3-DIMENSIONAL HOMOLOGY HANDLES AND MINIMAL SECOND BETTI NUMBERS OF 4-MANIFOLDS

YOSHIHISA SATO

(Received March 25, 1997)

1. Introduction

We consider the following problem:

For a given closed 3-manifold M, what is the minimal second Betti number of all compact 4-manifolds bounded by M?

If we add the condition that 4-manifolds are simply connected, then the answer about the above problem in the topological category can be seen from the Boyer classification theorem [1],[2]. The Boyer classification theorem states that for an oriented, closed, connected 3-manifold M, a symmetric integral bilinear form (E,\mathcal{L}) and a presentation \mathcal{P} of $H_*(M;\mathbb{Z})$ by (E,\mathcal{L}) , there exists an oriented, compact, simply connected, topological 4-manifold with boundary M whose intersection form is isomorphic over \mathbb{Z} to (E,\mathcal{L}) and which represents \mathcal{P} geometrically. Furthermore, Boyer gave the result about the uniqueness of such 4-manifolds up to orientation-preserving homemorphism. Here a presentation \mathcal{P} of $H_*(M;\mathbb{Z})$ by (E,\mathcal{L}) is the following short exact sequence with some algebraic data corresponding to the relationship between the linking form of M and (E,\mathcal{L}) , spin structures and the Kirby-Siebenmann obstruction;

$$0 \longrightarrow H_2(M; \mathbb{Z}) \longrightarrow E \stackrel{ad(\mathcal{L})}{\longrightarrow} E^* \longrightarrow H_1(M; \mathbb{Z}) \longrightarrow 0.$$

Hence, in the topological category, we can calculate algebraically the minimal second Betti number of all simply connected 4-manifolds bounded by M. The key to this classification theorem is the Freedman theorem [4], and in particular the fact that every homology 3-sphere can bound a contractible compact topological 4-manifold. In the topological category, it follows from this that the minimal second Betti number of all simply connected 4-manifolds bounded by a given homology 3-sphere is zero. However, the Roholin theorem and the gauge theory say that in the smooth category, a homology 3-sphere can not always bound a homology 4-ball, and so the minimal second Betti number of all simply connected 4-manifolds bounded by a homology 3-sphere is not always zero in the smooth category.

If we consider the Boyer theorem with the condition that the fundamental groups of 4-manifolds are isomorphic to the infinite cyclic group instead of simply connect-

edness, then the key seems to be orientable closed 3-manifolds M with the same integral homology groups as $S^1 \times S^2$, which are called *homology handles* [8]. Of course, the situation changes according as the homomorphisms of π_1 induced from inclusions are trivial or not. In this paper, we consider the case where such homomorphisms $i_{\sharp}:\pi_1M\to\mathbb{Z}$ are surjective, and under this condition we consider the above problem.

By $\beta^{TOP}(M)$ and $\beta^{DIFF}(M)$, we denote the minimal second Betti number of such 4-manifolds in the topological category and in the smooth category, respectively. For example, it is clear that $\beta^{TOP}(S^1 \times S^2) = \beta^{DIFF}(S^1 \times S^2) = 0$. But it does not always hold that $\beta^{TOP}(M) = 0$, since there is a homology handle which can not bound a compact topological 4-manifold homotopy equivalent to S^1 in contrast with the case of homology 3-spheres. In this paper we show that for any positive integer n, there exist infinitely many distinct homology handles $\{M_m^{(n)}\}_{m\in\mathbb{N}}$ with $\beta^{TOP}(M_m^{(n)}) = \beta^{DIFF}(M_m^{(n)}) = n$, and furthermore that there exists a difference between β^{TOP} and β^{DIFF} .

In §2, we introduce two operations on framed links to construct compact smooth 4-manifolds which are bounded by given 3-manifolds and whose fundamental groups are isomorphic to \mathbb{Z} . In §§3 and 4, we investigate β^{TOP} and β^{DIFF} of certain homology handles, and in particular homology handles obtained by 0-surgery on knots. In §4, we show that β^{TOP} and β^{DIFF} are functions onto $\mathbb{N} \cup \{0\}$ and there is a difference between β^{TOP} and β^{DIFF} .

Through this paper, we suppose that manifolds are connected and oriented, and we denote the closed interval [0,1] by I. Furthermore, the symbol b_i stands for the i-th Betti number.

2. Two kinds of 2-handle attachings

For a positive integer p, let $\rho: S^3 \to S^3$ be the $(2\pi/p)$ -rotation around the z-axis and $B_j^3(j=0,1,\ldots,p-1)$ small 3-balls in S^3 with $\rho(B_j^3)=B_{j+1}^3$ $(j=0,1,\ldots,p-1)$ and $\rho(B_{p-1}^3)=B_0^3$. Moreover, let $D_p=(S^3-\bigcup_{j=0}^{p-1} \operatorname{int} B_j^3)\times_{\rho} S^1$ be the mapping torus with monodromy ρ . The compact smooth 4-manifold D_p is bounded by $S^1\times S^2$ and has the fundamental group π_1D_p isomorphic to \mathbb{Z} . The homomorphism $i_\sharp:\pi_1(S^1\times S^2)\to\pi_1D_p$ has index p, where $i:S^1\times S^2\to D_p$ is the inclusion.

