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1. Introduction

In this note we prove a Liouville type theorem for p-harmonic maps. Let (M, g ) ,

(N,h) be Riemannian manifolds, and letp > 2. By Nash's isometric embedding, we

may assume that N is a submanifold of a Euclidean space Rd. The Sobolev space

W^(M,N) is defined to be

Wloc(Mι N) = {u Ξ Wf£(M, Rd) u(x) G TV a.e. x G M} ,

where W^(M,Rd) denotes the Sobolev space of Revalued Lfoc-functions on M
whose derivative belong to L^oc. A p-harmonίc map u : M —> N is a weak solution

of the equation

(1.1) ΎΐΆce(V(\\du\\p-2du)) = 0,

i.e., u G W^(M,N) satisfies

(1.2) - / \\du\\p-2Vu Vφ+ ί \\du\\p-2A(u)(Vu: Vu) φ = 0
JM JM

for any ψ G C^(M,N), where A denotes the second fundamental form of N. A

p-harmonic map u is characterized as a critical point of the p-energy functional

p(u) = ί \\du
JM

(1.3) Ep(u) = \ ||du||"
JM

in Wio£(M)N), if the value of this functional is finite. When p φ 2, the degen-

erate ellipticity of the equation (1.1) gives only (partial) C1'"-regularity even for
minimizers of the functional (1.3), while in case p — 2, CliQ;-regularity implies

C°°-regularity. So we are concerned with p-harmonic maps which belong to the

C/oc-class, for general p.

Several studies are given for 2-harmonic maps or harmonic maps. (See Eells

and Lemaire [3], [4].) For these harmonic maps, there are Liouville type theorems,
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which states that a harmonic map u is constant under some conditions. A typical

one of such conditions is the boundedness of u, where we say that u is bounded if

its image is contained in a compact set. As a result with assumptions to images of

maps, a Liouville type property is known when the image is enveloped by a convex
function. (See Gordon [6] for p = 2, L. -F.Cheung and P.-F. Leung [1] for general

p > 2.) The finiteness of the energy is another typical condition; precisely speaking,

a harmonic map u is constant if E2(u) < oo, when M is complete and noncompact

with RICA/ > 0 and Sect AT < 0, where RΪCM denotes the Ricci curvature of M, and
Sect TV denotes the sectional curvature of TV. (See Schoen and Yau [8], Hildebrandt
[7].) In this note we extend this result for general p > 2.

Theorem 1. Let M be complete and noncompact. Assume RΪCM > 0 and
Sect/v < 0. Letu : M — > N is a p-harmonic map ofC\oc-class such that Ep(u) < oo.

Then u is a constant map.

In [9], Takeuchi proved Theorem 1, using Hildebrandt's argument [7], under

the condition E2p-2(u) < oc instead of Ep(u) < oo. The exponent 2p — 2, however,

is not compatible in our case, since 2p — 2 / p when p / 2. Our proof of Theorem

1 has two steps; the first step (Section 3) for Cfoc-maps and the second step (Section

4) in general case. The first step is based on a Bochner type formula (Section 2)

and a standard argument of cutoff functions, and the second step depends on the
approximation argument, which is used in [2] when M is an open set in a Euclidean

space.

Acknowledgement. The author would like to thank Professor Shigeo Kawai

for his kind comments to the Bochner type formula.

2. Bochner type formula

In this section we give the following Bochner type formula.

Lemma 1. Letu : M — >• TV be a map of Cfoc-class. Then the following equality
holds:

(a) \\du\\p~l Δ \\du\\p~l + (\\du\\p-2du, (dv<5v + δvdv)(\\du\\p-2du))

= 2(||V(||dti|r2dti)||2--||V||dti|r1 | |2)

), du(ej))du(βj),
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hence

(b) \\du\\ Δ \\du\\p~l + (du, (dvδv + δvdv)(\\du\\p-2du))

where {ej}^=1 ft α# orthonormal base of the tangent space of M, and dv [resp.
<5V] denotes the derivation with respect to V [resp. the L2-adjoίnt operator 0/dv].

Therefore, when Ric^ > 0 and Sector < 0, w^ have

(c) ||du|| Δ H^f-1 + (du, (dvδv + «vdv)(||dw||p-2dw)> > 0.

Proof of Lemma 1. Using the relation between the rough Laplacian Δ and

the Hodge-de Rham Laplacian dv<5v + <5vdv, we have

(2.4) 1 Δ ||H|2*>-2 = \ Δ II ||dti|r2Ai||2

«vdv)(||dti||p-2dιx)>

where

(RiemN(du(ei),du(ej))du(ej),du(ei)).

