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SOME GROUPS OF TYPE E7

T. A. SPRINGER

Dedicated to George Lusztig

Abstract. An algebraic group of type E7 over an algebraically closed field
has an irreducible representation in a vector space of dimension 56 and is, in
fact, the identity component of the automorphism group of a quartic form on
the space. This paper describes the construction of the quartic form if the
characteristic is 6= 2, 3, taking into account a field of definition F . Certain
F -forms of E7 appear in the automorphism groups of quartic forms over F ,
as well as forms of E6. Many of the results of the paper are known, but are
perhaps not easily accessible in the literature.

§1. Introduction

1.1. A simply connected algebraic group of type E7 over C has an

irreducible representation of dimension 56 and is, in fact, the identity com-

ponent of the isotropy group of a quartic form in 56 variables. These facts

are already contained in É. Cartan’s thesis of 1894 (see [Ca, pp. 273–274]).

One encounters the representation in other places: in the theory of

prehomogeneous vector spaces due to M. Sato (see [SK, (29), p. 147]) and

in the Dynkin-Kostant analysis of nilpotent elements of simple Lie algebras

(as a representation of a Levi group on a graded piece of a simple Lie algebra

of type E8, the ingredients being associated to a nilpotent element of type

A1, see [Car, p. 401, p. 405]).

The present paper is oriented towards the use of this particular repre-

sentation for obtaining information about groups of type E7 over arbitrary

ground fields. For groups of type E6 the irreducible representation of di-

mension 27 has been used for a similar purpose (see, for example, [SV]).

The algebraic machinery of [loc. cit.] can also be exploited to deal with E7

over fields of characteristic 6= 2, 3. Some ingredients can be found in the
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literature (for example in [F], [Br], [G1], [G2]). But as far as I know there

is no treatment of these matters in the context of the theory of algebraic

groups, also taking care of fields of definition. A large part of the present

paper is devoted to an exposition of relevant material (some of it very old).

Thus the paper is of a somewhat expository character. I hope it will be

useful in further studies of groups of type E7.

We follow Freudenthal’s construction [F, Section 4] of a 56-dimensional

quartic form over R. This requires some material about the cubic forms

in 27 variables whose isotropy group is of type E6. These forms appear

in Albert algebras (exceptional simple Jordan algebras). What we need is

mainly contained in [SV].

It is convenient to build in a duality into the discussion of the cubic

forms, which leads to the notion of an E6-structure (see 1.2). In 1.8 the

twisted version of a Hermitian E6-structure is introduced.

In Section 3, starting from an E6-structure, a quartic form is introduced

and it is shown that the identity component of its isotropy group is a simply

connected group of type E7 (see Cor. 2.6).

One then introduces a ternary product on the vector space underlying

the quartic form. It satisfies certain identities, viz. those of a “Freudenthal

triple system”. We call the triple systems occurring here E7-structures.

Section 4 contains some basic results about these. It does not exploit too

much the formalism of Freudenthal triple systems, but instead uses geomet-

ric arguments.

Section 5 discusses questions involving ground fields. For example, the

automorphism group of an E7-structure over the field F is a “strong” form

over F of the simply connected group of type E7 and any such form can

be so obtained (see Prop. 5.3). The isotropy group in G of a rational point

where the quartic form does not vanish is a (possibly outer) F -form of the

simply connected group of type E6 (see Prop. 5.5).

A further study of E7-structures and of the closely related Hermitian

E6-structures should be useful for understanding some forms of groups of

type E7 (respectively, some outer forms of groups of type E6). Section 6

contains some indications about what a further study might lead to.

I am grateful to the referee for many pertinent comments, which led to

improvements of the exposition.

1.2. Recollections

In the sequel k is an algebraically closed field of characteristic 6= 2, 3.
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Let A and B be vector spaces over k. Assume given a (non-degenerate)

pairing 〈 , 〉 between A and B.

Let f , g be cubic forms on A, respectively, B. We denote by f( , , )

the symmetric trilinear form on A with f(a, a, a) = f(a) (a ∈ A) and by

g( , , ) the analogous trilinear form on B.

We introduce symmetric bilinear product maps A×A → B, B×B → A,

denoted by (a1, a2) 7→ a1a2, (b1, b2) 7→ b1b2, by

(1) 3f(a, a1, a2) = 〈a, a1a2〉, 3g(b, b1, b2) = 〈b1b2, b〉.

The crucial conditions are

(2) (aa)(aa) = f(a)a, (bb)(bb) = g(b)b (a ∈ A, b ∈ B).

If, moreover,

(a) dimA = 27,

(b) the cubic forms f, g are irreducible,

we say that S = (A,B, 〈 , 〉, f, g) is an E6-structure (the name is explained

by Prop. 1.6).

Let F be subfield of k. We say that S is (defined) over F if A and

B have F -structures (in the sense of [Sp3, 11.1]) and if 〈 , 〉, f and g are

defined over F (relative to these F -structures).

Let S′ be another E6-structure over F . The notion of F -isomorphism

of S and S′ is clear. S ′ is equivalent to S if it is F -isomorphic to an E6-

structure of the form

S′′ = (A,B, γ〈 , 〉, αf, βg)

with α, β, γ ∈ F ∗. It is readily seen that for (2) to hold in S ′′ we must have

γ3 = αβ and that S ′′ is F -isomorphic to S if α, β ∈ (F ∗)3.

1.3. Example

Let A be an Albert algebra over F , see [SV, p. 118]. Take A = B =

k ⊗F A. On A we have a non-degenerate symmetric bilinear form, which

defines a pairing 〈 , 〉 between A and B. Let f = g be the cubic form on A

defined by the determinant form det of the Albert algebra and define the

products by (1). Then (2) holds, see [loc. cit., Lemma 5.2.1]. We obtain an

E6-structure S(A) over F .

It follows from the Theorem of [Sp1, p. 260] and [SV, 5.4.5, 5.4.6] that

any E6-structure over F is equivalent to such an S(A).
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1.4. The standard E6-structure

There is a particular case of the construction of 1.3 which goes back to

Freudenthal [F, Section 26].

Let M be the vector space of 3 × 3-matrices over k. Let d be the

determinant function on M . Put

A0 = M ⊕ M ⊕ M.

Define a symmetric bilinear form on A0 by

〈(a, b, c), (a′ , b′, c′)〉 = tr(aa′ + bb′ + cc′)

and a cubic form f0 by

f0((a, b, c)) = d(a) + d(b) + d(c) − tr(abc).

