ON FINITE POINT TRANSITIVE AFFINE PLANES WITH TWO ORBITS ON I

Chihiro SUETAKE

(Received June 2, 1989)

1. Introduction

Kallaher [3] proposed the following conjecture.
Conjecture. Let π be a finite affine plane of order n with a collineation group G which is transitive on the affine points of π. If G has two orbits on the line at infinity, then one of the following statements holds:
(i) The plane π is a translation plane, and the group G contains the group of translations of π.
(ii) The plane π is a dual translation plane, and the group G contains the group of dual translations of π.

The purpose of this paper is to study this conjecture. When G_{A} has two orbits of length 1 and n on the line at infinity, where A is an affine point of π, some work has been done on this conjecture. (See Johnson and Kallaher [2].)

Our notation is largely standard and taken from [3]. Let $\mathscr{P}=\pi \cup \ell_{\infty}$ be the projective extention of an affine plane π, and G a collineation group of \mathscr{P}. If P is a point of \mathscr{P} and ℓ is a line of \mathscr{P}, then $G(P, \ell)$ is the subgroup of G consisting of all perspectivities in G with center P and axis ℓ. If m is a line of \mathscr{P}, then $G(m, m)$ is the subgroup consisting of all elations in G with axis m.

In § 2 we prove the following theorem.
Theorem 1. Let π be a finite affine plane of order n with a collineation group G and let Δ be a subset of l_{∞} such that $|\Delta|=t \geq 2,(n, t)=1$ and $(n, t-1)=1$. If there is an integer $k_{1}>1$ such that $\left|G\left(P, \ell_{\infty}\right)\right|=k_{1}$ for all $P \in \Delta$ and there is an integer $k_{2}>1$ sucht that $\left|G\left(Q, l_{\infty}\right)\right|=k_{2}$ for all $Q \in l_{\infty}-\Delta$, then π is a translation plane, and G contains the group T of translations of π.

In $\S 3$ and $\S 4$, we prove the following theorem by using Theorem 1.
Theorem 2. Let π be a finite affine plane of order n with a collineation group G which is transitive on the affine points of π. If G has two orbits of length 2 and $n-1$ on ℓ_{∞}, then one of the following statements holds:
(i) The plane π is a translation plane, and the group G contains the group T of translations of π.
(ii) $\left|G\left(\ell_{\infty}, \ell_{\infty}\right)\right|=n=2^{m}$ for some $m \geq 1, \quad G\left(P_{1}, \ell_{\infty}\right)=G\left(P_{2}, \ell_{\infty}\right)=1$ and $\left|G\left(P, l_{\infty}\right)\right|=2$ for all $P \in l_{\infty}-\left\{P_{1}, P_{2}\right\}$.

The planes which are not Andre planes, satisfying the hypothesis of Theorem 2, include a class of translation planes of order q^{3}, where q is an odd prime power. (See Suetake [4] and Hiramine [1].)

2. The proof of Theorem 1

In this section, we prove Theorem 1.
Let π be a finite affine plane of order n with a collineation group G, satisfying the hypothesis of Theorem 1. By Theorem 4.5 of [3], $G\left(\ell_{\infty}, l_{\infty}\right)$ is an elementary abelian r-group for some prime r dividing n. Hence there exist positive integers m and s such that $k_{1}=r^{m}$ and $k_{2}=r^{s}$. Let P be a point of π such that $P \in \Delta$. Let ℓ be an affine line of π such that $\ell \ni P$. Since $G\left(P, \ell_{\infty}\right)$ is semiregular on $\ell-\{P\}, r^{m} \mid n$. Similarly, $r^{s} \mid n$. By definition, $G\left(l_{\infty}, l_{\infty}\right)=\underset{P \in l_{\infty}}{\cup} G\left(P, l_{\infty}\right)$ and $G\left(P, \ell_{\infty}\right) \cap G\left(Q, \ell_{\infty}\right)=1$ for distinct points $P, Q \in l_{\infty}$. Thus

$$
\begin{aligned}
\left|G\left(l_{\infty}, l_{\infty}\right)\right| & =1+\sum_{P \in \Delta}\left(\left|G\left(P, l_{\infty}\right)\right|-1\right)+\sum_{Q \in l_{\infty}-\Delta}\left(\left|G\left(Q, l_{\infty}\right)\right|-1\right) \\
& =1+t\left(r^{m}-1\right)+(n+1-t)\left(r^{s}-1\right) .
\end{aligned}
$$