(cf. Eells and Lemaire [3, p.8, (2.20)] for p = 2; Note that for any harmonic map

(p - 2), dv(du) = ^v(d^) = 0.) On the other hand, we see

(2.5) Δ||du||2P-2 = Δ(||dti|r1)2

= \\du\\p~l Δ Hduf-1 +

Then from (2.4) and (2.5), we have (a). From (a), we have
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(2.6) \\du\\p~l Δ l ldull"- 1 + (\\du\\p~2du,

since

HVIIdttir 1 ! ! - ||V|| ||d«|r2d«|| II < ||V(||d«|r2dtO||.

On any point such that du — 0, the inequality (b) holds trivially. On the other points,

we divide the both sides of (2.6) by ||du||p~2, and then we have the inequality (b).

D

3. Proof of Theorem 1 for Cfoc-maps

Throughout this paper, all positive constants CΊ, C2, . . . depend only on p, M,

TV if there is no special mention. Since u is a p-harmonic map,

δv(\\du\\p-2du) = 0.

Then by Lemma 1 (c), we have

(3.7) \\du\\ Δ \\du\\P-1 + (du,δ*d?(\\du\\p-2du)) > 0.

since R!CM > 0, Sector < 0. Take any point x G M. Let 77 be a cutoff function
satisfying that

{ = 1 on Bp(x)

6 [0,1] on B<2p(x)-Bp(x]

-0 on M-B2p(x)

and that

(3-9) HVr ll2 < ̂ .

Then from (3.7), we get

(3.10) / \\du\\η2 Δ Hdull"-1 + / (η2du,δ*d?(\\du\\p-2du)) > 0.
JM JM
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We have

(3.11) / \\du\\η2Δ \\du\r1

JM

= -ί V(\\du\\η2).V
JM

= -(p -I) \\du\Γ2η2\\V\\du\\ f - 2(p - 1) \\du\Γ2ηV\\du\\ - Vr?
JM JM

V
P M

P JM

for any ε > 0. We see

P M

M M

(3.12) / (η2du,δvdv (\\du\\p-2 du)}= f (dv(η2du),dv (\\du\\p-2 du)}.
JM JM

Since

we have

(3.13)

\\d*(φdu)\\<C3\\Vφ\\ \\du\\,

= C577||V7,||||d«f-1||V||dtt|

From (3.12) and (3.13), we get

(3.14) / (η2du,δvdv(\\du\\p-2du))
JM

<εί |
JM

— ί Hdu
ε JM

Then from (3.10), (3.11) and (3.14),

Pzi) _2e) f | |V||duf/a | |V <
P J JM M
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p—l
Let ε = — τς~ , and then we obtain

p2

(3.15) / ||V||du||*/2 | |2 < C9 ί ||^|Π|V77||
2 < ̂  / \\du\\r.

JBP(X] JM P JM

Let p go to infinity, and then we see that V||ώ||p/2 = 0, i.e., \\du\\ is constant on

M. Note that the volume of M is infinite, since RicM > 0. Then by the condition

Ep(u) < oo, we conclude that the constant \\du\\ is zero. Therefore u is a constant

map. D

4. Proof of Theorem 1

In this section we complete our proof of Theorem 1 using an approximation. We

use the arguments in Duzaar and Fuchs [2]. We may assume p > 2, since Theorem
1 holds for p — 2. As mentioned in the introduction, we may assume that the target

manifold TV is a submanifold of a Euclidean space Rd, and that u is a map into Rd.
Then we know

Proposition 1. For any p-harmonίc map u of C]oc-class, \\du\\p^~ldu belong

to W^(TM,Rd).

When M is a domain of a Euclidean space, Proposition 1 is Lemma 2.2 in

Duzaar and Fuchs [2]. In the above general situation, Proposition 1 can be proved

with slight modifications.

Using Proposition 1, we will complete our proof of Theorem 1. Let M+ :=

{x e M; ||chz||(x) φ 0}. By Proposition 1, we see that du is of VP^-class on M+,
since

Vdu =

hence

Then we can find an approximating sequence {uk}j^ι C C^C(M, Rd) such that as
k goes to infinity,

(a) uk converges to u in C/OC(M),

(b) Uk converges to u weakly in W^?(M), and
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(c) Uk converges to u weakly in VF/

2

9'
2(M+).

By Lemma 1, we have

\\duk\\A\\duk\\p-1

+ 2/
 P_ 1}(duk,(dv^v + δvdv)(\\duk\\p-2duk)) > 0,

since RΪCM > 0, SectAr < 0. Let η be a cutoff function on M satisfying (3.8) and
(3.9), and let

u x Ί on M+

on M-M+.