Then S0 = (A0, A0, 〈 , 〉, f0, f0) is the standard E6-structure (which, in fact,

comes from an Albert algebra structure on A0, as in 1.3). A proof of (2)

for this case is given in [Sp2, 5.12].

S0 is defined over any subfield F of k. In fact, it is a specialization of

a “universal” E6-structure.

Let R = Z[ 16 ]. Let A0 be the direct sum of three copies of the 3 × 3-

matrices over R, provided with a symmetric bilinear form and a cubic form

defined as above. We define in an obvious manner the notion of E6-structure

S0 over R, such that A0 is obtained by specialization: A0 = k ⊗R A0.

1.5. Some algebraic groups

Let S, as before, be an E6-structure over F . Let H (the automorphism

group of S) be the subgroup of of GL(A)×GL(B) formed by the pairs (t, t̃)

such that

t(a)t(a) = t̃(aa), t̃(b)t̃(b) = t(bb),(3)

〈t(a), t̃(b)〉 = 〈a, b〉 (a ∈ A, b ∈ B).(4)

Then t (t̃) leaves invariant f (respectively, g).

Assume that t ∈ GL(A) leaves invariant f and define t̃ by (4). Then

the first formula (3) holds by (1). The second relation (3) also holds, cf.

[SV, proof of Prop. 7.3.1], hence t̃ leaves g invariant.

These facts imply that the first (second) projection defines an isomor-

phism of H onto the invariance group of f in GL(A) (respectively, of g in

GL(B)). Hence equivalent E6-structures have isomorphic automorphism

groups.
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Proposition 1.6. H is a connected, quasi-simple, simply connected

group of type E6 which is defined over F .

Proof. We saw in 1.3 that S is F -equivalent to an E6-structure of the
form S(A) where A is an Albert algebra over F . If S = S(A) the form f is
the cubic form det of the Albert algebra A. By [SV, 7.3.2] the invariance
group of det has the asserted properties.

Corollary 1.7. Equivalent F -structures over F have F -isomorphic

automorphism groups.

A group of type E6 has outer automorphisms of order 2. It follows from

Prop. 1.6 that (t, t̃) 7→ (t̃, t) defines an automorphism of H of order 2. By

[loc. cit.] it is an outer automorphism.

Let i be the imbedding of Gm in GL(A) × GL(B) with i(α)(a, b) =

(αa, α−1b) (a ∈ A, b ∈ B, α ∈ k∗). Define H1 = i(Gm).H, a closed

subgroup of GL(A) × GL(B).

1.8. Hermitian E6-structures

Let S = (A,B, 〈 , 〉, f, g) be an E6-structure, as before. Put R = k ⊕ k

and let σ be the permutation isomorphism of R. Then W = A ⊕ B is a

free R-module. For w = (a, b), w′ = (a′, b′) ∈ W define a non-degenerate

σ-Hermitian form H on the R-module W by

H(w,w′) = (〈a, b′〉, 〈a′, b〉) ∈ R.

Moreover define

(a, b) ? (a′, b′) = (bb′, aa′), G((a, b)) = (f(a), g(b)).

Then G is a cubic form on the R-module W , let G( , , ) be the associated

symmetric trilinear form. (w,w′) 7→ w ? w′ is a σ-bilinear map and the

properties (1) and (2) are equivalent to

(5) 3G(w,w1, w2) = H(w,w1 ? w2), (w ? w) ? (w ? w) = G(w)w.

Now let E/F be a separable quadratic field extension and let σ be its non-

trivial automorphism. Then

a ⊗ b 7−→ (ab, aσ(b)) (a ∈ k, b ∈ E)
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defines an isomorphism k ⊗F E 7→ R, via which R obtains an F -structure

with R(F ) = E. The permutation automorphism of R is defined over F

and induces σ on E.

Assume that W has an F -structure such that H, ? and G are defined

over F . We then say that Σ = (E/F,W,H,G) is a Hermitian E6-structure

over E and F or briefly, over E/F .

Then W (F ) is a vector space over E, H induces a σ-Hermitian form

on F and G a cubic form. (a1, a2) 7→ a1 ? a2 defines a σ-bilinear product

on W (F ).

More generally, in the situation considered in the beginning of this

section we shall also speak of an Hermitian E6-structure over E/F , in which

case E is the étale algebra F ⊕ F .

Let E be a quadratic étale algebra over F and denote its non-trivial

automorphism by σ. Let Σ, as above, be a Hermitian E6-structure over

E/F . A similar Σ′ is equivalent to Σ if it is E/F -isomorphic (defined in

the obvious way) to a Hermitian E6-structure of the form

(E/F,W, βH,αG),

where β ∈ F ∗, α ∈ E∗. It is easy to see that we then must have β3 = αασ

and that Σ′ is E/F -isomorphic to Σ if α ∈ (E∗)3.

§2. The quartic form

2.1. Let S be an E6-structure. Notations are as before. Put

V = A ⊕ B ⊕ k ⊕ k.

For v = (a, b, ξ, η), v′ = (a′, b′, ξ′, η′) ∈ V define

[v, v′] = 〈a, b′〉 − 〈a′, b〉 + ξη′ − ξ′η.(6)

h(v) = 〈bb, aa〉 − ξf(a) − ηg(b) − 1

4
(〈a, b〉 − ξη)2.(7)

Then [ , ] is a non-degenerate alternating bilinear form on the 56-dimen-

sional vector space V and h is a quartic form on V . We denote by [ , , , ] the

symmetric quadrilinear form on V such that h(v) = [v, v, v, v]. A straight-

forward computation (v and v′ being as before) shows that

4[v, v, v, v′ ] = 2〈bb′, aa〉 + 2〈bb, aa′〉 − ξ〈a′, aa〉 − η〈bb, b′〉 − ξ′f(a)(8)

− η′g(b) − 1

2
(〈a, b〉 − ξη)(〈a′, b〉 + 〈a, b′〉 − ξη′ − ξ′η).
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Let G be the subgroup of GL(V ) whose elements leave invariant h and [ , ].

Theorem 2.2. G is a connected, quasi-simple, simply connected linear

algebraic group of type E7.

We first establish some lemmas, to be used in the proof. For x ∈ A,

y ∈ B and v = (a, b, ξ, η) ∈ V define

Xx(v) = (ηx, 2xa, 〈x, b〉, 0), Yy(v) = (2yb, ξy, 0, 〈a, y〉).

