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1. Introduction

Let G be a finite group and n be a positive integer. A group G is called an
OC,, group if every element of G has order less than or equal to n and for each
positive integer m < n there exists an element of G of order m. B. H. Neumann [8§]
determined all OC5 groups and R. Brandl and W. Shi [1] classified all OC,, groups.
In recent years a number of papers have dealt with the question of characterizing
groups G by the set of all orders of elements in G. See [1], [2] or [10].

Now we will consider the order of abelian subgroups of G instead of the order
of elements of G. A group G is called an OA,, group if the order of any abelian
subgroup of G is less than or equal to n and for any positive integer m < n
there exists an abelian subgroup of G of order m. For example, any abelian sub-
group of the alternating group As on 5 letters is isomorphic to one of the groups
{1, Zy, Z3, Zo x Z3, Z5} where Z,, is a cyclic group of order m. Thus the alter-
nating group As is an OAs group. In this paper we will classify all OA,, groups
applying the results of [6] and [14] which are proved by using the classification of
finite simple groups.

Theorem. Let G be an OA,, group. Then n < 6 and G is isomorphic to one
of the symmetric groups 1, So, S, Sy, S5 or the alternating groups Ay, As.

There are only seven isomorphism classes of OA, groups although there are in-
finitely many isomorphism classes of OC,, groups.

2. Preliminaries

The prime graph I'(G) of G is a graph whose vertex set is the set of primes
dividing |G| and distinct two primes p and g are joined by an edge if there exists
an element of G of order pq. Let v(I'(G)) be the number of connected components
of I'(G) and in the case where |G| is even, let m; be the connected component
containing 2. For any integer m, put w(m) the set of all primes dividing m.

A finite group G is called a 2-Frobenius group ifithasachainl CHC K C G
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of normal subgroups, where K is a Frobenius group with Frobenius kernel H and
G/H is a Frobenius group with Frobenius kernel K/H. A 2-Frobenius group is
always solvable.

Theorem (Gruenberg-Kegel [7], [14]). If v(T'(G)) > 2, then one of the fol-
lowing holds.
(1) G is a Frobenius group or a 2-Frobenius group.
(2) G has normal subgroups N and Gy with N C Gy such that N is a nilpotent
w1-group, Go/N is a simple group and G /Gy is a solvable ,-group.
Especially if G is solvable, then v(I'(G)) < 2.

The following theorem is well known.

Theorem (Bertrand’s postulate [5, p.82]).  For any real number t > 1, there
exists a prime p such thatt < p < 2t.

Let G be an OA,, group. Note that if n > 2, then |G| is even and thus 7, is not
empty. The following lemma is fundamental.

Lemma 1. Let G be an OA,, group and p be a prime.
(1) p divides |G| if and only if p < n.
(2) p? divides |G| if and only if p?> < n.
(3) If/n <p<n, then a Sylow p-subgroup of G is cyclic of order p.
(4) Suppose that p is an odd prime. Then p < n/2 if and only if p € m.
(5) Ifn/2 <p<n, then {p} forms a connected component of T'(G) and a Sylow
p-subgroup is cyclic of order p.
(6) Suppose that p is the largest prime dividing |G|. Then n/2 < p < n.
(7 w(I(G)=2ifn>s3.

Proof. (1) If|G|is divisible by p, then there exists a cyclic subgroup of order
p. Then we have p < n. Conversely, if p < n then there exists an abelian subgroup
of order p in G by the definition of OA,, groups. This yields that p divides |G]|.
(2) Since a group of order p? is abelian, we have the result by using similar argu-
ments in the proof of (1).
(3) If\/n <p<mn,G does not have an abelian subgroup of order p? since n < p?.
This yields that a Sylow p-subgroup of G is cyclic of order p.
(4) If p < n/2, there exists an abelian subgroup of order 2p by the definition of
OA,, groups. Hence p € m;. Conversely, if p € 71, there exists a prime g € 7; such
that G has an element of order pg, that is, G has an abelian subgroup of order pq.
Since G is an OA,, group, pg < n. Since 2p < pq, we have p < n/2.
(5) If there exists a prime ¢ such that G has an abelian subgroup of order pq, then
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pg < n because G is an OA,, group. We have 2p < pq < n, a contradiction. Hence
{p} is a connected component of I'(G) and a Sylow p-subgroup is cyclic of order p.
(6) By Bertrand’s postulate, there exists a prime 7 such that n/2 < r < n. We see
that r divides |G| by (1). Since p is the largest prime dividing |G|, we have r < p.
This yields that n/2 < p < n.

