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0. Introduction

It is well-known that for the Schrodinger operator (— 1/2)Δ + V with a nonnega-

tive continuous potential V in the space L2(Ed), the Trotter product formula

(0.1) lim fe-^/ne-t(-(l/2)A)/nΓ = e-*(-(l/2)Δ+V)

n— too

and its variant

(0.2) lim (e-*^2ne-ί(-(l/2)Δ)/ne-tV/2n)n_ e-t(-(l/2)Δ+V)

n— » oo

hold in the strong operator topology. It has recently been discussed that if V is e.g. in

C2 and satisfies

V(x) >
(0.3)

I VmF(z)| < cm(l + |x|2)<'-m>+/2, m = 1, 2

for some 0 < / > < o o , 0 < c < o o and 0 < ci, 02 < oo (which is the condition

from [2]), (0.1) and (0.2) are convergent in the Lp-operator norm (1 < p < oo). More

precisely, as 1 1 0

(0.4) ||(e-tV/ne-t(

n

(0.5) \\(e-tV/2ne-t(-(l/W/ne-tV/lny _ e-t(-(l/2)Δ+V) y
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where || ||p->p stands for the Lp-operator norm. This convergence in the operator norm

is proved in [4], [5], [1], [6], [2] and [10], though these works except [6] and [10]

deal only with the convergence in L<2 -operator norm.

In [2], however, the convergence in the trace norm is further studied. Namely,

when p > 0 in (0.3), they have shown operator- theoretically that

(0.6) | | (e-<"e-*

(0.7) ||(e-tW2ne- t(-(l/2)Δ)/ne- tV/2nΓ _ e-t(-(l/2)Δ+V) ̂  =

as n -» oo, locally uniformly in t > 0, where || ||trace stands for the trace norm. Since

I I ' U2->2 < || ||trace» the convergence in the trace norm implies that in the Z/2-operator

norm, so that their result in the trace norm is better compared with the others. But

they have not observed the behavior of the error bounds in (0.6) and (0.7) as 1 1 0.

The aim of this paper is to take care of this point to give another proof to the

trace norm convergence of (0.1) and (0.2), that is, a probabilistic proof following the

lines of [2]. It should be emphasized here that in the one-dimensional case (d = 1) the

convergence of (0.1) and (0.2) in the trace norm may hold, locally uniformly even in

t >0.

In Section 1, the condition on V is presented, which relaxes (0.3), and Theorem

is stated. Its proof is done in Section 4. For this, Sections 2 and 3 are devoted to pre-

liminaries. Section 5 deals as a remark with the case of less regular potentials V.

1. Presentation of Theorem

First we present the condition on a scalar potential V: Let 0 < p < o o , 0 < ί < l ,

0 < Ci, C2 < oo and 0 < μ, v < oo. Let V : Rd -+ [0,oo) be a C^-function such

that

(o) Hminf >0
|*|->oo \X\P

(A)ί> (i)

(ii) \VV(x)-VV(y)\

< C2{v(x)(l-2')+(l + I* - y\") + 1 + \x - y\"}\x - y\.

REMARK 1. (i) The conditions (o) and (i) in (A)2 imply l/δ > p.

(ii) The condition (o) in (A);

2 is equivalent to that

(1.1) V(x) > c\x\p -c', x£Rd

for some positive constants c and c'.

REMARK 2. The condition (0.3) implies (A)'2(i) and (ii) with δ ~ lΛ(l/p), C\ =
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C l C-(ι-iΛ(i/p)) ϊ C2 = C22(p-3)+(c-(ι-2(iΛ(ι/p)))+/2 v 1), μ = 0 and i/ = (p- 2)+.

In the following let V be as above. Set

K(t) - e

:= e-tve-t(-(ι/2)Δ))

:= e-t(-(ι/2)Δ)/2β-tvβ-t(-(i/2)Δ)/2>

By the condition (o), e~tH, K(t), G(t) and R(t) (t > 0) are trace class operators. Let

us denote by || ||trace the trace norm.

Theorem. Let T > 1 and 0 < ί < Γ. Γ/zen

(i) For n > 2

K( LY _ e-tirll < constf I
\ n / I I trace ~ \Π

where const depends only on C\, C?, δ, μ, ι/, p, c, c', d αnJ T (c αnJ c' are

positive constants in (1.1)).