Let M be an oriented closed 3-manifold. If M bounds an oriented compact 4-manifold V such that the fundamental group π_1V is isomorphic to $\mathbb Z$ and the homomorphism of π_1 induced from the inclusion $i:M\to V$ is not trivial, then the first Betti number of M is positive. In this section we shall show that for any given 3-manifold M with $b_1(M)\geq 1$, M bounds an oriented compact smooth 4-manifold V such that π_1V is isomorphic to $\mathbb Z$ and $i_\sharp:\pi_1M\to\pi_1V\cong\mathbb Z$ is not trivial. To show this, we need the following two operations. Every closed 3-manifold is obtained from S^3 by an integral surgery on a link in S^3 . Let M be obtained by a framed link $\mathbb L$.

Operation 1. Let K be a component of \mathbb{L} with framing n and c a crossing on

Fig. 2.

a diagram of $K \subset \mathbb{L}$. Add a trivial knot O with framing 0 to \mathbb{L} at c so that the linking number lk(O,K) between O and K is zero. See Fig. 1. Let K' be a knot obtained from K by crossing-change at c. Then, by the Kirby calculus (or handle-slide), the resultant 3-manifold obtained by this new framed link $\mathbb{L} \cup O$ is orientation-preserving homeomorphic to the 3-manifold obtained by a framed link \mathbb{L}' containing a new component O with framing 0 and the component K' with framing n instead of K with framing n. See Fig. 2.

Operation 2. Let K and L be two components of \mathbb{L} with framing m and n, respectively. Let c be a crossing of K and L on a diagram of \mathbb{L} . Give the framing 0 to a meridional curve O of L. See Fig. 3. Then, by the Kirby calculus (or handle-slide), the resultant 3-manifold obtained by this new framed link $\mathbb{L} \cup O$ is orientation-

Fig. 4.

n

m

m

preserving homeomorphic to the 3-manifold obtained by a framed link \mathbb{L}' which contains a new component O with framing 0 and which has an opposite crossing at c. See Fig. 4. Note that this operation leaves the knot type of K invariant, since O is trivial.

We use Operations 1 and 2 to make a knot trivial and to split geometrically a component of a link from other components, respectively.

Proposition 1. For any positive integer p and for any given 3-manifold M with $b_1(M) \geq 1$, there exists an oriented compact smooth 4-manifold V bounded by M such that

- (1) $\pi_1 V$ is isomorphic to \mathbb{Z} , and
- (2) the index, $(\pi_1 V : \operatorname{Im} i_{\sharp})$, of $\operatorname{Im} \{i_{\sharp} : \pi_1 M \to \pi_1 V\}$ in $\pi_1 V$ is p.

Every oriented 3-manifold is obtained from S^3 by an integral surgery on a link in S^3 , but this link is not always an algebraically split link. Here, we say that a link $\mathbb{L} = K_1 \cup K_2 \cup \cdots \cup K_{\mu}$ is an algebraically split link if for each pair of distinct components K_i , $K_j (i \neq j)$ of \mathbb{L} , the linking number $lk(K_i, K_j)$ is zero.

We use the following lemma.

Lemma 1 ([13]). Any integral symmetric matrix is made diagonalizable over \mathbb{Z} by taking block sums of some 1×1 -matrices (p_i) .

We can translate Lemma 1 into geometric terms: Let M be an oriented closed 3-manifold. Then, there are some lens spaces $L(p_j,1)$ $(j=1,2,\cdots,k)$ such that after taking connected sums of $L(p_j,1)$ $(j=1,2,\cdots,k)$, the 3-manifold $M\sharp L(p_1,1)\sharp L(p_2,1)\sharp \cdots \sharp L(p_k,1)$ has a surgery description by a framed algebraically split link.

Proof of Proposition 1. By Lemma 1, there are some lens spaces $L(p_j,1)$ $(j=1,2,\cdots,k)$ such that the 3-manifold $M'=M\sharp L(p_1,1)\sharp L(p_2,1)\sharp \cdots \sharp L(p_k,1)$ is obtained by an integral surgery on an algebraically split link \mathbb{L} . Let $r(\geq 1)$ be the first Betti number of M. Then, the linking matrix of \mathbb{L} is an $(r+n)\times (r+n)$ -matrix

$$\begin{pmatrix} 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & m_1 & & & \\ \vdots & \ddots & \vdots & & \ddots & & \\ 0 & \dots & 0 & & & m_n \end{pmatrix}$$

where $|m_1m_2\cdots m_n|$ is not zero and the order of the torsion part of $H_1(M';\mathbb{Z})$. Generators of $H_1(M';\mathbb{Z})$ are given by meridional curves of the components of \mathbb{L} . Let K_i $(i=1,2,\cdots,r)$ be the components of \mathbb{L} with framing 0 and L_j $(j=1,2,\cdots,n)$ the other components of \mathbb{L} . The 3-manifold $L(p_1,1)\sharp L(p_2,1)\sharp \cdots \sharp L(p_k,1)$ bounds an oriented simply connected compact smooth 4-manifold W, for example the \sharp -sum of k D^2 -bundles over S^2 . Then the smooth 4-manifold $(M\times I)\sharp (-W)$ is bounded by $M\coprod (-M')$. We shall make K_1 a trivial knot which is split geometrically from the other components of \mathbb{L} .