(7) Because there is a prime r such that n/2 < r < n by Bertrand’s postulate,
v(I'(G)) > 2 if n > 3. O

Proposition 1.  If'n > 47, then §{p : prime|n/2 < p < n} > 6.
Proof. See [1, p.395] O

Theorem (Williams [14], liyori-Yamaki [6]).  For any finite group G,
UI(@)) < 6.

As a corollary, we have the following:
Corollary 1. If G is an OA,, group, then n < 46.

Proof. Suppose that n > 47. Then Lemma 1 (5) and Proposition 1 imply that
v(I'(G)) > 7. This contradicts the theorem of Williams and liyori-Yamaki. 0

3. The Proof of the Main Theorem

Proposition 2. Let G be a solvable OA,, group. Then G ~ 1, Z5, S3, A4 or
Sy.

Proof. By Gruenberg-Kegel’s theorem, if G is solvable then v(I'(G)) < 2. If
n # 1,2, 3, 4, 6, 10, then there exist primes p and ¢ such that n/2 < p < g < n (See
[1, p.396, TABLE I]). Then v(I'(G)) > 3 by Lemma 1 (4). This is a contradiction.
If n = 10, there exists a Hall {3, 5, 7}-subgroup H of G because G is solvable. Then
v(T'(H)) = 3. This is a contradiction. If n = 6, then |G| = 2% -3 -5 for some integer
a. A Hall {3,5}-subgroup H is cyclic of order 15, a contradiction. Hence n < 4. If
v(I'(G)) = 1, then G ~ Z,. If v(I'(G)) = 2, again by Gruenberg-Kegel’s theorem, G
is a Frobenius group or a 2-Frobenius group. If G is Frobenius, then its Frobenius
kernel N must be isomorphic to Zy x Zs or Z3. Then we have G ~ A4 or S3. If G
is 2-Frobenius, there exist normal subgroups K and H such that K is a Frobenius
group with Frobenius kernel H and G/H is a Frobenius group with Frobenius
kernel K/H. Then H ~ Z; x Zy or Z3. Since K/H is a Frobenius kernel of G/H
and it is also isomorphic to a Frobenius complement of K, K/H must be a cyclic
subgroup of odd order. This yields that H ~ Z; X Z, and K/H ~ Z3. This implies
that G ~ S4. |
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Lemma 2. Let G be a nonsolvable OA,, group. Then G is not a Frobenius
group.

Proof. By Lemma 1 (7), we see v(I'(G)) > 2. Suppose that G = NH is a
nonsolvable Frobenius group with Frobenius kernel N and Frobenius complement
H. Then H has a subgroup Hy ~ SL(2,5) x M with (H : Hy) < 2, where M is a
group in which every Sylow subgroup is cyclic and |M| is not divisible by 2, 3 and
5 (See [9, p.204]). Let p be the largest prime dividing |G|. Since p € 7, by Lemma 1,
p does not divide |H|. Therefore p divides |N|. If | V| is divisible by a prime g # p,
N has an abelian subgroup of order pg > 2p > n because N is nilpotent. This is a
contradiction. Hence N is a p-group and N ~ Z, by Lemma 1. Since [N|—1 > |H|,
we have p > 121. This contradicts Corollary 1 and completes the proof. O

Lemma 3. Let G be a nonsolvable OA,, group. Then F(G) =1, where F(G)
is the Fitting subgroup of G.