Lemma 2.3. (i) [Xx(v), v, v, v] = 0;
(ii) X4

x = 0;
(iii) The Xx (x ∈ V ) commute mutually ;
(iv) [Xx(v), v′] + [v,Xx(v′)] = 0;
(v) (i), (ii), (iii) and (iv) hold with Xx replaced by Yy.

Proof. To prove (i) use (8) with v′ = Xx(v). In the right-hand side
several terms cancel. To deal with the remaining ones one uses (1) and the
formulas

4(xa)(aa) = f(a)x + 〈x, aa〉a, 4(yb)(bb) = g(b)y + 〈bb, y〉b,

which follow from (2).
The proofs of (ii), (iii) and (iv) are straightforward and can be omitted.

(v) follows by symmetry.

For x ∈ A put

tx = 1 + Xx +
1

2
X2

x +
1

6
X3

x.

We write tx = exp(Xx).

Lemma 2.4. (i) tx ∈ G;
(ii) Xx and Yy lie in the Lie algebra g of G;
(iii) The tx (x ∈ A) form a connected, commutative, unipotent subgroup

of G.

Proof. Parts (i) and (iv) of Lemma 2.3 shows that Xx lies in the Lie
subalgebra of End(A) whose elements annihilate h and [ , ]. If char(k) = 0
this Lie algebra is g and if t is any nilpotent element of that Lie algebra,
exp(t) lies in G, where now exp is the usual exponential map. (i) then
follows from the previous Lemma.
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If p = char(k) > 0 it is prime to 6. To prove (i) in that case we use a
reduction argument. Let R and A0 be as in 1.4. Since k is algebraically
closed, A is isomorphic to k ⊗R A0. This follows from the fact that over
an algebraically closed field all Albert algebras are isomorphic (see [SV,
p. 153]), together with the observations about the connection between E6-
structures and Albert algebras made in 1.3.

Put V = A0 ⊕A0 ⊕R⊕R and define on it an alternating form and a
quartic form by (6) and (7). Passing to C ⊗R V, one sees that for a ∈ A0,
exp(Xa) stabilizes the alternating and the quartic form. It induces a linear
map of V = k ⊗R V of the form tx = exp(Xx) which lies in G. Any tx may
be so obtained. (i) follows.

To prove (ii) for Xx observe that it is an image under the tangent map
of the homomorphism k → G sending ξ to tξx. The assertion for Yy follows
by symmetry. (iii) follows from the previous lemma.

Let H1 be as above. For h = (t, t̃) ∈ H1 there is ν(t) ∈ k∗ with

f(t(a)) = ν(t)f(a), g(t̃(b)) = ν(t)−1g(b) (a ∈ A, b ∈ B).

Define φ(h) ∈ GL(V ) by

φ(h)(a, b, ξ, η) = (t(a), t̃(b), ν(t)−1ξ, ν(t)η).

It is straightforward to check that φ(h) ∈ G and that φ is an injective

homomorphism of algebraic groups H1 → G. To simplify notations we

view in the sequel H1 as a subgroup of G, so we omit φ’s.

Lemma 2.5. (i) H1 is the subgroup of G stabilizing the decomposition

V = A ⊕ B ⊕ k ⊕ k;
(ii) The identity component G◦ acts irreducibly in V .

Proof. The proof of (i) is straightforward.
We claim that the four pieces of the decomposition of V afford distinct

irreducible representations of H1. The representations of the group H in
the two 27-dimensional parts are dual to each other. These representations
are irreducible. It is well-known that H, being a simply connected group
of type E6 has two (classes of) 27-dimensional irreducible representations,
related by duality. It follows that the representations of H1 in the two
27-dimensional pieces of V are inequivalent. The representations in the
1-dimensional pieces are obviously inequivalent, too. Our claim follows.
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A G-stable subspace W of V must be a sum of some of the pieces of the
decomposition of V . Also, W must be stabilized by g, in particular by the
maps Xx and Yy (by Lemma 2.4 (ii)). If W contains, say, (0, 0, 0, 1) then
applying the Xx one sees that it contains the first 27-dimensional subspace.
Continuing in this fashion one concludes that W must coincide with V .
Similarly if W contains one of the 27-dimensional subspaces. (ii) follows.

Proof of Theorem 2.2. From Lemma 2.5 (ii) it follows that G is reduc-
tive (see [Sp3, Ex. 2.4.15]). Also, by Schur’s Lemma the center of G is
{±1}. Consequently, the identity component G◦ is semi-simple.

Let T be a maximal torus of H. Then T1 = i(Gm).T is a maximal torus
of H1. We claim that it is a maximal torus of G. Now the weights of T1

in V are all distinct, as follows from the fact (which can be read off, for
example, from the description of weights in [Sp2, 14.21]) that the weights
of T in A⊕B ⊕ {0} ⊕ {0} are distinct. It follows that the centralizer of T1

in G stabilizes the decomposition. Using Lemma 2.5 (i) the claim follows.
So G◦ is semi-simple of rank 7. It contains the group H, which is

quasi-simple of type E6. The Lie algebra L(G) contains all Xx (x ∈ A),
which span a subspace of dimension 27 intersecting L(H1) in 0. Hence
dimG ≥ dimH1 + 27 = 106. The classification of semi-simple group shows
that G◦ is either of type E7 or of type A1 + E6. In the latter case dimG◦

would be 81, which is impossible. We conclude that G◦ is quasi-simple of
type E7. Since −1 ∈ T1 ⊂ G◦ the center of G◦ has order 2, which implies
that G◦ is simply connected.

To finish the proof we have to show that G = G◦. Assume that G 6= G◦

and take g ∈ G − G◦. Conjugation by g defines an automorphism of G◦.
Since an automorphism of a group of type E7 is inner, there is h ∈ G◦

such that gh centralizes G◦. By Lemma 2.5 (ii) and Schur’s Lemma, gh
is a scalar. The definition of G shows that the scalar must be −1. Since
−1 ⊂ G◦ we arrive at the contradiction g ∈ G◦. This implies that G is
connected.

Let G1 be the subgroup of GL(V ) stabilizing the quartic form h.

Corollary 2.6. (i) G1 = µ4G, where µ4 is the group of 4th roots of

unity ;
(ii) G is the identity component of G1.

Proof. The proof of (i) is based on the observation that Lemma 2.5 (i)
holds with G1 and µ4H1 instead of G and H. Using this one proceeds as in
the proof of the Theorem. (ii) is a consequence of (i).
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Let h1 ⊂ g be the Lie algebra of H1 and denote by x, y the subspaces of

g (actually, commutative subalgebras) spanned by the Xx, respectively, the

Yy (x ∈ A, y ∈ B). Let e = (0, 0, 1, 1) ∈ V . We denote by Ze the isotropy

group of e in the subgroup Z of GL(V ) and by ze the annihilator of e in

the Lie algebra z of Z.