Step 1. If K_1 is not trivial, then we can make K_1 a trivial knot K'_1 by a finite sequence of Operation 1 at some crossings of K_1 . Then the framed link \mathbb{L} changes into another framed link \mathbb{L}' , which is algebraically split. The trivial knot K'_1 has framing 0.

In general, K_1' is not split geometrically from the other components of \mathbb{L}' .

Step 2. By a finite sequence of Operation 2, we can split geometrically K_1' from the other components of \mathbb{L}' keeping K_1' trivial and without changing the framing of K_1' . By \mathbb{L}'' we denote the framed link obtained by the operations as above. Let \mathbb{L}_2'' be the link consisting of the other components of \mathbb{L}'' except K_1' , that is, $\mathbb{L}'' = K_1' \cup \mathbb{L}_2''$. Then the 3-manifold given by the framed link \mathbb{L}'' is $S^1 \times S^2 \sharp N$, where N is the 3-manifold given by \mathbb{L}_2'' .

Hence it follows that by attaching 2-handles to $M' \times \{1\} \subset M' \times I$ in ways corresponding to Steps 1 and 2, we get an oriented compact smooth 4-manifold X whose boundary is $M' \coprod (-(S^1 \times S^2 \sharp N))$. Set $Y = ((M \times I) \natural (-W)) \bigcup_{M'} X$. Let W' be an oriented simply connected compact smooth 4-manifold bounded by N, for example, the 4-manifold consisting of one 0-handle and some 2-handles given by the

Fig. 5.

framed link \mathbb{L}_2'' . Then $Z=Y\bigcup((S^1\times S^2)\times I\natural W')$ is an oriented compact smooth 4-manifold with boundary $\partial Z=M\coprod(-S^1\times S^2)$. See Schema 1. Now let V be the 4-manifold $Z\cup_\partial D_p$, which is an oriented compact smooth 4-manifold with boundary $\partial V=M$. By van Kampen's theorem, π_1V is isomorphic to \mathbb{Z} . If we let t be a generator of π_1D_p , then a loop coming from a meridional curve of K_1 represents $t^{\pm p}$ in π_1D_p , and so $(\pi_1V:\operatorname{Im} i_\sharp)=p$.

Example 1. Let m be an integer. Let M(m) be the homology handle given by the following framed link $K_1 \cup K_2$ in Fig. 5. The link $K_1 \cup K_2$ is an algebraically split link. Let $\tilde{M}(m)$ be the universal abelian covering of M(m), that is, the infinite cyclic covering of M(m) associated to the kernel of the Hurewitz homomorphism $\alpha:\pi_1M(m)\to H_1(M(m);\mathbb{Z})\cong\mathbb{Z}$. Then $\tilde{M}(m)$ is obtained from the universal covering $q:\mathbb{R}\times S^2\to S^1\times S^2$ by 1-surgeries on the preimage of K_2 via q as in Fig. 6. See [14]. By $\Lambda=\mathbb{Z}\langle t\rangle$ we denote the ring of Laurent polynomials with integer coffecients. Thus $H_1(\tilde{M}(m);\mathbb{Z})$ has a Λ -module structure by the group of deck transformations and is isomorphic to $\Lambda/(mt^{-1}-(2m-1)+mt)$ as Λ -modules. Here (f(t)) stands for the principal ideal generated by $f(t)\in\Lambda$. Now attach one 2-handle $h^{(2)}$ to $M(m)\times I$ so that the attaching circle of $h^{(2)}$ is a meridional curve of K_2 and the framing of $h^{(2)}$ is zero. Let W be the resultant 4-manifold. By Op-

Fig. 6.

eration 1, it is seen that W is bounded by $M(m)\coprod (-S^1\times S^2)$. See Fig. 7. Thus $V=W\cup_{S^1\times S^2}D_p$ is an oriented compact smooth 4-manifold bounded by M(m) with $\pi_1V\cong \mathbb{Z},\ (\pi_1V:\operatorname{Im} i_\sharp)=p,$ and $H_2(V;\mathbb{Z})\cong \mathbb{Z}\oplus \mathbb{Z}_p.$ In §§3 and 4 we show that in the case of p=1 this 4-manifold V gives the minimal second Betti number of all oriented compact topological 4-manifolds X bounded by M(m) with $\pi_1X\cong \mathbb{Z}$ and $(\pi_1X:\operatorname{Im} i_\sharp)=1.$

We have the following proposition for a 3-manifold M such that $H_1(M; \mathbb{Z})$ has a torsion subgroup.

