ON MOTION OF AN ELASTIC WIRE AND SINGULAR PERTURBATION OF A 1-DIMENSIONAL PLATE EQUATION

Noritito KOISO

(Received March 23, 1999)

1. Introduction and preliminaries

Consider a springy circle wire in the euclidean space \mathbf{R}^{3}. We characterize such a wire as a closed curve $\gamma=\gamma(x)$ with unit line element and fixed length. For such a curve, its elastic energy is given by

$$
E(\gamma)=\int_{0}^{L}\left|\gamma_{x x}\right|^{2} d x
$$

Solutions of the corresponding Euler-Lagrange equation are called elastic curves. Closed elastic curves in the euclidean space are classified in [7]. We discuss on motion of a circle wire governed by the elastic energy.

We will see that the equation becomes an initial value problem for $\gamma=\gamma(x, t)$:

$$
\left\{\begin{array}{l}
\gamma_{t t}+\partial_{x}^{4} \gamma+\mu \gamma_{t}=\partial_{x}\left\{\left(w-2\left|\gamma_{x x}\right|^{2}\right) \gamma_{x}\right\} \tag{EW}\\
-w_{x x}+\left|\gamma_{x x}\right|^{2} w=2\left|\gamma_{x x}\right|^{4}-\left|\partial_{x}^{3} \gamma\right|^{2}+\left|\gamma_{t x}\right|^{2}, \\
\gamma(x, 0)=\gamma_{0}(x), \quad \gamma_{t}(x, 0)=\gamma_{1}(x), \quad\left(\gamma_{0 x}, \gamma_{1 x}\right)=0
\end{array}\right.
$$

Here, μ is a constant which represents the resistance, and the ODE for w corresponds to the constrained condition $\left(\gamma_{x}, \gamma_{t x}\right) \equiv 0$ (i.e., $\left|\gamma_{x}\right| \equiv 1$.) When the resistance μ is very large, we can analyze the behavior of the solution replacing the time parameter t to $\tau=\mu^{-1} t$. Then, (EW) becomes
$\left(\mathrm{EW}^{\tau}\right) \quad\left\{\begin{array}{l}\mu^{-2} \gamma_{\tau \tau}+\partial_{x}^{4} \gamma+\gamma_{\tau}=\partial_{x}\left\{\left(w-2\left|\gamma_{x x}\right|^{2}\right) \gamma_{x}\right\}, \\ -w_{x x}+\left|\gamma_{x x}\right|^{2} w=2\left|\gamma_{x x}\right|^{4}-\left|\partial_{x}^{3} \gamma\right|^{2}+\mu^{-2}\left|\gamma_{\tau x}\right|^{2}, \\ \gamma(x, 0)=\gamma_{0}(x), \quad \gamma_{\tau}(x, 0)=\mu \gamma_{1}(x), \quad\left(\gamma_{0 x}, \gamma_{1 x}\right)=0 .\end{array}\right.$
And, when $\mu \rightarrow \infty$, we get, omitting initial data $\gamma_{\tau}(x, 0)$,

$$
\left\{\begin{array}{l}
\gamma_{\tau}+\partial_{x}^{4} \gamma=\partial_{x}\left\{\left(w-2\left|\gamma_{x x}\right|^{2}\right) \gamma_{x}\right\} \tag{EP}\\
-w_{x x}+\left|\gamma_{x x}\right|^{2} w=2\left|\gamma_{x x}\right|^{4}-\left|\partial_{x}^{3} \gamma\right|^{2} \\
\gamma(x, 0)=\gamma_{0}(x)
\end{array}\right.
$$

The equation (EP), treated in [4] and [5], has a unique all time solution for any initial data, and the solution converges to an elastic curve. In this paper, we will prove:

1) The equation (EW) has a unique short time solution for any initial data. (Corollary 3.13.)
2) If μ is large, then the solution of $\left(\mathrm{EW}^{\tau}\right)$ exists for long time, and converges to a solution of (EP) when $\mu \rightarrow \infty$. (Corollary 4.10.)
Note that in 2), the derivative $\gamma_{\tau}(x, 0)=\mu \gamma_{1}(x)$ diverges when $\mu \rightarrow \infty$.
If (EW) contained no 3 rd derivatives $\partial_{x}^{3} \gamma$ and was not coupled with ODEs, i.e., if our equation was $\gamma_{t t}+\partial_{x}^{4} \gamma+\mu \gamma_{t}=F\left(\gamma, \gamma_{x}, \gamma_{x x}, \gamma_{t}\right)$, it is standard to show the short time existence of solutions. (See [9] Section 11.7.) Being coupled is not main difficulty to solve the equation. We can overcome it by careful estimation similar to [4]. However, the difficulty due to the presence of 3rd derivatives is essential. We will overcome the difficulty using the new unknown variable $\xi:=\gamma_{x} \in S^{2}$. As we will see in Lemma 2.2 , the equation for ξ does not contain 3 rd derivatives $\nabla_{x}^{2} \xi_{x}$. Owing to the lack of the term, we will be able to solve $\left(E W^{\xi}\right)$ by a usual method: perturb to a parabolic equation and show the solution of the parabolic equation converges to a solution of the original equation. This will be done in Section 3.

Remark 1.1. In this paper, we only treat curves in the 3-dimensional euclidean space \mathbf{R}^{3}. But, the result holds also on the case of any dimensional euclidean space, with no modification of proofs.

By similarity, we may assume that the length of the initial curve γ_{0} is 1 . From now on, a closed curve means a map from $S^{1} \equiv \mathbf{R} / \mathbf{Z}$ into the euclidean space \mathbf{R}^{3} or the unit sphere S^{2}. The inner product of vectors is denoted by $(*, *)$, and the norm is denoted by $|*|$. We also use the covariant derivation ∇ on S^{2}. For a tangential vector field $X(x)$ along a curve $\gamma(x)$ on S^{2}, the covariant derivative is defined by $\nabla_{x} X:=\left(X^{\prime}(x)\right)^{T}$. The covariant differentiation is non-commutative, because the curvature tensor R of S^{2} is non-zero. For example, if $X(x, t)$ is a tangential vector field along a family $\gamma(x, t)$ of curves on S^{2}, we have

$$
\nabla_{x} \nabla_{t} X-\nabla_{t} \nabla_{x} X=R\left(\gamma_{x}, \gamma_{t}\right) X=\left(\gamma_{t}, X\right) \gamma_{x}-\left(\gamma_{x}, X\right) \gamma_{t}
$$

For functions on S^{1} and vector fields along a closed curve, we use L_{2}-inner product $\langle *, *\rangle$ and L_{2}-norm $\|*\|$. Sobolev H^{n}-norm is denoted by $\|*\|_{n}$. For a tensor field along the closed curve on $S^{2},\|*\|_{n}$ is defined using covariant derivation. That is, $\|\zeta\|_{n}^{2}=\sum_{i=0}^{n}\left\|\nabla_{x}^{i} \zeta\right\|^{2}$. We also use $C^{n} \operatorname{norm}\|*\|_{(n)}$. In particular, $\|*\|_{(0)}=\max |*|$.

2. The equations

To derive the equation of motion, we use Hamilton's principle. For a moving curve $\gamma=\gamma(t, x)$, the velocity energy is given by $\left\|\gamma_{t}\right\|^{2}$ and the elastic energy is given by $\left\|\gamma_{x x}\right\|^{2}$. (By rescaling, we omit coefficients.) Therefore, the real motion is a stationary point of the integral

$$
L(\gamma):=\int_{t_{1}}^{t_{2}}\left\|\gamma_{t}\right\|^{2}-\left\|\gamma_{x x}\right\|^{2} d t
$$

That is, the integral

$$
L^{\prime}:=\int_{t_{1}}^{t_{2}}\left\langle\gamma_{t}, \delta_{t}\right\rangle-\left\langle\gamma_{x x}, \delta_{x x}\right\rangle d t
$$

should vanish for all $\delta=\delta(t, x)$ satisfying $\delta\left(t_{1}, x\right)=\delta\left(t_{2}, x\right)=0$ and the constrained condition (γ_{x}, δ_{x}) $\equiv 0$.

From integration by parts, we see

$$
L^{\prime}=\int_{t_{1}}^{t_{2}}-\left\langle\gamma_{t t}+\partial_{x}^{4} \gamma, \delta\right\rangle d t
$$

On the other hand, the orthogonal complement of the space $V:=\left\{\delta \mid\left(\gamma_{x}, \delta_{x}\right) \equiv 0\right\}$ at each time t is $V^{\perp}=\left\{\left(u \gamma_{x}\right)_{x} \mid u=u(x)\right\}$. Therefore, γ is stationary if and only if $\gamma_{t} \in V$ and $\gamma_{t t}+\partial_{x}^{4} \gamma=\left(u \gamma_{x}\right)_{x}$ for some function $u=u(t, x)$.

Remark 2.1. Many papers (e.g., [2], [3]) apply Hamilton's principle using $\left|\gamma_{x t}\right|^{2}+$ $\left|\gamma_{t}\right|^{2}$ as the kinetic energy, and gets a wave equation. The wave equation is completely different from (EW). A linear version of our equation can be found, for example, in [1] p. 246.

This difference can be explained as follows. We characterize a planer thick wire of length L, of radius R and of unit weight per length as a map $u=u(x, y):[0, L] \times$ $[-R, R] \rightarrow \mathbf{R}^{2}$ such that $u(x, y)=\gamma(x)+y J \gamma_{x}(x)$, where γ is a curve of unit line element and J is the $\pi / 2$ rotation. When u moves, i.e. when we consider a family $u=u(x, y, t)$ of such curves, the velocity energy becomes

$$
\frac{1}{2 R} \int_{0}^{L} d x \int_{-R}^{R}\left|u_{t}(x, y)\right|^{2} d y=\left\|\gamma_{t}\right\|^{2}+\frac{1}{3} R^{2}\left\|\gamma_{x t}\right\|^{2}
$$

Hence, our wire is infinitely thin, while previous papers treat thick wires.
In this paper, we treat slightly more general equation, equation with resistance μ. That is,

$$
\gamma_{t t}+\mu \gamma_{t}+\partial_{x}^{4} \gamma=\left(u \gamma_{x}\right)_{x}
$$

coupled with an ODE for u, which is derived from the constrained condition: $\left|\gamma_{x}\right| \equiv 1$. From

$$
0=\partial_{t}^{2}\left|\gamma_{x}\right|^{2}=2\left(\gamma_{t t x}, \gamma_{x}\right)+2\left|\gamma_{t x}\right|^{2}
$$

the unknown u satisfies

$$
\left(-\partial_{x}^{5} \gamma+\partial_{x}^{2}\left(u \gamma_{x}\right)-\mu \gamma_{t x}, \gamma_{x}\right)=-\left|\gamma_{t x}\right|^{2}
$$