Let G̃ the subgroup Gm.G of GL(V ) generated by G and the homoth-

eties and let g̃ be its Lie algebra.

Corollary 2.7. (i) g = h1 ⊕ x ⊕ y;

(ii) H is the identity component (Ge)
◦ and h = ge;

(iii) Ge is connected and equals H; G̃e is a semi-direct product of (G̃e)
◦

and a group of order 2, whose generator induces an outer automorphism of

H = (G̃e)
◦;

(iv) g̃.e = V ;

(v) g 7→ g.e defines a smooth morphism G̃ → V .

Proof. The sum of the dimension of the spaces in the right-hand of (i)
is 133 = dim g. So it suffices to prove that if X ∈ h1, x ∈ A, y ∈ B and
X +Xx +Yy = 0 we have X = 0 and x = 0, y = 0. This follows by applying
X + Xx + Yy to e, as

(X + Xx + Yy).e = (x, y, ?, ?).

To prove (ii), first observe that H ⊂ Ge.

Write (by (i)) an element of ge in the form X + Xx + Yy, as before.
Again, x = 0, y = 0, so X lies in the annihilator of e in h1.

There is a cocharacter λ of H1 with H1 = Im(λ).H such that

λ(ξ).e = (0, 0, ξ−3, ξ3) (ξ ∈ k∗).

We can conclude that the annihilators of e in h and h1 coincide (here one
uses that char(k) 6= 3). We see that

h ⊂ L(Ge) ⊂ ge = h.

The inclusions must be equalities, which implies (ii).

For the proof of (iii) we introduce σ ∈ GL(V ) defined by

σ(a, b, ξ, η) = i(−b, a,−η, ξ),
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where i is a primitive 4th root of unity. One then checks that the normalizer
NGL(V )(H) is generated by H, σ and the transformations

(a, b, ξ, η) 7−→ (αa, βb, pξ + qη, rξ + sη)

with α, β, ps − gr ∈ k∗. Now it is straightforward to see that NG(H) is
generated by H, σ and the transformations

(a, b, ξ, η) 7−→ (αa, α−1b, α−3ξ, α3η) (α ∈ k∗),

while NG̃(H) = Gm.NG(H). These facts imply (iii).
We have

dim g̃.e = 1 + dim g − dim h = 56 = dimV,

which proves (iv). (v) is another formulation of (iv).

Corollary 2.8. G̃.e = {v ∈ V | h(v) 6= 0}.

Proof. Results of this kind are familiar in the theory of prehomoge-
neous vector spaces. We sketch a proof.

It follows from Cor. 2.7 (iv) that U = G̃.e is dense in V . Since an orbit
is open in its closure, U is open in V . Using [Sp3, Cor. 5.5.4, Th. 5.5.5]
it also follows that U is isomorphic to the homogeneous space G̃/G̃e. As
G̃e is reductive by Cor. 2.7 (ii) this space is an affine variety (see e.g. [R]).
Assume that the closed set V −U has a component C of codimension > 1.
Let c ∈ C be a point which does not lie on any other component of V −U .
Then all regular functions on U are regular in c and the evaluation map at
c defines a k-algebra homomorphism k[U ] → k which is not an evaluation
map at any point of U . This is impossible. Hence V − U is purely of
codimension 1.

The components Ci of V − U are irreducible hypersurfaces. Let hi

be a defining irreducible polynomial of Ci. Since the connected algebraic
group G̃ acts on U , it stabilizes the Ci. For each i we have a character
χi ∈ X = Hom(G̃, Gm) such that

hi(g.v) = χi(g)hi(v) (g ∈ G̃, v ∈ V ).

The characters χi are linearly independent in Q⊗X. In fact, if the integers
ei are such that

∑

i eiχi = 0, the function
∏

i hei

i is constant on U , which
is only possible if all ei vanish. X being of rank one, there is only one
component, which is an irreducible hypersurface. Therefore the G̃-invariant
hypersurface h−1(0) must coincide with V − U .
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§3. The ternary product

3.1. We maintain the notations of the previous section. For vi ∈ V

(i = 0, 1, 2, 3) define {v1v2v3} ∈ V by

8[v0, v1, v2, v3] = [{v1v2v3}, v0].

Then { } is a ternary product (or triple system) on V , symmetric in its

three arguments. We have

(9) [{vvv}, v′] = 8[v, v, v, v′] (v, v′ ∈ V ).

The notion of an automorphism of our ternary product is defined in the

obvious manner, as is the notion of a derivation of that product.

Notice that if g ∈ GL(V ) stabilizes both h and [ , ] we have

(10) g.{v1v2v3} = {g.v1, g.v2, g.v3},

so g is an automorphism of { }.
With the notations of 2.1 we obtain from (8)

1

2
{vvv} =

(

2b(aa) − η(bb) − 1

2
(〈a, b〉 − ξη)a, −2a(bb) + ξ(aa)(11)

+
1

2
(〈a, b〉 − ξη)b, −g(b) +

1

2
(〈a, b〉 − ξη)ξ, f(a) − 1

2
(〈a, b〉 − ξη)η

)

.

As before, e = (0, 0, 1, 1). Put f = (0, 0,−1, 1).

Lemma 3.2. (i) {eee} = f , {fff} = −e;
(ii) 6{efv} = [v, f ]e + [v, e]f .

Proof. (i) follows from (11). To prove (ii) observe that 6{efv} is the
coefficient of αβ in {(v+αe+βf)(v+αe+βf)(v+αe+βf)}. A computation
of this coefficient in the right-hand side of (11) gives (ii).

Proposition 3.3. For v, w ∈ V we have

(12) 6{{vvv}vw} = [w, {vvv}]v + [w, v]{vvv}.

Proof. Let w = (a, b, ξ, η). For v = e the left-hand side equals
6{few} = (ξ + η)e + (ξ − η)f , by Lemma 3.2. Observing that

[w, e] = ξ − η, [w, {eee}] = ξ + η
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we see that
6{{eee}, e, w} = [w, {eee}]e + [w, e]{eee}.

To prove the Proposition we may assume k to be algebraically closed. Let G
be as in 2.1. We already observed that the elements of G are automorphisms
of our ternary product. This implies that the asserted formula holds for
arbitrary w and all elements v in the orbit G.e and, by homogeneity, for
the elements in the orbit G̃.e. But by Cor. 2.8 this orbit is dense in V . This
implies that the formula holds for all v and w.