Proposition 2. Let p be any positive integer and $\mathbb{L} = K_1 \cup K_2$ a 2-component

Fig. 7.

framed link such that

- (1) K_1 is a trivial knot,
- (2) the linking number $lk(K_1, K_2)$ is zero, and
- (3) the framings of K_1 and K_2 is 0 and n, respectively.

Let M be the resultant 3-manifold obtained by surgery on the framed link \mathbb{L} . If |n| > 1, then the smooth 4-manifold V constructed in the manner of Example 1 gives the minimal second Betti number of all oriented compact topological 4-manifolds X bounded by M with $\pi_1 X \cong \mathbb{Z}$ and $(\pi_1 X : \operatorname{Imi}_{\sharp}) = p$. Note that $H_2(V; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}_p$.

Proof. Suppose that $b_2(V) = 1$ is not minimal. Namely, there is an oriented compact topological 4-manifold X as above with $b_2(X) = 0$. By considering the homology exact sequence of the pair (X, M), we have the following short exact se-

quence;

$$0 \to \mathbb{Z} \to H_2(M; \mathbb{Z}) \to \mathbb{Z}_p \to 0 \xrightarrow{\partial} H_1(M; \mathbb{Z}) \to \mathbb{Z} \to \mathbb{Z}_p \to 0.$$

Because of |n| > 1, $H_1(M; \mathbb{Z})$ has a torsion subgroup. This contradicts that $H_1(M; \mathbb{Z}) \to \mathbb{Z}$ is injective.

3. Minimal second Betti numbers for homology handles

Through §§3 and 4, we consider the case of p=1, namely, the case where the homomorphisms on π_1 induced from inclusions are surjective. If M is an oriented closed 3-manifold with $H_*(M; \mathbb{Z}) \cong H_*(S^1 \times S^2; \mathbb{Z})$, then we call M a homology handle. See [8]. Since a homology handle M has $H^1(M; \mathbb{Z}_2) \cong \mathbb{Z}_2$, M admits two spin structures τ_0 and τ_1 . By $\mu(M, \tau)$ we denote the Roholin invariant of M with respect to a spin structure τ .

Proposition 3. Let M be a homology handle with spin structures τ_0 and τ_1 . Suppose that $\mu(M,\tau_0)=0$ and $\mu(M,\tau_1)=1$. Then, there is no orientable compact topological spin 4-manifold V bounded by M such that $\pi_1V\cong \mathbb{Z}$ and the homomorphism $i_{\sharp}:\pi_1M\to\pi_1V\cong \mathbb{Z}$ is surjective.

Proof. Suppose that there would be such a 4-manifold V. Because of $\pi_1 V \cong \mathbb{Z}$, V admits two spin structures σ_0 and σ_1 . Since $i_{\sharp}: \pi_1 M \to \pi_1 V \cong \mathbb{Z}$ is surjective, $\pi_1(V,M)=0$ and so $H^1(E(\tau_V),E(\tau_M);\mathbb{Z}_2)=0$. Here $E(\tau_M)$ and $E(\tau_V)$ are the total spaces of the principal STop(3)-bundle and the principal STop(4)-bundle associated with stable topological tangent bundles over M and V, respectively. From the following cohomology exact sequence of the pair $(E(\tau_V),E(\tau_M))$,

$$0 = H^1(E(\tau_V), E(\tau_M); \mathbb{Z}_2) \to H^1(E(\tau_V); \mathbb{Z}_2) \to H^1(E(\tau_M); \mathbb{Z}_2) \xrightarrow{\delta},$$

if follows that the restrictions of σ_0 and σ_1 to M are τ_0 and τ_1 , say $\sigma_0|_M = \tau_0$ and $\sigma_1|_M = \tau_1$. By [5, Chapter 10], we can calculate the Kirby-Siebenmann obstruction $ks(V) \in H^4(V, M; \mathbb{Z}_2)$ of V from (V, σ_0) and we have that

$$8ks(V) \equiv signature(V) + \mu(M, \tau_0) \pmod{16}$$

 $\equiv signature(V) \pmod{16}.$

From (V, σ_1) it follows that

$$8ks(V) \equiv signature(V) + 1 \pmod{16},$$

and this equation contradicts that one.

For any given homology handle M, we would like to investigate the minimal second Betti number of 4-manifolds bounded by M.

Let M be a homology handle. By $\beta^{TOP}(M)$ we denote the minimal second Betti number of all oriented compact topological 4-manifolds V bounded by M such that π_1V is isomorphic to $\mathbb Z$ and the homomorphism $i_\sharp:\pi_1M\to\pi_1V$ is surjective. Furthermore, we denote by $\beta^{DIFF}(M)$ the minimal second Betti number of all oriented compact smooth 4-manifolds as above. Then it is clear that $\beta^{DIFF}(M)\geq \beta^{TOP}(M)\geq 0$.