(ii) For n > 3

||G(ί)n _
I I \ n /

n _ e-
trace \n

where const depends only on C\, Cz, δ, μ, z/, p, c, c', d α/iJ T.

(iii) F0r n > 3

_ e-<" < const
II trace \n

where const depends only on C\, C?,, δ, μ, z/, p, c, c', d α/zJ T.

REMARK 3. When d = 1 and p = 1/6, ||^(t/n)n - e-tH\\irace, \\G(t/n)n -

-^||trace, \\R(t/n)n - e~tH \\irace = O((l/n)l™δ) as n -» oo, locally uniformly in

> 0.

2. Decomposition of K(t/n)n - e~tH, G(t/n)n - e~tH and R(t/n)n-
e-tπ

It is observed that f or n > 2 and t > 0

n
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j=l

= Σ/2]
J •"•

v^'-1

Σ

n ra — I

nl e-tV/2ne-t(-(l/2)Δ)/n

n ~l

t

 l \H~l _ e~(n-l)tH/n\

n n — I/ /

χ e-tV/2ne-t(-(l/2)Δ)/2n

e-t(-(l/2)Δ)/2n le-tV/2n^ e-(n-l)tff/nl e-tV/2ne-t(-(l/2)Δ)/2n

L-t(-(l/2)Δ)/2n? e-(n-l)tfΓ/nj e-*V/ne-t(-(l/2)Δ)/2n

Here we use the following fundamental inequalities (cf. e.g. [3]):
(i) For trace class operators A and B on

(2.1) |μ + £||trace < P||trace + ||£||trace.

(ii) For a trace class operator A and a bounded operator 5 on 1/2 (Md

race < P||trace ||J?||2_2,

P||tra

where || ||2->2 denotes the L2-operator norm. By (2.1), (2.2) and the contraction
property of e~tv and e"*^1/2^', we have

(2.3)
trace
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n/ ll2-> 2

ĵTίΓ ILJ
•/

lltrace

71 — I/ lltrace

(2.5)

\ _e-tH/n

trace II \n

_ -(n-l)tH/n

H n — I/ lltrace

trace

-*(-(l/2)Δ)/2n ,,-(n-l)^/n

trace \n

3. Kernels of e'tH, K(t/n)n, G(t/n)n and R(t/n)n

Let (PF, PO) be a d-dimensional Wiener space: VF is the totality of all continuous
functions w : [0,1] -> E.d such that w(0) = 0 with the topology of uniform conver-

gence and PO is the Wiener measure on W. Set

X(t,w) := w(t),

XQ(t,w) := X(t,w)-tX(l,w) = w

and

/ 1 x d

p(t,x) := P0(w(t) e dx)/dx = (—)

Note that (Xo(^))o<ί<ι is the Brownian bridge, i.e., the probability law of ^Ό( ) co-
incides with PQ( \X(1) = 0). By using this, the integral kernels of e~<H, K(t/n)n,
G(t/n)n and R(t/n)n are expressed as follows (cf. [8], [9]):
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Proposition 1.

(3.1) e-tH(x,y)=p(t,x-y)

x

ft\n

,[exp{-ί / V(x + s(y-x)
1 ^ Jo

(3.2) κ(-)n(x,y)=p(t,x-y)
\ Tl '

x E0 e x p - v(x + sΰ(y-

(3.3) G(-)n(x,y)=p(t,x-y)
\ n /

x Bo [exp{-ί f V(x + s~(y - x) + VtX0(s-))ds}] ,

(3.4) R(-)n(x,y)=p(t,x-y)
\n/

Here s% := ([ns] -h l)/n and s~ := [ns]/n.

There is another description of the Brownian bridge. For ξ, η G Erf and 0 < t

1, let (X^η(t))o<t<t0 be the solution of the following SDE (cf. [7], p. 243-244):

-h — ^? o < t <

Then (X|0>l|(ί))o<t<to ~ (f + (*/*o)(»/-0 + ̂ (*)- (*/*oM*o))o<t<t0 In particular,

^ (-^oW)o<t<ι- By this and the scaling property, the expressions in(^o'°W)
Proposition 1 are rewritten as follows:

Proposition 2.