Since $\cdot r^{m}| | G\left(\ell_{\infty}, \ell_{\infty}\right) \mid$, it follows $0 \equiv 1-t+(1-t) r^{s}-1+t\left(\bmod r^{m}\right)$. Therefore $(t-1) r^{s} \equiv 0\left(\bmod r^{m}\right)$. Since $(t-1, r)=1$, this imples $r^{m} \mid r^{s}$. Thus $m \leq s$. On the other hand, since $r^{s}| | G\left(\ell_{\infty}, \ell_{\infty}\right) \mid$, it follows $0 \equiv 1+t\left(r^{m}-1\right)-1+t\left(\bmod r^{s}\right)$. Therefore $t r^{m} \equiv 0\left(\bmod r^{s}\right)$. Since $(t, r)=1$, this imples $r^{s} \mid r^{m}$. Thus $m \geq s$. Therefore $m=s$ and $k_{1}=k_{2}$. By a result of Gleason (See Theorem 5.2 of [3].), the theorem holds.

3. The proof of Theorem 2 when \mathbf{n} is odd

In this section, we prove Theorem 2 when n is odd.
Let π be a finite affine plane of odd order n with a collineation group G which is transitive on the affine points of π, satisfying the hypothesis of Theorem 2. Then G has an orbit $\Delta=\left\{P_{1}, P_{2}\right\}$ of length 2 on ℓ_{∞}. Let A be an affine point of π. Let Φ be the set of the affine points of π, and let $\Omega=\Phi \cup \ell_{\infty}$. Then G induces a permutation group on $\Omega . \Phi, \Delta$ and $\ell_{\infty}-\Delta$ are orbits of G. Since $(|\Phi|,|\Delta|)=\left(n^{2}, 2\right)=1$ and $\left(|\Phi|,\left|\ell_{\infty}-\Delta\right|\right)=\left(n^{2}, n-1\right)=1$, by Theorem 3.3 of [3] Δ and $\ell_{\infty}-\Delta$ are orbits of G_{A}.

Lemma 3.1. $\quad G_{A}$ includes an involutory homology of π.

Proof. G_{A} induces a permutation group on $\ell_{\infty}-\left\{P_{1}, P_{2}\right\}$. Since n is odd, $\left|\ell_{\infty}-\left\{P_{1}, P_{2}\right\}\right|=n-1$ is even. Let S be a Sylow 2 -subgroup of G_{A}. As G_{A} is transitive on $\ell_{\infty}-\left\{P_{1}, P_{2}\right\}, n-1| | G_{A} \mid$. Hence $S \neq 1$. There exists an involution σ in the center of S. Suppose that σ is a Baer involution. If $P_{1} \sigma=P_{1}$, then $P_{2} \sigma=P_{2}$ and so $\left|\left\{P \in l_{\infty}-\Delta \mid \cdot P \sigma=P\right\}\right|=\sqrt{n}-1$. This contradicts a result of Lüneburg. (See Corollary 3.6.1 of [3].) If $P_{1} \sigma \neq P_{1}$, then $P_{2} \sigma \neq P_{2}$ and so $\left|\left\{P \in \ell_{\infty}-\Delta \mid P \sigma=P\right\}\right|=\sqrt{n}+1$. This is again a contradiction by Corollary 3.6.1 of [3]. Therefore σ is an involutory homology.

Lemma 3.2. Let σ be an involutory homology of π such that $\sigma \in G_{A}$. If $P_{1} \sigma=P_{1}$, then π is a translation plane, and G contains the group T of translations of π.

Proof. Since $P_{1} \sigma=P_{1}, P_{2} \sigma=P_{2}$. Assume that ℓ_{∞} is the axis of σ. Then $\sigma \in G\left(A, \ell_{\infty}\right)$. By a result of André (See Corollary 10.1.3 of [3].), the lemma holds. Assume that l_{∞} is not the axis of σ. We a may assume that $A P_{1}$ is the axis of σ. Then $\sigma \in G\left(P_{2}, A P_{1}\right)$. There exists $\tau \in G_{A}$ such that $P_{1} \tau=P_{2}$. Clearly $P_{2} \tau=P_{1}$. Since $P_{2} \tau=P_{1}$ and $\left(A P_{1}\right) \tau=A P_{2}, \tau^{-1} \sigma \tau \in G\left(P_{1}, A P_{2}\right)$. Therefore $\sigma\left(\tau^{-1} \sigma \tau\right) \in G\left(A, \ell_{\infty}\right)-\{1\}$, by a result of Ostrom. (See Lemma 4.13 of [3].) Thus the lemma holds by Corollary 10.1.3 of [3].

