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1. Introduction

Let G be a finite group and n be a positive integer. A group G is called an

OCn group if every element of G has order less than or equal to n and for each
positive integer m < n there exists an element of G of order m. B. H. Neumann [8]

determined all OG3 groups and R. Brandl and W. Shi [1] classified all OCn groups.
In recent years a number of papers have dealt with the question of characterizing

groups G by the set of all orders of elements in G. See [1], [2] or [10].
Now we will consider the order of abelian subgroups of G instead of the order

of elements of G. A group G is called an OAn group if the order of any abelian

subgroup of G is less than or equal to n and for any positive integer m < n

there exists an abelian subgroup of G of order m. For example, any abelian sub-

group of the alternating group Λ5 on 5 letters is isomorphic to one of the groups
{1, Z2, Z3, Z2 x Z2, Z$} where Zm is a cyclic group of order m. Thus the alter-

nating group Ar> is an OA5 group. In this paper we will classify all OAn groups

applying the results of [6] and [14] which are proved by using the classification of

finite simple groups.

Theorem. Let G be an OAn group. Then n < 6 and G is isomorphic to one

of the symmetric groups 1, S2, £3, #4, £5 or the alternating groups A±, A5.

There are only seven isomorphism classes of OAn groups although there are in-

finitely many isomorphism classes of OCn groups.

2. Preliminaries

The prime graph Γ(G) of G is a graph whose vertex set is the set of primes

dividing \G\ and distinct two primes p and q are joined by an edge if there exists
an element of G of order pq. Let z/(Γ(G)) be the number of connected components

of Γ(G) and in the case where |G| is even, let πi be the connected component
containing 2. For any integer m, put π(ra) the set of all primes dividing ra.

A finite group G is called a 2-Frobenius group if it has a chain 1 c H C K C G
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of normal subgroups, where K is a Frobenius group with Frobenius kernel H and
G/H is a Frobenius group with Frobenius kernel K/H. A 2-Frobenius group is
always solvable.

Theorem (Gruenberg-Kegel [7], [14]). 7/ι/(Γ(G)) > 2, then one of the fol-
lowing holds.
(1) G is a Frobenius group or a 2-Frobenius group.
(2) G has normal subgroups N and GQ with N c GO such that N is a nilpotent

πi-group, G0/N is a simple group and G/Go is a solvable πι-group.
Especially ifG is solvable, then ι/(Γ(G)) < 2.

The following theorem is well known.

Theorem (Bertrand's postulate [5, p.82]). For any real number t > 1, there
exists a prime p such that t < p <2t.

Let G be an OAn group. Note that if n > 2, then |G| is even and thus π\ is not
empty. The following lemma is fundamental.

Lemma 1. Let G be an OAn group and p be a prime.
(1) p divides \G\ if and only ifp < n.
(2) p2 divides \G\ if and only ifp2 < n.
(3) If \/n <p <n, then a Sylow p-subgroup ofG is cyclic of order p.
(4) Suppose that p is an odd prime. Then p < n/2 if and only ifp G πi.
(5) Ifn/2 <p <n, then {p} forms a connected component o f Γ ( G ) and a Sylow

p-subgroup is cyclic of order p.
(6) Suppose that p is the largest prime dividing \G\. Then n/2 < p < n.

(7) ι/(Γ(G)) > 2 ifn > 3.

Proof. (1) If \G\ is divisible by p, then there exists a cyclic subgroup of order
p. Then we have p < n. Conversely, if p < n then there exists an abelian subgroup
of order p in G by the definition of OAn groups. This yields that p divides |G|.
(2) Since a group of order p2 is abelian, we have the result by using similar argu-
ments in the proof of (1).
(3) If ^fn < p < n, G does not have an abelian subgroup of order p2 since n < p2.
This yields that a Sylow p-subgroup of G is cyclic of order p.
(4) If p < n/2, there exists an abelian subgroup of order 2p by the definition of
OAn groups. Hence p £ πi. Conversely, if p G πi, there exists a prime q G πi such
that G has an element of order pq, that is, G has an abelian subgroup of order pq.
Since G is an OAn group, pq < n. Since 2p < pq, we have p < n/2.
(5) If there exists a prime q such that G has an abelian subgroup of order pq, then
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pq < n because G is an OAn group. We have 2p < pq < n, a contradiction. Hence
{p} is a connected component of Γ(G) and a Sylow p-subgroup is cyclic of order p.
(6) By Bertrand's postulate, there exists a prime r such that n/2 < r < n. We see
that r divides \G\ by (1). Since p is the largest prime dividing |G|, we have r < p.
This yields that n/2 < p < n.
(7) Because there is a prime r such that n/2 < r < n by Bertrand's postulate,

> 2 if n> 3. D

Proposition 1. 7/*n > 47, ίAe« ${p : prime\n/2 < p < n} > 6.