Corollary 3.4. (i) G is the automorphism group of { };
(ii) A derivation of { } annihilates [ , ] and h.

Proof. Choose v ∈ V with h(v) 6= 0. Using Cor. 2.8 and Lemma 3.2 (i)
we see that v and {vvv} are linearly independent. Let g be an automorphism
of { }. (12), used for v, w and g.v, g.w gives that

[g.w, {g.v, g.v, g.v}] = [w, {vvv}], [g.w, g.v] = [w, v],

if h(v) 6= 0, hence for all v. This implies that g ∈ G, proving (i).
View [ , ] and h as elements of appropriate vector spaces on which

End(V ) acts. The proof of (ii) is similar to that of (i), using that D is a
derivation if and only if 1+εD lies in the group G(k[ε]) of k[ε]-valued points
of G, where k[ε] is the algebra of dual numbers over k.

We next give some formulas, in which v = (a, b, ξ, η).

Lemma 3.5. (i) 3{eev} = (a,−b,−2ξ − η, ξ + 2η), 3{ffv} = (−a, b,
2ξ − η, ξ − 2η);

(ii) 3{evv} = (−2bb + (ξ + η)a, 2aa − (ξ + η)b,−ξ2 − 2ξη, η2 + 2ξη),
3{fvv} = (−2bb + (ξ − η)a,−2aa − (ξ − η)b,−ξ2 + 2ξη,−η2 + 2ξη).

Proof. 3{eev} and 3{evv} are the coefficients of α2, respectively, α in
{(v +αe)(v +αe)(v +αe)}. Similarly for 3{ffv} and 3{fvv}. Then (i) and
(ii) follow from (11).

3.6. We now show how the ingredients of the E6-structure S can be

recovered from the ternary product and e. For v ∈ V define a linear map

tv and a quadratic map uv of V by

tv(w) = 3{vvw}, uv(w) = 3{vww}.
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Let Vv be the subspace of V spanned by v and {vvv}. If h(v) 6= 0 it is

two-dimensional and non-singular. Let Wv be its orthogonal complement

(relative to our alternating form). The following facts are consequences of

Lemmas 3.2 and 3.5.

(a) Ve is spanned by e and f and We = {(a, b, 0, 0) | a ∈ A, b ∈ B}.
Identify We with A ⊕ B.

(b) te stabilizes Ve and We, as follows from

Ve = Im(t2e − 1) = Ker(t2e − 3), We = Im(t2e − 3) = Ker(t2e − 1).

The restriction te|We
has eigenvalues 1, −1, with respective eigenspaces A,

B. Let w = (a, b) ∈ We.

(c) (bb, aa) = − 1
2uf (w).

(d) f(a) = 1
4 [e − f, {www}], g(b) = 1

4 [e + f, {www}].
The next result is a complement to Cor. 3.4. It uses the facts from 3.6.

Proposition 3.7. The Lie algebra of derivations of { } coincides with

the Lie algebra g of G.

Proof. Let d be the derivation algebra. It is clear that it contains g.
Using Cor. 2.7 (iv) one sees that an element of d/g can be represented by
a derivation D such that D.e = αe with some α ∈ k. From Lemma 3.2
(i) we see that then Df = D{eee} = 3{ee(De)} = 3αf and αe = De =
−D{fff} = −3{ff(Df)} = 9αe. So α = 0 and De = Df = 0.

Since D.e = 0, D commutes with te. It stabilizes the eigenspaces of te.
Using Lemma 3.5 (ii) and 3.6 (c) we see that

D(aa) = 2a(D.a), D(bb) = 2b(D.b) (a ∈ A, b ∈ B).

Then by (2)

f(a)(D.a) = D((aa)(aa)) = 2(D(aa))(aa)) = 4((D.a)a)(aa)).

It follows from (2) that for a, a1 ∈ A

4(aa1)(aa) = 3f(a, a, a1)a + f(a)a1.

The last two equations imply that f(D.a, a, a) = 0. So the restriction of D
to A annihilates the cubic form f . But then by [SV, p. 182] this restriction
lies in the Lie algebra of the invariance group of f , i.e. in the restriction to
A of the Lie algebra of h. Modifying D by an element of h we may assume
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that D.a = 0 for all a ∈ A. Applying this to bb we see that b(D.b) = 0 for
all b ∈ B. The counterpart for B of the last formula (with b and Db instead
of a and a1) shows that the restriction of D to B is also 0. It follows that
D = 0. We can now conclude that d = g, as asserted.

§4. E7-structures

4.1. A k-vector space V equipped with a non-degenerate alternating

bilinear form [ , ], a quartic form h with associated symmetric quadrilinear

form [ , , , ] and a symmetric ternary product { } such that (9) and (12)

hold is a Freudenthal triple system1. Clearly, it is uniquely determined by

[ , ] and { }. We write (V, [ , ], { }) for the triple system or simply V if

there is no danger of confusion.

We have constructed above a Freudenthal triple system V (S) out of an

E6-structure S over our algebraically closed fields k. For S = S0, the stan-

dard E6-structure, we write V (S) = V0. We call E7-structure a Freudenthal

triple system V isomorphic to V0 over k. Classification results show that

an E7-structure could also be defined as a Freudenthal triple system of di-

mension 56 satisfying a non-degeneracy condition, but we will not go into

this here (cf. [G1], [M]).

V is (defined) over the subfield F of k if V has an F -structure such that

the data are defined over F . The definitions show that V (S) is defined over

F if this holds for S. We call V0 the standard E7-structure. It is defined

over any subfield F of k.

Let (V, [ , ], { }) be an E7-structure over F , with quartic form h. For

α ∈ F ∗, Vα = (V, α[ , ], α{ }) is also an E7-structure over F , with quartic

form α2h. If α is a square in F , Vα is F -isomorphic to V . An E7-structure

V ′ over F is equivalent to V if it is F -isomorphic to some Vα.

Let V be an E7-structure over F and let v ∈ V (F ). We define the maps

tv and uv as in 3.6. Put

Ev = k[T ]/(T 2 + 4h(v)).

This is an algebra with an F -structure, viz. F [T ]/(T 2 + 4h(v)). Ev is an

étale quadratic algebra if h(v) 6= 0. Let τv ∈ Ev(F ) be the image of T .

1I extracted this kind of algebraic structure from Freudenthal’s work in [F] around
1962 and I established some of its properties. But I did not publish this work. The first
publication about Freudenthal triple systems was by K. Meyberg [M], to whom I had
communicated my results. He also coined the name.
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Denote by σ the non-trivial k-automorphism of Ev, sending τv to −τv.