REMARK. If we define $\beta^{TOP}(M)$ and $\beta^{DIFF}(M)$ for a general 3-manifold M in the same manner, then it follows from the homology exact sequence of the pair (V,M) that $\beta^{DIFF}(M) \geq \beta^{TOP}(M) \geq \operatorname{rank}_{\mathbb{Z}} H_1(M;\mathbb{Z}) - 1$.

Corollary 1. Let M be a homology handle as in Proposition 3. Then, $\beta^{TOP}(M) \ge 1$.

Corollary 2. Let $\mathbb{L} = K_1 \cup K_2$ be a 2-component framed link such that

- (1) K_1 is a trivial knot,
- (2) the linking number $lk(K_1, K_2)$ is 0, and
- (3) the framings of K_1 and K_2 is 0 and ± 1 , respectively.

Let M be the homology handle obtained by surgery on \mathbb{L} . If M admits two spin structures τ_0 and τ_1 with $\mu(M, \tau_0) = 0$ and $\mu(M, \tau_1) = 1$, then $\beta^{DIFF}(M) = \beta^{TOP}(M) = 1$.

Proof. We can construct a smooth 4-manifold V bounded by M with $H_2(V;\mathbb{Z})\cong\mathbb{Z}$ in the same manner as Example 1. Hence, it follows from Corollary 1 that $\beta^{DIFF}(M)=\beta^{TOP}(M)=1$.

EXAMPLE 2. Let M(m) be the homology handle in Example 1. If m is odd, then M(m) admits two spin structures τ_0 and τ_1 with $\mu(M,\tau_0)=0$ and $\mu(M,\tau_1)=1$. If m is even, then M(m) admits two spin structures τ_0 and τ_1 with $\mu(M,\tau_0)=\mu(M,\tau_1)=0$, Hence, if m is odd, then $\beta^{DIFF}(M(m))=\beta^{TOP}(M(m))=1$.

For what homology handle M does it hold that $\beta^{TOP}(M) = 0$ or $\beta^{DIFF}(M) = 0$? Note that $\beta^{TOP}(M) = 0$ if and only if M bounds an oriented compact topological 4-manifold homotopy equivalent to S^1 . Freedman and Quinn give a necessary and sufficient condition to hold that $\beta^{TOP}(M) = 0$ in [5, Proposition 11.6A and 11.6C].

Theorem 2 ([5]). Let M be a homology handle. Let $C = [\pi_1 M, \pi_1 M]$ be the commutator subgroup of $\pi_1 M$. Then, $\beta^{TOP}(M) = 0$ if and only if C is perfect.

Since the universal abelian convering \widetilde{M} of a homology handle M is the infinite cyclic covering associated to the kernel of the Hurewicz homomorphism $\pi_1 M \to H_1(M;\mathbb{Z}) \cong \mathbb{Z}$, $H_1(\widetilde{M};\mathbb{Z})$ is isomorphic to C/[C,C]. Theorem 2 implies that $\beta^{TOP}(M)=0$ if and only if $H_1(\widetilde{M};\mathbb{Z})=0$. Furthermore, the group of deck transformation of \widetilde{M} gives a Λ -modules structure to $H_1(\widetilde{M};\mathbb{Z})$, which is isomorphic to $H_1(M;\Lambda)$ as Λ -modules. So, one can define the Alexander polynomials $\Delta_M(t)\in\Lambda$ for homology handles M as well as for knots. Kawauchi gave in [8, 9] a characterization of the Alexander polynomials of homology handles and how to calculate the Alexander polynomials. Thus $H_1(\widetilde{M};\mathbb{Z})=0$, that is, $\beta^{TOP}(M)=0$ if and only if the Alexander polynomial $\Delta_M(t)$ of M is trivial, that is, a unit of Λ .

4. Minimal second Betti numbers for homology handles obtained by 0-surgery on knots

Consider a homology handle M obtained by 0-surgery on a knot K in S^3 . Note that the class $\ell \in \pi_1(S^3-K)$ represented by the preferred longitude for K belongs to the commutator subgroup $[\pi_1(S^3-K),\pi_1(S^3-K)]$ of $\pi_1(S^3-K)$ and that π_1M is isomorphic to $\pi_1(S^3-K)/\langle \ell \rangle$, where $\langle \ell \rangle$ is the smallest normal subgroup generated by ℓ . Thus we have the following.

Lemma 2. Let K be a knot with exterior E(K), and E(K) the universal abelian covering of E(K). Let M be the homology handle obtained by 0-surgery on K. Then, $H_1(M;\mathbb{Z})$ is isomorphic to $H_1(E(K);\mathbb{Z})$ as Λ -modules. In particular, the Alexander polynomial $\Delta_M(t)$ of M is equal to the Alexander polynomial $\Delta_K(t)$ of K (See Lemma 2.6-(III) in [8].).

Hence, we have the following.

