DADE'S CONJECTURE FOR 2-BLOCKS OF SYMMETRIC GROUPS

Jianbei AN

(Received March 1, 1996)

0. Introduction

Let G be a finite group, p a prime and B a p-block of G. In [4] Dade conjectured that the number of ordinary irreducible characters of B with a fixed defect can be expressed as an alternating sum of the numbers of ordinary irreducible characters of related defects in related blocks B^{\prime} of certain local p-subgroups of G. This (ordinary) conjecture has been proved by Olsson and Uno for the symmetric groups when p is odd. In this paper, we prove the (ordinary) conjecture for the symmetric groups G when $p=2$.

In Section 1 we state the ordinary conjecture and fix some notation. In Section 2 we reduce the family of radical 2 -chains $\mathcal{R}(G)$ to a G-invariant subfamily $\mathcal{Q R}(G)$. In Section 3 we first give several more reductions, and then prove the conjecture for $p=2$ using results of Olsson and Uno [6].

1. Dade's ordinary conjecture

Throughout this paper we shall follow the notation of Dade [4]. Let C be a p-subgroup chain of a finite group G,

$$
\begin{equation*}
C: P_{0}<P_{1}<\cdots<P_{w} . \tag{1.1}
\end{equation*}
$$

Then $w=|C|$ is called the length of C,

$$
\begin{equation*}
N(C)=N_{G}(C)=N_{G}\left(P_{0}\right) \cap N_{G}\left(P_{1}\right) \cap \cdots \cap N_{G}\left(P_{w}\right) \tag{1.2}
\end{equation*}
$$

is called the normalizer of C in G, and

$$
\begin{equation*}
C_{k}: P_{0}<P_{1}<\cdots<P_{k}, \quad 0 \leq k \leq w \tag{1.3}
\end{equation*}
$$

is called the k-th initial p-subchain of C. In addition, C is called a radical p-chain if it satisfies the following two conditions:
(a) $P_{0}=O_{p}(G)$ and
(b) $P_{k}=O_{p}\left(N\left(C_{k}\right)\right)$ for all $1 \leq k \leq w$.

Thus P_{k+1} and P_{k+1} / P_{k} are radical subgroups of $N\left(C_{k}\right)$ and $N\left(C_{k}\right) / P_{k}$, respectively for $0 \leq k \leq w-1$, where a p-subgroup R of G is radical if $R=O_{p}\left(N_{G}(R)\right)$. Let $\mathcal{R}=\mathcal{R}(G)$ be the set of all radical p-chains of G.

Given $C \in \mathcal{R}, B$ a p-block of G and u a non-negative integer, let $\mathrm{k}(N(C), B, u)$ be the number of characters of the set

$$
\begin{equation*}
\operatorname{Irr}(N(C), B, u)=\left\{\psi \in \operatorname{Irr}(N(C)): B(\psi)^{G}=B, \text { and } \mathrm{d}(\psi)=u\right\}, \tag{1.4}
\end{equation*}
$$

where $B(\psi)$ is the block of $N(C)$ containing ψ and $\mathrm{d}(\psi)$ is the p-defect of ψ (see [4, (5.5)] for the definition). Then the following is Dade's ordinary conjecture, [4, Conjecture 6.3].

Dade's ordinary conjecture. If $O_{p}(G)=1$ and B is a p-block of G with defect $\mathrm{d}(B)>0$, and if u is a non-negative integer, then

$$
\begin{equation*}
\sum_{C \in \mathcal{R} / G}(-1)^{|C|} \mathrm{k}(N(C), B, u)=0 \tag{1.5}
\end{equation*}
$$

where \mathcal{R} / G is a set of representatives for the G-orbits in \mathcal{R}.

2. The first reduction

In this section we shall first define a G-invariant subfamily $\mathcal{Q R}$ of radical 2 chains of a symmetric group and then reduce Dade's conjecture to the family $\mathcal{Q R}$. In the rest of the paper we always suppose $p=2$.

We shall also follow the notation of Alperin and Fong [1]. Given a positive integer n, we denote by $\mathbf{S}(n)=\mathbf{S}(V)$ the symmetric group of degree n acting on the set V of cardinality n. For each non-negative integer c, let A_{c} denote the elementary abelian group of order 2^{c} represented by its regular permutation representation. Thus A_{c} is embedded uniquely up to conjugacy as a transitive subgroup of $\mathbf{S}\left(2^{c}\right)$, $C_{\mathbf{S}\left(2^{c}\right)}\left(A_{c}\right)=A_{c}$, and

$$
N_{\mathbf{S}\left(2^{c}\right)}\left(A_{c}\right) \simeq A_{c} \rtimes \mathrm{GL}(c, 2) .
$$

For a sequence $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)$ of non-negative integers, let $|\mathbf{c}|=c_{1}+\ldots+c_{\ell}$ and let $A_{\mathbf{c}}$ be the wreath product $A_{c_{1}} \backslash A_{c_{2}} \ell \ldots \ell A_{c_{\ell}}$. Then $A_{\mathbf{c}}$ is embedded uniquely up to conjugacy as a transitive subgroup of $\mathbf{S}\left(2^{|c|}\right)$. Moreover,

$$
\begin{align*}
N_{\mathbf{S}(2|\mathbf{c}|)}\left(A_{\mathbf{c}}\right) & =N_{\mathbf{S}\left(2^{c_{1}}\right)}\left(A_{c_{1}}\right) \otimes N_{\mathbf{S}\left(2\left|\mathbf{c}^{\prime}\right| \mid\right.}\left(A_{\mathbf{c}^{\prime}}\right) \tag{2.1}\\
N_{\mathbf{S}\left(2^{|c|} \mid\right)}\left(A_{\mathbf{c}}\right) / A_{\mathbf{c}} & \simeq \operatorname{GL}\left(c_{1}, 2\right) \times \operatorname{GL}\left(c_{2}, 2\right) \times \ldots \times \operatorname{GL}\left(c_{\ell}, 2\right),
\end{align*}
$$

where $\mathbf{c}^{\prime}=\left(c_{2}, \ldots, c_{\ell}\right)$ and $N_{\mathbf{S}\left(2^{c_{1}}\right)}\left(A_{c_{1}}\right) \otimes N_{\mathbf{S}\left(2^{\left|\mathbf{c}^{\prime}\right|} \mid\right.}\left(A_{\mathbf{c}^{\prime}}\right)$ is the tensor product of the normalizers $N_{\mathbf{S}\left(2^{c_{1}}\right)}\left(A_{c_{1}}\right)$ and $N_{\mathbf{S}\left(2\left|c^{\prime}\right|\right)}\left(A_{\mathbf{c}^{\prime}}\right)$. Suppose R is a radical 2-subgroup of G. By Alperin and Fong [1, (2A)], there exists a corresponding decomposition

$$
\begin{align*}
& V=V_{0} \cup V_{1} \cup \cdots \cup V_{t}, \\
& R=R_{0} \times R_{1} \times \cdots \times R_{t} \tag{2.2}
\end{align*}
$$

such that $R_{0}=\left\langle 1_{V_{0}}\right\rangle$ and each R_{i} for $i \geq 1$ is conjugate to some $A_{\mathbf{c}}$ in $\mathbf{S}\left(V_{i}\right)$. Let $A(R)$ be the subgroup generated by all normal abelian subgroups of R, and let $B(R)=C_{A(R)}([A(R), A(R)])$, where $[A(R), A(R)]$ is the commutator subgroup of $A(R)$. Then $B(R)$ is a characteristic subgroup of R and $N_{G}(R) \leq N_{G}(B(R))$. By [2, (2A)],

$$
B\left(A_{\mathbf{c}}\right)= \begin{cases}\left(A_{c_{1}}\right)^{2^{\left|\mathbf{c}^{\prime}\right|}} & \text { if } c_{1} \neq 1 \text { or } c_{2} \neq 1 \\ \left(D_{8}\right)^{2|\mathbf{w}|} & \text { if } c_{1}=c_{2}=1\end{cases}
$$

where $D_{8}=A_{1}\left\{A_{1}\right.$ is a dihedral group of order 8 and $\mathbf{w}=\left(c_{3}, \ldots, c_{\ell}\right)$.
Let $\Psi=\left\{A_{\mathbf{c}}: \mathbf{c}=\left(1, c_{2}, c_{3} \ldots, c_{\ell}\right), c_{2} \geq 2\right\}, \Psi^{\prime}=\left\{A_{\mathbf{c}}: \mathbf{c}=\left(1,1, c_{3} \ldots, c_{\ell}\right)\right\}$ and $\Psi^{*}=\left\{A_{\mathbf{c}}: \mathbf{c}=(0)\right.$ or $\left.\mathbf{c}=(1,1, \ldots, 1)\right\}$. A 2 -subgroup R with a decomposition (2.2) is radical in G if and only if $m_{R}(P) \neq 2,4$ for all $P \in \Psi^{*}$, where $m_{R}(P)$ is the multiplicity of the components P in R.

Let S_{d} be a Sylow 2-subgroup of $N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right)$. Then $S_{1}=A_{1}$ and $S_{2}=D_{8}$. Let $\Delta(1)=\left\{A_{1} \backslash A_{2}\right\}, \Delta(d)=\left\{S_{d} \backslash A_{1}, S_{d} \backslash A_{2}, S_{d} \backslash A_{1} \backslash A_{1}\right\}$ for $d \geq 2$,

$$
\Delta^{+}=\bigcup_{d \geq 1} \Delta(d) \quad \text { and } \quad \Delta=\Delta(1) \cup \Delta(2)
$$

Suppose R is a radical subgroup of G with a decomposition (2.2). Then $m_{R}\left(D_{8}\right) \notin$ $\{2,4\}, m_{R}\left(A_{1}\right) \neq 2$ and $m_{R}\left(D_{8} \backslash A_{1}\right) \neq 2$. So $B(R)=\prod_{i=1}^{t} B\left(R_{i}\right)$ is non-radical in G if and only if $m_{B(R)}\left(A_{1}\right)=4$ or $m_{B(R)}\left(D_{8}\right) \in\{2,4\}$, which is equivalent to
(a) $m_{R}\left(A_{1} \backslash A_{2}\right)=1$ but $m_{R}(P)=0$ for $P \in \Psi \backslash\left\{A_{1} \backslash A_{2}\right\}$, or
(b) For $X \in \Delta(2), m_{R}(X)=1$ but $m_{R}(P)=0$ for all $P \in \Psi^{\prime} \backslash\{X\}$.

If $B(R)$ is radical, then define $K(R)=B(R)$. Suppose $B(R)$ is non-radical. Define

$$
K(R)= \begin{cases}A_{1} \backslash A_{2} \times \prod_{R_{j} \neq A_{1} \imath A_{2}} B\left(R_{j}\right) & \text { if only case (a) occurs } \\ X \times \prod_{R_{j} \neq X} B\left(R_{j}\right) & \text { if only case (b) occurs } \\ A_{1} \prec A_{2} \times X \times \prod_{R_{j} \neq A_{1} \ell A_{2}, X} B\left(R_{j}\right) & \text { if both cases (a) and (b) occur. }\end{cases}
$$

Thus $K(R) \unlhd R, K(R)$ is a radical subgroup of G and

$$
N_{G}(R) \leq N_{G}(K(R)) \leq N_{G}(B(R))
$$

In addition, if two radical subgroups R and W are G-conjugate, then $K(R)$ and $K(W)$ are G-conjugate, since $B(R)$ and $B(W)$ are G-conjugate. We also need the following lemma to define the chains in $\mathcal{Q R}$.
(2A). Given integer $d \geq 1$, let $G=\mathbf{S}\left(2^{d}\right)=\mathbf{S}(V)$ and $N=N\left(A_{d}\right)=N_{G}\left(A_{d}\right)$.
(a) There exists a bijection between the classes of radical subgroups R of N and the compositions $\mathbf{c}=\left(c_{1}, c_{2}, \cdots, c_{\ell}\right)$ of d such that

$$
N_{N}(R) / R \simeq \operatorname{GL}\left(c_{1}, 2\right) \times \operatorname{GL}\left(c_{2}, 2\right) \times \cdots \times \operatorname{GL}\left(c_{\ell}, 2\right)
$$

In particular, the subset $[V, R]$ of V consisting of all points moved by R is V itself.
(b) Let R be a radical subgroup of N and Q a radical subgroup of $N_{N}(R)$. Then Q is radical in N and $N_{N}(Q) \leq N_{N}(R)$.

Proof. (a) Since R is radical in $N, A_{d} \unlhd R$ and R / A_{d} is a radical subgroup of $N / A_{d} \simeq \mathrm{GL}(d, 2)$. Since $N_{N}(R) / A_{d} \simeq N_{N / A_{d}}\left(R / A_{d}\right)$, it follows by Borel-Tits theorem [3] that R / A_{d} is the unipotent radical of a parabolic subgroup of N / A_{d}. The classes of parabolic subgroups of $\operatorname{GL}(d, 2)$ are labelled by compositions of d, and so (a) follows easily.
(b) Suppose Q is a radical subgroup of $N_{N}(R)$. Then $R \leq Q$, and the proof of (b) is also straightforward by applying the Borel-Tits theorem to $N_{N}(R) / A_{d}$.

Remark. Follow the notation of (2A). Then R is radical in G if and only if $R=A_{d}$ except when $d=2$ and $c_{1}=c_{2}=1$, in which case either $R=A_{d}$ or $R=D_{8}$. Indeed, we may suppose $d \geq 2$. Since $A_{d} \leq R$, it follows that R acts transitively on V, and $R=A_{\mathbf{w}}$ for some sequence $\mathbf{w}=\left(w_{1}, \ldots, w_{\ell}\right)$ of positive integers with $|\mathbf{w}|=d$. Note that $A_{d} \leq A(R)$. If $w_{1} \geq 2$, then each $A(R)$-orbit in V has $2^{w_{1}}$ elements, so that $d=w_{1}$. If $w_{1}=1$, then each $A(R)$-orbit in V is contained in some $A_{1} \backslash A_{w_{2}}$-orbit, so that $\mathbf{w}=\left(1, w_{2}\right)$ and $d=1+w_{2}$. But $\left|R / A_{d}\right|=2^{w_{2}}$ and $\left|A_{1} \backslash A_{w_{2}}\right|=2^{2^{w_{2}}+w_{2}}$, so $2^{w_{2}}=d=w_{2}+1$ and $w_{2}=0$ or 1 . Thus $w_{2}=1$ and $R=D_{8}$.