Choose λ ∈ k with λ2 = −4h(v).

We establish some properties involving the maps tv. Since V is isomor-

phic to V0 over k we may identify V with V0 in questions not involving a

field of definition.

The next four Lemmas are true for v = e by Lemma 3.2, using that

h(e) = − 1
4 . An application of Cor. 2.8 proves Lemmas 4.2 and 4.3. Also,

Lemmas 4.4 and 4.5 hold if h(v) 6= 0. By continuity they hold for all v.

Lemma 4.2. Assume that h(v) 6= 0.

(i) tv is semi-simple with minimum polynomial (T 2 + 4h(v))(T 2 +
12h(v));

(ii) Vv = Im(t2v + 4h(v)) and Wv = Im(t2v + 12h(v)) are tv-stable and V
is their orthogonal direct sum;

(iii) Wv has an Ev-module structure which is defined over F , with τvw =
tv.w (w ∈ Wv). The eigenvalues of tv|Wv

are λ and −λ, their eigenspaces

have dimension 27;

(iv) Vv is spanned by v and {vvv}. The eigenvalues of tv|Vv
are λ

√
3

and −λ
√

3, their eigenspaces have dimension 1.

Lemma 4.3. Let h(v) 6= 0. Then uv(Wv) ⊂ Wv.

Lemma 4.4. For all v, v′ ∈ V we have

t{vvv}(v
′) = −4h(v)tv(v

′) + 4h(v)[v, v′ ]v + [{vvv}, v′ ]{vvv}.

Lemma 4.5. Let v ∈ V and put z = ξv + η{vvv} (ξ, η ∈ k). Then

{zzz} = (ξ2 + 4h(v)η2)(4h(v)ηv + ξ{vvv}).

4.6. Assume that h(v) 6= 0. For w ∈ Wv define a quadratic map

w 7→ w ?v w of Wv by

(13) w ?v w = −1

2
uv(w)

and let (w,w′) 7→ w ?v w′ be the associated symmetric bilinear map. Fur-

thermore define a bilinear map Hv of Wv to Ev by

(14) −2Hv(w,w′) = [τvw,w′] + [w,w′]τv.
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Then for µ ∈ Ev

Hv(µw,w′) = µHv(w,w′)

and

Hv(w
′, w) = Hv(w,w′)σ.

So Hv is a Hermitian form on the Ev-module Wv. It is defined over F .

Next define a function Fv : Wv → Ev by

(15) Fv(w) = −1

4
([{vvv}, {www}] + [v, {www}]τv).

Then Fv is a cubic map (over k). Let Fv( , , ) be the associated symmetric

trilinear map with Fv(w,w,w) = Fv(w).

Proposition 4.7. (Ev/F,Wv ,Hv, Fv) is a Hermitian E6-structure

over Ev/F .

Proof. We have to prove the following facts:
(i) the product w ?v w′ is σ-bilinear for the Ev-action;
(ii) (w ?v w) ?v (w ?v w) = Fv(w)w (w ∈ Wv);
(iii) Hv(w1, w2 ?v w3) = 3Fv(w1, w2, w3).

The quadratic map uv : V → V induces a map Wv → Wv. Let ũv( , )
be the symmetric bilinear map with ũv(w,w) = uv(w). By Lemma 4.2 (ii)
the assertion (i) is then equivalent with

ũv(tv(w), w′) = −tv(ũv(w,w′)),

if w,w′ ∈ Wv. Using Cor. 2.8 one sees that it suffices to prove this if v is
a multiple of e. We prefer to work with f instead of e, which we can do
(the proof of Cor. 2.8 also works for f , mutatis mutandis). Similarly, the
proof of (ii) and (iii) can be reduced to the case that v is a multiple of f .
So assume that v = αf .

Then τ2
v = α4. Choose λ = α2. We identify Ev with k ⊕ k, via the

isomorphism
ξ + ητv 7−→ (ξ − λη, ξ + λη).

With the notations of 2.1 we have W = (A,B, 0, 0), which we view as the
direct sum A ⊕ B.

Then for ξ + ητv ∈ Ev

(ξ + ητv).(a, b) = ((ξ − λη)a, (ξ + λη)b).
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From the results of 3.6 we find that for w = (a, b), w′ = (a′, b′)

w ?v w′ = α(bb′, aa′),

whence
(τvw) ?v w′ = −α(−λbb′, λaa′) = −τv(w ?v w′),

which implies (i). Then

(w ?v w) ?v (w ?v w) = α3((aa)(aa), (bb)(bb)) = α3(f(a), g(b))w.

By 3.6 (d) and Lemma 3.2 (i) we have

α3(f(a), g(b)) =
1

2
α3(f(a) + g(b) − λ−1(f(a) − g(b)τv)(16)

= −1

4
α3([{fff}, {www}] + λ−1[f, {www}]τv)

= −1

4
([{vvv}, {www}] + [v, {www}]τv ) = Fv(w),

proving (ii).
Finally, if v = αf we have for w = (a, b), w′ = (a′, b′)

Hv(w,w′) = α2(〈a, b′〉, 〈a′, b〉)

whence (with obvious notations) using (16)

Hv(w1, w2 ?v w3) = α3(〈a1, a2a3〉, 〈b1, b2b3)〉
= 3α3(f(a1, a2, a3), g(b1, b2, b3))

= 3Fv(w1, w2, w3),

proving (iii).

Let tr and n be the trace and norm maps Ev → k. They are defined

over F . According to Lemma 4.2 we can write the elements of V in the

form z = w + ξv + η{vvv} (w ∈ Wv, ξ, η ∈ k). We then have

Corollary 4.8. (i) −4h(v)h(z) = Hv(w ?v w,w ?v w) + tr(ζFv(w))−
1
4(Hv(w,w) − n(ζ))2, where ζ = −4h(v)η + ξτv ∈ Ev;

(ii) (with obvious notations)−4h(v)[z,z ′ ] = −tr((Hv(w,w′)+ζσ(ζ ′))τv).

Proof. It suffices to prove (i) if v = αf , in which case the formula
follows from (7) by a straightforward calculation.

The proof of (ii) is also straightforward.
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In the situation of Prop. 4.7 assume that v ∈ V (F ) and that h(v) ∈
−(F ∗)2. Then Ev ' k⊕k over F and Wv is the direct sum of the eigenspaces

Av and Bv of tv for the respective eigenvalues λ, −λ. They are defined over

F .