Using $\left|\gamma_{x}\right|^{2} \equiv 1$, we can rewrite this to

$$
-u_{x x}+\left|\gamma_{x x}\right|^{2} u=2 \partial_{x}^{2}\left|\gamma_{x x}\right|^{2}-\left|\partial_{x}^{3} \gamma\right|^{2}+\left|\gamma_{t x}\right|^{2}
$$

and, putting $w:=u+2\left|\gamma_{x x}\right|^{2}$, we get (EW).
Since the principal part of (EW) is the operator of the plate equation:

$$
u_{t t}+\partial_{x}^{4} u
$$

we perturb it to a parabolic operator:

$$
\begin{aligned}
u_{t t}-2 \varepsilon u_{t x x} & +\left(1+\varepsilon^{2}\right) \partial_{x}^{4} u \\
& =\left(\partial_{t}-(\varepsilon+\sqrt{-1}) \partial_{x}^{2}\right)\left(\partial_{t}-(\varepsilon-\sqrt{-1}) \partial_{x}^{2}\right) u
\end{aligned}
$$

with $\varepsilon>0$. It is possible to show that a perturbed equation of (EW)

$$
\left\{\begin{array}{l}
\gamma_{t t}-2 \varepsilon \gamma_{t x x}+\left(1+\varepsilon^{2}\right) \partial_{x}^{4} \gamma+\mu \gamma_{t}=\partial_{x}\left\{\left(w-2\left|\gamma_{x x}\right|^{2}\right) \gamma_{x}\right\}, \\
-w_{x x}+\left|\gamma_{x x}\right|^{2} w=2\left|\gamma_{x x}\right|^{4}-\left|\partial_{x}^{3} \gamma\right|^{2}+\left|\gamma_{t x}\right|^{2}, \\
\gamma(x, 0)=\gamma_{0}(x), \quad \gamma_{t}(x, 0)=\gamma_{1}(x), \quad\left(\gamma_{0 x}, \gamma_{1 x}\right)=0
\end{array}\right.
$$

has a short-time solution. However, we cannot get uniform estimate when $\varepsilon \rightarrow 0$, because $\partial_{x}\left\{\left(w-2\left|\gamma_{x x}\right|^{2}\right) \gamma_{x}\right\}$ contains the third derivative of γ. To overcome this difficulty, we convert (EW) to an equation on S^{2}, and "remove" the third derivative.

We introduce a new unknown function ξ by $\xi=\gamma_{x}$. The function ξ is a family of closed curves on S^{2}.

Lemma 2.2. The equation (EW) is equivalent to equation
$\left(\mathrm{EW}^{\xi}\right) \quad\left\{\begin{array}{l}\nabla_{t} \xi_{t}+\nabla_{x}^{3} \xi_{x}+\mu \xi_{t}=\left(w-\left|\xi_{x}\right|^{2}\right) \nabla_{x} \xi_{x}+2 w_{x} \xi_{x}-\frac{3}{2} \partial_{x}\left|\xi_{x}\right|^{2} \xi_{x}, \\ -w_{x x}+\left|\xi_{x}\right|^{2} w=\left|\xi_{t}\right|^{2}-\left|\nabla_{x} \xi_{x}\right|^{2}+\left|\xi_{x}\right|^{4}, \\ \xi(x, 0)=\xi_{0}(0), \quad \xi_{t}(x, 0)=\xi_{1}(x), \quad \int_{0}^{1} \xi_{0} d x=\int_{0}^{1} \xi_{1} d x=0,\end{array}\right.$
and (EP) is equivalent to equation
$\left(\mathrm{EP}^{\xi}\right) \quad\left\{\begin{array}{l}\xi_{\tau}+\nabla_{x}^{3} \xi_{x}=\left(w-\left|\xi_{x}\right|^{2}\right) \nabla_{x} \xi_{x}+2 w_{x} \xi_{x}-\frac{3}{2} \partial_{x}\left|\xi_{x}\right|^{2} \xi_{x}, \\ -w_{x x}+\left|\xi_{x}\right|^{2} w=-\left|\nabla_{x} \xi_{x}\right|^{2}+\left|\xi_{x}\right|^{4}, \\ \xi(x, 0)=\xi_{0}(0), \quad \int_{0}^{1} \xi_{0} d x=0 .\end{array}\right.$
Proof. It is straightforward to check the following decomposition:

$$
\begin{aligned}
\xi_{x x} & =\nabla_{x} \xi_{x}-\left|\xi_{x}\right|^{2} \xi, \quad \xi_{t t}=\nabla_{t} \xi_{t}-\left|\xi_{t}\right|^{2} \xi \\
\partial_{x}^{3} \xi & =\nabla_{x}^{2} \xi_{x}-\left|\xi_{x}\right|^{2} \xi_{x}-\frac{3}{2} \partial_{x}\left|\xi_{x}\right|^{2} \xi \\
\partial_{x}^{4} \xi & =\nabla_{x}^{3} \xi_{x}-\left|\xi_{x}\right|^{2} \nabla_{x} \xi_{x}-\frac{5}{2} \partial_{x}\left|\xi_{x}\right|^{2} \xi_{x}+\left\{\left|\nabla_{x} \xi_{x}\right|^{2}+\left|\xi_{x}\right|^{4}-2 \partial_{x}^{2}\left|\xi_{x}\right|^{2}\right\} \xi
\end{aligned}
$$

Using these formulas, we see that the x-derivatives of (EW) imply (EW ${ }^{\xi}$). Conversely, $\left(\mathrm{EW}^{\xi}\right)$ implies the equation

$$
\xi_{t t}+\partial_{x}^{4} \xi+\mu \xi_{t}=\partial_{x}^{2}\left\{\left(w-2\left|\xi_{x}\right|^{2}\right) \xi\right\}
$$

Under the assumption: $\int_{0}^{1} \xi_{0} d x=\int_{0}^{1} \xi_{1} d x=0$, we see that the closedness condition: $\int_{0}^{1} \xi d x \equiv 0$ is satisfied. Let γ be the solution of an ODE:

$$
\begin{aligned}
& \gamma_{t t}+\mu \gamma_{t}=-\partial_{x}^{3} \xi+\partial_{x}\left\{\left(w-2\left|\xi_{x}\right|^{2}\right) \xi\right\} \\
& \gamma(x, 0)=\gamma_{0}(x), \quad \gamma_{t}(x, 0)=\gamma_{1}(x)
\end{aligned}
$$

Then

$$
\gamma_{x t t}+\mu \gamma_{x t}=-\partial_{x}^{4} \xi+\partial_{x}^{2}\left\{\left(w-2\left|\xi_{x}\right|^{2}\right) \xi\right\}=\xi_{t t}+\mu \xi_{t}
$$

and $\left(\gamma_{x}-\xi\right)_{t t}+\mu\left(\gamma_{x}-\xi\right)_{t} \equiv 0$. Hence $\gamma_{x} \equiv \xi$ and γ is a solution of (EW).
A similar calculation gives the equivalence of (EP) and (EP ${ }^{\xi}$).

3. Short time existence

In this section, we fix $\mu \in \mathbf{R}$.
To perturb $\left(\mathrm{EW}^{\xi}\right)$, we introduce a function $\rho(x, y)$. Since ξ_{0} is the derivative of a closed curve γ_{0} in the euclidean space, each component of ξ_{0} takes 0 at some x. Therefore, by Wirtinger's inequality, we have $\left\|\xi_{0 x}\right\|^{2} \geq \pi^{2}\left\|\xi_{0}\right\|^{2} \geq \pi^{2}$. (It is known in fact that $\left\|\xi_{0 x}\right\|^{2} \geq 4 \pi^{2}$.) Let $\delta(r)$ be a C^{∞} function on \mathbf{R} such that $\delta(r)=1$ on $|r| \leq \pi^{2} / 8, \delta(r)=0$ on $\pi^{2} / 4 \leq|r|$ and $0 \leq \delta(r) \leq 1$ on $\pi^{2} / 8 \leq|r| \leq \pi^{2} / 4$. We put

$$
\rho(x, y)=\pi^{2}+\delta\left(y^{2}-\left|\xi_{0 x}(x)\right|^{2}\right)\left(y^{2}-\pi^{2}\right)
$$

Fix an interval I such that $\left|\xi_{0 x}(x)\right|^{2} \geq \pi^{2} / 2$ for any $x \in I$. If $x \in I$ and $\mid y^{2}-$ $\left|\xi_{0 x}(x)\right|^{2} \mid \leq \pi^{2} / 4$, then $\rho(x, y) \geq \min \left\{\pi^{2}, y^{2}\right\} \geq \pi^{2} / 4$. And if $\left|y^{2}-\left|\xi_{0 x}(x)\right|^{2}\right| \geq \pi^{2} / 4$, then $\rho(x, y)=\pi^{2}$. Therefore, for any function $u(x)$,

$$
\int_{0}^{1} \rho(x, u(x)) d x \geq \frac{\pi^{2}}{4} \int_{I} d x
$$

Remark 3.1. Below, we use the function ρ only to ensure $\rho \geq 0$ everywhere and $\int_{0}^{1} \rho(x, u(x)) d x$ is bounded from below by a positive constant. Note that $\rho(x, y):=y$ satisfies this requirement if $\xi=\gamma_{x}$ for some closed curve γ in the euclidean space.

Proposition 3.2. Let $\xi_{0}(x)$ be a C^{∞} closed curve on S^{2} with $\left\|\xi_{0 x}\right\| \geq \pi$ and $\xi_{1}(x)$ a C^{∞} tangent vector field along ξ_{0}. Let ρ be the function defined as above. Then, equation
$\left(\mathrm{EW}^{\xi \varepsilon}\right) \quad\left\{\begin{array}{l}\nabla_{t} \xi_{t}-2 \varepsilon \nabla_{x}^{2} \xi_{t}+\left(1+\varepsilon^{2}\right) \nabla_{x}^{3} \xi_{x}+\mu \xi_{t} \\ =\left(w-\left|\xi_{x}\right|^{2}\right) \nabla_{x} \xi_{x}+2 w_{x} \xi_{x}-\frac{3}{2} \partial_{x}\left|\xi_{x}\right|^{2} \xi_{x}, \\ -w_{x x}+\rho\left(x,\left|\xi_{x}\right|^{2}\right) w=\left|\xi_{t}\right|^{2}-\left|\nabla_{x} \xi_{x}\right|^{2}+\left|\xi_{x}\right|^{4}, \\ \xi(x, 0)=\xi_{0}(0), \quad \xi_{t}(x, 0)=\xi_{1}(x)\end{array}\right.$
has a C^{∞} solution on some interval $0 \leq t<T$.

Proof. We can prove unique short-time existence of $\left(E W^{\xi \varepsilon}\right)$ by a similar method with that used in [4]. Here, we mention only two steps. One is an estimation of the ODE for w. Lemma 3.3 with the function ρ ensures estimation of w by ξ. Another, Lemma 3.4 , is a crucial point to use the contraction principle.