The radical subgroup R of $N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right)$ determined by the composition \mathbf{c} in (2A) (a) will be denoted by $Q_{\mathbf{c}}$ if R is not a radical subgroup of $\mathbf{S}\left(2^{d}\right)$. This holds in particular if $d \geq 3$. We set $B\left(Q_{\mathbf{c}}\right)=A_{d}$. Now we can define the family $\mathcal{Q R}$.

Let $\mathcal{Q R}=\mathcal{Q R}(G)$ be the G-invariant subfamily of \mathcal{R} consisting of radical 2-chains

$$
\begin{equation*}
C: 1<P_{1}<\cdots<P_{w} \tag{2.3}
\end{equation*}
$$

such that $P_{1}=K\left(P_{1}\right)$ and each P_{i} has a decomposition $\prod_{j=1}^{t_{i}} Q_{i, j}$ with $Q_{i, j} \in$ $\Delta^{+} \cup\left\{A_{d}, Q_{\mathbf{c}}, D_{8}\right\}$ for all i, j. Let \mathcal{M} be the complement $\mathcal{R} \backslash \mathcal{Q R}$ of $\mathcal{Q R}$ in \mathcal{R}, so that

$$
\mathcal{R}=\mathcal{Q R} \bigcup \mathcal{M} \quad \text { (disjoint) }
$$

In the following we shall show that Dade's conjecture can be reduced to the family $\mathcal{Q R}$. First of all, we consider the structure of the subgroup P_{2}. By definition, P_{2} is a radical subgroup of $N_{G}\left(P_{1}\right)$.

Let D be a radical subgroup of G such that $D=K(D)$. Then

$$
\begin{equation*}
V=V^{+} \cup V^{*} \quad \text { and } \quad D=D^{+} \times D^{*} \tag{2.4}
\end{equation*}
$$

where $D^{+}=\prod_{X \in \Delta}(X)^{\alpha_{X}}$ with $\alpha_{X} \in\{0,1\}, D^{*}=\left(D_{8}\right)^{m_{2}^{\prime}} \times \prod_{d \geq 0}\left(A_{d}\right)^{m_{d}}, V^{+}=$ [V, D^{+}] and $V^{*}=V \backslash V^{+}$. Let U_{X} be the underlying set of $X \in \Delta^{+}$such that $U_{X}=\left[U_{X}, X\right]$, and $N_{X}=N_{\mathbf{S}\left(U_{X}\right)}(X)$. Then

$$
N(D)=N_{G}(D)=N(D)^{+} \times N(D)^{*},
$$

where $N(D)^{+}=\prod_{X \in \Delta}\left(N_{X}\right)^{\alpha X}$ and $N(D)^{*}=D_{8}\left\langle\mathbf{S}\left(m_{2}^{\prime}\right) \times \prod_{d \geq 0} N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right)\left\langle\mathbf{S}\left(m_{d}\right)\right.\right.$. If $X=A_{1} \backslash A_{2}$, then $N_{X}=A_{1} \imath \mathbf{S}(4)$ and it has exactly two radical subgroups, $A_{(1,1,1)}$ and $A_{1} \prec A_{2}$ up to conjugacy. Similarly, if $X=D_{8} \prec A_{2}$, then $N_{X}=D_{8}\langle\mathbf{S}(4)$ and it has exactly two radical subgroups, $A_{(1,1,1,1)}$ and $D_{8} \ell A_{2}$ up to conjugacy.
(2B). Let D be a subgroup of $G=\mathbf{S}(V)$ with a decomposition (2.2) such that $D=B(D)$ and $[V, D]=V$. In addition, let R be a radical subgroup of $N=N(R)$. Suppose $D=D(1)=\left(A_{1}\right)^{m_{1}}, D(2)=\left(A_{2}\right)^{m_{2}}$ or $D(2)^{\prime}=\left(D_{8}\right)^{m_{2}^{\prime}}$. Then R is radical in G and $K(R)$ is radical in N. If $L=N_{N}(K(R))$, then

$$
L= \begin{cases}\left(A_{1}\right) \ell \mathbf{S}\left(t_{1}\right) \times\left(D_{8}\right) \ell \mathbf{S}\left(t_{2}^{\prime}\right) \times \prod_{X \in \Delta}\left(N_{X}\right)^{\beta_{X}} & \text { if } D=D(1), \\ N_{\mathbf{S}(4)}\left(A_{2}\right) \ell \mathbf{S}\left(t_{2}\right) \times\left(D_{8}\right) \ell \mathbf{S}\left(t_{2}^{\prime}\right) \times \prod_{X \in \Delta(2)}\left(N_{X}\right)^{\beta_{X}} & \text { if } D=D(2), \\ \left(D_{8}\right)\left\langle\mathbf{S}\left(t_{2}^{\prime}\right) \times \prod_{X \in \Delta(2)}\left(N_{X}\right)^{\beta_{X}}\right. & \text { if } D=D(2)^{\prime},\end{cases}
$$

where t_{1}, t_{2} and t_{2}^{\prime} are some non-negative integers and $\beta_{X}=0,1$. Moreover, $N_{N}(R) \leq L$.

Proof. Suppose $D=D(1)$, so that $N=A_{1} \backslash \mathbf{S}\left(m_{1}\right)$. It follows by [5, Proposition 4.7] or [6, Proposition 2.3 and the Remark 2.5] that $R=\prod_{i=1}^{m} R_{i}$, where $R_{i}=A_{1} \backslash R_{i}^{\prime}$ with $R_{i}^{\prime}=A_{\mathbf{z}}$. Thus $R_{i} \in \Psi \cup \Psi^{\prime}$ and $B(R)=\left(A_{1}\right)^{\alpha} \times\left(D_{8}\right)^{\beta}$ for some integers $\alpha, \beta \geq 0$. Since $R / D=\prod_{i=1}^{m} R_{i}^{\prime}$ is radical in $\mathbf{S}\left(m_{1}\right)$, it follows that $m_{R / D}\left(A_{\mathbf{c}}\right) \notin\{2,4\}$, and hence $m_{R}\left(A_{\mathbf{c}}\right) \notin\{2,4\}$ for all $A_{\mathbf{c}} \in \Psi^{*}$. Thus R and then $K(R)$ are radical in $G, B(R)=\left(A_{1}\right)^{t_{1}} \times\left(D_{8}\right)^{t_{2}^{\prime}}$ with $t_{1}+2 t^{\prime}=m_{1}$ and $N(B(R))=\left(A_{1}\right) 乙 \mathbf{S}\left(t_{1}\right) \times D_{8} \backslash \mathbf{S}\left(t_{2}^{\prime}\right)$. Since $N(K(R)) \leq N(B(R)) \leq N, K(R)$ is radical in N. If $B(R)$ is radical in G, then $K(R)=B(R)$ and $N(K(R))=N(B(R))$. Suppose $B(R)$ is non-radical in G. Then

$$
K(R)= \begin{cases}A_{1} \backslash A_{2} \times Y=R & \text { if } t_{1}=4 \text { and } t_{2}^{\prime} \in\{2,4\} \\ \left(A_{1}\right)^{t_{1}} \times Y & \text { if } t_{1} \notin\{2,4\} \text { and } t_{2}^{\prime} \in\{2,4\}, \\ A_{1} \prec A_{2} \times\left(D_{8}\right)^{t_{2}^{\prime}} & \text { if } t_{1}=4 \text { and } t_{2}^{\prime} \notin\{2,4\}\end{cases}
$$

for some $Y \in \Delta(2)$. Thus $N_{N}(K(R))$ is given by (2B). Since $N(R) \leq N(K(R))$, it follows that

$$
N_{N}(R)=N(R) \cap N \leq N(K(R)) \cap N=N_{N}(K(R))=L
$$

Suppose $D=D(2)$, so that $N=N_{\mathbf{S}(4)}\left(A_{2}\right)$ S $\left(m_{2}\right)$. Since A_{2} and D_{8} are the only radical subgroups (up to conjugacy) in $N_{\mathbf{S}(4)}\left(A_{2}\right)$, it follows that $R=\prod_{i=1}^{m} R_{i}$, where $\left.R_{i}=A_{2}\right\} R_{i}^{\prime}$ or $\left.D_{8}\right\} R_{i}^{\prime}$ with $R_{i}^{\prime}=A_{\mathbf{z}}$. Let $B(R)=\left(A_{2}\right)^{t_{2}} \times\left(D_{8}\right)^{t_{2}^{\prime}}, R(2)=$ $\prod_{i} R_{i}$ and $R(2)^{\prime}=\prod_{j} R_{j}$, where i and j run over the indices such that $R_{i}=A_{2} \prec R_{i}^{\prime}$ and $R_{j}=D_{8} \backslash R_{j}^{\prime}$, respectively. Then $R(2)^{\prime} /\left(A_{2}\right)^{t_{2}^{\prime}}$ is radical in GL $(2,2)$ S $\left(t_{2}^{\prime}\right)$, since R / D is radical in $\mathrm{GL}(2,2) 乙 \mathbf{S}\left(m_{2}\right)$. Thus $m_{R(2)^{\prime} /\left(D_{8}\right)^{t_{2}^{\prime}}}\left(A_{\mathbf{c}}\right) \notin\{2,4\}$, and hence $m_{R(2)^{\prime}}\left(A_{\mathbf{c}}\right) \notin\{2,4\}$ for each $A_{\mathbf{c}} \in \Psi^{*}$. It follows that R is radical in G. If $B(R)$ is non-radical in G, then $t_{2}^{\prime} \in\{2,4\}$ and so $R=R(2) \times Y$ for some $Y \in \Delta(2)$, and $K(R)=\left(A_{2}\right)^{t_{2}} \times Y$. Since $N(B(R))=N_{\mathbf{S}(4)}\left(A_{2}\right) \imath \mathbf{S}\left(t_{2}\right) \times\left(D_{8}\right) \imath \mathbf{S}\left(t_{2}^{\prime}\right) \leq N$, it follows that $N(K(R))$ is given as (2B) and $K(R)$ is radical in N. A proof similar to above shows that $N_{N}(R) \leq L$.

Suppose $D=D(2)^{\prime}$, so that $N=D_{8} \backslash \mathbf{S}\left(m_{2}^{\prime}\right)$. A proof similar to above shows that each component of R is an element of Ψ^{\prime} and $m_{R}\left(A_{\mathbf{c}}\right) \notin\{2,4\}$ for all $A_{\mathbf{c}} \in \Psi^{*}$. It follows that R is radical in G and $B(R)=D$. If $m_{2}^{\prime} \notin\{2,4\}$, then $K(R)=B(R)$. If $m_{2}^{\prime}=2$ or 4 , then $K(R)=R \in \Delta(2)$. This proves (2B).

Given sequences $\mathbf{c}=\left(c_{1}, \ldots, c_{\ell}\right)$ and $\mathbf{z}=\left(z_{1}, \ldots, z_{v}\right)$ of non-negative integers, let $Q_{\mathbf{c}, \mathbf{z}}$ be the wreath product $X \backslash A_{\mathbf{z}}$ in $\mathbf{S}\left(2^{|\mathbf{c}|+|\mathbf{z}|}\right)$, where $X=A_{\mathbf{c}}$ or $Q_{\mathbf{c}}$. If $X=$ $A_{\mathbf{c}}$, then $Q_{\mathbf{c}, \mathbf{z}}=A_{\mathbf{w}}$ and $N_{\mathbf{S}(2|\mathbf{w}|)}\left(Q_{\mathbf{c}, \mathbf{z}}\right) / Q_{\mathbf{c}, \mathbf{z}}$ is given by (2.1) with some obvious modifications, where $\mathbf{w}=\left(c_{1}, \cdots, c_{\ell}, z_{1}, \cdots, z_{v}\right)$. Suppose $Q_{\mathbf{c}, \mathbf{z}}=X \backslash A_{\mathbf{z}}$ with $X=$ $Q_{\mathbf{c}}$. Let $d=|\mathbf{c}|$ and M the underlying set of X. Then we may suppose $A_{d} \unlhd X$ and $[M, X]=M$. Let $X_{1}, X_{2}, \cdots, X_{2|z|}$ be copies of X, and let $U_{1}, U_{2}, \cdots, U_{2|z|}$ be disjoint underlying sets of $X_{1}, X_{2}, \cdots, X_{2|z|}$. Then $U=U_{1} \cup U_{2} \cup \cdots \cup U_{2|z|}$ can be taken as the underlying set of $X \imath A_{\mathbf{z}}$, and $\left(\prod_{i=1}^{2^{|z|}} X_{i}\right) \rtimes A_{\mathbf{z}}=X \imath A_{\mathbf{z}}$. Let W_{i} be a normal subgroup of X_{i} isomorphic to A_{d}. Then $\left[U_{i}, W_{i}\right]=U_{i}$ and $W=\prod_{i=1}^{2^{2 z \mid}} W_{i}$ is a normal abelian subgroup of $X \backslash A_{\mathbf{z}}$, so that $W \leq A\left(Q_{\mathbf{c}, \mathbf{z}}\right)$. If A is a normal abelian subgroup of X, then $(A)^{2^{|z|}}$ is a normal abelian subgroup of $Q_{\mathbf{c}, \mathbf{z}}$. It follows that $(A)^{2^{|z|}} \leq A\left(Q_{\mathbf{c}, \mathbf{z}}\right)$ and $\prod_{i=1}^{2^{|z|}} A\left(X_{i}\right) \leq A\left(Q_{\mathbf{c}, \mathbf{z}}\right)$. Since $Q_{\mathbf{c}}$ is nonabelian, it follows by $[2,(2 \mathrm{~A})]$ that each normal abelian subgroup of $Q_{\mathbf{c}, \mathbf{z}}$ is a subgroup of $\prod_{i=1}^{2^{\text {[z] }}} X_{i}$. Thus $A\left(Q_{\mathbf{c}, \mathbf{z}}\right) \leq \prod_{i=1}^{2^{|z|}} A\left(X_{i}\right)$, so that $A\left(Q_{\mathbf{c}, \mathbf{z}}\right)=\prod_{i=1}^{2^{|z|}} A\left(X_{i}\right)$ and $U_{1}, U_{2}, \cdots, U_{2|\mathbf{z}|}$ are the orbits of $A\left(Q_{\mathbf{c}, \mathbf{z}}\right)$ in U. Since $N_{\mathbf{S}(2|\mathbf{c}|+|\mathbf{z}|)}\left(Q_{\mathbf{c}, \mathbf{z}}\right)$ normalizes $A\left(Q_{\mathbf{c}, \mathbf{z}}\right), N_{\mathbf{S}(2|\mathbf{c}|+|\mathbf{z}|)}\left(Q_{\mathbf{c}, \mathbf{z}}\right)$ permutes $U_{1}, U_{2}, \cdots, U_{2|z|}$ among themselves, so that

$$
\begin{equation*}
N_{\mathbf{S}(2|\mathbf{c}|+|z|)}\left(Q_{\mathbf{c}} \backslash A_{\mathbf{z}}\right)=N_{\mathbf{S}\left(2^{|c|} \mid\right)}\left(Q_{\mathbf{c}}\right) \otimes N_{\mathbf{S}\left(2^{|z|} \mid\right)}\left(A_{\mathbf{z}}\right) \tag{2.5}
\end{equation*}
$$

