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Introduction

The main purpose of this paper is to prove finiteness theorems for some families

of meromorphic mappings that are transcendental in general. The finiteness problem

for meromoφhic mappings under the condition on the preimages of divisors was first

studied by H. Cartan and R. Nevanlinna and they obtained a finiteness theorem for

meromoφhic functions on the complex plane C ([2] and [19]). The finiteness theo-

rem of Cartan-Nevanlinna states that there exist at most two meromoφhic functions

on C that have the same inverse images with multi-plicities for distinct three values

in Pι(C). In 1981, H. Fujimoto generalized the theorem of Cartan-Nevanlinna to the

case of meromoφhic mappings of Cm into complex projective spaces Pn(C) by mak-

ing use of BoreΓs identity ([9], IV and [10]). He proved the finiteness of families of

linearly nondegenerate meromoφhic mappings of Cm into Pn(C) with the same in-

verse images for some hypeφlanes. In his results, the number of hypeφlanes in gen-

eral position is essential and must be larger than a certain number depending on the

dimension of the projective spaces. Furthermore, the finiteness theorem of Fujimoto

has been extended to the case of meromoφhic mappings into a projective algebraic

manifold ([10] and [12]). In this paper, we mainly deal with the finiteness problem

for meromoφhic mappings / of Cm into a compact complex manifold M and for a

divisor D on M.

Let L —> M be a fixed line bundle over M, and let σ\, , σs be linearly in-

dependent holomoφhic sections of L -> M with s > 2. Throughout this paper, we

assume that (σj) — dDj(l < j < s) for some positive integer d, where Dj are effec-

tive divisors on M. Set

w = c\σ\ + + csσs,

where GJ G C*. Let D be a divisor defined by w — 0. We define a meromoφhic

mapping Ψ : M -» Ps_ι(C) by
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DEFINITION 0.1. Let p be a nonnegative integer. For divisors E\ and E2 on Cm,

we write

EI Ξ E2 (mod p)

if there exists a divisor E1 on Cm such that EI - E2 — pE'\ in the special case of

p = 0, EI = E2 (mod 0) if and only if EI = E2.

Let E be a nonzero effective divisor on Cm. We denote by

F(p;(Cm,E),(M,D))

the set of all meromorphic mappings / : Cm -> M such that

ΓD = E (modp).

DEFINITION 0.2. A meromoφhic mapping / : Cm ->• M is said to be analytically
nondegenerate if /(Cm) is not included in any proper analytic subset of M.

Let

denote the subset of all / E 7"(p; (Cm,E), (M, £>)) that are analytically non-
degenerate. The main result of the present paper is as follows:

Main Theorem 0.3. 7/rank^ = dimM and d > (s + l)!{(s + l)!-2}, then the
number of mappings in J-*(d', (Cm,£7), (M, D)) is bounded by a constant depending

only on D.

We prove Main Theorem 0.3 in §5. For the proof of this theorem, we need to
generalize Fujimoto's finiteness theorem as follows.

DEFINITION 0.4. A meromoφhic mapping / : Cm ->• Pn(C) is said to be linear-
ly nondegenerate if /(Cm) is not included in any proper linear subspace of Pn(C).

Let EI, •••, En+2 be effective divisors on Cm and let ί/Ί, , #n+2 be hyper-
planes in general position in Pn(C). Let

be the set of all linearly nondegenerate meromoφhic mappings / of Cm into Pn(C)

such that

ΓHj = EJ (mod p)
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for 1 < j < n + 2. Then we have the following theorem that is a generalization of the

finiteness theorem of Fujimoto (see §4):

Theorem 0.5. Suppose that p > (n + 2)!{(n + 2)! - 2}. Then the number of

mappings in £(p; (Cm, {£/}), (Pn(C), {Hj})) is bounded by by a constant depending

only on n.

The unicity problem for meromorphic mappings may be considered as a special

case where the finite set of a family of meromorphic mappings reduces to one point

set. The classical unicity theorem for meromorphic functions due to G. Pόlya and R.

Nevanlinna is well known ([18] and [22]). There have been many researches about the

unicity of meromorphic functions on C as well in the multidimensional case (cf. [1],

[4], [5], [7], [8], [9], [15], [23], [25] and [27]). In §6, we prove the following unicity

theorem:

Theorem 0.6. Assume that there exist big line bundles Lj -> M(l < j < s)

such that L = L®d, 1 < j < s, and σj — τ®d for some holomorphίc sections TJ of

Lj —» M. Let /, g : Cm —>• M be analytically nondegenerate meromorphic mappings

whose ranks are not less than μ. Suppose that the following conditions are satisfied:

(1) rank Ψ - dim M.
(2) Π;=ι Supp^ ) - 0.
(3) f~l(D) = g~l(D) as point sets (say Z\

(4) f = gonZ-(I(f)\Jl(g)).
Then there exists a positive integer do depending only on Lj(l < j < s) such that if

d> (s- μ)(s + do), f = 9 on Cm.

In §1 we explain some known facts in Nevanlinna theory and in §2 we prove two

lemmas. In §3 we give some remarks on analytic dependence of meromorphic map-

pings. In §§4-6, we give the proofs of the above theorems. In the proofs, we use the

second main theorem for meromorphic mappings into complex projective spaces and

the generalized Borel identity.

ACKNOWLEDGEMENT. The author is grateful to Professor Junjiro Noguchi for his

valuable advice. He gave useful comments and remarks to the first draft of this paper.