Lemma 3.3 ([4] Lemma 4.1, Lemma 4.2). Let a and b be L_{1}-functions on S^{1} such that $a \geq 0$ and $\|a\|_{L_{1}}>0$. Then, the ODE for a function w on S^{1}

$$
-w^{\prime \prime}+a w=b
$$

has a unique solution w, and the solution w is estimated as

$$
\begin{aligned}
\max |w| & \leq 2\left\{1+\|a\|_{L_{1}}^{-1}\right\} \cdot\|b\|_{L_{1}} \\
\max \left|w^{\prime}\right| & \leq 2\left\{1+\|a\|_{L_{1}}\right\} \cdot\|b\|_{L_{1}}
\end{aligned}
$$

Moreover, there exists universal constants $C>0$ and $N>0$ depending on n such that

$$
\begin{aligned}
\|w\|_{n+2} & \leq C\left(1+\|a\|_{n}^{N}\right)\|b\|_{n} \\
\|w\|_{(n+2)} & \leq C\left(1+\|a\|_{(n)}^{N}\right)\|b\|_{(n)}
\end{aligned}
$$

Lemma 3.4. We consider a linear PDE for u

$$
\left\{\begin{array}{l}
u_{t t}-2 \varepsilon u_{t x x}+\left(1+\varepsilon^{2}\right) \partial_{x}^{4} u=f \\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x)
\end{array}\right.
$$

If $f \in C^{2 \alpha}, u_{0} \in C_{x}^{4+2 \alpha}$ and $u_{1} \in C_{x}^{2+2 \alpha}$, then there is a unique solution $u \in C^{4+2 \alpha}$. Moreover, we have an estimation:

$$
\|u\|_{C^{4+2 \alpha}} \leq C\left\{\|f\|_{C^{2 \alpha}}+\left\|u_{0}\right\|_{C_{x}^{4+2 \alpha}}+\left\|u_{1}\right\|_{C_{x}^{2+2 \alpha}}\right\},
$$

where $\|*\|_{C_{x}^{n+2 \alpha}}$ means the Hölder norm for x-direction, and $\|*\|_{C^{n+2 \alpha}}$ means the weighted Hölder norm (t-derivatives are counted twice of x-derivatives.)

Proof. We decompose the equation to a parabolic equation as

$$
u_{t}-(\varepsilon+\sqrt{-1}) u_{x x}=v, \quad v_{t}-(\varepsilon-\sqrt{-1}) v_{x x}=f .
$$

Using the fundamental solution

$$
\Gamma(x, t)=\frac{1}{2 \sqrt{\pi} \sqrt{\varepsilon \pm \sqrt{-1} \sqrt{t}}} \exp \left(-\frac{x^{2}}{4(\varepsilon \pm \sqrt{-1}) t}\right)
$$

of the parabolic operator $\partial_{t}-(\varepsilon \pm \sqrt{-1}) \partial_{x}^{2}$, we can estimate as

$$
\begin{aligned}
\|u\|_{C^{4+2 \alpha}} & \leq C\left\{\|v\|_{C^{2+2 \alpha}}+\left\|u_{0}\right\|_{C_{x}^{4+2 \alpha}}\right\} \\
& \leq C\left\{\|f\|_{C^{2 \alpha}}+\left\|v_{0}\right\|_{C_{x}^{2+2 \alpha}}+\left\|u_{0}\right\|_{C_{x}^{4+2 \alpha}}\right\} \\
& \leq C\left\{\|f\|_{C^{2 \alpha}}+\left\|u_{1}\right\|_{C_{x}^{2+2 \alpha}}+\left\|u_{0}\right\|_{C_{x}^{4+2 \alpha}}\right\} .
\end{aligned}
$$

When we take the limit $\varepsilon \rightarrow 0$ in $\left(\mathrm{EW}^{\xi \varepsilon}\right)$, we should note that the term $\nabla_{x}^{3} \xi_{x}$ is quasi-linear, and contains the third derivative of ξ. In fact, in local coordinate system,

$$
\nabla_{x}^{3} \xi_{x}=\left\{\partial_{x}^{4} \xi^{p}+4 \Gamma_{q}{ }^{p}{ }_{r}(\xi) \xi_{x}^{q} \partial_{x}^{3} \xi^{r}\right\} \frac{\partial}{\partial x^{p}}+[\text { lower order terms }] .
$$

However, when we integrate it by parts, we can treat it as though it contained no third derivatives.

Lemma 3.5. For any $K>0$, there are $T>0$ and $M>0$ with the following property:

Let ξ be a solution of $\left(\mathrm{EW}^{\xi \varepsilon}\right)$ with $\varepsilon \in[0,1]$ on an interval $\left[0, t_{1}\right) \subset[0, T)$. If its initial value satisfies $\left\|\xi_{1}\right\|^{2}+\left\|\xi_{0 x}\right\|_{1}^{2} \leq K$, then $\left\|\xi_{t}\right\|^{2}+\left\|\xi_{x}\right\|_{1}^{2} \leq M$ holds on $0 \leq t<t_{1}$.

Proof. Put

$$
f=\left(w-\rho\left(x,\left|\xi_{x}\right|^{2}\right)\right) \nabla_{x} \xi_{x}+2 w_{x} \xi_{x}-\frac{3}{2} \partial_{x}\left|\xi_{x}\right|^{2} \xi_{x}
$$

We can estimate

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\{\left\|\xi_{t}\right\|^{2}+\left(1+\varepsilon^{2}\right)\left\|\nabla_{x} \xi_{x}\right\|^{2}\right\} \\
& \quad=\left\langle\xi_{t}, \nabla_{t} \xi_{t}\right\rangle+\left(1+\varepsilon^{2}\right)\left\langle\nabla_{x} \xi_{x}, \nabla_{t} \nabla_{x} \xi_{x}\right\rangle \\
& \quad=\left\langle\xi_{t}, \nabla_{t} \xi_{t}+\left(1+\varepsilon^{2}\right) \nabla_{x}^{3} \xi_{x}\right\rangle+\left(1+\varepsilon^{2}\right)\left\langle R\left(\xi_{t}, \xi_{x}\right) \xi_{x}, \nabla_{x} \xi_{x}\right\rangle \\
& \leq\left\langle\xi_{t}, 2 \varepsilon \nabla_{x}^{2} \xi_{t}+f\right\rangle-\mu\left\|\xi_{t}\right\|^{2}+C \max \left|\xi_{x}\right|^{2}\left\|\xi_{t}\right\|\left\|\nabla_{x} \xi_{x}\right\| \\
& \leq-2 \varepsilon\left\|\nabla_{x} \xi_{t}\right\|^{2}+\left\langle\xi_{t}, f\right\rangle-\mu\left\|\xi_{t}\right\|^{2}+C\left\|\xi_{x}\right\|_{1}^{2}\left\|\xi_{t}\right\|\left\|\nabla_{x} \xi_{x}\right\| \\
& \leq(1-\mu)\left\|\xi_{t}\right\|^{2}+\|f\|^{2}+C\left\|\xi_{x}\right\|_{1}^{2}\left(\left\|\xi_{t}\right\|^{2}+\left\|\nabla_{x} \xi_{x}\right\|^{2}\right),
\end{aligned}
$$

and,

$$
\frac{1}{2} \frac{d}{d t}\left\|\xi_{x}\right\|^{2}=\left\langle\xi_{x}, \nabla_{t} \xi_{x}\right\rangle=-\left\langle\nabla_{x} \xi_{x}, \xi_{t}\right\rangle \leq\left\|\nabla_{x} \xi_{x}\right\|^{2}+\left\|\xi_{t}\right\|^{2}
$$

Here, by Lemma 3.3, $\|f\| \leq C\left(1+\left\|\xi_{t}\right\|^{2}+\left\|\xi_{x}\right\|_{1}^{2}\right)^{N_{1}}$. Therefore, putting $X(t):=$ $1+\left\|\xi_{t}\right\|^{2}+\left(1+\varepsilon^{2}\right)\left\|\xi_{x}\right\|_{1}^{2}$, we get

$$
X^{\prime}(t) \leq C_{1} X(t)^{N_{2}}
$$

and, $X(t)$ is bounded from above by a solution of the ODE: $y^{\prime}(t)=C_{1} y(t)^{N_{2}}$.
Remark 3.6. If we use original equation of γ, which contains $\partial_{x}^{3} \gamma$ in the right hand side, the term $\left\langle\gamma_{t}, \partial_{x}^{3} \gamma\right\rangle$ appears in the estimation. Since we need the term $-2 \varepsilon\left\|\gamma_{t x}\right\|^{2}$ to cancel $\left\langle\gamma_{t}, \partial_{x}^{3} \gamma\right\rangle$, we cannot get uniform estimate with respect to ε, and the following proof will fail.

Lemma 3.7. For any $K>0$ and $n \geq 0$, there is $M>0$ with the following property:

Let ξ be a solution of $\left(\mathrm{EW}^{\xi \varepsilon}\right)$ with $\varepsilon \in[0,1]$ on $[0, T)$. If its initial value satisfies $\left\|\xi_{1}\right\|_{n},\left\|\xi_{0 x}\right\|_{n+1} \leq K$, and if it satisfies $\left\|\xi_{t}\right\|,\left\|\xi_{x}\right\|_{1}^{2} \leq K$ on $0 \leq t<T$, then $\left\|\xi_{t}\right\|_{n}$, $\left\|\xi_{x}\right\|_{n+1}^{2} \leq M$ holds on $0 \leq t<T$.