From the product ?v and Fv we deduce the ingredients of an E6-

structure over F , as follows. Identify Ev with k ⊕ k (over F ), as before.

For a ∈ Av , b ∈ Bv define

〈a, b〉v = Hv((a, 0), (0, b)),

(a, b) ?v (a, b) = (bb, aa),

Fv((a, b)) = (fv(a), gv(b)).

Corollary 4.9. (i) Sv = (Av , Bv, 〈 , 〉v, fv, gv) is an E6-structure

over F ;

(ii) V is equivalent with V (Sv).

Proof. (i) is a reformulation of Prop. 4.7, for the present case.

Put Vv = V (Sv). We identify its underlying space with V . Indicate its
ingredients by a suffix v. Then there is λ ∈ F with λ2 = −4h(v) such that

[ , ]v = λ[ , ], hv = λ2h,

by the definition (6) of [ , ] and Cor. 4.8. By (9), { }v = λ{ }, proving (ii).

Let V be an E7-structure over k. We maintain the previous notations.

Let G be the automorphism group of V , with Lie algebra g. By Theorem 2.2,

G is a simply connected group of type E7. Fix v ∈ V with h(v) 6= 0.

Corollary 4.10. The isotropy group Gv of v in G is a connected,

quasi-simple, simply connected group of type E6. Its Lie algebra is the

annihilator of v in g.

Proof. For v = e this follows from Cor. 2.7 (ii). For the general case
apply Cor. 2.8.

An E7-structure over F of the form V (S) is said to be reduced (over

F ). This notion is stable under equivalence.
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Theorem 4.11. The following conditions are equivalent :
(a) There is v ∈ V (F ) with h(v) ∈ −(F ∗)2,
(b) V is reduced over F ,

(c) The hypersurface h = 0 in V contains a non-singular F -rational

point,

(d) h(v) takes all values in F for v ∈ V (F ).

Proof. The implication (a) ⇒ (b) follows from Cor. 4.9. To prove
(b) ⇒ (c) we may assume that we are in the situation considered in 2.1,
the ingredients being defined over F . Take v = (a, 0, 0, 1) with a ∈ A(F ),
f(a) 6= 0. From (7) and (11) we see that h(v) = 0 and {vvv} = (0, 0, 0, 2) 6=
0. By (9) this means that v is a non-singular point of h = 0.

Next assume that v ∈ V (F ) is as in (c). Then h(v) = 0, {vvv} 6= 0. By
Lemma 4.4

t{vvv}(w) = [{vvv}, w]{vvv}.
Put n = {vvv}. By the definition of tn and of the triple product the
preceding formula implies that [n, n,w, v ′] = 0 for all v′ ∈ V and w ∈ H =
{w | [n,w] = 0}. For w ∈ H

h(w + αn) = h(w) + 4α[w,w,w, n].

If there is w ∈ H(F ) with [w,w,w, n] 6= 0 the preceding formula shows that
there is v ∈ V such that h(v) has any preassigned value, whence (d).

The case remains that [w,w,w, n] = 0 for all w ∈ H(F ). Then
[w,w,w′, n] = 0 for w,w′ ∈ H(F ). Using (9) we see that tw(n) = Q(w)n,
where Q is a quadratic form on H which is defined over F . As a consequence
of Lemma 4.2 (i)

(Q(w)2 + 4h(w))(Q(w)2 + 12h(w)) = 0.

Hence h(w) is a non-zero multiple of Q(w)2. If Q were zero on H(F ) then
Q would be zero and h would vanish on H. But thus is impossible as H
would be stable under the group G◦, contradicting Lemma 2.5 (ii). The
implication (c) ⇒ (d) follows. Since (d) ⇒ (a) is obvious the Theorem is
proved.

§5. Rationality questions

As before, k is algebraically closed of characteristic 6= 2, 3 and F is a

subfield of k. Let Fs be the separable closure of F in k. For the facts on

Galois cohomology to be used we refer to [Ser].
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V is an E7-structure over F with automorphism group G. By Th. 2.2

it is a simply connected group of type E7.

Proposition 5.1. (i) G is defined over F ;
(ii) If V is the standard E7-structure V0 then G is split over F .

Proof. Let F be the space of symmetric trilinear maps of V × V × V
to V . The group GL(V ) acts on it and by Cor. 3.4 (i), G is the isotropy
group in GL(V ) of { } ∈ F . To prove that it is defined over F apply [Sp3,
12.1.2 (i)] to the action of GL(V ) on F (which is defined over F ). The
kernel of the tangent map of [loc. cit.] at the identity element is the space
of derivations of { } and by Prop. 3.7 the condition of [loc. cit.] is satisfied.
This proves (i).

To prove (ii) we have to show that if V = V0 the group G contains a
maximal torus over F which is F -split. In the proof of Th. 2.2 we introduced
a maximal torus T1 of G. It is of the form Gm.T , where T is a maximal
torus of the group H introduced in 1.5. Now the underlying E6-structure
is the standard one of 1.4. In that case one easily constructs an F -split
maximal torus T of H (cf. [Sp2, 14.21]). For such a T the torus T1 is also
F -split.

Lemma 5.2. V is Fs-isomorphic to V0.

Proof. Assume that F = Fs. Choose v ∈ V (F ) with h(v) 6= 0. Then
h(v) ∈ −(F ∗)2. Let Sv be as in Cor. 4.9. Then V is equivalent with V (Sv)
and even isomorphic since F = Fs (cf. the end of 1.2). For the same reason
Sv is F -isomorphic to S0. Now use that over a separably closed field all
Albert algebras are isomorphic (this is proved as in the algebraically closed
case, see [SV, p. 153]).

Let G0 be the F -split simply connected group of type E7 and let G1 be

an F -form of G0. After [T] we say that G1 is a strong form of G0 if it is a

twist of G0 by a cocycle in a cohomology class in H1(F,G0) (the adjective

“inner” of [loc. cit.] is superfluous since in the present case all forms are

inner).

Proposition 5.3. (i) There is a bijection of H1(F,G0) onto the set

of isomorphism classes of E7-structures over F ;
(ii) There is a bijection of the set of isomorphism classes of strong forms

of G0 over F onto the set of equivalence classes of of E7-structures over F .
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Proof. (i) follows from the preceding results, by standard arguments,
cf. [Ser, Ch. III, §1].