1. Preliminaries

Let z = (zι, - , Zm) be the natural coordinate system in Cm, and set
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dB(r)={z€Cm;\\z\\ =

a = ddc\\z\\\ η = dc \og\\z\\2 Λ

For a (l,l)-current φ of order zero on Cm we set

and

N(r,φ) =

where χs(r) denotes the characteristic function of B(r).
Let M be a compact complex manifold and L — > M a line bundle over M. We

denote by Γ(M,L) the space of all holomorphic sections of L — » M. Let |L| =
P(JΓ(M, L)) be the complete linear system defined by L. When \L\ Φ 0, we define
the base locus of \L\ by

Bs|L| = | SuppZλ
D€\L\

Let {φoι' ',ψn} be a basis for Γ(M,L). We define a meromorphic mapping ΦL :
M -> Pn(C) by

*L(*) = (v>o(«), , φn(z)\ zeM- Bs|L|.

Let I I be a hermitian fiber metric in L and let ω be its Chern form. Let / :
Cm — >• M be a meromoφhic mapping. We set

and call it the characteristic function of / with respect to L. In the case where M =
Pn(C) and L = [H] is the hypeφlane bundle, we simply write Γ/(r) for Γ/(r, [if]).
Let D = (σ) e |L| with |σ| < 1 on M. Assume that /(Cm) £ Supp£>. We define the
proximity function of D by

ro/(r,£>) =

Then we have the following first main theorem for meromoφhic mappings (cf. [27]):

Theorem 1.1. Let L -> M be a line bundle over M and let f : Cm ->• M be
a meromorphic mapping. Then

N(r,ΓD)+mf(r,D) = Tf(r,L)+O(l)
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for D € \L\ with /(Cm) g SuppA where O(l) stands for a bounded term as r ->
-hex).

Let £7 be an effective divisor on Cm and let / be a positive integer. If

for irreducible hypersurfaces Ej in Cm and for nonnegative integers z/j, then we set

For a meromorphic mapping / : Cm -» M, we denote by /(/) the indeterminacy
locus of /. Set

rank/ = max{rankd/(^);^ G Cm - /(/)}.

By making use of "Lemma on the logarithmic derivative" on Cm, which was first
proved by A. Vitter ([28]) and was refined by B. Shiffman ([24, Lemma 3.11]), we
have the following second main theorem for meromorphic mappings / : Cm ->• Pn(C)
that plays an essential role in this paper (cf. [11] and [21]):

Theorem 1.2. Let f : Cm — > Pn(C) be a meromorphic mapping with rank μ,
and let I be the dimension of the smallest linear subspace ofPn(C) including /(Cm).
Let HI, , Hq be hyperplanes in Pn(C) located in general position. Then

where

5/(r) = 0(logT/(r)) +

except on a Borel subset E C [1, -hoo) with finite measure.

2. Two lemmas

Let / : Cm — > Pn(C) be a nonconstant meromorphic mapping and let H be a
hyperplane in Pn(C) with /(Cm) £ H.

DEFINITION 2.1. We say that / is ramified to order at least d(> 0) over H if

ΓH > dSuppΓH.
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In the case Suppf*H = 0, we may say that / is ramified to order +00.

We first show the following (cf. H. Cartan [3]):

Lemma 2.2. Let f : Cm -> Pn(C) be a linearly nondegenerate meromorphic

mapping with rank μ. Let HI, , Hq be hyperplanes in general position in Pn(C).

Suppose that f is ramified to order at least dj over Hj (1 < j ' < q). Then

-μ £"+ I
<

Proof. Let k = n — μ -f 1. By Theorem 1.1 and Theorem 1.2, it follows that

, Tf(r)

^ V - Λ .. k N(r,fHj)\
> y 1 - hm sup - -- ' , . J

- £ f V r^+vZdj Tf(r) J

The following lemma is a generalization of the classical theorem of E. Borel due

to H. Fujimoto and M. Green (cf. [6, Corollary 6.4] and [13, p. 70]):

Lemma 2.3. Let φ\, , ψt be nonzero meromorphic functions on Cm satisfy-

ing the functional equation

(2.4) φι + ... + ψt = Qf

Suppose that (ψj) = 0 (mod d) for all 1 < j < t and d> t(t - 2). Then there exists

a decomposition of indices, {!,-••,£} — \MV, such that

(1) every Iv contains at least two indices

(2) the ratio of ψi and ψj is nonzero constant if and only if ί, j G lv

(3) Σje/. Ψi = ° f°r

Proof. We prove Lemma 2.3 by induction on t. The case of t = 2 is triv-

ial. Suppose that our assertion holds up to t — 1. We introduce an equivalence re-

lation in {!,-••,£} as follows: ψi ~. ψj if ψi/ψj is constant. Let {/i, ,/t/0} =
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{!,-•• ,£}/ ~. By definition, we have (2). For the proof of (1), we assume that there

exists Iv that contains only one index, say t. We show that φι, , ψt-ι are linearly

dependent over C. We define a meromorphic mapping F : Cm —ϊ Pj_2(C) by

Suppose that F is linearly nondegenerate. Take the following hyperplanes in general

position:

#ι = {Cι=0}, ,{Ct-ι=0},

#t = {Cι + + Ct-ι=0}.

Then F is ramified to order at least d over Hj for all 1 < j < t. By Lemma 2.2, it

follows that

_L / / _ 9\
C f - 1 .

Hence d < t(t — 2). This contradicts the assumption. Thus there exists a nontrivial

linear relation

(2.5) aiψi H ---- + at-iψt-i = 0.