Proof. The claim holds for $n=0$ by taking $M=K$. We prove the claim by induction. Suppose that the claim holds for n. In particular, we know bounds of $\left\|\xi_{x}\right\|_{(n)}$,
$\left\|\xi_{t}\right\|_{(n-1)},\|w\|_{n+2}$ and $\|w\|_{(n+1)}$. Therefore, we have

$$
\begin{aligned}
& \left\|\nabla_{t} \nabla_{x}^{n+1} \xi_{t}-\nabla_{x}^{n+1} \nabla_{t} \xi_{t}\right\|=\left\|\sum_{i=0}^{n} \nabla_{x}^{i}\left(R\left(\xi_{t}, \xi_{x}\right) \nabla_{x}^{n-i} \xi_{t}\right)\right\| \\
& \quad \leq C \sum_{i+j \leq n}\left\|\left|\nabla_{x}^{i} \xi_{t}\right| \mid \nabla_{x}^{j} \xi_{t}\right\|\left\|\leq C \sum_{i+j \leq n}\right\| \xi_{t}\left\|_{i}\right\| \xi_{t}\left\|_{j+1} \leq C\right\| \xi_{t} \|_{n+1}, \\
& \left\|\nabla_{t} \nabla_{x}^{n+2} \xi_{x}-\nabla_{x}^{n+3} \xi_{t}\right\|=\left\|\sum_{i=0}^{n+1} \nabla_{x}^{i}\left(R\left(\xi_{t}, \xi_{x}\right) \nabla_{x}^{n+1-i} \xi_{x}\right)\right\| \\
& \quad \leq C\left(\left\|\left|\xi_{t}\right|\left|\nabla_{x}^{n+1} \xi_{x}\right|\right\|+\sum_{i=0}^{n+1}\left\|\nabla_{x} \xi_{t}\right\|\right) \leq C\left(\left\|\xi_{t}\right\|_{1}\left\|\xi_{x}\right\|_{n+1}+\left\|\xi_{t}\right\|_{n+1}\right) \\
& \quad \leq C\left\|\xi_{t}\right\|_{n+1}, \\
& \|w\|_{n+2} \leq C\left(1+\left\|\rho\left(x,\left|\xi_{x}\right|^{2}\right)\right\|_{n}^{N}\right)\left\|\left|\xi_{t}\right|^{2}-\left|\nabla_{x} \xi_{x}\right|^{2}+\left|\xi_{x}\right|^{4}\right\|_{n} \\
& \quad \leq C\left(\sum_{i+j \leq n}\left\|\xi_{t}\right\|_{i}\left\|\xi_{t}\right\|_{j+1}+\sum_{i+j \leq n, i \leq j}\left\|\nabla_{x} \xi_{x}\right\|_{i}\left\|\nabla_{x} \xi_{x}\right\|_{j+1}+1\right) \\
& \quad \leq C\left(\left\|\xi_{t}\right\|_{n+1}+\left\|\xi_{x}\right\|_{1}\left\|\xi_{x}\right\|_{n+2}+1\right) \leq C\left(\left\|\xi_{t}\right\|_{n+1}+\left\|\xi_{x}\right\|_{n+2}+1\right)
\end{aligned}
$$

Put

$$
f:=\left(w-\left|\xi_{x}\right|^{2}\right) \nabla_{x} \xi_{x}+2 w_{x} \xi_{x}-\frac{3}{2} \partial_{x}\left|\xi_{x}\right|^{2} \xi_{x} .
$$

Then,

$$
\begin{aligned}
\|f\|_{n+1} & \leq C\left(1+\left\|\xi_{x}\right\|_{n+2}+\left\|\xi_{x}\right\|_{n+2}\left\|\xi_{x}\right\|_{1}+\|w\|_{n+2}\left\|\xi_{x}\right\|_{1}+\|w\|_{2}\left\|\xi_{x}\right\|_{n+1}\right) \\
& \leq C\left(1+\left\|\xi_{x}\right\|_{n+2}+\|w\|_{n+2}\right) \leq C\left(1+\left\|\xi_{x}\right\|_{n+2}+\left\|\xi_{t}\right\|_{n+1}\right) .
\end{aligned}
$$

Using these, we have

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\{\left\|\nabla_{x}^{n+1} \xi_{t}\right\|^{2}+\left(1+\varepsilon^{2}\right)\left\|\nabla_{x}^{n+2} \xi_{x}\right\|^{2}\right\} \\
&=\left\langle\nabla_{x}^{n+1} \xi_{t}, \nabla_{t} \nabla_{x}^{n+1} \xi_{t}\right\rangle+\left(1+\varepsilon^{2}\right)\left\langle\nabla_{x}^{n+2} \xi_{x}, \nabla_{t} \nabla_{x}^{n+2} \xi_{x}\right\rangle \\
& \leq\left\langle\nabla_{x}^{n+1} \xi_{t}, \nabla_{x}^{n+1} \nabla_{t} \xi_{t}\right\rangle+\left(1+\varepsilon^{2}\right)\left\langle\nabla_{x}^{n+2} \xi_{x}, \nabla_{x}^{n+3} \xi_{t}\right\rangle \\
&+C\left(\left\|\xi_{t}\right\|_{n+1}+\left\|\xi_{x}\right\|_{n+2}\right)\left(1+\left\|\xi_{t}\right\|_{n+1}\right) \\
& \leq\left\langle\nabla_{x}^{n+1} \xi_{t}, \nabla_{x}^{n+1}\left(f+2 \varepsilon \nabla_{x}^{2} \xi_{t}-\mu \xi_{t}\right)\right\rangle+C\left(1+\left\|\xi_{t}\right\|_{n+1}^{2}+\left\|\xi_{x}\right\|_{n+2}^{2}\right) \\
& \leq\left\langle\nabla_{x}^{n+1} \xi_{t}, 2 \varepsilon \nabla_{x}^{n+3} \xi_{t}\right\rangle+C\left(1+\left\|\xi_{t}\right\|_{n+1}^{2}+\left\|\xi_{x}\right\|_{n+2}^{2}\right) \\
& \leq C\left\{1+\left\|\nabla_{x}^{n+1} \xi_{t}\right\|^{2}+\left(1+\varepsilon^{2}\right)\left\|\nabla_{x}^{n+2} \xi_{x}\right\|^{2}\right\} .
\end{aligned}
$$

Lemma 3.8. For any smooth initial data $\left\{\xi_{0}, \xi_{1}\right\}, K>0, T>0$ and $m, n \geq 0$, there is $M>0$ with the following property:

Let ξ is a solution of $\left(\mathrm{EW}^{\xi \varepsilon}\right)$ with $\varepsilon \in[0,1]$ on $[0, T)$. If $\left\|\xi_{t}\right\|,\left\|\xi_{x}\right\|_{1} \leq K$ on $0 \leq t<T$, then ξ is smooth on $S^{1} \times[0, T)$, and the derivatives are bounded as $\left\|\nabla_{t}^{m} \xi\right\|_{(n)} \leq M$.

Proof. By Lemma 3.7, the claim holds for $m \leq 1$. Suppose that the claim holds up to m. In particular, we have C_{x}^{∞} bounds of ξ and $\nabla_{t}^{m-1} \xi_{t}$. Therefore, using

$$
-\left(\partial_{t}^{j} w\right)_{x x}+\partial_{t}^{j} w=\partial_{t}^{j} f-\sum_{0<i \leq j}\binom{j}{i} \partial_{t}^{i} \rho \partial_{t}^{j-i} w
$$

for $0 \leq j \leq m-1$, we have C_{x}^{∞} bounds of $\partial_{t}^{m-1} w$. Since $\nabla_{t}^{m+1} \xi_{t}$ is expressed as a polynomial of these lower derivatives, we get the result.

Proposition 3.9. The equation $\left(\mathrm{EW}^{\xi}\right)$ has a short time solution for any smooth initial data.

Proof. We put $K:=\left\|\xi_{1}\right\|^{2}+\left\|\xi_{0 x}\right\|_{1}^{2}$ and take $T>0$ in Lemma 3.5. Then, by Lemma 3.8, any solution has a priori estimate on $0 \leq t<T$.

Let $\left[0, T_{\varepsilon}\right.$) be the maximal interval such that a solution exists for ε. If $T_{\varepsilon}<T$, then ξ is smoothly and uniformly bounded on $\left[0, T_{\varepsilon}\right.$), hence can be continued beyond T_{ε}. This contradicts to the definition of T_{ε}, therefore we see that $T_{\varepsilon} \geq T$. We conclude that a solution ξ exists on the interval $[0, T)$ for each $\varepsilon>0$, and these ξ 's have smooth uniform bounds on $S^{1} \times[0, T)$.

Therefore, taking a sequence $\varepsilon_{i} \rightarrow 0$, we get a solution of

$$
\left\{\begin{array}{l}
\nabla_{t} \xi_{t}+\nabla_{x}^{3} \xi_{x}+\mu \xi_{t}=\left(w-\left|\xi_{x}\right|^{2}\right) \nabla_{x} \xi_{x}+2 w_{x} \xi_{x}-\frac{3}{2} \partial_{x}\left|\xi_{x}\right|^{2} \xi_{x} \\
-w_{x x}+\rho\left(x,\left|\xi_{x}\right|^{2}\right) w=\left|\xi_{t}\right|^{2}-\left|\nabla_{x} \xi_{x}\right|^{2}+\left|\xi_{x}\right|^{4}, \\
\xi(x, 0)=\xi_{0}(0), \quad \xi_{t}(x, 0)=\xi_{1}(x)
\end{array}\right.
$$

Since $\rho\left(x,\left|\xi_{x}\right|^{2}\right)=\left|\xi_{x}\right|^{2}$ when ξ_{x} is sufficiently close to $\xi_{0 x}$, we have a solution ξ of $\left(\mathrm{EW}^{\xi}\right)$ on some time interval. Once we have a short time solution ξ of ($\mathrm{EW}{ }^{\xi}$), we can estimate the solution as Lemma 3.8, and the solution ξ can be continued to the interval $[0, T)$.

Proposition 3.10. Let ξ and $\widetilde{\xi}$ be solutions of $\left(\mathrm{EW}^{\xi}\right)$ on $[0, T)$. If ξ and $\widetilde{\xi}$ have same smooth initial data, then they identically coincide.

Proof. To express the difference of two solutions, we use local coordinates. We fix the initial value $\left\{\xi_{0}, \xi_{1}\right\}$, and take a local coordinate U which contains the initial
value ξ_{0}. In $U,\left(\mathrm{EW}^{\xi}\right)$ is expressed as:

$$
\left\{\begin{array}{l}
\xi_{t t}^{p}+\partial_{x}^{4} \xi^{p}+4 \Gamma_{q}^{p} r(\xi) \xi_{x}^{q} \partial_{x}^{3} \xi^{r}=F^{p}\left[\xi_{x x}, w_{x}, \xi_{t}\right] \\
-w_{x x}+g_{q r}(\xi) \xi_{x}^{q} \xi_{x}^{r} w=G\left[\xi_{x x}, \xi_{t}\right]
\end{array}\right.
$$

where $F^{p}\left[\xi_{x x}, w_{x}, \xi_{t}\right]$ is a polynomial of $\xi_{x}^{q}, \xi_{x x}^{q}, w, w_{x}, \xi_{t}^{q}$, functions of ξ^{q}, and $G\left[\xi_{x x}, \xi_{t}\right]$ is a polynomial of $\xi_{x}^{q}, \xi_{x x}^{q}, \xi_{t}^{q}$, functions of ξ^{q}. (We only note highest derivatives.)

Let $\{\widetilde{\xi}, \widetilde{w}\}$ be another solution of $\left(\mathrm{EW}^{\xi}\right)$ on $\left[0, t_{1}\right)\left(t_{1} \leq T\right)$. Applying Lemma 3.5 and Lemma 3.8 with $\varepsilon=0$, we have smooth bounds of ξ and $\widetilde{\xi}$. We put $\zeta:=\widetilde{\xi}-\xi$, $u:=\widetilde{w}-w$. Then, we see that

$$
\zeta_{t t}^{p}+\partial_{x}^{4} \zeta^{p}+4 \Gamma_{q}{ }^{p} r(\xi) \xi_{x}^{q} \partial_{x}^{3} \zeta^{r}
$$

equals to a sum of terms containing at least one of $\zeta_{x}, \zeta_{x x}, u, u_{x}, \zeta_{t}$ or the difference of the values of a function at $\widetilde{\xi}$ and ξ. Similarly,

$$
-u_{x x}+g_{q r}(\xi) \xi_{x}^{q} \xi_{x}^{r} u
$$

equals to a sum of terms containing at least one of $\zeta_{x}, \zeta_{x x}, \zeta_{t}$ or the difference of the values of a function at $\tilde{\xi}$ and ξ.