Corollary 3. Let M be the homology handle obtained by 0-surgery on a knot K. The minimal second Betti number $\beta^{TOP}(M) = 0$ if and only if the Alexander polynomial $\Delta_K(t)$ of K is trivial.

EXAMPLE 3. Let M(m) be the homology handle in Example 1. In Example 1 we see that $H_1(M(m);\mathbb{Z})$ is isomorphic to $\Lambda/(mt^{-1}-(2m-1)+mt)$ as Λ -modules. In fact, it follows from the Kirby calculus that M(m) is also obtained by 0-surgery on the following knot in Fig. 8. Thus the Alexander polynomial for M(m) is $mt^{-1}-(2m-1)+mt$ and $\beta^{TOP}(M(m))\neq 0$. Therefore, in the case when m is even, it also holds that $\beta^{TOP}(M(m))=\beta^{DIFF}(M(m))=1$, since we can construct a required 4-manifold in the same manner as Example 1. See Example 2.

We can estimate $\beta^{DIFF}(M)$ by the unknotting number u(K) of a knot K.

Proposition 4. Let M be the homology handle obtained by 0-surgery on a knot K with unknotting number u(K). Then, $u(K) \geq \beta^{DIFF}(M)$.

Fig. 9.

Proof. Note that by the Kirby calculus the 3-manifolds in Fig. 9. are homeomorphic. Let u be the unknotting number of K. Then after taking cross-changing at certain u crossings of a diagram of K, K becomes a trivial knot L_0 . Hence, M has a surgery description by a framed link $\mathbb{L} = L_0 \cup L_1 \cup \cdots \cup L_u$ such that all $L_j(j=0,1,\cdots,u)$ are trivial knots, the framing of L_0 is zero and the framings of $L_j(j=1,2,\cdots,u)$ are ± 1 . See Fig. 10. If we apply Operation 2 to each $L_j(j=1,2,\cdots,u)$, then we get a new framed link \mathbb{L}' . See Fig. 11. The 3-manifold given by \mathbb{L}' is $S^1 \times S^2$. By attaching u 2-handles $h_j^{(2)}$ ($j=1,2,\cdots,u$) as above to $M \times I$ and identifying one component of the boundary of the resultant smooth 4-manifold with the boundary of $S^1 \times B^3$, we get a 4-manifold V with second Betti number u and with boundary M such that $\pi_1 V$ is isomorphic to \mathbb{Z} and the homomor-

Fig. 11.

phism $i_{\sharp}: \pi_1 M \to \pi_1 V$ is surjective. Hence, $\beta^{DIFF}(M) \leq u$.

For example, the knots K_m in Fig. 8 are unknotting number 1 knots. Hence, $1 = u(K_m) \geq \beta^{DIFF}(M(m)) \geq \beta^{TOP}(M(m)) \geq 1$, and so $\beta^{TOP}(M(m)) = \beta^{DIFF}(M(m)) = 1$.

We generalize Examples 2 and 3 as follows.

Theorem 3. For any positive integer n, there exist infinitely many distinct homology handles $\{M_m^{(n)}\}_{m\geq 1}$ with $\beta^{TOP}(M_m^{(n)})=\beta^{DIFF}(M_m^{(n)})=n$.

To show Theorem 3, we use the local signatures of homology handles, which are introduced by Kawauchi [8] and defined by generalizing local signatures of knots. See also [12]. In [9], Kawauchi considered the embedding problem of 3-manifolds into 4-manifolds. In particular, he gave an estimation of second Betti numbers and signatures of 4-manifolds by local signatures of their boundaries: Let M be a homology handle

and X a compact topological 4-manifold bounded by M. Then, he showed that for any $a \in [-1, 1]$,

$$\left| \Sigma_{x \in (a,1]} \sigma_x(M) \right| \leq b_2(X) + \left| signature(X) \right|.$$

Here $\sigma_x(M)$ is a local signature of M. Since $b_2(X) + |signature(X)| \leq 2b_2(X)$, we have

$$\left| \Sigma_{x \in (a,1]} \sigma_x(M) \right| \le 2b_2(X) \quad \text{for any } a \in [-1,1],$$

and so

$$\left|\Sigma_{x\in(a,1]}\sigma_x(M)\right| \leq 2\beta^{TOP}(M) \quad \text{for any } a \in [-1,1].$$

Proof of Theorem 3. For each positive integer m, let K_m be a knot in Fig. 8. Then, the Alexander polynomial $\Delta_{K_m}(t)$ of K_m is $mt^2 - (2m-1)t + m$ up to units in Λ and the unknotting number $u(K_m)$ of K_m is 1. Because of $\Delta_{K_m}(t)/m = t^2 - 2\{(2m-1)/(2m)\}t+1$, it follows from Assertion 11 in [12] that the signature $\sigma(K_m)$ of K_m is ± 2 . Hence, it folds that for the local signature $\sigma_x(K_m)(x \in [-1,1])$,

$$\sigma_x(K_m) = \begin{cases} \pm 2, & \text{if } x = (2m-1)/(2m), \\ 0 & \text{if } x \neq (2m-1)/(2m). \end{cases}$$