We may assume that a\ = 1. By (2.4) and (2.5), we have

(1 - a2)ψ2 + ••• + (!- at-ι)φt-ι + ψt = 0.

By the induction hypothesis, there exists an index i(2 <i<t—l) such that 1 — α; / 0

and (1 — ai)ψi/φt is constant. Thus i, t £ Iv. This is absurd. Hence we have (1).

Finally we show (3). We choose an index iv G /„ and set

ψi = vvφiv,

where bv G C. Then (2.4) can be written as

/¥>*„ = 0.

By (1), we infer that all bv = 0. This shows (3). D

3. Analytic dependence of meromorphic mappings

In this section we deal with analytic dependence of meromorphic mappings be-

longing to a certain class. Let

= {/ € ^*(d;(Cm,^),(M,D));rank/ > μ}.
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Set M2 = M x M. For meromorphic mappings /, g : Cm -* M, we define a mero-
moφhic mapping / x g : Cm -> M2 by

forzeC m -(/(/)Ul(<7)) .

DEFINITION 3.1. Nonconstant meromoφhic mappings /, g : Cm — > M are said
to be analytically dependent if there exists a proper analytic subset S of M2 such that
S is not of the type Si x £2 with analytic subsets Sj C M (j = 1,2) and (/ x
g)(Cm) C S.

For a positive integer p, we denote by Λi * the set of all meromoφhic functions
/ on Cm such that / = gp for some nonzero meromoφhic functions g on Cm. For
p — 0, let ΛΊ0 denote the set of all nonvanishing holomoφhic functions on Cm. We
first give the following proposition:

Proposition 3.2. Let L ->• M2 ie a holomorphic line bundle over M2 such that

L = π^L (

where πj : M2 — » M(j = 1,2) are the natural projections. Let f and g be arbitrary
mappings in T(d\ (Cm

?JE), (M,£))). I f d > 4s(s - 1), fλe/i there exists D G |L| such
that D is not of the type DI x M + M x D2 with DI, D2 € \L\ and

( f x g ) ( C ™ ) C S u p p D .

Proof. Let /, g G JF(d; (Cm, JB), (M, D)). By the definition of JF(d; (Cm,£),
(M, D)), there exists a meromoφhic function a in .M^ such that

(3.3) G7(/) - aw(g).

We note that w ( f ) φ 0 and tu(^) φ 0. There exist subsets {ji,- * * » jo}»
Oα+ι, , jα+δ} of {1, - , s} and nonzero constants dj such that the relation (3.3)
can be written as

α α-j-6

^^0/-" Σ clσ^°SΞθ'

where {σh o /, - - - , σjα o /} and {σjα+1 o ^, - - , σjα+b o g} are linearly independent
over C respectively. Since d > 4s(s — 1), applying Lemma (2.3) to (3.4), we have a
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decomposition {1, , a + b} = U/,, of indices such that each Iv contains two indices

and

(3.5) σjk of = aakισjl o g,

where a^i G C* and Iv — {&,/}. Thus, by (3.3) and (3.5), we can eliminate a and

obtain at least one relation τ(f',g) = 0, where τ(f C) is a holomorphic section of

L —ϊ M2. Since {σι, ,σs} is linearly independent over C, it follows that r φ 0.

Let D = (τ). Then we have (/ x #)(Cm) C Suppiλ It is clear that D φ DI x M +

M x D2 for any Dl9 D2 G |L|. D

For the family .F*(d; (Cm,E), (M, £>)), we have the following:

Proposition 3.6. Let L be as in Proposition 3.2. Suppose that rank# =

dimM. Let f and g be arbitrary mappings in ^*(d; (Cm,E), (M, D)). If a >

2s(2s — μ — 1), then there exists D G \L\ such that D is not of the type DI x M +

M x D2 with DI, D2 G \L\ and

(/x<?)(C m )CSupp£.

Proof. Let /, g G ̂ (d; (Cm,.E), (M,D)). As in the proof of Proposition 3.2,

we have a relation

(3.7) G7(/)

where a G -M^. We define a meromorphic mapping F : Cm -> P2S-2(C) by

F = (σi o / : : σβ o / : ασi o 0 : : ασs_ι o p).

Since rank# = dimM, it follows that rankF > μ. Assume that F is linearly nonde-

generate. Take the following hyperplanes in general position:

H, = {ft = 0}, , ff2.-ι - {C2,-ι - 0},

+ c2s-ιC2*-ι = 0},

where {Ci, ,C2s-ι} is a homogeneous coordinate system in P2s-2(C). Then, by
Lemma 2.1, we have

and hence d < 2s(2s - μ - I). This is absurd. Thus there exists a nontrivial linear

relation

(3.8) αiσi o / -\ \- asσs o / + a{bισι o g -\ h 6 s_ισ s_ι o ̂ } = 0,
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where (oi. ,α.) + (0, ,0) and (61; - A-i) + (0, ,0). By (3.7) and (3.8),
we eliminate a and obtain a relation τ(/; #) = 0, where r is a holomorphic section of
L — ϊ M defined by

ί s } ί s I f * 1 f*-1

r(ί;θ - < Σα^ (fl f 1 Σ w(0 r + 1 Σ w«) ? 1 Σ<w(
U=ι J U=ι J (j=ι ) (j=ι

Since / and g are analytically nondegenerate, 5^=ι ajσj°f Φ 0 an(^ Σj=ί ^jσj°9 Φ
0. Since c5 7^ 0 and {σi, , σs} is linearly independent over C, we infer that r φ 0.