Therefore, we can estimate ζ and u linearly:

$$
\begin{aligned}
\left|\zeta_{t t}^{p}+\partial_{x}^{4} \zeta^{p}+4 \Gamma_{q}{ }^{p} r(\xi) \xi_{x}^{q} \partial_{x}^{3} \zeta^{r}\right| & \leq C\left(|\zeta|+\left|\zeta_{x}\right|+\left|\zeta_{x x}\right|+|u|+\left|u_{x}\right|+\left|\zeta_{t}\right|\right), \\
\left|-u_{x x}+g_{q r}(\xi) \xi_{x}^{q} \xi_{x}^{r} u\right| & \leq C\left(|\zeta|+\left|\zeta_{x}\right|+\left|\zeta_{x x}\right|+\left|\zeta_{t}\right|\right) .
\end{aligned}
$$

Regarding ζ as a vector field along ξ, these inequalities can be written using covariant derivation along ξ :

$$
\begin{aligned}
\left\|\nabla_{t}^{2} \zeta+\nabla_{x}^{4} \zeta\right\| & \leq C\left\{\|\zeta\|_{2}+\|u\|_{1}+\left\|\nabla_{t} \zeta\right\|\right\}, \\
\left\|-u_{x x}+\left|\xi_{x}\right|^{2} u\right\| & \leq C\left\{\|\zeta\|_{2}+\left\|\nabla_{t} \zeta\right\|\right\} .
\end{aligned}
$$

Thus we have $\|u\|_{1} \leq C\left(\|\zeta\|_{2}+\left\|\nabla_{t} \zeta\right\|\right)$, and

$$
\begin{aligned}
& \frac{d}{d t}\left\{\left\|\nabla_{t} \zeta\right\|^{2}+\|\zeta\|_{2}^{2}\right\} \\
& =2\left\langle\nabla_{t} \zeta, \nabla_{t}^{2} \zeta\right\rangle+2\left\langle\zeta, \nabla_{t} \zeta\right\rangle+2\left\langle\nabla_{x} \zeta, \nabla_{t} \nabla_{x} \zeta\right\rangle+2\left\langle\nabla_{x}^{2} \zeta, \nabla_{t} \nabla_{x}^{2} \zeta\right\rangle \\
& \leq 2\left\langle\nabla_{t} \zeta, \nabla_{t}^{2} \zeta+\nabla_{x}^{4} \zeta\right\rangle+2\left\langle\nabla_{x} \zeta, \nabla_{x} \nabla_{t} \zeta\right\rangle+C\left(\|\zeta\|_{2}^{2}+\left\|\nabla_{t} \zeta\right\|^{2}\right) \\
& \leq C_{1}\left(\left\|\nabla_{t} \zeta\right\|^{2}+\|\zeta\|_{2}^{2}\right),
\end{aligned}
$$

from which we see that $\left(\left\|\nabla_{t} \zeta\right\|^{2}+\|\zeta\|_{2}^{2}\right) e^{-C_{1} t}$ is non-increasing, hence identically vanishes.

This proof applies at any time t_{0} such that $\widetilde{\xi}\left(t_{0}\right)=\xi\left(t_{0}\right)$. Therefore, the set $\{t \mid$ $\widetilde{\xi}(t)=\xi(t)\}$ is open and closed in $[0, T)$, hence agrees to $[0, T)$.

Combining Proposition 3.9 and Proposition 3.10, we get the following
Theorem 3.11. The equation $\left(\mathrm{EW}^{\xi}\right)$ has a unique short time solution for any smooth initial data.

Remark 3.12. To show this theorem, we did not assume that $\mu \geq 0$. Hence the result is time-invertible. That is, a unique solution exists on some open time interval $(-T, T)$ containing $t=0$.

Corollary 3.13. The equation (EW) has a unique short time solution for any smooth initial data.

4. Singular perturbation

In this section, we assume that $\mu>0$ and change the time variable t of $\left(\mathrm{EW}^{\xi}\right)$ to $\mu^{-1} t$.
$\left(\mathrm{EW}^{\xi \mu}\right) \quad\left\{\begin{array}{l}\mu^{-2} \nabla_{t} \xi_{t}+\nabla_{x}^{3} \xi_{x}+\xi_{t}=\left(w-\left|\xi_{x}\right|^{2}\right) \nabla_{x} \xi_{x}+2 w_{x} \xi_{x}-\frac{3}{2} \partial_{x}\left|\xi_{x}\right|^{2} \xi_{x}, \\ -w_{x x}+\left|\xi_{x}\right|^{2} w=\mu^{-2}\left|\xi_{t}\right|^{2}-\left|\nabla_{x} \xi_{x}\right|^{2}+\left|\xi_{x}\right|^{4}, \\ \xi(x, 0)=\xi_{0}(0), \quad \xi_{t}(x, 0)=\mu \xi_{1}(x), \quad \int_{0}^{1} \xi_{0} d x=\int_{0}^{1} \xi_{1} d x=0 .\end{array}\right.$
First, we show uniform existence and boundedness of solutions with respect to large μ. Constants T, M below are independent of μ.

Lemma 4.1. For any $K>0$, there are $T>0$ and $M>0$ with the following property:

If ξ is a solution of $\left(\mathrm{EW}^{\xi \mu}\right)$ on an interval $\left[0, t_{1}\right) \subset[0, T)$ and if its initial value satisfies $\left\|\xi_{0}\right\|,\left\|\xi_{1}\right\| \leq K$, then $\left\|\xi_{x}\right\|_{1}, \mu^{-1}\left\|\xi_{t}\right\| \leq M$ holds on $0 \leq t<t_{1}$.

Proof. It is similar to the proof of Lemma 3.5. We put

$$
f=\left(w-\left|\xi_{x}\right|^{2}\right) \nabla_{x} \xi_{x}+2 w_{x} \xi_{x}-\frac{3}{2} \partial_{x}\left|\xi_{x}\right|^{2} \xi_{x},
$$

and we have

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\{\mu^{-2}\left\|\xi_{t}\right\|^{2}+\left\|\nabla_{x} \xi_{x}\right\|^{2}\right\}+\left\|\xi_{t}\right\|^{2}=\left\langle\xi_{t}, f\right\rangle+\left\langle\nabla_{x} \xi_{x}, R\left(\xi_{t}, \xi_{x}\right) \xi_{x}\right\rangle \\
& \leq\left(\frac{1}{4}+\frac{1}{4}\right)\left\|\xi_{t}\right\|^{2}+\|f\|^{2}+C\left(\left\|\xi_{x}\right\|_{1}^{2}\left\|\nabla_{x} \xi_{x}\right\|\right)^{2} .
\end{aligned}
$$

Here, $\|f\|^{2}$ is bounded by a polynomial of $X:=\mu^{-2}\left\|\xi_{t}\right\|^{2}+\left\|\nabla_{x} \xi_{x}\right\|^{2}+\left\|\xi_{x}\right\|^{2}$. Combining it with $d\left\|\xi_{x}\right\|^{2} / d t \leq\left\|\xi_{t}\right\|^{2}+\left\|\nabla_{x} \xi_{x}\right\|^{2}$, we have a μ-independent estimate of time derivative of X by a polynomial of X. Therefore, there is a μ-independent time $T>0$ such that $\left\|\xi_{t}\right\| \leq C \mu$ and $\left\|\xi_{x}\right\|_{1} \leq C$ on $[0, T)$.

Lemma 4.2. For any $K>0$ and $n>0$, there are $M>0$ and $\mu_{0}>0$ with the following property:

Let ξ be a solution of ($\mathrm{EW}^{\xi \mu}$) on $[0, T)$ with $\mu \geq \mu_{0}$. If its initial value satisfies $\left\|\xi_{0}\right\|_{n+1},\left\|\xi_{1}\right\|_{n} \leq K$ and if it satisfies $\left\|\xi_{x}\right\|_{1}, \mu^{-1}\left\|\xi_{t}\right\| \leq K$ on $[0, T)$, then it holds that $\left\|\xi_{x}\right\|_{n+1},\|w\|_{n+1}, \mu^{-1}\left\|\xi_{t}\right\|_{n} \leq M$ on $[0, T)$.

Proof. It is similar to the proof of Lemma 3.7. Suppose that we have bounds: $\left\|\xi_{x}\right\|_{n+1}, \mu^{-1}\left\|\xi_{t}\right\|_{n} \leq M$. They imply that $\left\|\xi_{x}\right\|_{(n)}, \mu^{-1}\left\|\xi_{t}\right\|_{(n-1)} \leq C$, and,

$$
\begin{aligned}
\|w\|_{n+2}, \quad\|f\|_{n+1} & \leq C\left(1+\mu^{-1}\left\|\xi_{t}\right\|_{n+1}+\left\|\xi_{x}\right\|_{n+2}\right) \\
& \leq C\left(1+\mu^{-1}\left\|\nabla_{x}^{n+1} \xi_{t}\right\|+\left\|\nabla_{x}^{n+2} \xi_{x}\right\|\right) .
\end{aligned}
$$

Using this, we have

$$
\begin{aligned}
\frac{1}{2} & \frac{d}{d t}\left\{\mu^{-2}\left\|\nabla_{x}^{n+1} \xi_{t}\right\|^{2}+\left\|\nabla_{x}^{n+2} \xi_{x}\right\|^{2}\right\}+\left\|\nabla_{x}^{n+1} \xi_{t}\right\|^{2} \\
= & \left\langle\nabla_{x}^{n+1} \xi_{t}, \mu^{-2} \nabla_{t} \nabla_{x}^{n+1} \xi_{t}\right\rangle+\left\langle\nabla_{x}^{n+2} \xi_{x}, \nabla_{t} \nabla_{x}^{n+2} \xi_{x}\right\rangle+\left\|\nabla_{x}^{n+1} \xi_{t}\right\|^{2} \\
\leq & \left\langle\nabla_{x}^{n+1} \xi_{t}, \mu^{-2} \nabla_{x}^{n+1} \nabla_{t} \xi_{t}\right\rangle+\left\langle\nabla_{x}^{n+2} \xi_{x}, \nabla_{x}^{n+3} \xi_{t}\right\rangle+\left\|\nabla_{x}^{n+1} \xi_{t}\right\|^{2} \\
& +C \mu^{-2}\left\|\nabla_{x}^{n+1} \xi_{t}\right\| \cdot \mu\left\|\xi_{t}\right\|_{n+1}+C\left\|\xi_{x}\right\|_{n+2}\left\|\xi_{t}\right\|_{n+1} \\
\leq & \left\langle\nabla_{x}^{n+1} \xi_{t}, \nabla_{x}^{n+1} f\right\rangle+\left(C \mu^{-1}+\frac{1}{8}\right)\left(\left\|\nabla_{x}^{n+1} \xi_{t}\right\|^{2}+\left\|\xi_{t}\right\|^{2}\right)+C\left\|\xi_{x}\right\|_{n+2}^{2} \\
\leq & \left(C_{1} \mu^{-1}+\frac{1}{4}\right)\left(\left\|\nabla_{x}^{n+1} \xi_{t}\right\|^{2}+\left\|\xi_{t}\right\|^{2}\right)+C\left(1+\left\|\nabla_{x}^{n+2} \xi_{x}\right\|^{2}\right) .
\end{aligned}
$$