Proof. See[l,p.395] D

Theorem (Williams [14], liyori-Yamaki [6]). For any finite group G,

6.

As a corollary, we have the following:

Corollary 1. IfGis an OAn group, then n < 46.

Proof. Suppose that n > 47. Then Lemma 1 (5) and Proposition 1 imply that

v(Γ(G)) > 7. This contradicts the theorem of Williams and liyori-Yamaki. Π

3. The Proof of the Main Theorem

Proposition 2. Let G be a solvable OAn group. Then G ~ 1, Z2, S3, A± or

04

Proof. By Gruenberg-Kegel's theorem, if G is solvable then ι/(Γ(G)) < 2. If
n φ 1, 2, 3, 4, 6, 10, then there exist primes p and q such that n/2 < p < q < n (See
[1, p.396, TABLE I]). Then v ( Γ ( G ) ) > 3 by Lemma 1 (4). This is a contradiction.
If n = 10, there exists a Hall {3,5, 7}-subgroup H of G because G is solvable. Then
ι/(T(H)) — 3. This is a contradiction. If n = 6, then |G| — 2α 3 5 for some integer
α. A Hall {3, 5}-subgroup H is cyclic of order 15, a contradiction. Hence n < 4. If
i,(Γ(G)) = 1, then G ~ Z2. If z/(Γ(G)) = 2, again by Gruenberg-Kegel's theorem, G
is a Frobenius group or a 2-Frobenius group. If G is Frobenius, then its Frobenius
kernel N must be isomorphic to Z2 x Z2 or Z3. Then we have G ~ A4 or 53. If G
is 2-Frobenius, there exist normal subgroups K and H such that K is a Frobenius
group with Frobenius kernel H and G/H is a Frobenius group with Frobenius
kernel K/H. Then H ~ Z2 x Z2 or Z3. Since X/# is a Frobenius kernel of G/H
and it is also isomorphic to a Frobenius complement of K, K/H must be a cyclic
subgroup of odd order. This yields that H ~ Z2 x Z2 and K/H ~ Z3. This implies

that G - 54. D
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Lemma 2. Let G be a nonsolvable OAn group. Then G is not a Frobenius
group.

Proof. By Lemma 1 (7), we see z/(Γ(G)) > 2. Suppose that G = NH is a
nonsolvable Frobenius group with Frobenius kernel N and Frobenius complement
H. Then H has a subgroup H0 ~ 5L(2,5) x M with (//" : #0) < 2, where M is a
group in which every Sylow subgroup is cyclic and |M| is not divisible by 2, 3 and
5 (See [9, p.204]). Let p be the largest prime dividing G|. Since p 0 πi by Lemma 1,
p does not divide \H\. Therefore p divides \N\. If \N\ is divisible by a prime <? / p,
TV has an abelian subgroup of order pq>2p>n because TV is nilpotent. This is a
contradiction. Hence TV is a p-group and TV ~ Zp by Lemma 1. Since |TV| — 1 > \H\,
we have p > 121. This contradicts Corollary 1 and completes the proof. D

Lemma 3. Let G be a nonsolvable OAn group. Then F(G) = 1, where F(G)
is the Fitting subgroup ofG.