Then <pe e I/o'2(M+), where Lj'2(M+) is the completion of Cg°(M+), and φε -* 1,

V(^ε —> 0 in Lj'2(M+). Using the function y?ery2 instead of η2, we apply the estimates

(3.11), (3.14) for smooth maps uk. Then we have, instead of (3.15),

(4.16)
M+ JM+

% / \\duk\\rφε + C12 ί (φε
P JM+ JM+

\\Vφε + Cl2 ί δv(
JM+P JM+

Since uk converge to u in C/OC(M+) Π W/

2'2(M+),

δv(φεη
2duk)δv(\\duk\\p-2duk) -> / «v(^er72dM)«v(||dM||p-2du) - 0.

M+ JM+

as fc goes to infinity, where the last equality follows from the fact that u satisfies the
p-harmonic map equation δv (\\du\\p~2 du) — 0. Therefore, let k goes to infinity in
(4.16), and then we have

M+ JM+

C,,, Γ
p0jT ί \\du\\*φe.

P JM-t.

Let ε go to zero, and then we get

(4.17)
M+ P JM+

/ l|d«ll
JM
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for any η e CQ(M) satisfing (3.8) and (3.9). Here we have used the facts that Vφε

goes to a measure-valued tensor μ whose support is in dM+, and that \\du\\ vanishes

there. Let p go to infinity in (4.17), and then we have du — 0 on M+, i.e., u is
constant on M+ Hence u is a constant map on M. D

5. A remark.

When M is compact, we have the following result, which is an extension of

facts in harmonic map case (p = 2). (See Eells and Sampson [5].)

Theorem 2. Let M be compact (ΘM = 0). Let u : M —> N be a p-harmonic

map of Cl-class.

(a) Assume RICM > 0 and Sectyv < 0. Then u is totally geodesic.
(b) In addition to (a), ifRicM > 0 somewhere, then u is a constant map.
(c) In addition to (a), if SectN < 0, then u is a constant map, or u maps onto a

closed geodesic in N.

Proof. We take an approximating sequence {uk}^=l such as that in Section

4. Take the function φε in Section 4. From Lemma 1 (b),

\\duk\\φe Δ \\duk\\r-1 + / (φeduk, (dvδv + δvdv)(\\duk\Γ2duk)) > 0.
M+ JM+

Using integration by parts, we have

M4

r r
p-1

γε V | | < Λ U , f c | | V I I U / L b ^ H j | | l A U / f c | | V | | IΛIX, fe | |

M+

/.
= - I ^VHdttfcll VHdufell"- 1 - / ||dufe||V||ώίfc

J M+ J M _|_

Λ (ft 1 j Γ Γ

P2 JM+

 k ε JM+

Then from the above inequality, we get

\\V\\duk\\*'2\\2φe
PΔ JM.

-4+

JM+

= ί (δv(φεdUk),δv(\\duk\\v-2duk}}
J M-L.
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\\Vφε\\\\duk\\\\dv(\\duk\\?-2duk)\\.
\4+

We have used the fact \\dv(φεduk}\\ < C3 \\Vφe\\ \\duk\\. Let /c ̂  oo and let ε -> 0,

then we have

'-^ f | |V||duΓ/2 | |2<0.
P JM+

4(p-_

IM+

Therefore \\du\\ is constant on M+, hence on M, since \\du\\ is continuous. From

Lemma 1 (a), we have

\\V(\\duk\\P-2duk)\\2φε+ ί \\duk\\*/2V\\duk\\*'*'Vφe

+ JM+M

M+

> 0.

We have applied the integration by parts and used the assumption RΪCM > 0 and

Sect AT < 0 and the fact that

||V(||du fc |r
2du fc)||2 > ||V|| ||d

Let k — > oo, and let ε — > 0, then we get

0> 2
M +

on M+, since ||du|| is constant. Hence Vdu = 0, i.e., ̂  is totally geodesic on M+.

Since \\du\\ is constant, w is a harmonic map; u is totally geodesic on M. We have

(a).
We know, by the proof of (a),

\\du\\ = Const. =: C0 on M

Vdu = 0 on M+

Then from Lemma 1 (a) again, we have

771

(5.18) 0 < CQp~4^/(RicM(du(ej)),du(ej))

= C0

P~

< 0
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on M+. If RicM > 0 somewhere, the inequality (5.18) implies C0 = 0, or du = 0
at this point. Then C0 = 0, and we have (b). If Sect N < 0 at a point x* e M, then
C0 = 0 or dim(/mα^e(d^(x*))) < 1. If dim(Image(du(x*))) = 0, then | |dw||(x) =
Co = ||du||(x*) = 0 for any x e M, i.e. w is a constant map. If dim(/raα<7e(dw(x))) =
1, we have (c) since u is totally geodesic. D
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