Let $K_m^{(n)}$ be the connected sum of n copies of K_m , that is, $K_m^{(n)} = K_m \sharp K_m \sharp \cdots \sharp K_m$. Let $M_m^{(n)}$ be the homology handle obtained by 0-surgery on $K_m^{(n)}$. Since $\Delta_{K_m^{(n)}}(t) = (\Delta_{K_m}(t))^n \neq (\Delta_{K_m'}(t))^n = \Delta_{K_m^{(n)}}(t)$ $(m \neq m')$, $M_m^{(n)}$ and $M_{m'}^{(n)}(m \neq m')$ are not homeomorphic. Noting that the quadratic form of the universal abelian covering $M_m^{(n)}$ is the orthogonal sum of n copies of the quadratic form of K_m , it follows that for the local signature $\sigma_x(M_m^{(n)})(x \in [-1,1])$,

$$\sigma_x(M_m^{(n)}) = \begin{cases} \pm 2n, & \text{if} \quad x = (2m-1)/(2m), \\ 0 & \text{if} \quad x \neq (2m-1)/(2m). \end{cases}$$

Hence, we have

$$\left| \sum_{x \in (0,1]} \sigma_x(M_m^{(n)}) \right| = \left| \sigma_{(2m-1)/(2m)}(M_m^{(n)}) \right| = 2n.$$

Thus, by the inequality (4.3) we have

$$n = \frac{1}{2} \left| \Sigma_{x \in (0,1]} \sigma_x(M_m^{(n)}) \right| \le \beta^{TOP}(M_m^{(n)}).$$

By noting that $u(K_m^{(n)}) \leq n$ because of $u(K_m) = 1$, it follows from Proposition 4 that $\beta^{DIFF}(M_m^{(n)}) \leq u(K_m^{(n)}) \leq n$. Therefore, $n \leq \beta^{TOP}(M_m^{(n)}) \leq \beta^{DIFF}(M_m^{(n)}) \leq n$, and so $\beta^{TOP}(M_m^{(n)}) = \beta^{DIFF}(M_m^{(n)}) = n$.

REMARK. (1) The unknotting number $u(K_m^{(n)})$ is n because of $n = |\sigma(K_m^{(n)})|/2 \le u(K_m^{(n)}) \le n$.

(2) Consider a short exact sequence of Λ -modules

$$0 \to E \to F \to \Lambda/(f_1) \oplus \Lambda/(f_2) \oplus \cdots \oplus \Lambda/(f_n) \to 0$$

where E and F are free Λ -modules of the same rank. If each f_{i+1} can be divided by f_i , then $\mathrm{rank}_{\Lambda}E \geq n$. Let V be an oriented compact 4-manifold bounded by $M_m^{(n)}$ such that $\pi_1V \cong \mathbb{Z}$ and the homomorphism $i_{\sharp}: \pi_1M_m^{(n)} \to \pi_1V$ is surjective. Then we have the following homology exact sequence with local coefficient Λ ,

$$0 \to H_2(V;\Lambda) \to H_2(V,M_m^{(n)};\Lambda) \to H_1(M_m^{(n)};\Lambda) \to 0.$$

The homology groups $H_2(V;\Lambda)$ and $H_2(V,M_m^{(n)};\Lambda)$ are free Λ -modules of the same rank. Since $H_1(M_m^{(n)};\Lambda)\cong\bigoplus_{i=1}^n(\Lambda/(mt-(2m-1)+mt^{-1}))_i=\Lambda/(mt-(2m-1)+mt^{-1})\oplus\cdots\oplus\Lambda/(mt-(2m-1)+mt^{-1})$, $\mathrm{rank}_\Lambda H_2(V;\Lambda)=\mathrm{rank}_\Lambda H_2(V,M_m^{(n)};\Lambda)\geq n$. Hence it follows that $\beta^{TOP}(M_m^{(n)})\geq n$.

Next we give two definitions on sliceness of knots.

DEFINITION 1. If a knot K bounds a smooth disk D in the 4-ball B^4 such that $(B^4, D) \times I$ is a trivial ball pair, then K is a super slice knot. See [7].

For example, untwisted doubles of slice knots are super slice [7].

DEFINITION 2. A knot K is *pseudo-slice*, if there exists a pair (W, D) for K such that W is a smooth 4-manifold homemorphic to B^4 and D is a smooth disk in W bounded by K.

Proposition 5. Let K be a super slice knot, and M the homology handle obtained by 0-surgery on K. Then, $\beta^{TOP}(M) = \beta^{DIFF}(M) = 0$.

Proof. Let D be a slice disk for K such that $(B^4, D) \times I$ is a trivial ball pair. Let N(D) be a closed tubular neighborhood of D in B^4 . Then, M is the boundary of the smooth 4-manifold $V = B^4 - intN(D)$. The 4-manifold V is homotopy equivalent to $V \times I = B^4 \times I - intN(D) \times I$. Since $(B^4, D) \times I$ is trivial, V is homotopy equivalent to S^1 . Thus V is a required 4-manifold.

