- [3] B. Coleman, et al.: On the dynamics of rods in the theory of Kirchhoff and Clebsch, Arch. Rat. Mech. Anal. 121 (1993), 339–359.
- [4] N. Koiso: On the motion of a curve towards elastica, Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger (Collection SMF Séminaires & Congrès no 1, ed. A. L. Besse). (1996), 403–436.
- [5] N. Koiso: On singular perturbation of a semilinear hyperbolic equation, Calc. Var. 4 (1996), 89–101.
- [6] N. Koiso: Convergence towards an elastica in a riemannian manifold, Osaka J. Math. 37 (2000), 467–487.
- [7] J. Langer and D.A. Singer: *Knotted elastic curves in R³*, J. London Math. Soc. **30** (1984), 512– 520.
- [8] J. Langer and D.A. Singer: Curve straightening and a minimax argument for closed elastic curves, Topology, 24 (1985), 75–88.
- [9] R. Racke: Lectures on nonlinear evolution equations (initial value problem), Braunschweig; Wiesbaden: Vieweg, (Aspects of mathematics: E; Vol 19), 1992.

Department of Mathematics Faculty of Science Osaka University Toyonaka, Osaka, 560-0043 Japan