Let 5 = (r). Then we have (/ x #)(Cm) <Ξ Suppί) and D ± Dl x M + M x Z72 for
any D^ D2 <Ξ \L\. D

4. A finiteness theorem for meromorphic mappings into Pn(C)

In this section we give a finiteness theorem for the family of meromorphic map-

pings f(p;(Cm, {£?,-}), (PnίC),^-})) as follows:

Theorem 4.1. Suppose that p > (n + 2)!{(n + 2)! - 2}. TTzen f/ze number of
mappings in 8 (p; (Cm, {̂  }), (Pn(C), {Hj})} is bounded by a constant depending
only on n.

This theorem is a generalization of the following finiteness theorem for the family

S((Cm, { E j } ) , (Pn(C), {Hj})) := S (0; (C™, {£?,-}), (Pn(C), {H, }))

proved by H. Fujimoto ([10, Theorem 2.1]):

Theorem 4.2 (Fujimoto). TTze number of mappings in £ ((Cm, { E j } ) , (Pn(C),
{ίίj})) w bounded by a constant depending only on n.

REMARK 4.3. In general, the number of mappings in 8 ((Cm, { E j } ) , (Pn(C),
{Hj})) is not less than (n + 1)! for all n (cf. [9, IV, p. 153]).

The proof of Theorem 4. 1 is obtained by a modification of the proof of the finite-
ness theorem of Fujimoto. We give the proof of Theorem 4.1 step by step in what
follows.

Suppose that £(p; (Cm, { E j } ) , (Pn(C), {Hj})) contains mutually distinct mero-
morphic mappings /i, - , fq. We have to show that there exists a positive integer qn

depending only on n such that q < qn if p > (n + 2)!{(n 4- 2)! - 2}. We show this by
induction on n. In the case n = 1, we can take qι — 2 by the following lemma:

Lemma 4.4. Let 01,02,03 be distinct three points in Pι(C) and let /i, /2,
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/3 be nonconstant meromorphic functions on Cm such that f^aj = f£dj = f£a,j

(mod p) for j = 1, 2, 3. If p > 24, then fr = /2, /2 = /3 or /3 = Λ.

This lemma is a generalization of the finiteness theorem of Cartan-Nevanlinna. We

give here a proof based on the idea of [20, p. 126] and suggested by J. Noguchi.

Proof. Without loss of generality, we may assume that a\ — 0, α2 — 1 and
α3 — oo. Put

fλ c\ / /I / /I ~ 1 , /I / /I ~~ 1(4.5) i -7- 7 - 7,3 - τ - , 4 7 - r.
/2 /2 - 1 /3 /3 - 1

Then it is clear that (ψj)o = (Ψj)oo = (Φj - l)o = (Φj — l)oo (mod p). Eliminating
/ι» /2» /3 in (4.5), we have a relation

(4.6) ^l^2^3 + ̂ 2^3^4 - ^3^4^1 ~ ΨίΨl *Φ2 + ̂ 1^4 ~ ̂ 2^3 = 0.

We define meromorphic functions ψi (1 < i < 6) on Cm by

Since p > 24, applying Lemma (2.3) to (4.6), we have a decomposition {1, ,6} =
y^ /„ of indices with jj/,, > 2. We note that i, j G /i/ if and only if ψi/ψj is nonzero
constant. From this, we can easily verify our assertion. Π

Assume that Theorem 4.1 is true for l, ,n — 1. Hence we have constants

<7ι, ,<7n-ι that have the above property. We identify Pn(C) with the hyperplane

in Pn+ι(C), where {Cι, ,Cn+2J is a homogeneous coordinate system in Pn+ι(C).
Then we may assume that Hi = {ζi = 0} Π H for 1 < i < n + 2. For j — 1, , </,

let (/ί, 5/^+2) be a reduced representation of /j. We take holomorphic functions
&i on Cm such that (fo) = £7i for 1 < i < n + 2. Put Λ^ = ///fcj. Then we have

/iij G Mp and

Λ i j A i -f -f hn+2jkn+2 = 0

for 1 < j < q. Thus we have

(4.7) d e t ( f t < Λ ; l < < , / < p o ) Ξ θ

for every 1 < j\ < - - < jpo < q, where PQ = n + 2.
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We note here that we can perform the following operation without loss of gener-

ality: multiplying a row or column of the matrix Λ := (hij] 1 <i < Pv,l < j < q) by
a common elements in ΛΊ*.

Lemma 4.8 ([10, Lemma 2.2]). Suppose that there exists r with 2 < r < p0

such that hij are constant for 1 < i < r, 1 < j < q and rank (hij 1 < ί < r, 1 < j <
q) < r. Then q < qn-ι.

In [10], the proof of Lemma 4.8 is given in the case where h^ are holomorphic
functions without zero. We give here a proof after [10] for a convenience.