Proof. By Lemma 1 (7), we see z/(Γ(G)) > 2. By Gruenberg-KegeΓs theorem,
G has normal subgroups TV and G0 with TV c GO such that TV is a nilpotent πi-
group, Go/TV is a simple group and G/G0 is a solvable πi-group since G is not a
Frobenius group by Lemma 2. We see that TV = F(G). Suppose that TV ̂  1. Let TV0

be a minimal normal subgroup of G0. Then TV0 is an elementary abelian p-group
for some p G πi. Let q be the largest prime dividing |G|. Then we see that q > 5,
n/2 < q < n and g divides |G0 by Gruenberg-KegeΓs theorem. By Lemma 1 (5),
{<?} is a connected component of Γ(G) and a Sylow ^-subgroup is cyclic of order
q. Then TV0<2 is a Frobenius group for some Q G Sylq(G) since CAΓO(X) = 1 for any
x e Q — {!}. Hence <? divides |TV0 | — 1. If p is odd, then |TV0 — 1 is even. We have
q < (\NQ - l)/2 < (n - l)/2 < n/2, a contradiction. Hence we have p = 2. Then
|TV0 | = 2, 4, 8, 16 or 32 by Corollary 1. If |TV0 | = 32, then q = 31. In this case, G has
an abelian subgroup H of order 29 since 32 < n. Since H can not act on TV fixed
point freely, N0H has an element of order 58 > 46, a contradiction. If |TV0 | — 16,
then q — 5 because q > 5. In this case, G has an abelian subgroup H of order 13
since 16 < n. This contradicts the choice of q. If |TV0 | = 2 or 4, then q < |TV0 | — 1 < 3,
a contradiction. If |TV0 | = 8 then q = 7. Since q = 7 is the largest prime dividing G
and G has an abelian subgroup TV0 of order 8, we have 8 < n < 11. Furthermore we
have 5 e πi, since a Sylow 5-subgroup of G does not act on TV0 fixed point freely.
This implies that n = 10. In this case, CGo(N0) is a 2 group. In fact, if GGO(TVO) has
an element x of odd prime order, then TV0(α;} is an abelian subgroup whose order
is more than 24. This is a contradiction. Since G0 has a nonsolvable simple factor
and GO/GGΌ(TVO) is isomorphic to a subgroup of GL(3,2), G0/CGo(N0) ~ GL(3,2)
and TV ~ Gc0(TV0). We see that 5 does not divide |G| since orders of Aut(GL(3,2))
and GGO(TVO) are not divisible by 5. This is a contradiction. This completes the
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proof. Π

The above lemma implies that if G is a nonsolvable OAn group, then there
exists a simple group G0 such that GO C G C Aut(G0). We will use this notation
in the following propositions.

Proposition 3. Let G be a nonsolvable OAn group.

(1) If GO is an alternating group Am on m letters, then m = 5. Conversely, A$ is
an OA$ group and 55 is an OA6 group.

(2) GO is not a sporadic simple group.

Proof. (1) If Go ~ Am, z/(Γ(G0)) < 3 bY [I4] Hence 2 < KΓ(G)) < 3.
This yields that 5 < n < 16, n ^ 13 by counting the number of primes p with
ra/2 < p < n. (See Lemma 1 (5) and [1, p.396, TABLE I].) If G0 ~ A5, then

n < 7 since 7 does not divide |Aϊ/ί(Go)|. Clearly ^5 is an OA5 group and 65 is
an OΛe group. If GO — AQ, then n < 7. On the other hand, AQ has an abelian
subgroup of order 9. This is a contradiction. If GO — A? or AS, then n < 11. But

Go 2 A7 D {(1,2)(3,4),(1,3)(2,4)) x {(5,6,7)) which is abelian of order 12. If
Go 2 A9, then A9 D {(1,2)(3,4), (1,3)(2,4)> x ((5,6,7,8,9)) which is abelian of
order 20. This is a contradiction since n < 16.

(2) See [4]. D

Proposition 4. Let G be a nonsolvable OAn group and G0 a simple group of
Lie type over the βeld of q elements. Then G0 ̂  Aι(4).

Proof. Suppose that ι/(Γ(G0)) > 4. By the classification of the prime graph

components of finite simple groups, G0 ~ Es(q), A2(4), 2B<2(q) or 2E§(2) (See [6,
p.337, TABLE III] and [14, p.492, TABLE Ie]). The groups A2(4), 2E6(2) and

their automorphism groups are not OAn groups (See [4]). If GO ̂  Es(q), G0 has a
maximal torus of order q8 - q4 + 1 > 28 - 24 + 1 > 46, a contradiction (See [3]).