Assuming that $\mu \geq 4 C_{1}$ and combining it with the first estimation:

$$
\frac{1}{2} \frac{d}{d t}\left\{\mu^{-2}\left\|\xi_{t}\right\|^{2}+\left\|\nabla_{x} \xi_{x}\right\|^{2}\right\} \leq-\frac{1}{2}\left\|\xi_{t}\right\|^{2}+C
$$

we can estimate

$$
X(t):=\mu^{-2}\left(\left\|\nabla_{x}^{n+1} \xi_{t}\right\|^{2}+\left\|\xi_{t}\right\|^{2}\right)+\left(\left\|\nabla_{x}^{n+2} \xi_{x}\right\|^{2}+\left\|\nabla_{x} \xi_{x}\right\|^{2}\right)
$$

by $X^{\prime}(t) \leq C(1+X(t))$. Hence we have $\left\|\xi_{x}\right\|_{n+2} \leq C,\left\|\xi_{t}\right\|_{n+1} \leq C \mu$. Substituting it to the estimate of $\|w\|_{n+2}$, we get $\|w\|_{n+2} \leq C$.

Proposition 4.3. For any initial data ξ_{0} and ξ_{1}, there is $T>0$ such that $\left(\mathrm{EW}^{\xi \mu}\right.$) has a solution on $[0, T)$ for each $\mu>0$. Moreover, for any $n \geq 0$, there are $\mu_{0}>0$
and $M>0$ such that the solution with $\mu \geq \mu_{0}$ satisfies $\left\|\xi_{x}\right\|_{n},\|w\|_{n} \leq M$ and $\left\|\xi_{t}\right\|_{n} \leq$ $M \mu$ on $[0, T)$.

Proof. Using Lemma 4.1 and Lemma 4.2, the proof is similar to that of Proposition 3.9.

Let $\{\eta, v\}$ be a solution of the limiting equation $(\mu \rightarrow \infty)$ of ($\mathrm{EW}^{\xi \mu}$) omitting initial data $\xi_{t}(x, 0)$.
$\left(\mathrm{EP}^{\eta}\right) \quad\left\{\begin{array}{l}\eta_{t}+\nabla_{x}^{3} \eta_{x}=\left(v-\left|\eta_{x}\right|^{2}\right) \nabla_{x} \eta_{x}+2 v_{x} \eta_{x}-\frac{3}{2} \partial_{x}\left|\eta_{x}\right|^{2} \eta_{x}, \\ -v_{x x}+\left|\eta_{x}\right|^{2} v=-\left|\nabla_{x} \eta_{x}\right|^{2}+\left|\eta_{x}\right|^{4}, \\ \eta(x, 0)=\xi_{0}(0) .\end{array}\right.$
In [4] (Theorem 7.5), we know that the corresponding equation for closed curves in the euclidean space has a unique all time solution. Therefore, $\left(\mathrm{EP}^{\eta}\right)$ has a unique all time solution, via Lemma 2.2.

We regard function η as the 0 -th approximation of ξ for $\mu \rightarrow \infty$. To compare ξ and η, we divide the interval $[0, \infty)$ so that the image $\eta\left(S^{1} \times I\right)$ of each subinterval I is contained in a local coordinate U of S^{2}. For a solution ξ and an interval $\left[t_{0}, t_{1}\right) \subset I$ such that $\xi\left(S^{1} \times\left[t_{0}, t_{1}\right)\right)$ is contained in U, we denote by $\{\zeta, u\}$ the difference between ξ and η in the local coordinate, i.e., $\zeta^{p}:=\xi^{p}-\eta^{p}, u:=w-v$. We use the local expression of (EW ${ }^{\xi \mu}$):

$$
\left\{\begin{array}{l}
\mu^{-2}\left(\xi_{t t}^{p}+\Gamma_{q}{ }^{p}{ }_{r}(\xi) \xi_{t}^{q} \xi_{t}^{r}\right)+\partial_{x}^{4} \xi^{p}+4 \Gamma_{q}{ }^{p} r(\xi) \xi_{x}^{q} \partial_{x}^{3} \xi^{r}+\xi_{t}^{p}=F^{p}\left[\xi_{x x}, w_{x}\right] \\
-w_{x x}+g_{q r}(\xi) \xi_{x}^{q} \xi_{x}^{r} w=\mu^{-2} g_{q r}(\xi) \xi_{t}^{q} \xi_{t}^{r}+G\left[\xi_{x x}\right] \\
\xi(x, 0)=\xi_{0}(0), \quad \xi_{t}(x, 0)=\mu \xi_{1}(x), \quad \int_{0}^{1} \xi_{0} d x=\int_{0}^{1} \xi_{1} d x=0
\end{array}\right.
$$

where $F^{p}\left[\xi_{x x}, w_{x}\right]$ are polynomials of $\xi_{x}, \xi_{x x}, w, w_{x}$, functions of ξ, and $G\left[\xi_{x x}\right]$ is a polynomial of $\xi_{x}, \xi_{x x}$, functions of ξ. (We only note highest derivatives.) Since the local expression of $\left(\mathrm{EP}^{\eta}\right)$ is given by the above equations substituting $\mu^{-1}=0,\{\zeta, u\}$ satisfies

$$
\left\{\begin{array}{l}
\mu^{-2}\left(\zeta_{t t}^{p}+2 \Gamma_{q}{ }^{p}{ }_{r}(\eta) \eta_{t}^{q} \zeta_{t}^{r}\right)+\partial_{x}^{4} \zeta^{p}+4 \Gamma_{q}{ }^{p}{ }_{r}(\eta) \eta_{x}^{q} \partial_{x}^{3} \zeta^{r}+\zeta_{t}^{p} \\
\quad=F^{p}\left[\xi_{x x}, w_{x}\right]-F^{p}\left[\eta_{x x}, v_{x}\right]-4 \Gamma_{q}{ }^{p}{ }_{r}(\xi) \zeta_{x}^{q} \partial_{x}^{3} \xi^{r}-4\left(\Gamma_{q}{ }^{p}{ }_{r}(\xi)-\Gamma_{q}{ }^{p}{ }_{r}(\eta)\right) \eta_{x}^{q} \partial_{x}^{3} \xi^{r} \\
\quad-\mu^{-2}\left\{\eta_{t t}^{p}+\Gamma_{q}{ }^{p}{ }_{r}(\xi) \eta_{t}^{q} \eta_{t}^{r}+\Gamma_{q}{ }^{p}{ }_{r}(\xi) \zeta_{t}^{q} \zeta_{t}^{r}+2\left(\Gamma_{q}{ }^{p}{ }_{r}(\xi)-\Gamma_{q}{ }^{p}{ }_{r}(\eta)\right) \eta_{t}^{q} \zeta_{t}^{r}\right\}, \\
-u_{x x}+g_{q r}(\xi) \xi_{x}^{q} \xi_{x}^{r} u=\mu^{-2} g_{q r}(\xi) \xi_{t}^{q} \xi_{t}^{r}+G\left[\xi_{x x}\right]-G\left[\eta_{x x}\right], \\
\zeta(x, 0)=0, \quad \zeta_{t}(x, 0)=\mu \xi_{1}(x) .
\end{array}\right.
$$

We regard ζ as a vector field along η. Then, we can rewrite the above expression as
(EW ${ }^{\varsigma}$)

$$
\left\{\begin{array}{l}
\mu^{-2} \nabla_{t}^{2} \zeta+\nabla_{x}^{4} \zeta+\nabla_{t} \zeta \\
\quad=L_{1}\left[\nabla_{x}^{2} \zeta, u_{x}\right]+Q_{1}\left[\nabla_{x}^{2} \zeta, u_{x} ; \nabla_{x}^{3} \zeta, u_{x}\right]-\mu^{-2}\left\{\nabla_{t} \eta_{t}+L_{2}[\zeta]+Q_{2}\left[\nabla_{t} \zeta ; \nabla_{t} \zeta\right]\right\} \\
-u_{x x}+\left|\xi_{x}\right|^{2} u \\
\quad=\mu^{-2}\left\{\left|\eta_{x}\right|^{2}+L_{3}\left[\nabla_{t} \zeta\right]+Q_{3}\left[\nabla_{t} \zeta ; \nabla_{t} \zeta\right]\right\}+L_{4}\left[\nabla_{x}^{2} \zeta\right]+Q_{4}\left[\nabla_{x}^{2} \zeta ; \nabla_{x}^{2} \zeta\right] \\
\left(\left|\xi_{x}\right|^{2}=\left|\eta_{x}\right|^{2}+L_{5}\left[\nabla_{x} \zeta\right]+Q_{5}\left[\nabla_{x} \zeta ; \nabla_{x} \zeta\right]\right) \\
\zeta(x, 0)=0, \quad \nabla_{t} \zeta(x, 0)=\mu \xi_{1}(x)
\end{array}\right.
$$

where L_{i} are linear, $\left|Q_{i}(\alpha ; \beta)\right| \leq C|\alpha||\beta|$. (We only note highest derivatives.)
To get estimate of $\{\zeta, u\}$, we need following
Lemma 4.4 ([5] Lemma 1.5). For any $K_{1}, K_{2}>0$ and any $T>0$, there are $M>0$ and $\mu_{0}>0$ with the following property:

If $\mu \geq \mu_{0}$ and $X(t), Y(t)$ and $Z(t)$ are non-negative functions on $[0, T)$ such that

$$
X(0) \leq K_{1} \mu^{-2}, \quad\left|X^{\prime}(0)\right| \leq K_{1}, \quad Y(0) \leq K_{1}, \quad Z(0) \leq K_{1} \mu^{2},
$$

and that

$$
\begin{aligned}
\mu^{-2} X^{\prime \prime}(t)+X^{\prime}(t) & \leq K_{1}\left(X(t)+\mu^{-2} Z(t)+\mu^{-2}\right)-K_{2} Y(t), \\
Y^{\prime}(t)+\mu^{-2} Z^{\prime}(t) & \leq K_{1}(Y(t)+1)-K_{2} Z(t),
\end{aligned}
$$

on $[0, T)$, then they satisfy

$$
X(t)<M \mu^{-2}, \quad Y(t)<M \quad \text { and } \quad Z(t)<M \mu^{2}
$$

on $[0, T)$.
Lemma 4.5. For any $n \geq 0$ and any $K>0$, there are $M>0$ and $\mu_{0}>0$ with the following property:

Let $\{\zeta, u\}$ be the solution of $\left(\mathrm{EW}^{\zeta}\right)$ with $\mu \geq \mu_{0}$, defined on $\left[t_{0}, t_{1}\right) \subset[0, T)$. If $\|\zeta\|_{n} \leq K \mu^{-1}$ at $t=t_{0}$, then $\|\zeta\|_{n} \leq M \mu^{-1}$ holds on $\left[t_{0}, t_{1}\right)$.