Let G0 be the quotient of G0 by its center. We have an exact sequence
of groups

1 −→ Z/2Z −→ G0 −→ G0 −→ 1,

inducing an exact sequence of Galois cohomology sets. The isomorphism
classes of strong forms of G0 are in bijection with the image of H1(F,G0) in
H1(F,G0). (ii) follows by applying [loc. cit. Prop. 42, p. 54] in the present
case. We skip the details.

Let G be a strong F -form of G0. The proof of Prop. 5.3 also shows the

following.

Corollary 5.4. G is the automorphism group of an E7-structure over

F .

Assume that G is the automorphism group of an E7-structure V over

F , with quartic form h.

Proposition 5.5. Let v ∈ V (F ), h(v) 6= 0.
(i) The isotropy group Gv of v in G is a connected, quasi-simple, simply

connected F -group of type E6;
(ii) Gv is of inner type over F if and only if h(v) ∈ −(F ∗)2.

Proof. (i) was established in Cor. 4.10, except for the fact that Gv is
defined over F . This follows from [Sp3, 12.1.2 (i)], using the last point of
Cor. 4.10.

If h(v) ∈ −(F ∗)2 it follows from Cor. 4.9 and the proof of Prop. 1.6 that
Gv is F -isomorphic to the invariance group of the cubic form of an Albert
algebra over F . Such a group is a strong inner form of the split group of
type E6 (see e.g. [T, p. 666, equivalence of (I) and (III)]).

It remains to show that Gv is an outer form if h(v) 6∈ −(F ∗)2. As-
sume this and put E = F (

√
(−4h(v))), a quadratic extension of F (with

the notations of 4.1, E = Ev(F )). Denote by A and B the 27-dimensional
spaces like Av and Bv in Cor. 4.9. They are defined over E and their sum
is defined over F . They are Gv-stable. The non-trivial automorphism of
E/F permutes them. It follows that the 27-dimensional irreducible repre-
sentations of the F -group Gv of type E6 are not defined over F and by [loc.
cit., equivalence of (II) and (III)] Gv cannot be of inner type.
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Lemma 5.6. (i) G is isotropic over F if V is reduced ;
(ii) If G is isotropic over F there is v ∈ V (F ) − {0} with h(v) = 0.

Proof. Let V be reduced over F . It can be described as in 2.1, all
ingredients being defined over F . The linear maps

(a, b, ξ, η) 7−→ (a, b, xξ, x−1η) (x ∈ k∗)

form a one-dimensional F -split subtorus of G. Hence G is isotropic over F .
Let G be isotropic over F and let S be a one-dimensional F -split

subtorus of G. If v ∈ V (F ) − {0} is a weight vector for a non-zero weight
of S then h(v) = 0, by an easy argument.

§6. Comments and problems

V is an E7-structure over F with quartic form h. Its automorphism

group is G, as before.

6.1. By Prop. 5.4, G always contains simply connected F -subgroups

of type E6. In particular, outer forms of E6 will appear, as automorphism

groups of Hermitian E6-structures Wv of Prop. 4.7.

A further study of Hermitian E6-structures will be helpful in under-

standing E7-structures. We shall not go into this study now.

At this point mention should be made of a construction of E7-structures

out of Hermitian E6-structures, suggested by Cor. 4.8.

Let Σ = (E/F,W,H,G) be a Hermitian E6-structure over the quadratic

extension field E = F (
√

λ) and F (the notations are as in 1.8).

Put V = W ⊕ R and define on V a quartic form h and an alternating

bilinear form [ , ] by

λh((v, ζ)) = H(ww,ww) + tr(ζF (w)) − 1

4
(H(w,w) − n(ζ))2,

λ[(w, ζ), (w′, ζ ′)] = − tr(H(w,w′) + ζσ(ζ ′))
√

λ).

tr and n denote again trace and norm maps.

Proposition 6.2. V , h and [ , ] are the ingredients of an E7-structure

over F .

Proof. Working over k one translates the definitions of [ , ] and h into
(6) and (7). We omit the details.



282 T. A. SPRINGER

Corollary 6.3. The automorphism group of the Hermitian E6-struc-

ture Σ is an outer F -form of the simply connected group of type E6.

Proof. With the notations of the Proposition, the automorphism group
in question is the isotropy group in G of the point (0, 1) ∈ V = W ⊕ R.
Then apply Prop. 5.5.

6.4. We say that V is isotropic over F if there is v ∈ V (F )−{0} with

h(v) = 0. This is the case if V is reduced, by Th. 4.11. But there are other

cases.

Consider the index (or Tits diagram) of our F -group G. It is the Dynkin

diagram D of type E7, in which certain vertices, called isotropic, are marked

(see e.g. [T, 1.5.5]). We use the numbering of [B, p. 265] for the vertices of

D.

It follows from [T, 5.2] that if G is not split or anisotropic over F , the

possible sets of isotropic vertices of D are {1}, {7}, {1, 6, 7}. The second

and third possibility are realized by automorphism groups of reduced E7-

structures, coming from an Albert division algebra over F or a non-split

reduced Albert algebra over F (use the properties of a strongly inner forms

of groups of type E6 discussed in [loc. cit., p. 666]).

But groups G realizing the first possibility also exist for certain F . In

that case h(v) = 0 has non-zero solutions in V (F ) by Lemma 5.6 (ii). It

follows from Prop. 4.11 that {vvv} = 0 for all such v. The existence problem

over a given F of such G is briefly discussed in [Sel, p. 94], it is tied up

with the existence of certain anisotropic Hermitian forms over quaternion

division algebras. But the situation is not very clear. A further study in

the context of E7-structures is desirable.

6.5. V is anisotropic if it is not isotropic. In this case G is anisotropic

over F .

In [T, 3.1], such a G is constructed in the case that E is a field of rational

functions E0(t), where E0 is a field over which there exists a central division

algebra of degree and exponent 4.

The construction of [loc. cit.] uses Bruhat-Tits theory, for groups over

E0((t)). It would be interesting to find a direct construction of a corre-

sponding E7-structure.

In this context the question should be mentioned (cf. [loc. cit., p. 667])

of the existence of an anisotropic E7-structure over F if there is a central

division algebra over F of degree and exponent 4, for which the reduced

norm map is not surjective.
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6.6. Finally, some questions about the Rost invariant RG ∈
H3(F, Q/Z(2)) of G (Rost invariants are discussed in Merkurjev’s contri-

bution in [GMS]).

Is there an elementary description in terms of an E7-structure of the

2-torsion part of RG in the spirit of the description the 3-torsion invariant

of an Albert division algebra (see e.g. [SV, Ch. 8]).

The case of Albert algebras also suggests the question whether reduced-

ness of V can be read off from RG.
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