Lemma 3.3. If G_{A} includes an involutory homology of π which does not fix P_{1}, then the following statements hold:
(i) If $P \in l_{\infty}-\left\{P_{1}, P_{2}\right\}$, then there exist $Q \in \ell_{\infty}-\left\{P_{1}, P_{2}, P\right\}$ and $\sigma \in$ $G(Q, A P)$ such that $|\sigma|=2$.
(ii) If $Q \in \ell_{\infty}-\left\{P_{1}, P_{2}\right\}$, then there exist $P \in \ell_{\infty}-\left\{P_{1}, P_{2}, Q\right\}$ and $\tau \in$ $G(Q, A P)$ such that $|\tau|=2$.

Proof. By assumption, there exists an involutory homology σ of π such that $\sigma \in G_{A}$ and $P_{1} \sigma \neq P_{1}$. Clearly $P_{2} \sigma \neq P_{2}$. There exists $P_{0} \in l_{\infty}-\left\{P_{1}, P_{2}\right\}$ such that $A P_{0}$ is the axis of σ. Let Q_{0} be the center of σ. Then $Q_{0} \in l_{\infty}-$ $\left\{P_{1}, P_{2}, P_{0}\right\}$. Let $P \in l_{\infty}-\left\{P_{1}, P_{2}\right\}$. Then there exists $\varphi \in G_{A}$ such that $P=$ $P_{0} \varphi$. Set $Q=Q_{0} \varphi$. Clearly $Q \notin\left\{P_{1}, P_{2}\right\}$. Since $\sigma \in G\left(Q_{0}, A P_{0}\right)$ and $\left(A P_{0}\right) \varphi=$ $A P, \varphi^{-1} \sigma \varphi \in G(Q, A P)$. This yields the statement (i). Similarly, we have the statement (ii).

Lemma 3.4. If G_{A} includes an involutory homology of π which does not fix P_{1}, then one of the following statements holds:
(i) The plane π is a translation plane and G contains the group T of translations of π.
(ii) If $P \in l_{\infty}-\left\{P_{1}, P_{2}\right\}$, then $G(P, A P) \neq 1$.

Proof. Let $P \in l_{\infty}-\left\{P_{1}, P_{2}\right\}$. By Lemma 3.3 (i), there exist $Q \in l_{\infty}-$ $\left\{P_{1}, P_{2}, P\right\}$ and $\sigma \in G(Q, A P)$ such that $|\sigma|=2$. On the other hand, by Lemma 3.3 (ii) there exist $R \in l_{\infty}-\left\{P_{1}, P_{2}, Q\right\}$ and $\tau \in G(R, A Q)$ such that $|\sigma|=2$. Assume that $R=P$. Then $\sigma \in G(Q, A P)$ and $\tau \in G(P, A Q)$. By Lemma 4.13 of [3], $\sigma \tau \in G\left(A, \ell_{\infty}\right)-\{1\}$. Thus the statement (i) holds by Corollary 10.1.3 of [3]. Assume that $R \neq P$. Then since $\tau \in G(R, A Q)$ and $(A Q) \sigma=A Q, \sigma^{-1} \tau \sigma \in$ $G(R \sigma, A Q)$. As $R \neq R \sigma, \tau\left(\sigma^{-1} \tau \sigma\right) \in G(Q, A Q)-\{1\}$ by a result of Baer. (See Lemma 4.12 of [3].) Thus $G(Q, A Q) \neq 1$. On the other hand, since G_{A} acts transitively on $\ell_{\infty}-\left\{P_{1}, P_{2}\right\}$, the statement (ii) holds.

Lemma 3.5. If $G(P, A P) \neq 1$ for all $P \in \ell_{\infty}-\left\{P_{1}, P_{2}\right\}$, then there is an integer $k>1$ such that $\left|G\left(P, \ell_{\infty}\right)\right|=k$ for all $P \in l_{\infty}-\left\{P_{1}, P_{2}\right\}$.

Proof. Let $P \in \ell_{\infty}-\left\{P_{1}, P_{2}\right\}$. Let ℓ be an affine line of π such that $l \ni P$. By a result of Ostrom and Wagner (See Theorem 4.3 of [3].), there exists $\tau \in G_{P}$ such that $(A P) \tau=\ell$. Since $G(P, A P) \neq 1, \tau^{-1} G(P, A P) \tau=G(P \tau,(A P) \tau)=$ $G(P, \ell) \neq 1$. Therefore by the dual of Corollary 4.6 .1 of [3], $G\left(P, \ell_{\infty}\right) \neq 1$. On the other hand, since G_{A} acts transitively on $\ell_{\infty}-\left\{P_{1}, P_{2}\right\}$, the lemma holds.