(3.6) e-tH(x,y) =p(t,x - y)E0[eκp{-

(3.7)
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(3.8)

(3.9)

4. Proof of Theorem

CLAIM 1. Let t > 0. Then

(i) \\K(t)-e-tH\\2-+2 < const {Cf(t3 + £1+2<5) + C2(t2 +
£2+I//2)}, where const depends only on ί, μ, v and d.

(ii) ||G(£) - e-tff||2->2 < const {CΊ(ί3/2 + ^/2+<5) + Cf(t3 + £1+2<5) + C2(t2 +
£1+1Λ2(5)}, where const depends only on δ and d.

(iii) ||Λ(ί) - e-t/f||2->2 < const {CΊ(ί3/2 + ̂ /2+<5) + C ί̂3 + twδ) + C2(*2 +
ί1+1Λ2(5)}, where const depends only on δ and d.

Proof. We here show the estimate in the kernel level: As for (i)

t ( ί / t 11 { ^ ( \ Λ \exp< — / V(Xx'
y(s))ds > — exp< — - ( V(x) + V(y) j >

(4.1) < const {ί72(ί3 + ί1+2ί) + C3(t\x - y\2 +t2 + tl*2S\x - y\2 + ί1+1Λ2ί

where const depends only on δ, μ, v and d. As for (ii)

£0[exp{- j V(X* «'(β))ώ}] -e~tv(x)

(4.2) < const {(7ι (ί|a: - y\ + ί3/2 + ί*\x - y\ + t^2+δ) + C2(t3 + t1+2δ)

where const depends only on δ and d. As for (iii)

r ( /•« , Ί1 r
£0 expΊ - / V(X 'y(s))ds \ — EO exp

I- •• Jo }ί L

(4.3) < const {CΊ(ί|a; -y\+ ί3/2 + tδ\x -y\+ tl'2+s) + C2(t3 + t1+2δ)
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where const depends only on δ and d. From these estimates Claim 1 follows immedi-

ately.

First suppose that V : Rd ->• [0, oo) is a C2-function and satisfies (A)'2(i) and (ii).

Let 0 < TI < T. By noting (3.5), Itό's formula gives us that

T!

'= Σ /

X -

' exp{- jf

4

{-(T - T,)V (X^ (T,))} -e x p - β exp

= Σ / 1

x (-(T - t))diV(XΪ (t))dwi

exp{- ί* V(Xj »(β))ώ} exp{-(Γ -

_ T-t

Hence, by taking expectation

rτ
(4.4)
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x -

(T-ί)2

8

r r Γτ Ϊ Ί
(4.5) EO exp^ - / V(X^y(s))d8 \ - e~τv(x^

L L Jo J J

ΓTE0[exp{-f*V(X^y(s))ds}

By (A>2(i) and (ii), and the inequality: tbe~l < (b/e)b,t > 0,6 > 0 (where
(0/e)° := 1), it is observed that for ξ, η € Ed and r > 0

θη) -

Using these estimates in (4.4) and (4.5), we have

E0(\y -



668 S. TAKANOBU

[exp{-

Therefore, from the moment estimate:

(4.6) Eo[\y -

where C(a,d) := £0[|*(l)|α] = /R« \y\ap(l,y)dy, it follows that

£0[exp{- / V(XΪ'y(s))da\\ -exp(-^(V(x) + W;
L l y Q J J 1 2 \

< const {^(Γ3 + Γ1+2ί) + C2(T2 + Γ|x - y\2 + Γ1+1Λ25 + Γ1Λ25|x - s/|2

_

where const depends only on J, μ, ι/ and d, and

r^

< const {Cι(Γ3/2 + T|x - y\ + Tl'2+s + Ts\x - y\) + C2(Γ3 + T1+2<s)

where const depends only on δ and d. These are just (4.1) and (4.2).

Next we consider the general case that V : Kd -4 [0, oo) is a C1 -function satisfy-

ing (A)2(i) and (ii). To this end take a V> € C'̂ K'* -4 [0, oo)) such that fRd ψ(x)dx =

1 and set V^a;) := /R(ί Ve(a; - y)V(y)dy where Ve(^) := (l/ε)dψ(z/ε) (ε > 0). Then
14 is smooth and satisfies (A)2(i) and (ii) with the same constants as V has. From
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what was seen above, (4.1) and (4.2) hold for Vε. Since Vε -» V compact uniformly
as ε I 0, these estimates are valid for V.