Clearly G0 ̂
 2B2(8) and G0 φ. 2B2(32) (See [4]). If G0 ~

 2B2(q) where q = 22m+1

and m > 3, then G0 has a maximal torus of order q -f \/2g + 1 > 27 + 24 -f 1 > 46, a
contradiction (See [12]). Suppose that z/(Γ(G0)) = 3. This implies that z/(Γ(G)) < 3
and therefore 5 < n < 16, n ^ 13 (See [1, p.396, TABLE I]). If the characteristic
is more than or equal to 5, then q is a prime because q divides |Go and n < 16.

Since q2 does not divide |G0|, G0 ~ Aι(q). Clearly G0 φ. Aι(7), ^ι(ll), and
-Aι(13) (See [4]). We have G0 ~ ^ι(5) ^ A5. Suppose now that the characteristic
is 3. If n < 8, in a similar way, we have G0 ~ ^4ι(3), which is not simple. If
n > 9, then G0 is isomorphic to one of groups in [14, p.492, TABLE Id], that

is, Go ~ A^q) (q = 1 (4)), A^q) (q = -1 (4)), E7(3), G2(g) (g = 0 (3)), ^G2(g)
(g = 32m+1, m > 1), or 2DP(3) (p = 2n-fl, n > 2). Clearly G0 9^ E7(3) (See [14]). If
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GO ~ Aι(q), then we have q — 3 or 9 since a Sylow ^-subgroup of G0 is abelian and

n < 16. Since G0 is simple, G φ Aι(3) and we see G0 φ -Aι(9) ~ A6 by Proposition

3. Clearly G0 φ G2(3) (See [4]). If G0 ̂  G2(?) (<? - 0(3)) and q > 32 then G0 has
a maximal torus of order q2 + <? + 1 > 34 + 32 H-1 > 16, a contradiction (See [3]). If

GO ~ ^2(9) (^ = 32m+1, m > 1), GO has a maximal torus of order q+τfSq+1 > 16,
a contradiction (See [13]). If G0 ~

 2DP(3) (p = 2n + 1 is a prime, n > 2), then G0

has a maximal torus of order (3P + l)/4 > 16, a contradiction (See [12] or [14]).

Suppose now that the characteristic is 2. Then G0 ~ Aι(q), A2(2), 2^5(2), #?(2),
2F4(?) or F4(q) by [6, p.336, TABLE II]. Clearly G0 φ A2(2), 2A5(2), E7(2), Aι(S)
and Aι(16) (See [4]). If G0 ~ A\(q), we have g < 16 since a Sylow 2-subgroup of G0

is abelian. We have G0 ~ A!(4) - A5 (See [4]). If G0 ~
 2F4(q) (q = 22m+1, m > 1),

then GO has a maximal torus of order q2 + Λ/2q3 + q + ^/2q +1 > 16, a contradiction

(See [11]). Clearly G0 φ F4(2) (See [4]). If G0 ~ F4(q), then G0 has a maximal
torus of order g4 + 1 > 16, a contradiction (See [3]). This completes the case where

z/(Γ(G0)) = 3. Suppose that z/(Γ(G0)) - 2. Then n = 6 or 10 (See [1, p.396,
TABLE I]). If the characteristic is more than or equal to 5, we have G0 ~ Aι(q),
a contradiction since v ( Γ ( A ι ( q ) ) ) = 3. We have that the characteristic is 2 or 3.
Suppose now that the characteristic is 3. By an argument similar to that in the case

where ι/(Γ(Go)) = 3, we see n = 10. Notice that G0 has prime graph components
τrι = {2,3, 5} and {7}. And G0 is isomorphic to one of groups in [14, p.490, TABLE
Ib, p.491, TABLE Ic] whose characteristic is 3. We see that there exist no groups
satisfying our condition in this case. Suppose now that the characteristic is 2. Then
n = 6 and the connected components are πi = {2,3} and {5} or n = 10 and the
connected components are ?TI = {2,3,5} and {7}. And G0 is isomorphic to one
of groups in [6, p.336, TABLE la, Ib]. We see that only 2A3(2) has the connected
components πi = {2,3} and {5}. However we see G0 φ 2-A3(2) by [4]. Also we

see that only A3(2), G3(2) and D±(2) have the connected components πi — {2,3,5}

and {7}. However we see that G0 φ A3(2), G3(2) and £>4(2) by [4]. This yields
that there exist no groups satisfying our conditions in this case. This completes the

proof. Π

Proof of Theorem. Straightforward from Propositions 2, 3 and 4. Π
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