Proof. Note that we have bounds of $\{\xi, w\}$ and $\{\eta, v\}$ by Proposition 4.3. Therefore, we know $\|\zeta\|_{n} \leq C,\left\|\nabla_{t} \zeta\right\|_{n} \leq C \mu$ and $\|u\|_{n} \leq C$. We may assume that $\mu \geq \mu_{0} \geq 1$. For

$$
h:=\mu^{-2}\left(\left|\eta_{x}\right|^{2}+L_{3}\left[\nabla_{t} \zeta\right]+Q_{3}\left[\nabla_{t} \zeta ; \nabla_{t} \zeta\right]\right)+L_{4}\left[\nabla_{x}^{2} \zeta\right]+Q_{4}\left[\nabla_{x}^{2} \zeta ; \nabla_{x}^{2} \zeta\right],
$$

we have

$$
\begin{aligned}
\|h\|_{n} & \leq C\left\{\mu^{-2}\left(1+\left\|\nabla_{t} \zeta\right\|_{n}+\left\|\nabla_{t} \zeta\right\|_{1}\left\|\nabla_{t} \zeta\right\|_{n}\right)+\|\zeta\|_{n+2}+\|\zeta\|_{3}\|\zeta\|_{n+2}\right\} \\
& \leq C\left(\mu^{-2}+\mu^{-1}\left\|\nabla_{t} \zeta\right\|_{n}+\|\zeta\|_{n+2}\right),
\end{aligned}
$$

and, $\|u\|_{n+2} \leq C\|h\|_{n} \leq C\left(\mu^{-2}+\mu^{-1}\left\|\nabla_{t} \zeta\right\|_{n}+\|\zeta\|_{n+2}\right)$. And, for

$$
f:=L_{1}\left[\nabla_{x}^{2} \zeta, u_{x}\right]+Q_{1}\left[\nabla_{x}^{2} \zeta, u_{x} ; \nabla_{x}^{3} \zeta, u_{x}\right]-\mu^{-2}\left(\nabla_{t} \eta_{t}+L_{2}[\zeta]+Q_{2}\left[\nabla_{t} \zeta ; \nabla_{t} \zeta\right]\right),
$$

we have

$$
\begin{aligned}
\|f\|_{n} & \leq C\left\{\|\zeta\|_{n+2}+\|u\|_{n+1}+\mu^{-2}\left(1+\left\|\nabla_{t} \zeta\right\|_{1}\left\|\nabla_{t} \zeta\right\|_{n}\right)\right\} \\
& \leq C\left\{\|\zeta\|_{n+2}+\mu^{-2}+\mu^{-1}\left\|\nabla_{t} \zeta\right\|_{n}\right\} .
\end{aligned}
$$

Put $X_{n}(t):=\left\|\nabla_{x}^{n} \zeta\right\|$ and $Z_{n}(t):=\left\|\nabla_{x}^{n} \nabla_{t} \zeta\right\|$. Then, we see that

$$
\begin{aligned}
& \left(X_{0}^{2}\right)^{\prime}=2\left\langle\zeta, \nabla_{t} \zeta\right\rangle \leq 2 X_{0} Z_{0}, \\
& \left(X_{1}^{2}\right)^{\prime}=2\left\langle\nabla_{x} \zeta, \nabla_{t} \nabla_{x} \zeta\right\rangle \leq-2\left\langle\nabla_{x} \zeta, \nabla_{x} \nabla_{t} \zeta\right\rangle+C\|\zeta\|_{1}\|\zeta\| \\
& \quad \leq 2 X_{2} Z_{0}+C\left(X_{0}^{2}+X_{1}^{2}\right), \\
& \mu^{-2}\left(Z_{i}^{2}\right)^{\prime}+2 Z_{i}^{2}+\left(X_{i+2}^{2}\right)^{\prime} \\
& \quad=2\left\langle\nabla_{x}^{i} \nabla_{t} \zeta, \mu^{-2} \nabla_{t} \nabla_{x}^{i} \nabla_{t} \zeta+\nabla_{t} \nabla_{x}^{i} \zeta\right\rangle+2\left\langle\nabla_{x}^{i+2} \zeta, \nabla_{t} \nabla_{x}^{i+2} \zeta\right\rangle \\
& \quad \leq 2\left\langle\nabla_{x}^{i} \nabla_{t} \zeta, \nabla_{x}^{i} f\right\rangle+C\left\|\nabla_{x}^{i} \nabla_{t} \zeta\right\|\left(\mu^{-2}\left\|\nabla_{t} \zeta\right\|_{i-1}+\|\zeta\|_{i-1}\right)+C\left\|\nabla_{x}^{i+2} \zeta\right\|\|\zeta\|_{i+1} \\
& \quad \leq C Z_{i}\left\{X_{i+2}+X_{0}+\mu^{-2}+\mu^{-1}\left(Z_{i}+Z_{0}\right)\right\}+C\left(X_{i+2}{ }^{2}+X_{0}^{2}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \mu^{-2}\left(\left\|\nabla_{t} \zeta\right\|_{n}^{2}\right)^{\prime}+\left(\|\zeta\|_{n+2}^{2}\right)^{\prime}+2\left\|\nabla_{t} \zeta\right\|_{n}^{2} \\
& \quad \leq C\|\zeta\|_{n+2}^{2}+C \mu^{-1}\left\|\nabla_{t} \zeta\right\|_{n}^{2}+C \mu^{-2}+C \sum_{i=0}^{n} Z_{i}\left(X_{i+2}+X_{0}\right) \\
& \quad \leq \frac{1}{2}\left\|\nabla_{t} \zeta\right\|_{n}^{2}+C\|\zeta\|_{n+2}^{2}+C_{1} \mu^{-1}\left\|\nabla_{t} \zeta\right\|_{n}^{2}+C \mu^{-2}, \\
& \mu^{-2}\left(\left\|\nabla_{t} \zeta\right\|_{n}^{2}\right)^{\prime}+\left(\|\zeta\|_{n+2}^{2}\right)^{\prime} \leq C\left(\|\zeta\|_{n+2}^{2}+\mu^{-2}\right)-\left\|\nabla_{t} \zeta\right\|_{n}^{2}
\end{aligned}
$$

if $\mu \geq 2 C_{1}$.
We also have,

$$
\begin{aligned}
& \mu^{-2}\left(X_{i}^{2}\right)^{\prime \prime}+\left(X_{i}{ }^{2}\right)^{\prime}+2 X_{i+2}{ }^{2} \\
& \quad=2 \mu^{-2}\left\|\nabla_{t}^{i} \nabla_{x}^{i} \zeta\right\|^{2}+2\left\langle\nabla_{x}^{i} \zeta, \mu^{-2} \nabla_{t}^{2} \nabla_{x}^{i} \zeta+\nabla_{t} \nabla_{x}^{i} \zeta+\nabla_{x}^{i+4} \zeta\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \leq 3 \mu^{-2}\left\|\nabla_{x}^{i} \nabla_{t} \zeta\right\|^{2}+2\left\langle\nabla_{x}^{i} \zeta, \nabla_{x}^{i} f\right\rangle \\
&+C \mu^{-2}\|\zeta\|_{i-1}^{2}+C\left\|\nabla_{x}^{i} \zeta\right\|\left\{\mu^{-2}\left(\left\|\nabla_{t} \zeta\right\|_{i-1}+\|\zeta\|_{i-2}\right)+\|\zeta\|_{i-1}\right\} \\
& \leq 3 \mu^{-2} Z_{i}^{2}+C X_{i}\left\{X_{i+2}+X_{0}+\mu^{-2}+\mu^{-1}\left(Z_{i}+Z_{0}\right)\right\} \\
&+C \mu^{-2}\left(X_{i}{ }^{2}+X_{0}{ }^{2}\right)+C X_{i}\left\{\mu^{-2}\left(Z_{i}+Z_{0}\right)+X_{i}+X_{0}\right\} \\
& \leq X_{i+2}{ }^{2}+C\left\{X_{i}^{2}+X_{0}{ }^{2}+\mu^{-2}\left(Z_{i}^{2}+Z_{0}^{2}\right)+\mu^{-4}\right\}, \\
& \mu^{-2}\left(\|\zeta\|_{n}^{2}\right)^{\prime \prime}+\left(\|\zeta\|_{n}^{2}\right)^{\prime} \leq C\left\{\|\zeta\|_{n}^{2}+\mu^{-2}\left\|\nabla_{t} \zeta\right\|_{n}^{2}+\mu^{-4}\right\}-\|\zeta\|_{n+2}^{2} .
\end{aligned}
$$

Setting $X:=\|\zeta\|_{n}^{2}, Y:=\left\|\nabla_{x}^{n+2} \zeta\right\|^{2}$ and $Z:=\left\|\nabla_{t} \zeta\right\|_{n}^{2}$ in Lemma 4.4, we have $\|\zeta\|_{n} \leq C \mu^{-1}$.

Lemma 4.6. For any $n, m \geq 0$ and $K>0$, there are $M>0$ and $\mu_{0}>0$ with the following property:

Let $\{\zeta, u\}$ be the solution of $\left(\mathrm{EW}^{\zeta}\right)$ with $\mu \geq \mu_{0}$, defined on $\left[t_{0}, t_{1}\right) \subset[0, T)$. If $\left\|\nabla_{t}^{m} \zeta\right\|_{n} \leq K \mu^{2 m-1}$ at $t=t_{0}$, then

$$
\begin{aligned}
& \left\|\nabla_{t}^{m} \zeta\right\|_{(n)} \leq M\left(\mu^{-1}+\mu^{2 m-1} e^{-\mu^{2} t / 2}\right) \\
& \left\|\partial_{t}^{m} u\right\|_{(n)} \leq M\left(\mu^{-1}+\mu^{2 m} e^{-\mu^{2} t / 2}\right)
\end{aligned}
$$

hold on $\left[t_{0}, t_{1}\right)$.
Proof. We put $V_{j}:=\mu^{-1}+\mu^{j} e^{-\mu^{2} t / 2}$. Note the log-convexity:

$$
V_{j}^{2} \leq V_{j-1} V_{j+1} \quad \text { and } \quad V_{j} V_{k} \leq V_{0} V_{j+k} \leq\left(1+\mu_{0}^{-1}\right) V_{j+k} \quad \text { for } \quad j, k \geq 0 .
$$

We know that $\left\|\nabla_{t} \zeta\right\|_{(n)} \leq C \mu,\|u\|_{(n)} \leq C$ by Proposition 4.3, and $\|\zeta\|_{(n)} \leq C \mu^{-1}$ by Lemma 4.5. In particular, $\|\zeta\|_{(n)} \leq C V_{-1}$ holds. We prove the estimate of $\partial_{t}^{m} u$ and the estimate of $\nabla_{t}^{m+1} \zeta$, assuming the estimate of $\partial_{t}^{j} u$ and $\nabla_{t}^{j+1} \zeta$ for $j<m$.