It remains to show (4.3). We note the following: For £, η £ Rd and 0 < t\ <

to < 1,

(4.7) P o ( + *ι) € *

where J> is the sub σ-field generated by w(t), 0 < £ < r, and

(4.8)

By (4.7) we have

Γ*/2 ^ < f*/2
= Eo [exp{- Γ ^(^'»(β))dβ} exp{-

= £0[exp{-
1 ^

JO J L ^ JO >» J lξ=Λ x ' y(ί/2)

By this together with (4.8) and (4.7) we see

= E0[eκp{-

_ e-«V(ί)/2e-tV(£)/2

. /o

Γ f / ί/2

= Eo[exp{-/ V(X
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ί/2

= E0[exp{-^

r r ,

£b exp{-
L L k (ί/2)

Hence

where in the last inequality we have used the estimate (4.2). Combining this with (4.6)

we have (4.3) at once, and the proof is complete. D

REMARK 4. The estimates (4.1) and (4.2) are a little better than the ones in [10]

(cf. [6]). To prove them we have used Itό's formula. This treatment seems to be more

stochastic analytic than the one in [10]. The present proof is slightly simpler and prob-

ably more elegant.
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CLAIM 2.
Let t > 0 and n G N. Then

< ( Γϊc-ι
V V 7Γtrace

\\κ(-)n\\ < (
II \ n / lltrace \ V 7Γ

tc' I
JRd

* ί
J^d

Proof. By the expressions (3.1) and (3.2),

(4.9) ~tH

\ = ί e~tH(x,x)dx
ltrace J ^d

V(x + VtX0(sϊ))ds) }]dx.

By (1.1), it is clear that on {maxo<«<ι \y/tX0(s)\ < \x\/2}

ί V(x + VtX0(s±))ds >cί \x\- \VtX0(s±)\ "ds - c'
Jo Jo

rl rl

I V(x 4- VtX0(8))da >c I \x\- \VtX0(s)\
Jo Jo

ds - c1

Hence, substituting these inequalities into (4.9) and (4.10), we have
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(4.Π)
trace ~ \π Rd

d/2

< (^)d/2 /
~ \2πtJ JRd

(4.12)
n/ trace " \ π t Rd

< (±f2 ί
" \2πtJ JRd

Each term on the RHS of (4.11) and (4.12) is computed as follows:

The first term- ί^-}d/\tc' ί e'
tc^P2ddy

\ 2πt / J^d

2

t-^etc' ί e-IΊ'ίte)
7Rd

1 \d/2

)
J

d/2

/ 1 \ 2 Γ / x \
The second term = ( - ) / Pol 2 max |Xo(β)l > I -7= I )dx

\2πtJ JRd ϋ \ o<s<ι' ^"-]^/tlJ

/ J v d / 2 - 1 1

= (2) r
2max0< s<ι |

The proof is complete. D
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Proof of Theorem (i). Let T > 1, 0 < t < T and n > 2. By Claim 1,

(4.13) \\K(-) -e~tHΠ < const Γ2v(μ/2)v(ι+,/2)(C2 + C2)/I
I I \ n / ll2->2 \n

where const depends only on 5, μ, v and d. Note that

n ~ 2
T for 1

By this and Claim 2,

Γ(d/2 +1)

— \J 1 1 trace

Γ(d/2 + l) "LoόTi

Combining these with (4.13) we have by (2.3)

trace

< Const

„ c< /

< const (!yΛ2V+iΛ2ί-d(ι/2+ι/p),
~ V n /

ί
7Rd

max X o s d for

where const in the last line depends only on CΊ, 62, 5, μ, ,̂ p, c, c', d and T. The
proof of Theorem (i) is complete. Π

CLAIM 3. (i) For t > 0
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where <7(α,d) := £0[|*(l)|α] = /Rί |tf|βp(l,y)rfy, α > 0.
(ii) For ί > 0 and s > 0,

Proof. As for (ii), note that

;

' 2

= - Γ e'^
Jo

By (2.1) and (2.2), these expressions give us the estimate described in (ii).
As for (i), note that the integral kernel of [e~eίί,F] is expressed as

(4.14) [e-tH,V](x,y)=p(t,x-y)

x (V(y) - V(x))E0 [exp{-ί j V(x + s(y - x) + V~tX0(s))ds}].