Proof. After changing indices, we may assume that

(4.9) hlj

i=2

for 1 < j <q, where λ2, , λr £ C*. Put </; = ki + \ik\ for i — 2, , r and gι — ki
for i = r + 1, - ,po We may assume that all gj φ. 0. We identify Pn_ι(C) with the
subspace

in Pn(C). We define meromorphic mappings fj : Cm — » Pn_ι(C) by

fj = (h2j92 : : hrjgr : hr+ijgr+ι : - : /ιn+2j#n+2)

for j = 1, ,#. It is easy to see that fj are linearly nondegenerate. Moreover, fj ^
fji for j φ j1. Indeed, if fj = fj>, then there exists a nonzero meromorphic function
α on Cm such that

(4.10) hijgi = ahij gi

for i = 2, , n + 2. Multiplying (4.10) by fc;/<7i, we have

(4.11) //=*//'

for i = 2, , n + 2. By (4.9) and (4.1 1), it is easy to see that // = af( . This shows

fj = f j f . For 2 < i < n + 2, let ffί = {& = 0} Π jff7 and E( = (^) Then il is clear

that ^ E ί' := £ (p; (Cm, {£?J}), (Pn_ι(C), {flj})). By the hypothesis of induction,

we have #£' < qn-ι Thus q < qn-ι- Π

Next we show the following lemma (cf. [7, Proposition 4.5]):
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Lemma 4.12. Let h\, - - , ht G ΛΊ* and let

be a nonzero Laurent polynomial in Wι, — ,Wt, where GJ G C* and Mj are distinct

monomials. Suppose that h1^ h1^ # C* for any (/i, • • - , / * ) G Z* — {0} and I <

(n + 2)!. Then P(/n, - ,M ^ 0.

Proof. Assume that P(ftι, , ft*) Ξ 0. By Lemma 2.3, it follows that the ratio

is constant for some distinct j, j' and hence

is constant for some (z/?, ,^°) ^ (i/J, ,z/ t

1). Thus we have ftj11 •••/#' G C*,

where μ^ = z/9 — z/j for 1 < j < t. This contradicts the assumption. Π

Now we consider a multiplicative group G — Λί*/C*. It is clear that G is a tor-

sion free abelian group. For h G Λί*, we denote by [h] the equivalence class con-

taining h. Let GO be a finitely generated subgroup of G with all [ft^] G GO and

fail* ' * ' 5 M a t>asis f°Γ ^o over Z. Then /i j can be written as

(4.13) hij =cijηl

ii" ηt

ii,

where Cij G C* and /^, , l\^ G Z. For integers mi, , mί? we set

We choose mι, ,m t such that /^ φ lVjt whenever (l\^ •• ,/*J ) ^ ( ϊ j j / , - ,/ i/^).

We show the existence of such integers raι, ,mt by induction on t (cf. [7, p. 2]).

The case £ = 1 is trivial. Assume that our assertion holds up to t - 1 and we can

take integers mι, ,mί_ι with the property that l*j φ l^ , if (l\ , - - - ,l\~^1} φ

(̂ •M -,^1), where

l*j =ll

ίjml -f . --H-mt-i/^ 1 .

Then it is easy to see that there exist only finitely many integers mt such that

mι, ,mt do not satisfy the above property. Thus we have the desired conclusion.

Without loss of generality, after multiplying a row or column of the matrix A by a
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common elements in Λ4*, we may assume that lij > 0 for all i, j. By (4.7) and
(4.13), we have

(4.14) detfoj ijjk - f??J'; 1 < ij < po) = 0.

The relation (4.14) can be written as

Cj M j f a i , - - - , ^ ) =0,
j=ι

where

j=ι

is a Laurent polynomial in w\, •- ,wt with / := (n + 2)!. By Lemma 4.12, it follows
that P — 0 as polynomial. Hence (4.14) remains valid if we substitute monomials r\i —
w™* in one variable w(l < i < pQ). Thus we have

det(Pij(w)]i = I, p0,j = jι,' 'JPo) ΞΞ 0

for all ji, ,jPQ9 where PΪJ(W) := CijWlίj .
We now state a lemma on monomials due to H. Fujimoto. We consider po χ Q

matrices Π = (P{j(w)) with monomials PΪJ(W) = CijWlij as entries. By rank Π we
mean the rank of matrix in the field C(w) of rational functions.

Lemma 4.15 ([10, Main Lemma]). For each QQ (> 1), there exists a positive in-
teger Q(po',qo) depending only on po and QQ with the following property:

Suppose that q > Q(po',qo) and rank Π < po Then there exists a positive integer
r depending on Π with 2 < r < PQ such that, after changing indices,

(4.16) In - / i/ i = Ii2 - /;/2 = = liqo - /^go

for all ί, i1 with 1 < i , < i1 < r and

(4.17) rank (Pij(w)\ 1 < i < r, 1 < j < q0) < r.

For the proof, see §3 in [10].

Let g0 = q n-i + 1 and set qn — <2(po;<7o) Suppose that q > qn. By Lemma
4.15, we have (4.16) and (4.17). Hence hij(l < i < Po,l < j < <?o) satisfy the
assumption of Lemma 4.8. Thus we have QQ < qn-ι This contradicts the choice of
0o (= qn-ι + 1). Therefore we have q < qn. This completes the proof of Theorem 4.1.
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REMARK 4.18. The proof of Main Lemma in [10] and the above argument give

us a way of actually finding an upper bound for 8(p; (Cm, {Ej}), (Pn(C), { H j } ) ) .

Indeed, we first note that the constant Q(po',qo) is defined as follows. For each qo(>

1), we set Q(2; g0) = Qo ~ l Assume that there exist Q(2; <?0), , Q(po - 1; <?o) witn

the conclusion of Lemma 4.15. Set

q* = max{go, <2(2; ?0), -

Moreover we set ς£(l < s < po) by

q[ = q* and ^ = g* + po + q's^ (p0!)
2

inductively. Then we define Q(po',qo) — ς£ (see [10, p. 534]). On the other hand, by
the above proof of Theorem 4.1, we have the constants

qι = 2 and qn = Q(n + 2; ?n_ι + 1)

such that |J£(p; (Cm, {£>•}), (Pn(C), { H j } ) ) < qn for each n. For instance, we have

, {£;,}), (P2(C), {#,-})) < ̂ 2 - 786800531602.