In particular, $N_{\mathbf{S}\left(2^{|\mathbf{c}|+|z|}\right)}\left(Q_{\mathbf{c}, \mathbf{z}}\right)$ normalizes the subgroup $\prod_{i=1}^{2^{|z|}} X_{i}=\left(Q_{\mathbf{c}}\right)^{2^{|\mathbf{z}|}}$ of $Q_{\mathbf{c}, \mathbf{z}}$. We claim that

$$
\begin{equation*}
N_{N_{\mathbf{S}(2|c|+|z|)}(W)}\left(Q_{\mathbf{c}, \mathbf{z}}\right) \simeq N_{N_{\mathbf{S}(2|c|)}\left(A_{|\mathbf{c}|}\right)}\left(Q_{\mathbf{c}}\right) \otimes N_{\mathbf{S}\left(2^{|z|} \mid\right)}\left(A_{\mathbf{z}}\right) \tag{2.6}
\end{equation*}
$$

where $W=\prod_{i=1}^{2^{|z|}} W_{i}$ is a normal abelian subgroup of $Q_{\mathbf{c}, \mathbf{z}}$ such that each W_{i} is a
normal subgroup of X_{i} isomorphic to $A_{|\mathbf{c}|}$. Indeed, let

$$
N=N_{N_{\mathbf{S}(2|\mathbf{c}|+|\mathbf{z}|)}(W)}\left(Q_{\mathbf{c}, \mathbf{z}}\right), \quad H=N_{N_{\mathbf{S}(2|\mathbf{c}|}\left(A_{|\mathbf{c}|}\right)}\left(Q_{\mathbf{c}}\right) \otimes N_{\left.\mathbf{S}_{(2}|\mathbf{z}|\right)}\left(A_{\mathbf{z}}\right) .
$$

If $g \in N$, then g normalizes $Q_{\mathbf{c}, \mathbf{z}}$, so that by (2.5) $g=\operatorname{diag}\left\{g_{1}, g_{2}, \cdots, g_{2|z|}\right\} \sigma$, where $g_{i} \in N_{\mathbf{S}(M)}\left(Q_{\mathbf{c}}\right)$ and $\sigma \in N_{\mathbf{S}\left(2^{|z|} \mid\right.}\left(A_{\mathbf{z}}\right)$. Since $W_{i} \leq X_{i}$ and g normalizes W, it follows that g_{i} normalizes W_{i} and $g \in H$. Conversely, if $g \in H$, then $g=$ $\operatorname{diag}\left\{g_{1}, g_{2}, \cdots, g_{2^{|z|} \mid}\right\} \sigma$, where $\sigma \in N_{\left.\mathbf{S}_{(2|z|)}\right)}\left(A_{\mathbf{z}}\right)$ and $g_{i} \in N_{N_{\mathbf{S}(2|c|)}\left(A_{|\mathbf{c}|}\right)}\left(Q_{\mathbf{c}}\right)$. Thus g normalizes $Q_{\mathbf{c}, \mathbf{z}}$ and $g \in N$, so that $H=N$.

Let $R=X \backslash A_{\mathbf{z}}$ be a subgroup of $\mathbf{S}\left(2^{|\mathbf{c}|+|\mathbf{z}|}\right)$, where $X=A_{\mathbf{c}}$ or $Q_{\mathbf{c}}$. If $R=$ $A_{\mathbf{c}} \backslash A_{\mathbf{z}}$, then set $Q B(R)=B(R)$; If $R=Q_{\mathbf{c}} \backslash A_{\mathbf{w}}$, then set $Q B(R)=\left(Q_{\mathbf{c}}\right)^{2|\mathbf{w}|}$ and $B(R)=\left(A_{|\mathbf{c}|}\right)^{2|\mathbf{w}|}$. By (2.5)

$$
N_{\mathbf{S}(2|\mathbf{c}|+|\mathbf{z}|)}\left(Q_{\mathbf{c}, \mathbf{z}}\right) \leq N_{\mathbf{S}(2|\mathbf{c}|+|\mathbf{z}|)}\left(Q B\left(Q_{\mathbf{c}, \mathbf{z}}\right)\right) .
$$

(2C). Let $G=\mathbf{S}(n)=\mathbf{S}(V)$, and let Q decompose as (2.2) with $Q=B(Q)$ or $Q=K(Q)$. Suppose R a radical subgroup of $N(Q)$. Then there exists a corresponding decomposition

$$
\begin{align*}
V & =M_{0} \cup M_{1} \cup \cdots \cup M_{v} \\
R & =R_{0} \times R_{1} \times \cdots \times R_{v} \tag{2.7}
\end{align*}
$$

such that $R_{0}=\left\langle 1_{M_{0}}\right\rangle$ and $R_{i}=Q_{\mathbf{c}, \mathbf{z}} \leq \mathbf{S}\left(M_{i}\right)$ for $i \geq 1$.
Proof. By (2B) and the remark before (2B), we may suppose $Q=\prod_{d \geq 3}\left(A_{d}\right)^{m_{d}}$ and

$$
N=N(Q)=\prod_{d \geq 3} N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right) \ell \mathbf{S}\left(m_{d}\right)
$$

By [6, Lemma (2.2)], $R=\prod_{d \geq 3} R_{d}$, where R_{d} is a radical subgroup of $N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right)$ l $\mathbf{S}\left(m_{d}\right)$ for all $d \geq 3$. By induction, we may suppose N acts transitively on V, so that $Q=\left(A_{d}\right)^{m_{d}}$. Thus $R=Z_{1} \times Z_{2} \times \cdots \times Z_{m}$ and each $Z_{i}=X \imath Y$ for some subgroup $Y=A_{\mathbf{z}}$ of $\mathbf{S}\left(m_{d}\right)$ and a radical subgroup X of $N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right)$. By (2A) (a), $X \in\left\{A_{d}, Q_{\mathbf{c}}\right\}$, where \mathbf{c} is a composition of d. So $Z_{i}=Q_{\mathbf{c}, \mathbf{z}}$ and this proves (2C).

Suppose R has a decomposition (2.7). Define $Q B(R)=R_{0} \times \prod_{i=1}^{v} Q B\left(R_{i}\right)$ and $B(R)=R_{0} \times \prod_{i=1}^{v} B\left(R_{i}\right)$.
(2D). Let R be a subgroup of $G=\mathbf{S}(n)=\mathbf{S}(V)$ such that R decomposes as (2.7). Given sequences $\mathbf{c}=\left(c_{1}, c_{2}, \cdots, c_{\ell}\right), \mathbf{z}=\left(z_{1}, z_{2}, \cdots, z_{u}\right)$, and
$\mathbf{w}=\left(w_{1}, w_{2}, \cdots, w_{m}\right)$ of positive integers, let $M(\mathbf{c})=\cup_{i} M_{i}, R(\mathbf{c})=\prod_{i} R_{i}$, $M(\mathbf{w}, \mathbf{z})=\cup_{j} M_{j}$, and $R(\mathbf{w}, \mathbf{z})=\prod_{j} R_{j}$, where i and j run over the indices such that $R_{i}=A_{\mathbf{c}}$ and $R_{j}=Q_{\mathbf{w}} \backslash A_{\mathbf{z}}$, respectively. Then

$$
N(R)=N_{G}(R)=\mathbf{S}\left(M_{0}\right) \times \prod_{\mathbf{c}} N_{\mathbf{S}(M(\mathbf{c}))}(R(\mathbf{c})) \times \prod_{\mathbf{w}, \mathbf{z}} N_{\mathbf{S}(M(\mathbf{w}, \mathbf{z}))}(R(\mathbf{w}, \mathbf{z})) .
$$

Moreover,

$$
\begin{aligned}
N_{\mathbf{S}(M(\mathbf{c}))}(R(\mathbf{c})) & =N_{\mathbf{S}\left(M_{\mathbf{c}}\right)}\left(A_{\mathbf{c}}\right) \ell \mathbf{S}\left(t_{\mathbf{c}}\right), \\
N_{\mathbf{S}(M(\mathbf{w}, \mathbf{z}))}(M(\mathbf{w}, \mathbf{z})) & =N_{\mathbf{S}\left(M_{\mathbf{w}, \mathbf{c}}\right)}\left(Q_{\mathbf{w}} \backslash A_{\mathbf{z}}\right) \ell \mathbf{S}\left(t_{\mathbf{w}, \mathbf{z}}\right),
\end{aligned}
$$

where M_{c} and $M_{\mathbf{w}, \mathbf{z}}$ are the underlying sets of $A_{\mathbf{c}}$ and $Q_{\mathbf{w}} \backslash A_{\mathbf{z}}$, respectively, and t_{c}, $t_{\mathbf{w}, \mathbf{z}}$ are the numbers of components $A_{\mathbf{c}}$ and $Q_{\mathbf{w}}\left\langle A_{\mathbf{z}}\right.$ in $R(\mathbf{c})$ and $R(\mathbf{w}, \mathbf{z})$, respectively. In particular, if $D=Q B(R)$, then $N(R) \leq N(D)$.

Proof. Let $D_{i}=Q B\left(R_{i}\right)$, so that $D=R_{0} \times \prod_{i=1}^{v} D_{i}$, where v is given by the decomposition (2.7). If M is an R-orbit with $|M| \geq 2$, then $M=M_{i}$ for some $i \geq 1$ and $R_{i}=\left\{g \in R: g y=y\right.$ for all $\left.y \in V \backslash M_{i}\right\}$. Thus $N(R)$ acts as a permutation group on the set of pairs $\left(M_{i}, R_{i}\right)$. Suppose a component R_{i} is conjugate to a component R_{j}, where $1 \leq i, j \leq v$. Then $\left|M_{i}\right|=\left|M_{j}\right|$, so that $\mathbf{S}\left(M_{i}\right)$ is conjugate to $\mathbf{S}\left(M_{j}\right)$ in G. If $R_{i}=A_{\mathbf{c}}$, then R_{i} is radical in $\mathbf{S}\left(M_{i}\right)$, so is R_{j} in $\mathbf{S}\left(M_{j}\right)$. Thus $R_{j}=A_{\mathbf{c}^{\prime}}$ for some sequence \mathbf{c}^{\prime} of non-negative integers. Since $\left|M_{i}\right|=\left|M_{j}\right|$, it follows that $|\mathbf{c}|=\left|\mathbf{c}^{\prime}\right|$ and so $\mathbf{c}=\mathbf{c}^{\prime}$ as shown in the proof of $[1,(2 B)]$. In particular, D_{i} is conjugate to D_{j}. If $R_{i}=Q_{\mathbf{w}} \backslash A_{\mathbf{z}}$, then by the remark of (2A), R_{i} is non-radical in $\mathbf{S}\left(M_{i}\right)$, so is R_{j} in $\mathbf{S}\left(M_{j}\right)$. Thus $R_{j}=Q_{\mathbf{w}^{\prime}} \backslash A_{\mathbf{z}^{\prime}}$ for some sequences \mathbf{w}^{\prime} and \mathbf{z}^{\prime} of non-negative integers. Moreover, $D_{i}=\left(Q_{\mathbf{w}}\right)^{2^{|z|}}$ and $D_{j}=\left(Q_{\mathbf{w}^{\prime}}\right)^{\mid 2^{\left|\mathbf{z}^{\prime}\right|}}$.