Lemma 3.6. If $G(P, A P) \neq 1$ for all $P \in \ell_{\infty}-\left\{P_{1}, P_{2}\right\}$, then $\left|G\left(P_{1}, \ell_{\infty}\right)\right|=$ $\left|G\left(P_{2}, t_{\infty}\right)\right|>1$.

Proof. Since the order n of π is odd, by Lemma $3.5\left|G\left(P, \ell_{\infty}\right)\right| \geq 3$ for all $P \in \ell_{\infty}-\left\{P_{1}, P_{2}\right\}$. Therefore

$$
\begin{aligned}
& \left|\sum_{P \in \ell_{\infty}-\left\{P_{1}, P_{2}\right\}} G\left(P, \ell_{\infty}\right)\right| \\
& =1+\sum_{P \in \ell_{\infty}-\left\{P_{1}, P_{2}\right\}}\left(\left|G\left(P, \ell_{\infty}\right)\right|-1\right) \\
& \geq 1+2(n-1) \\
& =2 n-1 \\
& >n .
\end{aligned}
$$

Thus $\left|G\left(\ell_{\infty}, \ell_{\infty}\right)\right|>n$. Hence by a result of Ostrom (See Theorem 4.6 of [3].), $G\left(P, \ell_{\infty}\right) \neq 1$ for all $P \in \ell_{\infty}$. In particular $G\left(P_{1}, \ell_{\infty}\right) \neq 1$. There exists $\tau \in G_{A}$ such that $P_{2} \tau=P_{1}$. Thus $\left|G\left(P_{2}, \ell_{\infty}\right)\right|=\left|\tau^{-1} G\left(P_{2}, \ell_{\infty}\right) \tau\right|=\left|G\left(P_{1}, \ell_{\infty}\right)\right|>1$. Hence the lemma holds.

Proof of Theorem 2 when n is odd: By Lemmas 3.2, 3.4, 3.5, 3.6 and Theorem 1, the theorem holds.

4. The proof of Theorem 2 when n is even

In this section, we prove Theorem 2 when n is even.
Let π be a finite affine plane of even order n with a collineation group G
which is transitive on the affine points of π satisfying the hypothesis of Theorem 2. Then G has an orbit $\Delta=\left\{P_{1}, P_{2}\right\}$ of length 2 on ℓ_{∞}.

Lemma 4.1. G includes a translation of order 2 of π.
Proof. Since $n^{2}| | G|, 2||G|$. Let S be a Sylow 2 -subgroup of G. Then there exists an involution σ in the center of S. By Corollary 3.6.1 of [3] the involution σ is neither a Baer involution, nor an affine elation. It follows that σ is a translation of π.

Lemma 4.2. $G\left(\ell_{\infty}, \ell_{\infty}\right)$ is an elementary abelian 2-group and $\left|G\left(\ell_{\infty}, \ell_{\infty}\right)\right| \geq 2$.
Proof. If $n=2$, then the lemma holds. Let $n \neq 2$. Considering the action of G on l_{∞}, by Lemma 4.1 there exist distinct points $Q_{1}, Q_{2} \in l_{\infty}$ such that $G\left(Q_{1}, l_{\infty}\right) \neq 1$ and $G\left(Q_{2}, l_{\infty}\right) \neq 1$. By Theorem 4.5 of [3], the lemma holds.

Lemma 4.3. If $G\left(P_{1}, l_{\infty}\right) \neq 1$, then the plane π is a translation plane, and the group G contains the group T of translations of π.

Proof. There exists an involution σ_{i} such that $\sigma_{i} \in G\left(P_{i}, \ell_{\infty}\right)$ for $i \in\{1,2\}$. Then $\sigma_{1} \sigma_{2} \in G\left(\ell_{\infty}, \ell_{\infty}\right)$ and $\left|\sigma_{1} \sigma_{2}\right|=2$. Let Q be the center of $\sigma_{1} \sigma_{2}$. Then $Q \in \ell_{\infty}-\left\{P_{1}, P_{2}\right\}$. Since G acts transitively on $\ell_{\infty}-\left\{P_{1}, P_{2}\right\}$, there exists $r \geq 1$ such that $\left|G\left(P, \ell_{\infty}\right)\right|=2^{r}$ for all $P \in l_{\infty}-\left\{P_{1}, P_{2}\right\}$. There exists $s \geq 1$ such that $\left|G\left(P_{1}, \ell_{\infty}\right)\right|=\left|G\left(P_{2}, \ell_{\infty}\right)\right|=2^{s}$. Let $\left|G\left(\ell_{\infty}, \ell_{\infty}\right)\right|=2^{t}$. Then $t \geq r+s$. Since