We do not know whether the upper bound qn is shaφ or not in the case of n > 2. It

is an interesting problem to determine the least upper bound for the numbers of map-

pings in 5(p;(C">,{^ }MPn(C), {#,•})).

5. A finiteness theorem for meromorphic mappings into M

In this section we give the proof of our main theorem. Namely, we prove the fol-

lowing finiteness theorem:

Theorem 5.1. // rank# = dimM and d > (s + l)!{(β + 1)! - 2}, then the
number of mappings in J-*(d', (Cm,#), (M, D)) is bounded by a constant depending

only on D.

Proof. Let /, g G Γ*(d\ (Cm, E), (M, D)). Then we have a relation

s 2s

(5.2) Σcjθ-j°f-a ^ C j σ j o g Ξ Ξ Q ,
j=ι j=«+ι

where α G Mj and c5+j := Cj, σs+j := σj for j = 1, , s. Applying Lemma 2.3 to

the relation (5.2), we have a decomposition {1, , 2s} = U/,/ of indices. Since / and

g are analytically nondegenerate, we have that /,, = {j, s + k} (1 < j, fc < 5) for all

v. Thus we obtain

(5.3) *j°f = aajστ(j} o 0 (αy G C*)
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for 1 < j < 5, where r is a permutation of {1, •••,$}. Let Γ be the subgroup

of Aut(P s_ι(C)) generated by all diagonal matrices, that is, an automorphism T of

Pβ_ι(C) belongs to Γ if and only if

for some λi, ,λs G C*, where {(j, ,Cs} is a homogeneous coordinate system in
P._ι(C). We set

(Ψog)τ = (στ(l] og, -,στ(8) og).

Then the relation (5.3) yields that

for some Γ € Γ and for z G Cm - (/(/) U I(g)) with f ( z ) 9 g ( z ) & I(Φ). We note
that

E=(Ψof)*H (modd),

where H := {ciCi + + cβζs = 0}.
The above argument shows that there exist finitely many linearly nondegenerate

meromorphic mappings <pι, ,y?t Cm — > P5_ι(C) with t < s! that satisfy the
following property: For arbitrary / G ̂ *(d; (Cm, J5), (M, D)), there exists j (1 < j <

t) and T G Γ such that Φof = Toψj.Parl<j< t, we define

Ft = {/ G 7**(d; (Cm, £7), (M, Z))); sP o / = T o ̂  f or some Γ G Γ}.

To prove that F*(d', (Cm, E), (Af,D)) is finite, it suffices to show that Tj is finite
for each j. Let j (1 < j ; < ί) be fixed. We define effective divisors EI, , £/β+ι on

Cm as follows. Let Ek be the zero divisor of φj

k for 1 < k < s and E8+ι — E,
where (φ{, - - - ,φ{) is a reduced representation of ψj. Take the following hypeφlanes
in general position in Ps_ι(C):

HS+I = H.

Let E := ε(d',(Cm,{Ej}),(Ps-ι(C),{Hj})) be the set of all linearly nondegenerate

meromorphic mappings φ : Cm -» Ps_ι(C) such that φ*Hk = Ek (mod d) for
1 < k < s -f 1. Thanks to Theorem 4.1, $8 is bounded by a constant depending only
on s. For / G Tj, by the definition of Tj, we have Ψ o f G 8 . Let /0 be an arbitrary
meromorphic mapping in Tj. Then it is easy to see that
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is finite. Indeed, since the restriction of ^ to an open dense subset W of M is a local-
ly biholomorphic mapping, there exists a positive integer e0 such that $Ψ~lΦ(w) < e$
for each point w in W. Suppose that there exist mutually distinct meromorphic map-

pings f o , , f P e Γ j ( f o ) . S e t

W' = {z€ Cm; fj(z) G W for all j and fά(z) φ fj> (z) for 0 < j < j' < p}.

Then W is an open dense subset of Cm. For ZQ G W , we have /Q(ZO) € ̂  and

o o ^ " P 0 0 Q .

Hence p + 1 < e0 and )t^j(/o) < e0. Therefore (^"(d; (Cm, JS), (Af,D)) is bounded
by a constant depending only on D. Π

By Theorem 5.1, we have the following corollary (cf. [9, IV, Theorem 4.3]):

Corollary 5.4. Let 7 be an automorphism of Cm and let f : Cm — > M be an
analytically nondegenerate meromorphic mapping. Suppose that rank \P = dim M and
7*/*£> = f*D (mod d). If d > (s + l)!{(a + 1)! - 2}, then there exists a positive
integer JQ depending only on D such that f o ̂ ° — /, where 7J = 7 o - o 7 (j-times)
for a positive integer j.

Proof. Take E = f*D. By the assumption, we have / o 7-* G ̂ "(d; (Cm

?J£;),
(Af,Z?)) for any positive integers j. Since ^(d; (Cm,E), (M, D)) is bounded by a
constant depending only on Z), it follows that / o ̂  — f o 7^2 for some ji, J2 with
ji < J2 We take the smallest ji, J2 with the above property. Hence we see foj™ = f

fmjo=J2-J2 Π

For the family

F*((Cm,E),(M,D)):=F*(0;(Cm,E),(M,D)),

we have the following theorem by making use of Theorem 4.2:

Theorem 5.5. Suppose that rank^ = dimM. If d > 4s(s — 1), then the number
of mappings in ^"((C771, E), (M, D)) is bounded by a constant depending only on D.