As shown in the proof of (2.5), an $A\left(R_{i}\right)$-orbit of M_{i} has $2^{|\mathbf{w}|}$ elements and it is a underlying set of a factor $Q_{\mathbf{w}}$ of D_{i}. Since $A\left(R_{i}\right)$ is conjugate to $A\left(R_{j}\right)$, it follows that $|\mathbf{w}|=\left|\mathbf{w}^{\prime}\right|$, so that $|\mathbf{z}|=\left|\mathbf{z}^{\prime}\right|$. Moreover, R_{i} induces a permutation group $A_{\mathbf{z}}$ on the set of $A\left(R_{i}\right)$-orbits and R_{j} induces a permutation group $A_{\mathbf{z}^{\prime}}$ on the set of $A\left(R_{j}\right)$-orbits. Thus $\mathbf{z}=\mathbf{z}^{\prime}$ by $[1,(2 \mathbf{B})]$. Let $W=\prod_{k=1}^{2^{|z|}} W_{k}$ be a normal subgroup of D_{i} such that $W_{k} \simeq A_{|\mathbf{w}|}$. Then W is a normal abelian subgroup of R_{i} and the underlying set U_{k} of W_{k} is an $A\left(R_{i}\right)$-orbit of M_{i}. Suppose $\sigma \in N(R)$ such that $\sigma\left(M_{i}\right)=M_{j}$ and $R_{i}^{\sigma}=R_{j}$. Then $\mathbf{S}\left(M_{i}\right)^{\sigma}=\mathbf{S}\left(M_{j}\right)$ and $A\left(R_{i}\right)^{\sigma}=A\left(R_{j}\right)$. Thus W^{σ} is a normal abelian subgroup of R_{j}, so that $W^{\sigma} \leq A\left(R_{j}\right)$. The image of an $A\left(R_{i}\right)$-orbit of M_{i} is an $A\left(R_{j}\right)$-orbit of M_{j}. In particular, each $\sigma\left(U_{k}\right)$ is an $A\left(R_{j}\right)$-orbit and it is the underlying set of a factor of D_{j}. Thus $W^{\sigma}=\prod_{k=1}^{2^{|z|}} L_{k}$ is a normal subgroup of R_{j} such that $L_{k} \simeq A_{|\mathbf{w}|}$. So σ induces an isomorphism between $N_{N_{\mathbf{S}\left(M_{i}\right)}(W)}\left(R_{i}\right) / R_{i}$ and $N_{N_{\mathbf{S}\left(M_{j}\right)}\left(W^{\sigma}\right)}\left(R_{j}\right) / R_{j}$. By (2.6),

$$
N_{N_{\mathbf{S}\left(M_{i}\right)}(W)}\left(R_{i}\right) / R_{i} \simeq N_{N_{\mathbf{S}(2|\mathbf{w}|)}\left(A_{|\mathbf{w}|}\right)}\left(Q_{\mathbf{w}}\right) / Q_{\mathbf{w}} \times N_{\mathbf{S}(2|\mathbf{z}|)}\left(A_{\mathbf{z}}\right) / A_{\mathbf{z}}
$$

$$
N_{N_{\mathbf{S}\left(M_{j}\right)}\left(W^{\sigma}\right)}\left(R_{j}\right) / R_{j} \simeq N_{N_{\mathbf{S}\left(2\left|\boldsymbol{w}^{\prime}\right|\right)}\left(A_{\left|\mathbf{w}^{\prime}\right|}\right)}\left(Q_{\mathbf{w}^{\prime}}\right) / Q_{\mathbf{w}^{\prime}} \times N_{\mathbf{S}(2|\mathbf{z}|)}\left(A_{\mathbf{z}}\right) / A_{\mathbf{z}}
$$

It follows that $\mathbf{w}=\mathbf{w}^{\prime}$ as $\left|\mathbf{w}^{\prime}\right|=|\mathbf{w}|$. In particular, D_{i} is conjugate to D_{j}. The remaining assertions of (2D) now follows easily.

Suppose $R=\prod_{i=1}^{v} R_{i}$ is a subgroup of G with a decomposition (2.7). We define

$$
Q K(R)=\prod_{i} Q B\left(R_{i}\right) \times \prod_{j} R_{j}
$$

where i runs over the indices such that either $R_{i} \notin \Delta^{+}$or $R_{i}=S_{d} \backslash A_{\mathbf{c}} \in \Delta^{+}$but $m_{Q B(R)}\left(S_{d}\right) \notin\{2,4\}$, and j runs over the indices such that $R_{j}=S_{d} \backslash A_{\mathbf{c}} \in \Delta^{+}$ and $m_{Q B(R)}\left(S_{d}\right) \in\{2,4\}$. If R and W are subgroups given by (2C) and they are G-conjugate, then $Q K(R)$ and $Q K(W)$ are also G-conjugate. Since P_{2} is radical in $N\left(P_{1}\right)$, it follows that $P_{2}=Q K\left(P_{2}\right)$. Next, we study the structure of P_{i} for $i \geq 3$.

Let $G=\mathbf{S}(n)=\mathbf{S}(V)$ and let

$$
\begin{equation*}
H=\prod_{X \in \Delta^{+}}\left(N_{X}\right)^{\alpha_{X}} \times \prod_{\mathbf{c} \in \Omega} N_{N_{\mathbf{S}(2|\mathbf{c}|}\left(A_{|\mathbf{c}|}\right)}\left(X_{\mathbf{c}}\right)\left\langle\mathbf{S}\left(t_{\mathbf{c}}\right)\right. \tag{2.8}
\end{equation*}
$$

be a subgroup of G, where $N_{X}=N_{\mathbf{S}\left(U_{X}\right)}(X), \alpha_{X}$ and $t_{\mathbf{c}}$ are non-negative integers, $X_{\mathbf{c}} \in\left\{A_{|\mathbf{c}|}, Q_{\mathbf{c}}, D_{8}\right\}$ and $\Omega=\Omega(H)=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{s}\right\}$ is a subset of sequences \mathbf{w}_{i} of non-negative integers. (It may happen that $\mathbf{w}_{i}=\mathbf{w}_{j}$ for $i \neq j$). In addition, let $H^{+}=\prod_{X \in \Delta^{+}}\left(N_{X}\right)^{\alpha_{X}}, H_{\mathbf{c}}=N_{N_{\mathbf{S}(2|\mathbf{c}|}\left(A_{|\mathbf{c}|}\right)}\left(X_{\mathbf{c}}\right)\left\langle\mathbf{S}\left(t_{\mathbf{c}}\right)\right.$ and $H^{*}=\prod_{\mathbf{c} \in \Omega} H_{\mathbf{c}}$.
(2E). Suppose W is a radical subgroup of H. Then $W=W^{+} \times W^{*}$ such that $W^{+}=\Pi_{Y \in \Delta^{+}} Y^{\beta_{Y}}$ and $W^{*}=\prod_{\mathbf{c} \in \Omega} W_{\mathbf{c}}$, where Y and $W_{\mathbf{c}}$ are radical subgroups of N_{X} and $H_{\mathbf{c}}$, respectively and β_{Y} is a non-negative integer.
(a) Each $W_{\mathbf{c}}$ has a decomposition (2.7), and if $|\mathbf{c}| \in\{0,1,2\}$, then $W_{\mathbf{c}}$ is a radical subgroup of $\mathbf{S}\left(2^{|\mathbf{c}|+t_{\mathbf{c}}}\right)$. Thus W has a deomposition (2.7).
(b) Let $Q K_{H}(W)=W^{+} \times \prod_{|\mathbf{c}|=0,1,2} K\left(W_{\mathbf{c}}\right) \times \prod_{|\mathbf{c}| \geq 3} Q K\left(W_{\mathbf{c}}\right)$, where \mathbf{c} runs over Ω. In addition, let $Q=Q K_{H}(W)$ and $L=N_{H}(\bar{Q})$. Then Q is radical in H and $N_{H}(W) \leq N_{H}(Q)$. In particular, $O_{2}(H) \leq Q$ and $Q K_{H}(Q)=Q$. Moreover, $L=L^{+} \times L^{*}$ such that $L^{+}=\prod_{Y \in \Delta^{+}}\left(N_{Y}\right)^{\delta_{Y}}$ and

$$
L^{*}=\prod_{\mathbf{w} \in \Omega(L)} N_{N_{\mathbf{S}(2|\mathbf{w}|)}\left(A_{|\mathbf{w}|}\right)}\left(Y_{\mathbf{w}}\right) \backslash \mathbf{S}\left(t_{\mathbf{w}}\right),
$$

where $Y_{\mathbf{w}} \in\left\{A_{|\mathbf{w}|}, Q_{\mathbf{w}}, D_{8}\right\}$, and δ_{Y} and $t_{\mathbf{w}}$ are non-negative integers. In particular, L has a decomposition (2.8).
(c) Let R be a radical subgroup of $L=N_{H}(Q)$. If $Q K_{L}(R)=Q$, then R is radical in H and $N_{H}(R)=N_{L}(R)$.

Proof. The decomposition of W follows by [6, Lemma 2.2]. We now prove (a) and (b). If Y is a radical subgroup of N_{X} and $X \in \Delta(d)$ for some $d \geq 1$, then $N_{X}=X$ or $S_{d} \imath \mathbf{S}(4)$, so $\left.Y \in\left\{X, S_{d}\right\} A_{1} \backslash A_{1}\right\} \subseteq \Delta^{+}$. Thus $W^{+}=\prod_{Y \in \Delta^{+}}(Y)^{\beta_{Y}}$ for some integers β_{Y}. If $|\mathbf{c}| \in\{0,1,2\}$, then by (2B), $W_{\mathbf{c}}$ is radical in $\mathbf{S}\left(2^{|\mathbf{c}|+t_{\mathbf{c}}}\right)$, so that $K\left(W_{\mathbf{c}}\right)$ is a radical subgroup of both $\mathbf{S}\left(2^{|\mathbf{c}|+t_{\mathbf{c}}}\right)$ and $H_{\mathbf{c}}$. In particular, $W_{\mathbf{c}}$ has a decomposition (2.2). The normalizer $N_{H_{\mathbf{c}}}\left(K\left(W_{\mathbf{c}}\right)\right)$ is given by [1, (2B)] or (2B).

Suppose $d=|\mathbf{c}| \geq 3$. Then $W_{\mathbf{c}}=W_{1} \times \ldots \times W_{m}$ such that $W_{i}=Z_{\mathbf{w}} \backslash A_{\mathbf{z}}$, where $Z_{\mathbf{w}}$ is a radical subgroup of $N_{N_{\mathbf{S}(2|c|)}\left(A_{|\mathbf{c}|}\right)}\left(X_{\mathbf{c}}\right)$. By (2A) (b), $Z_{\mathbf{w}} \in\left\{X_{\mathbf{c}}, Q_{\mathbf{w}}\right\}$ with $|\mathbf{w}|=|\mathbf{c}|$, and so $W_{\mathbf{c}}$ has a decomposition (2.7) and $Q=Q K\left(W_{\mathbf{c}}\right)$ is welldefined. By induction, we may suppose $\Omega=\{\mathbf{c}\}$ and $d=|\mathbf{c}|$. Thus $W=W_{\mathbf{c}}$ and $H=H_{\mathbf{c}}$. Suppose $m_{Q B(W)}\left(S_{d}\right) \in\{2,4\}$. Since W is radical in H, it follows that $m_{W}\left(S_{d}\right) \notin\{2,4\}$. If $m_{Q B(W)}\left(S_{d}\right)=2$, then $m_{W}\left(S_{d} \backslash A_{1}\right)=1$. If $m_{Q B(W)}\left(S_{d}\right)=4$, then $m_{W}(E)=1$ for one $\left.\left.E \in\left\{S_{d}\right\} A_{2}, S_{d}\right\} A_{1} \backslash A_{1}\right\}$. It follows that

$$
N_{H}(Q)=\prod_{Z \in \Delta(d)}\left(N_{Z}\right)^{\gamma_{Z}} \times \prod_{\mathbf{w}} N_{N_{\mathbf{s}(2|\mathbf{w}|)}\left(A_{|\mathbf{w}|}\right)}\left(Z_{\mathbf{w}}\right) \prec \mathbf{S}\left(t_{\mathbf{w}}\right)
$$

where $t_{\mathbf{w}}$ is an integer and $\gamma_{Z}=0,1$. If $Z_{\mathbf{w}}$ is not a Sylow 2 -subgroup of $N_{\mathbf{S}(2|\mathbf{w}|)}\left(A_{|\mathbf{w}|}\right)$, then $Z_{\mathbf{w}}$ is not a self-normalizer. If $Z_{\mathbf{w}}$ is a Sylow 2-subgroup of $N_{\mathbf{S}(2|\mathbf{w}|)}\left(A_{|\mathbf{w}|}\right)$, then $t_{\mathbf{w}} \notin\{2,4\}$. It follows that $Q=O_{2}\left(N_{H}(Q)\right)$ and so Q is radical in H. The rest of the proof of (b) is straightforward.
(c) In the notation above, $Q=\prod_{Y \in \Delta^{+}} Y^{\beta_{Y}} \times \prod_{\mathbf{c} \in \Omega} Q(\mathbf{c})$, where Y and $Q(\mathbf{c})$ are radical subgroups of N_{X} and H_{c}, respectively. In addition, $Q(\mathbf{c})=$ $\prod_{Z \in \Delta^{+}}(Z)^{\gamma_{Z}} \times \prod_{\mathbf{w}}\left(Z_{\mathbf{w}}\right)^{t_{\mathbf{w}}}$ for some $\gamma_{Z}=0,1$. Since R is radical in L, it follows that $R=\prod_{E}(E)^{\epsilon_{E}} \times \prod_{\mathbf{c}} R_{\mathbf{c}}$, where E and $R_{\mathbf{c}}$ are radical subgroups of N_{Y} and $L_{\mathbf{c}}=N_{H_{\mathbf{c}}}(Q(\mathbf{c}))$, respectively. But $Q K_{L}(R)=Q$, so $E=Y$ and $\epsilon_{E}=\beta_{Y}$. By induction, we may suppose $\Omega=\{\mathbf{c}\}$ and $Q=Q(\mathbf{c})$