$$
\begin{align*}
& \left|G\left(l_{\infty}, l_{\infty}\right)\right|=1+\sum_{P \in l_{\infty}-\left\{P_{1}, P_{2}\right\}}\left(\left|G\left(P, l_{\infty}\right)\right|-1\right)+\sum_{Q \in\left\{P_{1}, P_{2}\right\}}\left(\left|G\left(Q, l_{\infty}\right)\right|-1\right), \\
& 2^{t}=1+(n-1)\left(2^{r}-1\right)+2\left(2^{s}-1\right) . \tag{*}
\end{align*}
$$

By the same argument as in the proof of Theorem $1,2^{r} \equiv 0\left(\bmod 2^{s}\right)$ and $2^{s+1} \equiv 0$ $\left(\bmod 2^{r}\right)$. Thus $s \leq r \leq s+1$.

Suppose that $r=s+1$. From $(*), 2^{t}=1+(n-1)\left(2^{s+1}-1\right)+2\left(2^{s}-1\right)$ follows. Therefore $n=2^{t}\left(2^{s+1}-1\right)^{-1}$. As n is an integer, this is a contradiction. Hence $r=s$. By Theorem 5.2 of [3], the lemma holds.

Lemma 4.4. If $G\left(P_{1}, \ell_{\infty}\right)=1$, then $\left|G\left(\ell_{\infty}, \ell_{\infty}\right)\right|=n=2^{m}$ for some $m \geq 1$, $G\left(P_{1}, \ell_{\infty}\right)=1$ and $\left|G\left(P, \ell_{\infty}\right)\right|=2$ for all $P \in \ell_{\infty}-\left\{P_{1}, P_{2}\right\}$.

Proof. By assumption, $G\left(P_{2}, \ell_{\infty}\right)=1$ follows. If $P \in l_{\infty}-\left\{P_{1}, P_{2}\right\}$, then $G\left(P, \ell_{\infty}\right) \neq 1$. Therefore there exists an integer $r \geq 1$ such that $\left|G\left(Q, \ell_{\infty}\right)\right|=2^{r}$ for all $Q \in l_{\infty}-\left\{P_{1}, P_{2}\right\}$. Suppose that $r \geq 2$. Then

$$
\begin{aligned}
& \left|G\left(\ell_{\infty}, \ell_{\infty}\right)\right| \\
& =\sum_{Q \in l_{\infty}-\left\{P_{1}, P_{2}\right\}}\left(\left|G\left(Q, \ell_{\infty}\right)\right|-1\right)+1 \\
& =\left(2^{r}-1\right)(n-1)+1
\end{aligned}
$$

$$
\begin{aligned}
& \geq 3(n-1)+1 \\
& =3 n-2 \\
& >n
\end{aligned}
$$

By Theorem 4.6 of [3], it follows that $G\left(Q, l_{\infty}\right) \neq 1$ for all $Q \in l_{\infty}$. In particular $G\left(P_{1}, \ell_{\infty}\right) \neq 1$, a contradiction. Hence $r=1$. Therefore $\left|G\left(\ell_{\infty}, \ell_{\infty}\right)\right|=(2-1)$. $(n-1)+1=n$. Therefore there exists an integer $m \geq 1$ such that $n=2^{m}$. Thus the lemma holds.

Proof of Theorem 2 when n is even: By Lemmas 4.3 and 4.4, the theorem holds.

Acknowledgement

The author would like to thank Y. Hiramine for his valuable suggestions.

References

[1] Y. Hiramine: On translation planes of order q^{3} with an orbit of length $q^{3}-1$ on ℓ_{∞}, Osaka J. Math. 23 (1986), 563-575.
[2] N.L. Johnson and M.J. Kallaher: Transitive collineation groups on affine planes, Math. Z. 135 (1974), 149-164.
[3] M.J. Kallaher: Affine planes with transitive collineation group, North Holland, New York-Amesterdam-Oxford, 1982.
[4] C. Suetake: A new class of translation planes of order q^{3}, Osaka J. Math. 22 (1985), 773-786.