We give here examples of pairs (M, D) satisfying the assumption of the above
theorems. We first consider in the case where M = Pn(C). In the following two ex-
amples, let M = Pn(C) and {wι, - - - ,wn+ι} a homogeneous coordinate system in
Pn(C). As usual, we denote by [H] the hyperplane bundle over Pn(C).

EXAMPLE 5.6. Let D be a Fermat hypersurface defined by

tu? + + wί+l = 0.
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Put σj = w* and Hj = {wj = 0} for 1 < j < n + 1. Then σj G Γ(Pn(C), [H]®d)
and (σj) — dHj. It is easy to see that rank# = n.

EXAMPLE 5.7. Let {Mj(w\, - - ,wn+ι)}Sj=l be a set of monomials with nonneg-
ative rational exponents that is (n + Inadmissible (for the definition, see [17]). Let
/ be the smallest positive integer such that all exponents of M[, - , Ml

s are integers.
Put σj = Mljd and Dj = {MJ - 0} for 1 < j < s. Then σj G Γ(Pn(C), [H]®ld)
and (σj) = dDj. Since {Mj(w\, - - - ,wn+ι)}j=1 is (n-hi)-admissible, we may assume
that MJ = Wj for 1 < j < n + 1. Hence rank# = n.

Next we give an example of (M,D) such that M is other than Pn(C). The fol-
lowing example is due to J. Noguchi:

EXAMPLE 5.8. Let E\ and E2 be smooth elliptic curves. We denote by eι (resp.
62) the identity of an abelian group EI (resp. E2). Let p\ (resp. p2) be a d-torsion
point in EI (resp. E2). Let Li = \pi]®d be the line bundle over Ei determined by
a divisor cfe; for i = 1, 2. By Abel's theorem, de; and dp; are linearly equivalent.

Hence there exist holomorphic sections φ0, φ\ G Γ(E\,L\} and z/>0, ^i € ^(^2,^2)
such that (</?0) = dei, ((/?ι) = dpi, (^o) = ̂ 2 and (^i) = dp2. Set M = EI x E2. We
define a line bundle L -> M by L = πlLι®π2'L2, where π» : M -> ̂  are the natural

projections. Put σi = π^φo (8) TT^O, cr2 = πJVo <8) π%ψι,σ3 — ^\φ\ Θ TT^O and σ4 =
TΓj^i (g) π^i Then σ^ G Γ(M,L) for all j. By the construction of σJ5 it is easy to
see that (σj) = dDj for some effective divisors Dj on M and rank Φ — 2.

6. A unicity theorem

In this section we give a unicity theorem for meromorphic mappings. We first re-
call the definition of big line bundle.

DEFINITION 6.1. A line bundle L —> M is said to be big provided that

dimcΓ(M,LΘl/) >CVd i m M

for some positive constant C and for all sufficiently large positive integers v.

We now show the following unicity theorem (cf. [1] and [4]):

Theorem 6.2. Assume that there exist big line bundles Lj ->• M(l < j < s)
such that L = L®d, 1 < j < s, and σj — τ®d for some holomorphic sections TJ of
LJ —> M. Let /, g : Cm —ϊMbe analytically nondegenerate meromorphic mappings
whose ranks are not less than μ. Suppose that the following conditions are satisfied:
(1)
(2)
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(3) f"l(D) = g~l(D) ± 0 as point sets (say Z).

(4) f = gonZ-(I(f)\Jl(g)).
Then there exists a positive integer do depending only on Lj (1 < j' < s) such that if

d> (s- μ)(s + do), f = 9 on Cm.

For the proof of Theorem 6.2, we need two lemmas. The following lemma is well

known (cf. [16, p. 42]):

Lemma 6.3 (Kodaira's Lemma). Let LI and 1/2 be line bundles over M. Sup-

pose that LI is big. Then there exists a positive integer v such that

We next prove an inequality of second main theorem type as follows:

Lemma 6.4. Let Lj be as in Theorem 6.2. Let f : Cm ->• M be an

analytically nondegenerate meromorphic mapping with rank/ > μ. Put Tf(r) =

maxι<j<5 Tf(r,Lj). Suppose that rank# = dimM and Πj=ι Supp(σj) = 0. Then

{d - s(s - μ)}ff(r) < N8.μ(r, /*£>) +

where

5/(r) = 0(logf/(r)) + o(logr)

except on a Borel subset E C [1, +00) with finite measure.

Proof. We first note that I(Ψ) — 0. We define a meromorphic mapping F :

Cm ->• P5_ι(C) by F = Ψ o f. Since / is analytically nondegenerate, it is clear

that F is linearly nondegenerate. Since rankί^ = dimM, it is easy to see that rank

F=rank /. Let

+ c.C. =0}

be hypeφlanes in general position in Ps_ι(C), where { C ι > " * j C * } *s a homogeneous
coordinate system of Ps_ι(C). By Theorem (1.2), we obtain

s+l

TF(r) <
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i ° f ) 0 ) + N.-μ(r,f D)+SF(r)

r, (rfd o /)„) + Ns-μ(r, f*D) + SF(r)

j=ι

< 8(8 - μ)ff(r) + Ns.μ(r, /* D)

We set h = Σ*i=ι \σi\2- Since p|f=1 Supp(σi) = 0, it follows that /ι gives a metric in
the line bundle L — > M. Then we have

/• / f *Λ \ 1 / 2

Γ,(r,L)= log 7 */ + ΛΓ(r, />,-)) + 0(1).