If $|\mathbf{c}|=0$, then $H=\mathbf{S}\left(t_{\mathbf{c}}\right), Q=Q^{+} \times Q^{*}$ with $Q=K(Q)$ and R is given by (2C), where $Q^{+}=\prod_{Z \in \Delta} Z^{\gamma_{Z}}$ with $\gamma_{Z}=0,1$ and $Q^{*}=\left(D_{8}\right)^{m_{2}^{\prime}} \times \prod_{d>0}\left(A_{d}\right)^{m_{d}}$. Thus $L=L^{+} \times L^{*}$ and $R=R^{+} \times R^{*}$, where $L^{+}=\prod_{Z \in \Delta}\left(N_{Z}\right)^{\gamma_{Z}}, \bar{L}^{*}=D_{8}$ l $\mathbf{S}\left(m_{2}^{\prime}\right) \times \prod_{d \geq 0} N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right)\left\langle\mathbf{S}\left(m_{d}\right), R^{+}=\prod_{E \in \Delta}(E)^{\epsilon E}\right.$ and $R^{*}=R_{2}^{\prime} \times \prod_{d \geq 0} R_{d}$. So E is a radical subgroup of N_{Z}, R_{2}^{\prime} is a radical subgroup of $D_{8}\left\langle\mathbf{S}\left(m_{2}^{\prime}\right)\right.$ and R_{d} is a radical subgroup of $N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right)\left\langle\mathbf{S}\left(m_{d}\right)\right.$. Since $Q K_{L}(R)=Q$, it follows that $E=Z$ and $\epsilon_{E}=\gamma_{Z}$, so that $R^{+}=Q^{+}$. By (2B), R_{d} and R_{2}^{\prime} are radical in $\mathbf{S}\left(2^{d+m_{d}}\right)$ and $\mathbf{S}\left(2^{2+m_{2}^{\prime}}\right)$, respectively, where $d=1,2$. By definition,

$$
Q=Q K_{L}(R)=Q^{+} \times K\left(R_{2}^{\prime}\right) \times \prod_{d=0,1,2} K\left(R_{d}\right) \times \prod_{d \geq 3} Q K\left(R_{d}\right) .
$$

Thus $R_{0}=\left(A_{0}\right)^{m_{0}}, K\left(R_{1}\right)=\left(A_{1}\right)^{m_{1}}, K\left(R_{2}^{\prime}\right)=\left(D_{8}\right)^{m_{2}^{\prime}}, K\left(R_{2}\right)=\left(A_{2}\right)^{m_{2}}$, and $m_{i}, m_{2}^{\prime} \notin\{2,4\}$, since Q is radical in H. By definition, $K\left(R_{2}^{\prime}\right)=B\left(R_{2}^{\prime}\right)$ and $K\left(R_{d}\right)=B\left(R_{d}\right)$ for $d=1,2$. Similarly, since $Q K\left(R_{d}\right)=\left(A_{d}\right)^{m_{d}}$, it follows that
R_{d} has a decomposition（2．2）and $Q K\left(R_{d}\right)=Q B\left(R_{d}\right)=B\left(R_{d}\right)$ for $d \geq 3$ ．If $\gamma_{Z}=1$ for some $Z \in \Delta$ ，then $Z=A_{1}$ 乙 A_{2} or $Z \in \Delta(2)$ ．In the former case $m_{B(Q)}\left(A_{1}\right)=4$ ，since $Q=Q K_{H}(Q)=K(Q)$ ．So $m_{1}=0$ and $R_{1}=1$ ．In the latter cases $m_{B(Q)}\left(D_{8}\right) \in\{2,4\}$ ，so that $m_{2}^{\prime}=0$ and $R_{2}^{\prime}=1$ ．In particular，$m_{R^{*}}(Z)=0$ ． Since R is radical in L ，it follows that R is radical in G and $Q K_{L}(R)=K(R)=Q$ ． Thus $N_{H}(R) \leq N_{H}(Q)=L$ and $N_{L}(R)=N_{H}(R)$ ．

If $|\mathbf{c}|=1$ ，then $H=A_{1}\left\langle\mathbf{S}\left(t_{\mathbf{c}}\right)\right.$ and $Q=Q^{+} \times Q^{*}$ ，where $Q^{+}=\prod_{Z \in \Delta}(Z)^{\gamma_{Z}}$ with $\gamma_{Z}=0,1$ and $Q^{*}=\left(A_{1}\right)^{t_{1}} \times\left(D_{8}\right)^{t_{2}}$ ．If $|\mathbf{c}|=2$ ，then $H=N_{\mathbf{S}(4)}\left(X_{\mathbf{c}}\right)\left\langle\mathbf{S}\left(t_{\mathbf{c}}\right)\right.$ and $Q=Z^{\gamma_{Z}} \times Q^{*}$ ，where $Z \in \Delta(2), \gamma_{Z}=0,1$ and $Q^{*}=\left(A_{2}\right)^{t_{2}} \times\left(D_{8}\right)^{t_{2}^{\prime}}$ or $\left(D_{8}\right)^{t_{2}^{\prime}}$ according as $X_{\mathbf{c}}=A_{2}$ or D_{8} ．The same proof as above shows that $K(R)=Q$ ， $N_{H}(R)=N_{L}(R)$ and R is radical in H ．

If $|\mathbf{c}|=d \geq 3$ ，then $H=N_{N_{\mathbf{S}_{\left(2^{d}\right)}}\left(A_{d}\right)}\left(X_{\mathbf{c}}\right) 乙 \mathbf{S}\left(t_{\mathbf{c}}\right)$ and $Q=Q^{+} \times Q^{*}$ ，where $Q^{+}=\prod_{Z \in \Delta(d)}(Z)^{\gamma_{Z}}$ with $\gamma_{Z}=0,1$ and $Q^{*}=\prod_{\mathbf{w}}\left(Z_{\mathbf{w}}\right)^{t_{\mathbf{w}}}$ with $Z_{\mathbf{w}}=A_{d}$ or $Q_{\mathbf{w}}$ ．It is clear that $t_{\mathbf{w}}=m_{Q}\left(Z_{\mathbf{w}}\right)$ and $|\mathbf{w}|=d$ ．Thus $L=L^{+} \times L^{*}$ and $R=$ $R^{+} \times R^{*}$ ，where $L^{+}=\prod_{Z \in \Delta(d)}\left(N_{Z}\right)^{\gamma_{Z}}, L^{*}=\prod_{\mathbf{w}} N_{N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right)}\left(Z_{\mathbf{w}}\right) \backslash \mathbf{S}\left(t_{\mathbf{w}}\right)$ ，and R^{+}and R^{*} are radical in L^{+}and L^{*} ，respectively．Since $Q K_{L}(R)=Q$ ，it follows that $R^{+}=Q^{+}$．Let $R^{*}=\prod_{\mathbf{w}} R_{\mathbf{w}}$ ，where $R_{\mathbf{w}}$ is a radical subgroup of $L_{\mathbf{w}}=$ $N_{N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right)}\left(Z_{\mathbf{w}}\right)$ 亿 $\mathbf{S}\left(t_{\mathbf{w}}\right)$ ．Then $Q K_{L}(R)=R^{+} \times \prod_{\mathbf{w}} Q K\left(R_{\mathbf{w}}\right)$ ，so that $Q K\left(R_{\mathbf{w}}\right)=$ $Q B\left(R_{\mathbf{w}}\right)=\left(Z_{\mathbf{w}}\right)^{t_{\mathbf{w}}}$ ．In particular，each component of $R_{\mathbf{w}}$ has the form $Z_{\mathbf{w}} \backslash A_{\mathbf{z}}$ ． Thus $Q K_{L}(R)=R^{+} \times Q B\left(R^{*}\right)$ ．If $m_{Q^{+}}(Z) \neq 0$ ，then $Z=S_{d} \backslash A_{\mathbf{z}}$ for some $A_{\mathbf{z}}$ and $m_{Q B(Q)}\left(S_{d}\right)=m_{Q B(Z)}\left(S_{d}\right) \in\{2,4\}$ ，since $Q K_{H}(Q)=Q K(Q)=Q$ ．So $m_{Q^{*}}\left(S_{d}\right)=0$ and $Z_{\mathbf{w}} \neq S_{d}$ ．It follows that $Q K_{L}(R)=Q K(R)=Q$ ，so that $N(R) \leq N(Q)$ ．Thus $N_{H}(R)=N_{L}(R)$ and R is radical in H ．

Remark．In the notation of（2E），suppose $O_{2}(H)=\prod_{X \in \Delta^{+}}(X)^{\alpha_{X}} \times$ $\prod_{\mathbf{c} \in \Omega}\left(X_{\mathbf{c}}\right)^{t_{\mathbf{c}}}$ ．Then $N_{X}, \alpha_{X}, H_{\mathbf{c}}$ and $t_{\mathbf{c}}$ are determined uniquely by H ．In par－ ticular，$Q K_{H}(R)$ is independent of the choice of decompositions of H ．Indeed，the underlying set U of H_{c} and U_{X} are H－orbits of V ，and $N_{X}=\{g \in H: g y=$ y for all $\left.y \in V \backslash U_{X}\right\}$ and $H_{\mathbf{c}}=\{g \in H: g y=y$ for all $y \in V \backslash U\}$ ．Thus $H_{\mathbf{c}}$ and N_{X} are determined by H ．In addition，$X=O_{2}\left(N_{X}\right) \in \Delta^{+},\left(X_{\mathbf{c}}\right)^{t_{\mathbf{c}}}=O_{2}\left(H_{\mathbf{c}}\right) \notin \Delta^{+}$ and $\alpha_{X}=m_{O_{2}(H)}(X)$ ．So they are determined by H ．This proves the remark．

If $C \in \mathcal{Q R}$ is the chain given by（2．3），then either $w=0$ or $P_{i}=Q K_{N\left(C_{i-1}\right)}\left(P_{i}\right)$ for all $1 \leq i \leq w$ ．We also need the following lemma．
（2F）．Let $G=\mathbf{S}(n)=\mathbf{S}(V)$ and let $C \in \mathcal{Q R}$ be the chain given by（2．3） with $w \geq 1$ ．In addition，let R be a radical subgroup of $N(C)$ ．Then R has a decomposition（2．7）．If $D=Q K_{N(C)}(R)$ ，then D is radical in $N(C), P_{w} \unlhd D$ ，and $N_{N(C)}(R) \leq N_{N(C)}(D)$ ．In addition，if $P_{w} \neq D$ and

$$
C^{\prime}: P_{0}<P_{1}<\cdots<P_{w}<D
$$

then $C^{\prime} \in \mathcal{Q R}, R$ is radical in $N\left(C^{\prime}\right)$, and $N_{N\left(C^{\prime}\right)}(R)=N_{N(C)}(R)$. If $P_{w}=D$, then R is radical in $N\left(C_{w-1}\right)$ and $N_{N\left(C_{w-1}\right)}(R)=N_{N(C)}(R)$.

Proof. Since P_{1} is radical in G and $Q K_{G}\left(P_{1}\right)=K\left(P_{1}\right)=P_{1}$, it follows that $N\left(C_{1}\right)=N\left(P_{1}\right)$ has a decomposition (2.8) and P_{2} is radical in $N\left(C_{1}\right)$ with $Q K_{N\left(C_{1}\right)}\left(P_{2}\right)=P_{2}$. By (2E) (b), $N\left(C_{2}\right)=N_{N\left(C_{1}\right)}\left(P_{2}\right)$ has a decomposition (2.8) and by induction, $N(C)$ has a decomposition (2.8). Thus R decomposes as (2.7) and $D=Q K_{N(C)}(R)$ is well-defined. By (2E) (b) again, D is radical in $N(C)$ and moreover, $N_{N(C)}(R) \leq N_{N(C)}(D)$. Thus $N_{N(C)}(R) \leq N\left(C^{\prime}\right)$ and $N_{N(C)}(R)=$ $N_{N\left(C^{\prime}\right)}(R)$. If $P_{w}=D$, then apply (2E) (c) to $H=N\left(C_{w-1}\right)$ and $Q=P_{w}$. Thus R is radical in $N\left(C_{w-1}\right)$ and $N_{N\left(C_{w-1}\right)}(R)=N_{N(C)}(R)$. This proves (2F).

We can now prove the main result of this section.
(2G). Let $G=\mathbf{S}(n)=\mathbf{S}(V)$ with $O_{2}(G)=\left\{1_{V}\right\}$, and let B be a positive defect 2 -block of G and u an integer. Then

$$
\sum_{C \in \mathcal{R} / G}(-1)^{|C|} \mathrm{k}(N(C), B, u)=\sum_{C \in \mathcal{Q R} / G}(-1)^{|C|} \mathrm{k}(N(C), B, u)
$$

where $\mathcal{Q R} / G$ is a set of representatives for the G-orbits in $\mathcal{Q R}$.
Proof. It suffices to show that

$$
\begin{equation*}
\sum_{C \in \mathcal{M} / G}(-1)^{|C|} \mathrm{k}(N(C), B, u)=0 \tag{2.9}
\end{equation*}
$$

where $\mathcal{M}=\mathcal{R} \backslash \mathcal{Q R}$. Suppose $C \in \mathcal{M}$ is given by (1.1). Then $C_{0} \in \mathcal{Q R}$ and $C=C_{w} \notin \mathcal{Q R}$, so that there must be some minimal $m=m(C) \in\{0,1, \ldots, w-1\}$ such that $C_{m} \in \mathcal{Q R}$ and $C_{m+1} \notin \mathcal{Q R}$. Since P_{m+1} is radical in $N\left(C_{m}\right), P_{m+1}$ has a decomposition (2.7). We can apply (2F) to C_{m}. If $D=Q K_{N\left(C_{m}\right)}\left(P_{m+1}\right)$, then $D \neq$ P_{m+1}, D is radical in $N\left(C_{m}\right)$ and $N_{N\left(C_{m}\right)}\left(P_{m+1}\right) \leq N_{N\left(C_{m}\right)}(D)$, so that $P_{m} \unlhd D$. Moreover, if $P_{m}=D$, then P_{m+1} is radical in $N\left(C_{m-1}\right)$ and $N_{N\left(C_{m-1}\right)}\left(P_{m+1}\right)=$ $N_{N\left(C_{m}\right)}\left(P_{m+1}\right)$. Define

$$
\varphi(C): \begin{cases}1<P_{1}<\ldots<P_{m-1}<P_{m+1}<\ldots<P_{w} & \text { if } P_{m}=D \\ 1<P_{1}<\ldots<P_{m}<D<P_{m+1}<\ldots<P_{w} & \text { if } P_{m}<D\end{cases}
$$

Then $\varphi(C) \in \mathcal{M}$ and $N(C)=N(\varphi(C))$. Moreover, $\varphi(\varphi(C))=C$ and $|\varphi(C)|=$ $|C| \pm 1$. Thus φ is a bijection from \mathcal{M} to itself. This implies (2.9).