If we show the following estimate:

(4.15) (V(y) - V(x))E0 [exp{-ί j V(x + s(y - x) + V~tX0(s))ds}] |

the estimate in (i) follows immediately from this and (4.14).
In the following we show (4.15). To this end we may suppose without loss of

generality that V : Rd -)• [0, oo) is a C2-function and satisfies (A)20) and (ii) (cf.
the proof of Claim 1).
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First of all we note that for / G S(Rd) and t > 0
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(4.16)

Let T > 0, 0 < t < T and y G Rd. By letting / = p(T - t , - , y ) in (4.16), the
Feynman-Kac formula gives us that

E0 [exp{- I V(x + X.)dβ}v(x + Xt)p(T -t,x + Xt-

- V(x)E0 [exp{- I V(x + Xs)ds}p(T -t,x + Xt- y)]

= -^ΔXE0 [exp{- j V(x + X3)ds}p(T -t,x + Xt- y)]

+ EO [exp{- f V(x + Xs)ds}±Δp(T -t,x + Xt- y)]

= EO [exp{- / V(x + Xs)ds}

x ί f- 1 1 / W (x + Xs)ds2+ ί lAV(x + Xs)ds}p(T -t,x + Xt1 V ^ \JQ JQ Δ /

* + Xs)ds, Vp(T -t,x

By using the Brownian bridge (^o(«))o<s<ι, this is rewritten as

x V(z)p(T -t,z- y)p(t, x-z)dz

/ £J0[exp [-ί f V(x

Γ Γ^

- V(x) \ ^ EO [exp{-ί / V(x + s(z - x) + VtX0(s))ds}]

x p(T — t,z — y)p(t, x — z)dz

= ί E0[exp{-ί ί

x ~

x p(T -t,z- y)p(t, x - z}dz
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d
+ Y " / E0\exp\-t I V(x + s(z-x)^ / EO [exp{-£ ί V(x

x M ftV(x + φ - x) + VtXQ(s))ds]
Jo ]

x dip(T - t,z - y)p(t, x - z}dz.

By integration by parts and the formula: d/dzi p(t,x — z) — p(t,x — z)(xi —Zi)/t, the
second term on the RHS is further computed, so that

The RHS = / EQ [exp|-ί ί V(x + s(z - x) + VtXQ(s))ds}
/Rd L ^ JO

rl

X ^

/ (1 - 2s)VV(x H- s(z - x)
Jo

1 - 2s)ΔV(x + s(z -x) +

- ( I W(x -f s(z -x) + \itXo(s
\Jo

x p(T -t,z- y)p(t, x - z)dz.

Hence, as 11 T, we have

Γ1

(V(y) - V(x))Eo expj -Γ / V(x 4- s(y - x) -

, a? -

- E0[exp{-Γ / V(x + β(y - a?)

(y - x)

- z) +

- (VV(x

Finally, using the estimates:
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\ΔV(x)\ < 2

and then applying Jensen's inequality, we obtain (4.15) and the proof is complete.

D

Proof of Theorem (ii) and (iii). Let Γ > 1, 0 < t < T and n > 3. Note that
l/(n ~ 1) < (3/2)(l/n), so that (n - l)/n > 2/3. First, by Theorem (i)

(4.17)
n n — I trace

/ 1 χ lΛ2<* ,n _ 1 v
< const - -) ( - 1]
~~ \n — I/ V n /

< const

where const depends only on CΊ, C2, £, μ, v, p, c, c', d and T. Second, by Claims 1
and 2

\L-(n-l)tH/n\\

( . 4 r t x I I lltrace I I V n / ll2->2

ll2-»2

x const Γ5/2(d + Cl +

< const
\ n /

where const in the last line depends only on CΊ, 62, ί, p, c, c;, d and T. Third, by
Claim 3 and Claim 2

(4.19) Γβ-*V/2n -(n-l)t^/n -t(-(l/2)Δ)/2n e-(n-l)tlf/n

II L J lltrace II L J trace

|L-(n-l)tff/2n||

n L M2->2 II lltrace

n I V e / V 2n / 2n
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{(Jϊc-ι/,γ3«ι/u-ιMeTc'/ι ί e-l l-l l'ώ t-