First, we estimate $\partial_{t}^{m} u$. Put

$$
h:=\mu^{-2}\left(\left|\eta_{x}\right|^{2}+L_{3}\left[\nabla_{t} \zeta\right]+Q_{3}\left[\nabla_{t} \zeta ; \nabla_{t} \zeta\right]\right)+L_{4}\left[\nabla_{x}^{2} \zeta\right]+Q_{4}\left[\nabla_{x}^{2} \zeta ; \nabla_{x}^{2} \zeta\right] .
$$

It is estimated as

$$
\begin{aligned}
\left\|\partial_{t}^{m} h\right\|_{(n)} \leq & C\left\{\mu ^ { - 2 } \left(1+\left\|\nabla_{t}^{m+1} \zeta\right\|_{(n)}+V_{2 m-1}\right.\right. \\
& \left.\left.\quad+\left\|\nabla_{t} \zeta\right\|_{(n)}\left\|\nabla_{t}^{m+1} \zeta\right\|_{(n)}+V_{3}^{*} V_{2 m-1}\right)+V_{2 m-1}\right\} \\
\leq & C\left\{\mu^{-1}\left\|\nabla_{t}^{m+1} \zeta\right\|_{(n)}+V_{2 m}\right\}
\end{aligned}
$$

where V_{3}^{*} appears only if $m \geq 2$. Therefore, we have

$$
\begin{aligned}
\left\|\partial_{t}^{m} u\right\|_{(n+2)} & \leq\left\|\partial_{t}^{m} h\right\|_{(n)}+C \sum_{j=1}^{m}\left\|\partial_{t}^{j}\left|\xi_{x}\right|^{2}\right\|_{(n)}\left\|\partial_{t}^{m-j} u\right\|_{(n)} \\
& \leq C\left\{\mu^{-1}\left\|\nabla_{t}^{m+1} \zeta\right\|_{(n)}+V_{2 m}\right\}+C \sum_{j=1}^{m}\left(1+V_{2 j-1}\right) V_{2(m-j)} \\
& \leq C\left\{\mu^{-1}\left\|\nabla_{t}^{m+1} \zeta\right\|_{(n)}+V_{2 m}\right\} .
\end{aligned}
$$

Now, we estimate $\nabla_{t}^{m+1} \zeta$. Put

$$
f:=L_{1}\left[\nabla_{x}^{2} \zeta, u_{x}\right]+Q_{1}\left[\nabla_{x}^{2} \zeta, u_{x} ; \nabla_{x}^{3} \zeta, u_{x}\right]-\mu^{-2}\left(\nabla_{t} \eta_{t}+L_{2}[\zeta]+Q_{2}\left[\nabla_{t} \zeta ; \nabla_{t} \zeta\right]\right) .
$$

Then,

$$
\begin{aligned}
\left\|\nabla_{t}^{m} f\right\|_{(n)} \leq & C\left\{V_{2 m-1}+\left\|\partial_{t}^{m} u\right\|_{(n+1)}+\|u\|_{(n+1)}\left\|\partial_{t}^{m} u\right\|_{(n+1)}\right. \\
& \left.+\mu^{-2}\left(1+V_{2 m-1}+\left\|\nabla_{t} \zeta\right\|_{(n)}\left\|\nabla_{t}^{m+1} \zeta\right\|_{(n)}+V_{3}^{*} V_{2 m-1}\right)\right\} \\
\leq & C\left\{\mu^{-1}\left\|\nabla_{t}^{m+1} \zeta\right\|_{(n)}+V_{2 m}\right\}
\end{aligned}
$$

where V_{3}^{*} appears only if $m \geq 2$. Therefore,

$$
\begin{aligned}
\left\|\nabla_{t}^{m}\left(\mu^{-2} \nabla_{t}^{2} \zeta+\nabla_{t} \zeta\right)\right\|_{(n)} & \leq\left\|\nabla_{t}^{m} \zeta\right\|_{(n+4)}+\left\|\nabla_{t}^{m} f\right\|_{(n)} \\
& \leq C\left\{\mu^{-1}\left\|\nabla_{t}^{m+1} \zeta\right\|_{(n)}+V_{2 m}\right\}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\mu^{-2} & \frac{\partial}{\partial t}\left|\nabla_{x}^{n} \nabla_{t}^{m+1} \zeta\right|^{2}+2\left|\nabla_{x}^{n} \nabla_{t}^{m+1} \zeta\right|^{2} \\
= & 2\left(\nabla_{x}^{n} \nabla_{t}^{m+1} \zeta, \mu^{-2} \nabla_{t} \nabla_{x}^{n} \nabla_{t}^{m+1} \zeta+\nabla_{x}^{n} \nabla_{t}^{m+1} \zeta\right) \\
\leq & 2\left(\nabla_{x}^{n} \nabla_{t}^{m+1} \zeta, \nabla_{x}^{n}\left(\mu^{-2} \nabla_{t}^{m+2} \zeta+\nabla_{t}^{m+1} \zeta\right)\right) \\
& +C \mu^{-2}\left|\nabla_{x}^{n} \nabla_{t}^{m+1} \zeta\right|\left\|\nabla_{t}^{m+1} \zeta\right\|_{(n-1)} \\
\leq & C\left|\nabla_{x}^{n} \nabla_{t}^{m+1} \zeta\right|\left\{\mu^{-1}\left\|\nabla_{t}^{m+1} \zeta\right\|_{(n)}+V_{2 m}\right\} .
\end{aligned}
$$

From this, for $X(t):=\left\|\nabla_{t}^{m+1} \zeta\right\|_{(n)}^{2}$, we have

$$
\mu^{-2} X^{\prime}(t)+2 X(t) \leq C_{1} \mu^{-1} X(t)^{2}+C V_{2 m} X(t) \leq\left(\frac{1}{2}+C_{1} \mu^{-1}\right) X(t)^{2}+C V_{2 m}^{2}
$$

where $X^{\prime}(t)=\lim \sup _{\delta \rightarrow+0}\{X(t+\delta)-X(t)\} / \delta$.
We set $\mu_{0} \leq 2 C_{1}$. Then,

$$
\mu^{-2} X^{\prime}(t)+X(t) \leq C_{2}\left(\mu^{-2}+\mu^{4 m} e^{-\mu^{2} t}\right)
$$

$$
\begin{aligned}
X(t) & \leq X\left(t_{0}\right) e^{-\mu^{2} t}+C_{2}\left(\mu^{-2}+\mu^{4 m+2} e^{-\mu^{2} t}\right) \\
& \leq C\left(\mu^{-2}+\mu^{4 m+2} e^{-\mu^{2} t}\right)
\end{aligned}
$$

that is, $\left\|\nabla_{t}^{m+1} \zeta\right\|_{(n)}^{2} \leq C V_{2 m+1}$.
Substituting it to the estimate of $\left\|\partial_{t}^{m} u\right\|_{(n+2)}$, we get the estimation of $\partial_{t}^{m} u$.
Proposition 4.7. For any initial data $\left\{\xi_{0}, \xi_{1}\right\}$, any interval $\left[t_{0}, t_{1}\right) \subset[0, T)$ and any local coordinate U of S^{2} such that the image $\eta\left(S^{1} \times\left[t_{0}, t_{1}\right)\right)$ is contained in U, there exists $\mu_{0}>0$ with the following property:

If ξ is a solution of $\left(\mathrm{EW}^{\xi \mu}\right)$ on $[0, T)$, then the image $\xi\left(S^{1} \times\left[t_{0}, t_{1}\right)\right)$ is contained in U. Moreover, ξ uniformly converges to η on $[0, T)$ when $\mu \rightarrow \infty$.

Proof. We divide the interval $[0, T)$ so that the image $\eta\left(S^{1} \times I\right)$ of each subinterval I is included to a local coordinate U_{I}.

Note that ζ is defined only on each short time interval.
Starting from $t=0$ and applying this Lemma on each time interval where $\{\zeta, u\}$ is defined, we see that $\|\zeta\|_{n}$ is small for large μ.

We sum up these results, and get the following
Theorem 4.8. For any non-negative integers m, n and any positive number T, there are positive numbers μ_{0} and M with the following properties:

For each $\mu \geq \mu_{0}$, there exists a solution ξ of $\left(\mathrm{EW}^{\xi \mu}\right)$ on $[0, T)$, and ξ uniformly converges to η when $\mu \rightarrow \infty$. More precisely,

$$
\left|\partial_{t}^{m} \partial_{x}^{n}\left(\xi^{p}-\eta^{p}\right)\right| \leq M\left(\mu^{-1}+\mu^{2 m-1} e^{-\mu^{2} t / 2}\right)
$$

holds on each local coordinate.
Remark 4.9. In general, we cannot expect uniform estimation on the whole time $[0, \infty)$. The limit $\eta(\infty)$ can be an unstable elastic curve, and in that case, $\xi(\infty)$ and $\eta(\infty)$ discontinuously depend on the initial data.

Corollary 4.10. For any positive number T, there exists a unique solution γ of $\left(\mathrm{EW}^{\tau}\right)$ on $[0, T)$ for sufficiently large $\mu>0$. Moreover, the solution converges to a solution η of (EP) when $\mu \rightarrow \infty$.

References

[1] R. Courant and D. Hilbert: Methods of mathematical physics Vol. I, Interscience publishers INC, New York, (1966).
[2] R. Caflisch and J. Maddocks: Nonlinear dynamical theory of the elastica, Proc of the Royal Society of Edinburgh, 99A (1984), 1-23.
[3] B. Coleman, et al.: On the dynamics of rods in the theory of Kirchhoff and Clebsch, Arch. Rat. Mech. Anal. 121 (1993), 339-359.
[4] N. Koiso: On the motion of a curve towards elastica, Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger (Collection SMF Séminaires \& Congrès no 1, ed. A. L. Besse). (1996), 403-436.
[5] N. Koiso: On singular perturbation of a semilinear hyperbolic equation, Calc. Var. 4 (1996), 89-101.
[6] N. Koiso: Convergence towards an elastica in a riemannian manifold, Osaka J. Math. 37 (2000), 467-487.
[7] J. Langer and D.A. Singer: Knotted elastic curves in \boldsymbol{R}^{3}, J. London Math. Soc. 30 (1984), 512520.
[8] J. Langer and D.A. Singer: Curve straightening and a minimax argument for closed elastic curves, Topology, 24 (1985), 75-88.
[9] R. Racke: Lectures on nonlinear evolution equations (initial value problem), Braunschweig; Wiesbaden: Vieweg, (Aspects of mathematics: E; Vol 19), 1992.

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka, 560-0043 Japan