Is there a difference between β^{TOP} and β^{DIFF} ? Now we answer this question.

Theorem 4. Let K be a knot which is not pseudo-slice and whose Alexander polynomial Δ_K is trivial. Let M be the homology handle obtained by 0-surgery on K. Then, $0 = \beta^{TOP}(M) < \beta^{DIFF}(M)$.

Proof. Since Δ_K is trivial, it follows from Corollary 3 that $\beta^{TOP}(M)=0$. Suppose that $\beta^{DIFF}(M)=0$. Then M bounds a smooth 4-manifold V homotopy equivalent to S^1 . By attaching to $M\times I$ one 2-handle $h^{(2)}$ whose attaching circle is a meridian of K and whose framing is zero, we get the 4-manifold $(M\times I)\cup h^{(2)}$ whose boundary is $M\coprod (-S^3)$. See Operation 1. Furthermore, by identifying ∂V with one component M of the boundary of $(M\times I)\cup h^{(2)}$, we get a compact smooth 4-manifold W bounded by S^3 . Then, since W is simply-connected and $H_*(W;\mathbb{Z})\cong H_*(B^4;\mathbb{Z})$, W is homeomorphic to B^4 . The co-core of the above 2-handle $h^{(2)}$ gives a smooth disk D in W with $\partial(W,D)=(S^3,K)$. Since K is not pseudo-slice, this is a contradiction.

EXAMPLE 4. In [3], Cochran and Gompf showed that there are untwisted doubles which are not pseudo-slice. For example, the untwisted double K of the trefoil knot is such a knot. Note that the Alexander polynomials of nontrivial untwisted doubles are trivial and their unknotting numbers are 1. Thus, for the homology handle M obtained by 0-surgery on K, $1 = u(K) \ge \beta^{DIFF}(M) > \beta^{TOP}(M) = 0$, and so $1 = \beta^{DIFF}(M) > \beta^{TOP}(M) = 0$.

EXAMPLE 5. Let K(-3,5,7) be the pretzel knot of type (-3,5,7). Then K(-3,5,7) has a trivial Alexander polynomial. Furthermore, in [6] Fintushel and Stern showed that K(-3,5,7) is not pseudo-slice. Thus, for the homology handle M obtained by 0-surgery on K(-3,5,7), $\beta^{DIFF}(M) > \beta^{TOP}(M) = 0$.

It follows from [11] that K(-3,5,7) is not an unknotting number 1 knot. One can make K(-3,5,7) a trivial knot by crossing-change at certain 3 crossings. Hence, $2 \le u(K(-3,5,7)) \le 3$. Thus it follows that $1 \le \beta^{DIFF}(M) \le 3$. What is $\beta^{DIFF}(M)$?

References

^[1] S. Boyer: Simply-connected 4-manifolds with a given boundary, Trans. Amer. Math. Soc. 298 (1986), 331-357.

^[2] S. Boyer: Realization of simply-connected 4-manifolds with a given boundary, Comment. Math. Helvetici, 68 (1993), 20-47.

^[3] T.D. Cochran and R.E. Gompf: Applications of Donaldson's theorem to classical knot concordance, homology 3-spheres and property P, Topology, 27 (1988), 495-512.

^[4] M.H. Freedman: The topology of 4-manifolds, J. Differential Geom. 17 (1982), 357-453.

^[5] M.H. Freedman and F. Quinn: Topology of 4-manifolds, Purinceton University Press, 1990.

^[6] R. Fintushel and R. Stern: Pseudo free orbifolds, Ann. Math. 122 (1985), 335-364.

- [7] C.McA. Gordon and D.W. Sumners: Knotted ball pairs whose product with an interval is unknotted, Math. Ann. 217 (1975), 47-52.
- [8] A. Kawauchi: Three dimensional homology handles and circles, Osaka J. Math. 12 (1975), 565-581.
- [9] A. Kawauchi: The imbedding problem of 3-manifolds into 4-manifolds, Osaka J. Math. 25 (1988), 171-183.
- [10] T. Kayashima: Construction of compact 4-manifolds with infinite cyclic fundamental groups, Kyushu J. of Math. 50 (1996), 241-248.
- [11] T. Kobayashi: Minimal genus Seifert surfaces for unknotting number 1knots, Kobe J. Math. 6 (1989), 53-62.
- [12] J.W. Milnor: Infinite cyclic coverings, In: Conf. Topology of Manifolds (1968), Prindle, Weber and Schmdit, Boston-London-Sydney, 115-133.
- [13] H. Murakami: Quantam SO (3) -invariants dominate the SU (2)-invariant of Casson and Walker, Math. Proc. Camb. Phil. Soc. 117 (1995), 237-249.
- [14] D. Rolfsen: Knots and Links, Math. Lecture Series 7, Publish or Perish Inc., 1976.

Department of Mathematics, Faculty of Educations, Yamaguchi University Yoshida Yamaguchi, 753 Japan