( 1 — Λ \ 1—δ // 1 \ —1/2+J / 1 \ —1/2+5\

—) ((2) v (a) )

''/2 /

χ

(since 1/2 + ί < 1 + 1 Λ 25 < 1 + 2(5, 2)

< const - *ι/2+*-<*(i/2+ι/p)
~~ n

where const depends only on CΊ, (^2, ί, p, c, c', rf and T. Therefore, combining
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(4.17), (4.18) and (4.19), we have by (2.4) and (2.5)

II trace II \n trace

n

\n

< const
~ \n

(since 1 Λ 2J < 1/2 + ί, 1)

and the proof is complete. Π

5. Remark

The condition (A)'2 is just (A)2 in [10] plus the condition (o). So for (A)0 and

(A)ι in [10] we can consider (A)ό and (A)( respectively:

V : Rd -> [0, oo) is a function such that

®\V(x)-V(y)\<Cι\x-y\\

V : E.d ->• [0,oo) is a C1 -function such that

(o) li
(A)Ί

(ii)\VV(x)-VV(y)\<C2\x-y\κ.

Here 0 < ρ< oo, 0 < 7 < 1, 0 < CΊ, C2 < oo, 0 < δ < 1 and 0 < K < 1.

Under these conditions Claims 1 and 3(i) are restated as follows:

CLAIM 4. Let t > 0.

(i) Under (A%

\\K(t) - e-ta\\2-+2, \\G(t) - e-tH\\2^2, \\R(t) - e~tH

(ii) Under (A)i

\\K(t) - e-tH\\2^2

< cαnst(ί, «,d)(72(ί3 + ί1+2ί) + C72ί
1+(1+κ)/2 + Cf
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< const(<S, /c, d)Cι(ί3/2 + *1/2+*) + C?(ί

Claim 4 can be shown in the same way as in [10] or [6] without using Itό's for-
mula (cf. Remark 4).

CLAIM 5. For t > 0

const(7,d)Cii7/2 under (A)^

under (A)l.

As in the proof of Claim 3(i), Claim 5 follows from the following estimate:

\V(y) - V(x)\ exp{-t j V(x -h s(y - x) + V*X0(β))ώ}

under (A)^

;-2/ | + C2 / 1-YoWΓώ ^/2|x - y\ under (A)i.
/o

The former estimate is clear by the condition (A)ό(i). The latter is easily seen from
the following:

\V(y)-V(x)\

+ s(y -x) + VtX0(s)),y - x)ds

< ί \VV(x + s(y-x) + VtX0(s))\ds\x-y\
Jo

f1

+ \ I W(a; + 8(y - x) + VtX0(s)) - VV(x + s(y - x))\ds\x - y\
Jo

/•I

< / Cl(l + V(x + s(y-x) + VtX0(s))l-*)ds\x-y\
Jo

+ ί C2t
κ/2\X0(s)\κds\x-y\

Jo
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+ C2 / \X0(8)\"d8t"'2\x-y\
Jo

where the last inequality is due to Jensen's inequality.

Now let us look over the proof of Theorem. This time we use Claims 4 and 5

instead of Claims 1 and 3(i), so that we have the following theorem:

Theorem'. Let T > 1 and 0 < t < T.

(i) For n > 2

undef. (A)const(Cι, 7, p, c, c', d, T) ( -
\ H

Λ(Cl,C2,δ,κ,p,c,c',d,T)(-}
\7 l/

CθnSt
\ n /

under (A)^

(ii) For n>3

trace II \ Π / lltrace

<

const(CΊ, C2, <5, AC,/?, c, c', d, Γ) (-)""'""' "" "^1/2+^-^(1/2+ι/P) under (A)/i

As an example of our conditions (A)ό, (A)^ and (A)2 we give the following: Let

Vp(x) = \x\p (0 < p < oo). Then

(i) if 0 < p < 1, (A)ί, holds with CΊ = 1, 7 = p,

(ii) if 1< p < 2, (A)ί holds with CΊ = p, δ = 1/p, C2 = ρ2^-2 and « = p - 1,

(iii) if p > 2, (A)ί, holds with CΊ = p, J = 1/p, C2 = p(/9 - 1)2^~3)+, μ = 0 and

v = ρ-2.

Thus it turns out that the conditions (A)ό and (A)[ treat the case of less regular

potentials V than the condition (A)2.
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