Proof. By Lemma 1 (7), we see v(I'(G)) > 2. By Gruenberg-Kegel’s theorem,
G has normal subgroups N and Gy with N C Gg such that N is a nilpotent -
group, Go/N is a simple group and G/Gy is a solvable m;-group since G is not a
Frobenius group by Lemma 2. We see that N = F(G). Suppose that N # 1. Let Ny
be a minimal normal subgroup of Gy. Then Ny is an elementary abelian p-group
for some p € 7. Let g be the largest prime dividing |G|. Then we see that g > 5,
n/2 < ¢ < n and q divides |Gp| by Gruenberg-Kegel’s theorem. By Lemma 1 (5),
{q} is a connected component of I'(G) and a Sylow g-subgroup is cyclic of order
q. Then NoQ is a Frobenius group for some Q € Syl,(G) since Cy,(z) = 1 for any
z € @ — {1}. Hence g divides |Ny| — 1. If p is odd, then |Np| — 1 is even. We have
g < (|No|—1)/2 < (n—1)/2 < n/2, a contradiction. Hence we have p = 2. Then
|No| = 2, 4, 8, 16 or 32 by Corollary 1. If |[Ng| = 32, then g = 31. In this case, G has
an abelian subgroup H of order 29 since 32 < n. Since H can not act on N fixed
point freely, NoH has an element of order 58 > 46, a contradiction. If | Ny| = 16,
then ¢ = 5 because ¢ > 5. In this case, G has an abelian subgroup H of order 13
since 16 < n. This contradicts the choice of ¢. If [Ng| = 2 or 4, then ¢ < |[Ng|—1 < 3,
a contradiction. If |[Ny| = 8 then ¢ = 7. Since ¢ = 7 is the largest prime dividing G
and G has an abelian subgroup Ny of order 8, we have 8 < n < 11. Furthermore we
have 5 € 7y, since a Sylow 5-subgroup of G does not act on Ny fixed point freely.
This implies that n = 10. In this case, Cg,(No) is a 2 group. In fact, if Cg,(No) has
an element z of odd prime order, then Ny{z) is an abelian subgroup whose order
is more than 24. This is a contradiction. Since G has a nonsolvable simple factor
and Go/Cg,(Np) is isomorphic to a subgroup of GL(3,2), Go/Cg,(No) ~ GL(3,2)
and N ~ Cg,(Np). We see that 5 does not divide |G| since orders of Aut(GL(3,2))
and Cg,(Ny) are not divisible by 5. This is a contradiction. This completes the
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proof. ]

The above lemma implies that if G is a nonsolvable OA,, group, then there
exists a simple group Gy such that Go C G C Aut(Gp). We will use this notation
in the following propositions.

Proposition 3. Let G be a nonsolvable OA,, group.
(1) If Gy is an alternating group A,, on m letters, then m = 5. Conversely, As is
an OAs group and Ss is an OAg group.
(2) Gy is not a sporadic simple group.

Proof. (1) If Gy ~ A, v(I'(Go)) < 3 by [14]. Hence 2 < v(I'(G)) < 3.
This yields that 5 < n < 16, n # 13 by counting the number of primes p with
n/2 < p < n. (See Lemma 1 (5) and [1, p.396, TABLE 1].) If Gy ~ As, then
n < 7 since 7 does not divide |Aut(Gy)|. Clearly As is an OAs group and Ss is
an OAg group. If Gy >~ Ag, then n < 7. On the other hand, Ag has an abelian
subgroup of order 9. This is a contradiction. If Gy ~ A7 or Ag, then n < 11. But
Go 2 A7 D ((1,2)(3,4),(1,3)(2,4)) x ((5,6,7)) which is abelian of order 12. If
Go 2 Ay, then A9 D ((1,2)(3,4),(1,3)(2,4)) x ((5,6,7,8,9)) which is abelian of
order 20. This is a contradiction since n < 16.

(2) See [4]. O

Proposition 4. Let G be a nonsolvable OA,, group and G, a simple group of
Lie type over the field of q elements. Then Gy ~ A,(4).