3. More reductions and the proof of the conjecture

In this section we shall follow the notation of Sections 1 and 2. Let $\mathcal{Q R}^{0}$ be the G-invariant subfamily of $\mathcal{Q R}$ consisting of chains C given by (2.3) such that $m_{P_{i}}\left(S_{d} \imath D_{8}\right)=0$ for all $d \geq 1$ except when $d=1$, in which case if $m_{P_{i}}\left(A_{1} \prec D_{8}\right) \neq 0$, then $\left(A_{2}\right)^{2}$ is a component of some P_{k} for $k<i$, and $\left[V,\left(A_{2}\right)^{2}\right]=\left[V, D_{8} \backslash A_{1}\right]$ and $\left(A_{2}\right)^{2} \unlhd D_{8} \backslash A_{1}=A_{1} \backslash D_{8}$. If $\mathcal{Q} \mathcal{R}^{1}=\mathcal{Q R} \backslash \mathcal{Q} \mathcal{R}^{0}$, then

$$
\mathcal{Q R}=\mathcal{Q R}^{0} \cup \mathcal{Q} \mathcal{R}^{1} \quad \text { (disjoint) }
$$

We shall first reduce Dade's conjecture to the family $\mathcal{Q} \mathcal{R}^{0}$.
Fix integer $d \geq 1$. Let $X \in\left\{S_{d} \backslash A_{2}, S_{d} \backslash D_{8}\right\}$, and let $X \times Q$ be a subgroup of $G=\mathbf{S}(n)=\mathbf{S}(V)$ with a decomposition (2.7). If $U_{X}=[V, X]$ and $U_{Q}=V \backslash U_{X}$, then $V=U_{X} \cup U_{Q}$. Suppose $C(0) \in \mathcal{Q} \mathcal{R}^{0}$ is a fixed radical chain with $|C(0)|=s$. Let $\mathcal{Q R}(C(0), X \times Q)$ be the subfamily of $\mathcal{Q R}$ consisting of all chains C given by (2.3) such that its s-th subchain C_{s} is $C(0)$ and its $(s+1)$-st subgroup P_{s+1} is $X \times Q$ up to conjugacy in G. Since $X \in \Delta^{+}$and $N\left(C_{s+1}\right)$ has a decomposition (2.8), it follows that $N\left(C_{s+1}\right)=N_{X} \times N(s+1)$, where $N_{X}=N_{\mathbf{S}\left(U_{X}\right)}(X)$ and $N(s+1) \leq \mathbf{S}\left(U_{Q}\right)$. Let P_{t} be the t-th subgroup of C with $t \geq s+1$. Then $P_{t}=Y(t) \times Z(t)$, where $\left.\left.Y(t) \in\left\{X, S_{d}\right\urcorner A_{1}\right\urcorner A_{1}\right\}$ and $Z(t) \leq N(s+1)$. Note that $\left.\mathcal{Q R}\left(C(0), S_{d}\right\urcorner D_{8} \times Q\right) \subseteq \mathcal{Q R}^{1}$ whenever $d \geq 2$.

Let $\mathcal{M}=\mathcal{M}\left(C(0), S_{d} \backslash A_{2} \times Q\right)$ be the subset of $\mathcal{Q R}\left(C(0), S_{d} \backslash A_{2} \times Q\right)$ consisting of all chains C such that $Y(t)=S_{d} \imath D_{8}$, that is, $P_{t}=S_{d} \imath D_{8} \times Z(t)$ (up to conjugacy) for some $t \geq s+2$. In particular, $\mathcal{M}\left(C(0), S_{d} \backslash A_{2} \times Q\right) \subseteq \mathcal{Q R}^{1}$ and

$$
\mathcal{Q} \mathcal{R}^{1}=\bigcup_{C(0), S_{d} \backslash A_{2} \times Q} \mathcal{S}\left(C(0), S_{d} \backslash A_{2} \times Q\right) \quad \text { (disjoint) }
$$

where $\left.\mathcal{S}\left(C(0), S_{d} \ell A_{2} \times Q\right)=\mathcal{M}\left(C(0), S_{d} \ell A_{2} \times Q\right) \cup\left(\mathcal{Q R}\left(C(0), S_{d}\right\urcorner D_{8} \times Q\right) \cap \mathcal{Q R}{ }^{1}\right)$, $C(0)$ runs over $\mathcal{Q} \mathcal{R}^{0}$ and $S_{d} \imath A_{2} \times Q$ runs over subgroup of G with a decomposition (2.7).

For $C \in \mathcal{M}$, denote by $m=m(C)$ the smallest integer such that $\left.P_{m}=S_{d}\right\urcorner D_{8} \times$ $Z(m)$, so that $Q \leq Z(m)$. Let \mathcal{M}_{0} and \mathcal{M}_{+}be the subsets of \mathcal{M} consisting of all chains C such that $Z(m)=Q$ and $Z(m) \neq Q$, respectively.
(3A). In the notation above, suppose $\left.\mathcal{S}=\mathcal{S}\left(C(0), S_{d}\right\} A_{2} \times Q\right)$. Then

$$
\begin{equation*}
\sum_{C \in \mathcal{S} / G}(-1)^{|C|} \mathrm{k}(N(C), B, u)=0 \tag{3.1}
\end{equation*}
$$

for all 2-blocks B and integers $u \geq 0$.
Proof. Set $\left.X=S_{d}\right\urcorner A_{2}$. Suppose $C \in \mathcal{M}_{+}$is given by (2.3). Then $m=m(C) \geq$ $s+2$ and $P_{m-1}=X \times Z(m-1)$. So $Z(m-1) \leq Z(m)$ and $N\left(C_{t}\right)=N_{X} \times N(t)$
for $s+1 \leq t \leq m-1$. In particular, $Z(m-1)$ is a radical subgroup of $N(m-2)$ and moreover, if $m=s+2$, then $Q=Z(m-1)<Z(m)$. Define a map φ such that

$$
\varphi(C):\left\{\begin{aligned}
& 1<P_{1}<\ldots<P_{m-2}<P_{m}<\ldots<P_{w} \\
& 1<P_{1}<\ldots<P_{m-1} \\
&<X \times Z(m)<P_{m}<\ldots<P_{w}
\end{aligned} \quad \text { if } Z(m-1)<Z(m) .\right.
$$

Then $\varphi(C) \in \mathcal{M}_{+}, N(C)=N(\varphi(C)), \varphi(\varphi(C))=C$ and $|\varphi(C)|=|C| \pm 1$. Thus

$$
\sum_{C \in\left(\mathcal{M}_{+}\right) / G}(-1)^{|C|} \mathrm{k}(N(C), B, u)=0
$$

Suppose $C \in \mathcal{M}_{0}$ is given by (2.3). Since X and $S_{d} \backslash D_{8}$ are the only two radical subgroups of $N_{X}=S_{d}$ 乙 $\mathbf{S}(4)$ up to conjugacy containing $\left(S_{d}\right)^{4}$, it follows that $m(C)=s+2$, that is, $P_{s+2}=S_{d} \backslash D_{8} \times Q$. Thus

$$
g(C): 1<P_{1}<\ldots<P_{s}<P_{s+2}<\ldots<P_{w}
$$

is a chain of $\mathcal{Q R}\left(C(0), S_{d} \backslash D_{8} \times Q\right) \cap \mathcal{Q} \mathcal{R}^{1}$ and $N(C)=N(g(C))$. Conversely, suppose

$$
C^{\prime}: 1<P_{1}^{\prime}<\ldots<P_{s}^{\prime}<P_{s+1}^{\prime}<\ldots<P_{w^{\prime}}^{\prime}
$$

is a chain of $\left.\mathcal{Q R}\left(C(0), S_{d}\right\urcorner D_{8} \times Q\right) \cap \mathcal{Q} \mathcal{R}^{1}$, then $\left.P_{s+1}^{\prime}=S_{d}\right\urcorner D_{8} \times Q$ and

$$
h\left(C^{\prime}\right): 1<P_{1}^{\prime}<\ldots<P_{s}^{\prime}<X \times Q<P_{s+1}^{\prime}<\ldots<P_{w^{\prime}}^{\prime}
$$

is a chain of \mathcal{M}_{0}. It is clear that $g\left(h\left(C^{\prime}\right)\right)=C^{\prime}, h(g(C))=C$ and $|g(C)|=|C|-1$. Thus

$$
\sum_{C \in\left(\mathcal{M}_{0} \cup\left(\mathcal{Q R}\left(C(0), S_{d} D_{8} \times Q\right) \cap \mathcal{Q R} \mathcal{R}^{1}\right)\right) / G}(-1)^{|C|} \mathrm{k}(N(C), B, u)=0 .
$$

This proves (3A).
It follows by (3A) that Dade's conjecture can be reduced to the family $\mathcal{Q R}^{0}$. Let $Z=\left(A_{1}\right)^{m_{1}}$ be a radical subgroup of $\mathbf{S}\left(2^{m_{1}}\right)=\mathbf{S}\left(U_{Z}\right)$, and $W \neq Z$ a radical subgroup of $N_{Z}=N_{\mathbf{S}\left(U_{Z}\right)}(Z)$ such that $K(W)=W$. As shown in the proof of (2B)
$W \in \Phi=\left\{D_{8} \backslash A_{2} \times A_{1} \backslash A_{2}, D_{8} \backslash A_{2} \times\left(A_{1}\right)^{t_{1}}, A_{1} \backslash A_{2} \times\left(D_{8}\right)^{t_{2}},\left(A_{1}\right)^{t_{1}} \times\left(D_{8}\right)^{t_{2}}\right\}$,
where $t_{i} \notin\{2,4\}$. If $W=A_{1}\left\{A_{2} \times\left(D_{8}\right)^{t_{2}}\right.$, then $t_{2} \neq 0$, since Z is radical in $\mathbf{S}\left(U_{Z}\right)$. Similarly, if $W=\left(A_{1}\right)^{t_{1}} \times\left(D_{8}\right)^{t_{2}}$ and $t_{1}=0$, then $t_{2} \neq 1$. Thus $N_{N_{\mathbf{S}_{\left(U_{Z}\right)}(Z)}}(W)=$
$N_{\mathbf{S}\left(U_{Z}\right)}(W)$. Let $\mathcal{Q R}^{0}(C(0), Z \times Q)=\mathcal{Q R}(C(0), Z \times Q) \cap \mathcal{Q R}{ }^{0}$, and let $\mathcal{M}(C(0), Z \times$ $Q, W)$ be the subset of $\mathcal{Q R}{ }^{0}(C(0), Z \times Q)$ consisting of chians C given by (2.3) such that $P_{m}=W \times Z(m)$ (up to conjugacy) for some $m \geq s+2$ and $P_{t}=Z \times Z(t)$ for $s+1 \leq t \leq m$, where $\mathcal{Q R}(C(0), Z \times Q)$ is defined as in (3A) and $Z(t) \leq \mathbf{S}\left(U_{Q}\right)$.
(3B). In the notation above, let $\mathcal{S}=\mathcal{M}(C(0), Z \times Q, W) \cup \mathcal{Q R}{ }^{0}(C(0), W \times Q)$, where $W \in \Phi$. Then (3.1) holds for \mathcal{S}.

Proof. Replacing $X=S_{d}$ 〕 A_{2} by Z, S_{d} 〕 D_{8} by W and some obvious modifications in the proof of (3A), we have (3B).

Let $\mathcal{Q R}^{+}$be the complement of $\bigcup_{C(0), Z, W, Q}\left(\mathcal{M}(C(0), Z \times Q, W) \cup \mathcal{Q R}{ }^{0}(C(0)\right.$, $W \times Q)$) in $\mathcal{Q} \mathcal{R}^{0}$, where $C(0)$ runs over $\mathcal{Q R}{ }^{0}, Z=\left(A_{1}\right)^{m_{1}}$ with $m_{1} \notin\{2,4\}, W$ runs over Φ, and Q runs over subgroups of $\mathbf{S}\left(U_{Q}\right)$ with a decomposition (2.7). It follows by (3A) and (3B) that

$$
\sum_{C \in \mathcal{Q R} / G}(-1)^{|C|} \mathrm{k}(N(C), B, u)=\sum_{C \in \mathcal{Q R}^{+} / G}(-1)^{|C|} \mathrm{k}(N(C), B, u) .
$$

Let $D=P_{1}$ be the first non-trivial subgroup of $C \in \mathcal{Q R}^{+}$. Then $D=K(D)$ and $D=D^{+} \times D^{*}$ decomposes as (2.4). Now

$$
\Delta=\left\{A_{1} \backslash A_{2}, D_{8} \backslash A_{1}, D_{8} \backslash A_{2}, D_{8} \backslash D_{8}\right\} .
$$

By (3A), $m_{D}\left(D_{8} \imath D_{8}\right)=0$. Since $D_{8} \imath A_{2} \in \Phi$, it follows by (3B) that $m_{D}\left(D_{8} \imath A_{2}\right)=0$. Similarly, $m_{D}\left(D_{8}\right)=0,1$ and $m_{Q}\left(A_{1} \backslash A_{2}\right)=0,1$. If $m_{D}\left(D_{8} \backslash A_{1}\right) \neq 0$, then D is not the first non-trivial subgroup of any chain in $\mathcal{Q R}^{0}$. Suppose $m_{D}\left(A_{1} \backslash A_{2}\right) \neq 0$. Since $A_{1} \backslash A_{2} \times\left(D_{8}\right)^{t_{2}} \in \Phi$ for $t_{2} \geq 1$, it follows by (3B) that $m_{D}\left(D_{8}\right)=0$. But $K(D)=D$, so $m_{B(D)}\left(A_{1}\right)=4$ and $m_{B\left(D^{+}\right)}\left(A_{1}\right)=0$. Similarly, if $m_{D}\left(D_{8}\right) \neq 0$, then $m_{D}\left(A_{1} \backslash A_{2}\right)=m_{D}\left(A_{1}\right)=0$. Thus

$$
\begin{equation*}
D=D(0) \times X \times \prod_{d \geq 2} D(d) \tag{3.2}
\end{equation*}
$$

where $D(d)=\left(A_{d}\right)^{m_{d}}$ for $d \neq 1$ and $X \leq \mathbf{S}\left(2^{m_{1}}\right)$ such that

$$
X= \begin{cases}D_{8} & \text { if } m_{1}=2 \\ A_{1} \backslash A_{2} & \text { if } m_{1}=4 \\ \left(A_{1}\right)^{m_{1}} & \text { if } m_{1} \notin\{2,4\}\end{cases}
$$

For simplicity, we denote by $D(1)$ the subgroup X. Thus $N(D)=\prod_{d \geq 0} N(D)_{d}$ such that $N(D)_{d}=N_{\mathbf{S}_{\left(2^{d}\right)}}\left(A_{d}\right) \imath \mathbf{S}\left(m_{d}\right)$.