On the other hand, taking the Fubini-Study metric in [H], we see

7>(r) = / log ί j=Λ .a ) r? + Λ/r(r

?/*(CΓj))

Hence Γ/(r,L) = TF(r) + 0(1). Since L = Lfd for 1 < ̂  < 5, it follows that

dΓ/(r, Lj) < 5(5 - μ)Γ(r) -h N8-μ(r, f*D) -f S(r)

for 1 < j < s. Thus we have the desired conclusion. Π

Proof of Theorem 6.2. Put Φk,v — ΦL®» for 1 < fc < 5 and ι/ G Z+. Since Lk

(I < k < s) are big,

Φjt ) t /: M —>- VFfc,^

are bimeromoφhic mappings for all sufficiently large integers ι/, where Wk^ =
Φk,v(M) for 1 < k < s (see [14, Theorem 5]). For each 1 < k < 5, let ι/(ib) be
the smallest positive integer such that

is bimeromoφhic. Assume that Wk^(k) Q Pn fc(C). We denote by [H]k the hypeφlane
bundle over Pnfc(C). By Lemma 6.3, for each pair (j, fc) with 1 < j, k < s, there
exists a positive integer / such that

Γ(M,Lf ®ίl[H}-k

l}ί{0}.
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Let Ijk be the smallest positive integer that has the above property for each pair (j, k)

and let

/o = min ljk.l<j,k<s J

Without loss of generality, we may assume that /o — Ίi Set n — n\,ι — ι\ and
[H] = [H]ι. Then it is easy to see that

(6.5) Tff(r,ι*[H])<lQff(r)+0(l) and Tg(r,ι,*[H]) < l Q f g ( r ) + O(l).

Indeed, there exists a holomorphic section r G Γ(M,Lfl° ® L*[H]~l) with f*τ φ 0.
By Theorem 1.1, it follows that

0 < Λ Γ ( r , / * ( r ) )

< Tf(r,Lfl°®t,*[H]-l)

Thus we have (6.5).
Let Δ be the diagonal of Pn(C)2 = Pn(C) x Pn(C). We define a meromorphic

mapping φ : Cm — >• Pn(C)2 by y? = L o f x L o g. For the proof of Theorem 6.2, it
suffices to show φ(Cm) C Δ. Assume the contrary. Let ΈJ : Pn(C)2 ->• Pn(C) be
the projections on the j-th factor. Set

Then there exists a holomoφhic section σ of L -> Pn(C)2 such that φ*σ φ 0 and
Δ C Supp(σ) (cf. [4, p. 354]). It is easy to see that

(6.6) N(r,φ*(σ)) < T f ( r , ι * [ H ] ) +Tg(r,ι,*[H])

By the assumption (4), we have

(6.7) 7Vι(r,/*L>) < N(r,φ*(σ)) and N^rrfD) < N(r,φ*(σ)).

By (6.6), (6.7) and Lemma 6.4, we obtain

(6.8) {d - 8(8 - μ)}T(r) < 2(s - μ){Γ/(r, t*[ff]) + Tg(r, ί*[H})} + 5(r),

where Γ(r) = f/(r) + fy(r) and S(r) = 5/(r) -f 5^(r). Thus, by (6.5) and (6.8), we
have

(6.9) {d - a(s - μ)}Γ(r) < do(s - μ)Γ(r) + S(r),
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where do = 2/o Since Lj (1 < j < s) are big, we have

Clogr < f/(r) + 0(1) and Clogr < f g ( r ) + O(l)

for some positive constant C (cf. [1, Proposition 1.2]). Thus, by (6.9), it follows that

d<(s- μ)(s + do). This is absurd. Therefore φ(Cm) C Δ. D

REMARK 6.10. We note that the condition (4) in Theorem 6.2 can not be re-

moved. Let M = ?2(C) and L = [H]®d, where [H] is the hyperplane bundle over

P2(C). Let D be a curve defined by

wf + w$ + w$ = 0,

where {^1,^2,^3} is a homogeneous coordinate system in P2(C). Then D satisfies
the assumptions in Theorem 6.2. Let /, g : Cm ->• P2(C) be meromorphic mappings

defined by f = (φ : ψ : 1) and g = (Ψ : φ : 1), where φ and ψ are holomoφhic
functions on Cm with φ ^ ψ. Then it is clear that f~1(D) = g~l(D) as point sets
and / Φ g. We also note that f*D — g*D as divisors. It is an interesting problem to
find more natural condition other than the condition (4).

We can also prove some theorems on propagation of analytic dependence as in [5]
and [27] by making use of Lemma 6.4. For example, we have the following theorem
by an argument similar to the proof of Theorem 6.2.

Theorem 6.11. Let L and Lj be as in Theorem 6.2. Let S be a hypersurface
in M2 such that the line bundle F over M2 defined by S is of the type π*Fι ®π%F<2,

where π^ : M2 ->• M(k — 1,2) are the natural projections and Fk(k — 1,2) are
line bundles over M. For each k, let Ik be the smallest positive integer I such that

Γ(M,Lf (8> F'1) φ {0} for some j. Set d0 = /i + fe Let /, 9 : Cm -> M be
analytically nondegenerate meromorphic mappings whose ranks are not less than μ.
Suppose that the following conditions are satisfied:
(1)

(2)
(3) there exists a hypersurface Z of Cm such that f~l(D) = g~l(D) = Z.

(4) (/ x g ) ( Z ) C S.

Ifd>(s- μ)(s + do), then (f x 0)(Cm) C S.

We note that Theorem 6.2 is also deduced from Theorem 6.11. We omit here the
details in this direction.
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