Proof. Suppose that v(I'(Gp)) > 4. By the classification of the prime graph
components of finite simple groups, Go ~ Eg(q), A2(4), 2Ba2(q) or 2Eg(2) (See [6,
p.337, TABLE 111] and [14, p.492, TABLE Ie]). The groups A,(4), 2Eg(2) and
their automorphism groups are not O A,, groups (See [4]). If Go ~ Es(q), Go has a
maximal torus of order ¢8 — ¢* + 1 > 28 — 2% + 1 > 46, a contradiction (See [3]).
Clearly Gy % 2B,(8) and Gy % 2B»(32) (See [4]). If Go =~ 2B,(q) where g = 22m+1
and m > 3, then G has a maximal torus of order ¢ ++/2¢+1>27+2%4+1> 46, a
contradiction (See [12]). Suppose that v(I'(Gy)) = 3. This implies that v(T'(G)) < 3
and therefore 5 < n < 16, n # 13 (See [1, p.396, TABLE I]). If the characteristic
is more than or equal to 5, then ¢ is a prime because ¢ divides |Go| and n < 16.
Since ¢? does not divide |Go|, Go ~ A;(q). Clearly Gy # A:(7), A1(11), and
A1(13) (See [4]). We have Gy ~ A;(5) ~ As. Suppose now that the characteristic
is 3. If n < 8, in a similar way, we have Gy ~ A;(3), which is not simple. If
n > 9, then Gy is isomorphic to one of groups in [14, p.492, TABLE Id], that
is, Go =~ Ai1(q) (¢ = 1 (4)), Ai(q) (¢ = —1 (4)), E7(3), G2(q) (¢ =0 (3)), G2(q)
(g =32+ m >1),0r%D,(3) (p = 2"+1, n > 2). Clearly Gy # E7(3) (See [14]). If
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Go ~ A;(q), then we have ¢ = 3 or 9 since a Sylow g-subgroup of Gy is abelian and
n < 16. Since Gy is simple, G # A;(3) and we see Gy % A1(9) ~ Ae by Proposition
3. Clearly Gy # G2(3) (See [4]). If Gy =~ G2(q) (¢ = 0(3)) and g > 32 then Gy has
a maximal torus of order ¢ +q+1 > 3%+ 32+ 1 > 16, a contradiction (See [3]). If
Go ~ %G2(q) (¢ = 3™+, m > 1), Go has a maximal torus of order g+/3¢+1 > 16,
a contradiction (See [13]). If Go ~ 2D,(3) (p=2"+1 is a prime, n > 2), then Gy
has a maximal torus of order (3 + 1)/4 > 16, a contradiction (See [12] or [14]).
Suppose now that the characteristic is 2. Then Go ~ A;(q), A2(2), 245(2), E7(2),
2Fy(q) or F4(q) by [6, p.336, TABLE I1]. Clearly Go # A2(2), 245(2), E7(2), A1(8)
and A;(16) (See [4]). If Gy ~ A;(q), we have g < 16 since a Sylow 2-subgroup of Gy
is abelian. We have Gy ~ A;(4) ~ As (See [4]). If Go ~ %Fy(q) (¢ = 22™F!, m > 1),
then Gy has a maximal torus of order ¢+ \/@-f-q—f— V2q+1 > 16, a contradiction
(See [11]). Clearly Go # F4(2) (See [4]). If Go ~ F4(q), then G has a maximal
torus of order ¢* +1 > 16, a contradiction (See [3]). This completes the case where
v(I'(Go)) = 3. Suppose that v(I'(Gy)) = 2. Then n = 6 or 10 (See [1, p.396,
TABLE 1]). If the characteristic is more than or equal to 5, we have Gy ~ A;(q),
a contradiction since ¥(I'(A1(q))) = 3. We have that the characteristic is 2 or 3.
Suppose now that the characteristic is 3. By an argument similar to that in the case
where v(T'(Gp)) = 3, we see n = 10. Notice that Gy has prime graph components
m1 = {2,3,5} and {7}. And Gy is isomorphic to one of groups in [ 14, p.490, TABLE
Ib, p.491, TABLE Ic] whose characteristic is 3. We see that there exist no groups
satisfying our condition in this case. Suppose now that the characteristic is 2. Then
n = 6 and the connected components are m; = {2,3} and {5} or n = 10 and the
connected components are m; = {2,3,5} and {7}. And Gy is isomorphic to one
of groups in [6, p.336, TABLE Ia, Ib]. We see that only ?43(2) has the connected
components m; = {2,3} and {5}. However we see Gy % 243(2) by [4]. Also we
see that only A3(2), C3(2) and D4(2) have the connected components m; = {2, 3,5}
and {7}. However we see that Gp # A3(2), C3(2) and D4(2) by [4]. This yields
that there exist no groups satisfying our conditions in this case. This completes the
proof. O

Proof of Theorem. Straightforward from Propositions 2, 3 and 4. J
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