Suppose $Q=P_{2}$ is the second subgroup of C. Then Q is a radical subgroup of $N(D)$, so that $Q=\prod_{d \geq 0} Q_{d}$, where Q_{d} is a radical subgroup of $N(D)_{d}$. Thus Q_{0} is of form (3.2). It follows by (3B) that $Q_{1}=D(1)$. In general, if $W=P_{i}$ is the i-th subgroup of C for $i \geq 1$, then $W=\prod_{d \geq 0} W_{d}$ with $W_{1}=D(1)$ and $W_{d} \leq N(D)_{d}$ for all $d \geq 1$. By (3B) again, if $m_{W}\left(D_{8} \imath A_{2}\right) \neq 0$, then there is some $1 \leq k \leq i-1$ such that $\left(A_{2}\right)^{4}$ is a component of $\left.P_{k},\left[V,\left(A_{2}\right)^{4}\right]=\left[V,\left(D_{8}\right)\right\} A_{2}\right]$ and $\left.\left(A_{2}\right)^{4} \unlhd\left(D_{8}\right)\right\} A_{2}$.

Let $\Delta^{\prime}=\left\{D_{8}, A_{1}\left\{A_{2}\right\}\right.$ and let

$$
\begin{equation*}
P=\prod_{X \in \Delta^{\prime}}(X)^{\alpha_{X}} \times \prod_{d=0}^{s}\left(A_{d}\right)^{m_{d}} \tag{3.3}
\end{equation*}
$$

be a subgroup of G, where α_{X} and m_{d} are non-negative integers. Set $P^{+}=$ $\prod_{X \in \Delta^{\prime}}(X)^{\alpha_{X}}$ and $P^{*}=\prod_{d=0}^{s}\left(A_{d}\right)^{m_{d}}$. Let U_{X} be the underlying set of $X \in \Delta^{\prime}$ such that $U_{X}=\left[U_{X}, X\right]$, and $N_{X}=N_{\mathbf{S}\left(U_{X}\right)}(X)$.

Suppose $C \in \mathcal{Q R}^{+}$is given by (2.3). Denote by $C_{V}(C)$ the fixed-point set $C_{V}\left(P_{w}\right)$ of the final subgroup P_{w} of C. Let $\ell=\ell(C)$ be the largest integer such that P_{ℓ} has a decomposition (3.3), and let $\mathcal{Q R}^{+}(P)$ be the subset of $\mathcal{Q R}{ }^{+}$consisting of all chains C given by (2.3) such that $P_{\ell}=P$. Then

$$
\mathcal{Q} \mathcal{R}^{+}=\bigcup_{P} \mathcal{Q} \mathcal{R}^{+}(P) \quad \text { (disjoint) }
$$

where P runs over subgroups of G with a decomposition (3.3). Thus

$$
\begin{equation*}
N\left(C_{\ell}\right) \simeq \mathbf{S}(V(0)) \times \prod_{X \in \Delta^{\prime}}\left(N_{X}\right)^{\alpha_{X}} \times \prod_{d=1}^{s}\left(\prod_{j=1}^{h_{d}} N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right) \imath \mathbf{S}\left(\lambda_{d, j}\right)\right) \tag{3.4}
\end{equation*}
$$

where $\left(\lambda_{d, 1}, \ldots, \lambda_{d, h_{d}}\right)$ is a partition of m_{d} and $V(0)=C_{V}(P)$.
Fix partitions $\lambda_{d}=\left(\lambda_{d, 1}, \ldots, \lambda_{d, h_{d}}\right)$ of m_{d}, and set $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$. Let $\mathcal{Q R}^{+}(P, \lambda)$ be the subset of $\mathcal{Q R}^{+}(P)$ consisting of all chains C such that $N\left(C_{\ell}\right)$ is given by (3.4). Then

$$
\mathcal{Q R}^{+}(P)=\bigcup_{\lambda} \mathcal{Q} \mathcal{R}^{+}(P, \lambda) \quad \text { (disjoint) }
$$

where λ runs over all s-tuple partitions λ_{d} of m_{d}.
Suppose W is a G-conjugate of P. Then $W^{g}=P$ for some $g \in G$, and $C^{g} \in \mathcal{Q} \mathcal{R}^{+}(P)$ for each $C \in \mathcal{Q} \mathcal{R}^{+}(W)$. Thus a set of representatives for the $N(P)$ conjugacy classes of $\mathcal{Q} \mathcal{R}^{+}(P)$ can be regarded as a set of representatives for the G-conjugacy classes of the G-orbit containing $\mathcal{Q R}{ }^{+}(P)$. It is clear that $\mathcal{Q} \mathcal{R}^{+}(P)$ and $\mathcal{Q} \mathcal{R}^{+}(P, \lambda)$ both are $N(P)$-invariant.

Let $\mathcal{Q R}^{\prime}(P, \lambda)=\left\{C \in \mathcal{Q R}^{+}(P, \lambda): C_{V}(C)=C_{V}(P)\right\}$, and let $\mathcal{Q R}{ }^{\prime \prime}(P, \lambda)$ be the complement of $\mathcal{Q R}^{\prime}(P, \lambda)$ in $\mathcal{Q R}^{+}(P, \lambda)$.
(3C). In the notation above,

$$
\sum_{C \in \mathcal{Q R}^{\prime \prime}(P, \lambda) / N(P)}(-1)^{|C|} \mathrm{k}(N(C), B, u)=0
$$

for all 2-blocks B and integers $u \geq 0$.
Proof. Let $C: 1<P_{1}<\ldots<P_{\ell}=P<P_{\ell+1}<\ldots<P_{w}$ be a chain of $\mathcal{M}=\mathcal{Q R}^{\prime \prime}(P, \lambda)$. Then $C_{V}\left(P_{w}\right) \neq C_{V}(P)$. Let $m=m(C)$ be the smallest integer such that $C_{V}\left(P_{m}\right) \neq C_{V}(P)=V(0)$. Then $\ell+1 \leq m \leq w$.

Let $V(+)=[V, P]$ and $P(+)=P^{+} \times \prod_{d \geq 1}\left(A_{d}\right)^{m_{d}}$, where P^{+}is defined after (3.3). Then $P=P(0) \times P(+)$ and $N(P)=\mathbf{S}(V(0)) \times N(P)(+)$, where $P(0)=\left\langle 1_{V(0)}\right\rangle$ and $N(P)(+)=N_{\mathbf{S}(V(+))}(P(+))$. Thus $N\left(C_{m-1}\right)=\mathbf{S}(V(0)) \times$ $N\left(C_{m-1}\right)(+)$, where $N\left(C_{m-1}\right)(+) \leq \mathbf{S}(V(+))$. So $W=P_{m}$ decomposes as $W=W_{0} \times W_{+}$, where W_{0} is a radical subgroup of $\mathbf{S}(V(0))$ and $W_{+} \leq \mathbf{S}(V(+))$. In particular, W_{0} is a non-trivial subgroup with a decomposition (3.3). By definition, P_{m} has no decompositions as that of (3.3), so that $m_{W_{+}}(Z) \neq 0$ for some $Z \in\left\{Q_{\mathbf{c}}, S_{d} \backslash A_{1}, S_{d} \backslash A_{2}\right\}$, where $d \geq 2$ and \mathbf{c} is a sequence of positive integers. Let $D=\left\langle 1_{V(0)}\right\rangle \times W_{+}$and $R=P_{m-1}$. Then $D<P_{m}, R=R(0) \times R(+) \leq D$, and D is radical in $N\left(C_{m-1}\right)$, where $R(0)=\left\langle 1_{V(0)}\right\rangle$ and $R(+)=O_{2}\left(N\left(C_{m-1}\right)(+)\right)$. If $R(+)=W_{+}$, then $m \geq \ell+2$ and $P_{m}=W_{0} \times W_{+}$is radical in $N\left(C_{m-2}\right)$. Let $\varphi(C) \in \mathcal{Q R}^{+}$such that

$$
\varphi(C): \begin{cases}1<P_{1}<\ldots<P_{m-2}<P_{m}<\ldots<P_{w} & \text { if } P_{m-1}=D \\ 1<P_{1}<\ldots<P_{m-1}<D<P_{m}<\ldots<P_{w} & \text { if } P_{m-1}<D .\end{cases}
$$

Then $\varphi(C) \in \mathcal{M}, N(C)=N(\varphi(C)),|\varphi(C)|=|C| \pm 1$ and $\varphi(\varphi(C))=C$. Thus φ is a permutation of \mathcal{M} and preserves $N(P)$-classes in \mathcal{M}. This implies (3C).

Let $\mathcal{Q R}_{1}^{\prime}(P, \lambda)$ be the subset of $\mathcal{Q R}^{\prime}(P, \lambda)$ consisting of all the chains whose final subgroup is P. For any $C(0) \in \mathcal{Q R}_{1}^{\prime}(P, \lambda)$ with length $|C(0)|=\ell$, let $\mathcal{Q R}^{\prime}(C(0), \lambda)$ denote the subset of $\mathcal{Q R}^{\prime}(P, \lambda)$ consisting of all the chains C such that $C_{\ell}=C(0)$. Thus

$$
\mathcal{Q R}^{\prime}(P, \lambda)=\bigcup_{C(0) \in \mathcal{Q R}_{1}^{\prime}(P, \lambda)} \mathcal{Q} \mathcal{R}^{\prime}(C(0), \lambda) \quad \text { (disjoint). }
$$

In addition, two chains $C(0)$ and $C(0)^{\prime}$ of $\mathcal{Q R}_{1}^{\prime}(P, \lambda)$ are $N(P)$-conjugate if and only if $\mathcal{Q R}^{\prime}(C(0), \lambda)$ and $\mathcal{Q R}^{\prime}\left(C(0)^{\prime}, \lambda\right)$ are $N(P)$-conjugate.

Now we can prove the main result of this paper.
(3D). Dade's ordinary conjecture holds for any positive defect 2-block of the symmetric groups $\mathbf{S}(n)$ with $O_{2}(\mathbf{S}(n))=1$.

Proof. (1) First of all, we show that if $m_{P}\left(A_{d}\right) \neq 0$ for some $d \geq 2$, then

$$
\sum_{C \in \mathcal{Q R}^{\prime}(C(0), \lambda) / N(C(0))}(-1)^{|C|} \mathrm{k}(N(C), B, u)=0
$$

for all 2-blocks B and integers $u \geq 0$.
Let $K=\prod_{d=2}^{s} \prod_{j=1}^{h_{d}} \mathrm{GL}(d, 2)^{\lambda_{d, j}}$ and let $\mathcal{R}(K)$ be the set of all radical 2-chains of K. In addition, let $\mathcal{S}=\mathcal{S}(C(0), \lambda)$ be the set of all chains

$$
C: 1<P_{1}<\ldots<P_{\ell}=P<P_{\ell+1}<\ldots<P_{w}
$$

of G such that $C_{\ell}=C(0)$ and $C / P: P_{\ell} / P<P_{\ell+1} / P<\ldots<P_{w} / P$ is a chain of $\mathcal{R}(K)$. The map $\varphi: \mathcal{S}(C(0), \lambda) \rightarrow \mathcal{R}(K)$ given by $\varphi(C)=C / P$ is a bijection (see [6, (5.7)]).

The same proof as that after (5.7) of [6] shows that

$$
\sum_{C \in \mathcal{S}(C(0), \lambda) / N(C(0))}(-1)^{|C|} \mathrm{k}(N(C), B, u)=0 .
$$

It suffices to show that there exists a bijective map ψ from $\mathcal{Q R}^{\prime}(C(0), \lambda)$ to $\mathcal{S}(C(0), \lambda)$ such that $N(C)=N(\psi(C))$.

Let C be a chain of $\mathcal{Q R}^{\prime}(C(0), \lambda)$ given by (2.3) and let $N_{i}=N\left(C_{i}\right)$ for $0 \leq i \leq w$. If $D=P_{t}$ is the t-th subgroup of C, then

$$
\begin{equation*}
D=D(0) \times D(1) \times \prod_{d \geq 2}\left[\left(S_{d} \backslash A_{1}\right)^{\alpha_{d}} \times\left(S_{d} \backslash A_{2}\right)^{\beta_{d}} \times D(d)\right] \tag{3.5}
\end{equation*}
$$

such that $D(0)=\left(A_{0}\right)^{m_{0}}, D(1)=\left(D_{8}\right)^{\alpha_{1}} \times\left(A_{1}\left\langle A_{2}\right)^{\beta_{1}} \times\left(A_{1}\right)^{t_{1}}\right.$ and $D(d)=\prod_{\mathbf{c}}\left(X_{\mathbf{c}}\right)^{t_{\mathbf{c}}}$ with $|\mathbf{c}|=d$, where $X_{\mathbf{c}} \in\left\{A_{d}, S_{2}=D_{8}, Q_{\mathbf{c}}\right\}$, and $\alpha_{i}, \beta_{i}, t_{1}$ and $t_{\mathbf{c}}$ are non-negative integers. Let

$$
\begin{equation*}
\psi(D)=D(0) \times D(1) \times \prod_{d \geq 2}\left[\left(S_{d}\right)^{2 \alpha_{d}} \times\left(S_{d}\right)^{4 \beta_{d}} \times D(d)\right] \tag{3.6}
\end{equation*}
$$

Equivalently, if $D=\prod_{i} D_{i}$ such that $D_{i} \in \Delta^{+}$or $D_{i} \in\left\{A_{d}, D_{8}, Q_{\mathbf{c}}\right\}$, then $\psi(D)=$ $\prod_{k} Q B\left(D_{k}\right) \times\left(A_{1} \backslash A_{2}\right)^{\beta_{1}}$, where $\beta_{1}=m_{D}\left(A_{1} \backslash A_{2}\right)$ and k runs over the indices such that $D_{k} \nsim A_{1} \backslash A_{2}$. Define

$$
\psi(C): 1<\psi\left(P_{1}\right)<\psi\left(P_{2}\right)<\ldots<\psi\left(P_{w}\right) .
$$

Then $\psi\left(C_{t}\right)=\psi(C)_{t}$ for $1 \leq t \leq w$. We shall show that $\psi(C) \in \mathcal{S}$ and ψ is a bijection satisfying $N(C)=N(\psi(C))$. If $\alpha_{d}=\beta_{d}=0$ for $d \geq 2$, then $\psi(D)=D$. In particular, $\psi\left(P_{t}\right)=P_{t}, \psi(C)_{\ell}=C_{\ell}=C(0)$ and $N_{G}\left(C_{t}\right)=N_{G}\left(\psi\left(C_{t}\right)\right)$ for $1 \leq t \leq \ell$.

Suppose $\psi\left(C_{t}\right) \in \mathcal{S}$ for some $t \geq \ell$. Then N_{t} is of the form (2.8), and moreover, if $V(0)=C_{V}\left(P_{t}\right)=C_{V}(P)$, then

$$
\begin{equation*}
N_{t}=\mathbf{S}(V(0)) \times N_{t}(1) \times \prod_{d \geq 2}\left[\left(S_{d} \backslash A_{1}\right)^{\alpha_{d}} \times\left(S_{d} \backslash \mathbf{S}(4)\right)^{\beta_{d}} \times N_{t}(d)\right] \tag{3.7}
\end{equation*}
$$

where $N_{t}(1)=\left(D_{8}\right)^{\alpha_{1}} \times\left(A_{1} \backslash \mathbf{S}(4)\right)^{\beta_{1}} \times A_{1} \backslash \mathbf{S}\left(t_{1}\right)$ and

$$
N_{t}(d)=\prod_{|\mathbf{c}|=d} N_{N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right)}\left(X_{\mathbf{c}}\right) \ell \mathbf{S}\left(t_{\mathbf{c}}\right)
$$

Since P_{t+1} is radical subgroup of N_{t} and $C \in \mathcal{Q R}^{\prime}(C(0), \lambda)$, it follows that

$$
P_{t+1}=D(0) \times D(1) \times \prod_{d \geq 2}\left[\left(S_{d} \backslash A_{1}\right)^{\alpha_{d}} \times\left(S_{d} \backslash A_{2}\right)^{\beta_{d}} \times W(d)\right]
$$

where $W(d)=\prod_{|\mathbf{c}|=d} W_{\mathbf{c}}$ such that $W_{\mathbf{c}}$ is radical in $H_{\mathbf{c}}=N_{N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right)}\left(X_{\mathbf{c}}\right)$ < $\mathbf{S}\left(t_{\mathbf{c}}\right)$. As shown in the proof of (2E) (c) $W_{\mathbf{c}}=\prod_{\mathbf{w}}\left(Y_{\mathbf{w}}\right)^{m_{\mathbf{w}}} \times(Z)^{\gamma_{Z}}$, where the \mathbf{w} 's are sequences of positive integers such that $\left.\left.|\mathbf{w}|=|\mathbf{c}|=d, Z \in\left\{S_{d}\right\} A_{1}, S_{d}\right\} A_{2}\right\}$, $Y_{\mathbf{w}} \in\left\{A_{d}, D_{8}, Q_{\mathbf{w}}\right\}$ and $\gamma_{Z}=0,1$. Moreover, $X_{\mathbf{c}} \leq Y_{\mathbf{w}}$ and $(Z)^{\gamma_{Z}}=S_{d} \backslash A_{1}$ or $S_{d} \backslash A_{2}$ according as $m_{Q B\left(W_{\mathbf{c}}\right)}\left(S_{d}\right)=2$ or 4 . So $Q B\left(W_{\mathbf{c}}\right)=\prod_{\mathbf{w}}\left(Y_{\mathbf{w}}\right)^{m_{\mathbf{w}}} \times\left(S_{d}\right)^{\eta \gamma_{z}}$ and $\left(X_{\mathbf{c}}\right)^{t_{\mathbf{c}}} \leq Q B\left(W_{\mathbf{c}}\right)$, where $\eta=2$ or 4 according as $(Z)^{\gamma_{z}}=S_{d}\left\langle A_{1}\right.$ or $\left.S_{d}\right\rangle A_{2}$. In particular, $N_{H_{\mathbf{c}}}\left(W_{\mathbf{c}}\right)=N_{H_{\mathbf{c}}}\left(Q B\left(W_{\mathbf{c}}\right)\right)$, and $Q B\left(W_{\mathbf{c}}\right) /\left(A_{d}\right)^{t_{\mathbf{c}}}=\prod_{\mathbf{w}}\left(Y_{\mathbf{w}} / A_{d}\right)^{m_{\mathbf{w}}} \times$ $\left(S_{d} / A_{d}\right)^{\eta \gamma_{z}}$ is a radical subgroup of $\mathrm{GL}(d, 2)^{t_{\mathrm{c}}}$. By definition,

$$
\psi\left(P_{t+1}\right)=D(0) \times D(1) \times \prod_{d \geq 2}\left[\left(S_{d}\right)^{2 \alpha_{d}} \times\left(S_{d}\right)^{4 \beta_{d}} \times Q B(W(d))\right]
$$

so that $N_{N_{t}}\left(\psi\left(P_{t+1}\right)\right)=N_{t+1}$. By (3.6), $\psi\left(P_{t}\right) \unlhd \psi\left(P_{t+1}\right)$ and $\psi\left(P_{t+1}\right) / P$ is a radical subgroup of K. Thus $\psi\left(C_{t+1}\right) / P \in \mathcal{R}(K)$, and by induction, $\psi(C) / P \in \mathcal{R}(K)$, so that $\psi(C) \in \mathcal{S}$. Since $N_{t}=N\left(C_{t}\right)=N\left(\psi(C)_{t}\right)$ for $t \geq 1$, it follows that $P_{t}=O_{2}\left(N\left(\psi(C)_{t}\right)\right)$, so that C is determined uniquely by $\psi(C)$. Thus ψ is a bijection if and only if it is onto.

Let $C^{\prime}: 1<P_{1}^{\prime}<\ldots<P_{w}^{\prime}$ be a chian in \mathcal{S}, and let C be the chain of length w such that its t-th non-trivial subgroup P_{t} is $O_{2}\left(N\left(C_{t}^{\prime}\right)\right)$. Since $C_{\ell}^{\prime}=C(0)$ is radical, it follows that $C_{\ell}=C(0)$, and so $\psi\left(C_{t}\right)=C_{t}^{\prime}$ for $0 \leq t \leq \ell$. Suppose $\psi\left(C_{t}\right)=C_{t}^{\prime}$ and $C_{t} \in \mathcal{Q R}^{\prime}(C(0), \lambda)$ for some $\ell \leq t \leq w$. Then $N_{t}=N\left(C_{t}\right)=N\left(C_{t}^{\prime}\right)$ is given by (3.7). Since C_{t} is a radical chain and $P_{t}=O_{2}\left(N_{t}\right)$, it follows that $P_{t}=D$ is given by (3.5) and $P_{t}^{\prime}=\psi(D)$ is given by (3.6). Since $P_{t}^{\prime} \unlhd P_{t+1}^{\prime} \leq N_{t}$ and P_{t+1}^{\prime} / P is radical in K, it follows that

$$
P_{t+1}^{\prime}=D(0) \times D(1) \times \prod_{d \geq 2}\left[\left(S_{d}\right)^{2 \alpha_{d}} \times\left(S_{d}\right)^{4 \beta_{d}} \times T(d)\right]
$$

such that $T(d)=\prod_{|\mathbf{c}|=d} T_{\mathbf{c}}$, where $T_{\mathbf{c}} /\left(A_{d}\right)^{t_{\mathbf{c}}}$ is a radical subgroup of GL $(d, 2)^{t_{\mathbf{c}}}$.
$\operatorname{By}(2 \mathrm{~A})(\mathrm{b}), T_{\mathbf{c}}=\prod_{\mathbf{w}}\left(Y_{\mathbf{w}}\right)^{m_{\mathbf{w}}}$, where $|\mathbf{w}|=|\mathbf{c}|=d$ and $Y_{\mathbf{w}} \in\left\{A_{d}, D_{8}, Q_{\mathbf{w}}\right\}$. Thus

$$
N_{H_{\mathbf{c}}}\left(T_{\mathbf{c}}\right)=\prod_{\mathbf{w}} N_{N_{\mathbf{S}\left(2^{d}\right)}\left(A_{d}\right)}\left(Y_{\mathbf{w}}\right) \ell \mathbf{S}\left(m_{\mathbf{w}}\right) .
$$

Since $Y_{\mathbf{w}}$ is self-normalizing if and only if $Y_{\mathbf{w}}=S_{d}$, it follows that $O_{2}\left(N_{H_{\mathbf{c}}}\left(T_{\mathbf{c}}\right)\right)=$ $T_{\mathbf{c}}$ except when $m_{T_{\mathbf{c}}}\left(S_{d}\right) \in\{2,4\}$, in which case $O_{2}\left(N_{H_{\mathbf{c}}}\left(T_{\mathbf{c}}\right)\right)=\prod_{Y_{\mathbf{w}} \neq S_{d}}\left(Y_{\mathbf{w}}\right)^{m_{\mathbf{w}}} \times$ Z, where $Z=S_{d} \backslash A_{1}$ or $S_{d} \backslash A_{2}$ according as $m_{T_{\mathrm{c}}}\left(S_{d}\right)=2$ or 4. Thus $\psi\left(O_{2}\left(N_{H_{\mathbf{c}}}\left(T_{\mathbf{c}}\right)\right)\right)=T_{\mathbf{c}}$ and $\psi\left(P_{t+1}\right)=P_{t+1}^{\prime}$. By induction, $\psi(C)=C^{\prime}$ and ψ is onto. Thus ψ is a bijection.
(2) In order to complete the proof, it suffices to consider chains $C \in \mathcal{Q R}^{\prime}(P, \lambda)$ such that

$$
\begin{equation*}
P=\left(A_{0}\right)^{m_{0}} \times\left(D_{8}\right)^{\alpha} \times\left(A_{1} \backslash A_{2}\right)^{\beta} \times\left(A_{1}\right)^{m_{1}} \tag{3.8}
\end{equation*}
$$

where α, β, m_{0} and m_{1} are non-negative integers. It follows by (3B) and (3C) that P is the final subgroup for each chain $C \in \mathcal{Q R}^{\prime}(P, \lambda)$. Let $\mathcal{Q R}{ }^{*}(G)=\cup_{P, \lambda} \mathcal{Q R}^{\prime}(P, \lambda)$, where P runs over subgroups of form (3.8) and λ runs over partitions of m_{1}. It suffices to show that

$$
\begin{equation*}
\sum_{C \in \mathcal{Q} \mathcal{R}^{*}(G) / G}(-1)^{|C|} \mathrm{k}(N(C), B, u)=0 \tag{3.9}
\end{equation*}
$$

for all positive defect 2-blocks B and integers $u \geq 0$.
Now each subgroup of a chain $C \in \mathcal{Q R}^{*}(G)$ is of the form (3.8). Let $\phi(P)=$ $\left(A_{0}\right)^{m_{0}} \times\left(A_{1}\right)^{2 \alpha} \times\left(A_{1}\right)^{4 \beta} \times\left(A_{1}\right)^{m_{1}}$ and let

$$
\phi(C): 1<\phi\left(P_{1}\right)<\phi\left(P_{2}\right)<\ldots<\phi\left(P_{w}\right)
$$

for chain $C \in \mathcal{Q R}^{*}(G)$ given by (2.3). In addition, let $\mathcal{S}(G)=\{\phi(C): C \in$ $\left.\mathcal{Q R}{ }^{*}(G)\right\}$. A proof similar to that of (1) above shows that ϕ is a bijection between $\mathcal{Q R}{ }^{*}(G)$ and $\mathcal{S}(G)$, and $N(C)=N(\phi(C))$.

The same proof as that of [6, Proposition (6.1)] shows that

$$
\sum_{C \in \mathcal{S}(G) / G}(-1)^{|C|} \mathrm{k}(N(C), B, u)=0
$$

which implies (3.9). This completes the proof.
Acknowledgment. The author would like to thank the referee for several useful suggestions.

References

[1] J.L. Alperin and P. Fong: Weights for symmetric and general linear groups, J. Algebra, 131 (1990), 2-22.
[2] J. An: 2-weights for general linear groups, J. Algebra, 149 (1992), 500-527.
[3] N. Burgoyne and C. Williamson: On a theorem of Borel and Tits for finite Chevalley groups, Arch. Math. 27 (1976), 489-491.
[4] E. Dade: Counting characters in blocks, I, Invent. Math. 109 (1992), 187-210.
[5] R. Ewert: Die Alperin-Vermutung für Kranzprodukte der Form $G w r S_{n}$, J. Algebra, 162 (1993), 225-258.
[6] J.B. Olsson and K. Uno: Dade's conjecture for symmetric groups, J. Algebra, 176 (1995), 534-560.

Department of Mathematics University of Auckland Auckland, New Zealand

