ON EXCEPTIONAL VALUES OF MEROMORPHIC FUNCTIONS WITH THE SET OF SINGULARITIES OF CAPACITY ZERO ${ }^{1)}$

KIKUJI MATSUMOTO

1. Let E be a compact set in the z-plane and let Ω be its complement with respect to the extended z-plane. Suppose that E is of capacity zero. Then Ω is a domain and we shall consider a single-valued meromorphic function $w=$ $f(z)$ on Ω which has an essential singularity at each point of E. We shall say that a value w is exceptional for $f(z)$ at a point $\zeta \in E$ if there exists a neighborhood of ζ where the function $f(z)$ does not take this value w.

In our previous paper [7], we showed that the set of all exceptional values of $f(z)$ at a point ζ of E may be non-countable. In fact, we proved the following:

For every K_{σ}-set $K^{2)}$ of capacity zero in the w-plane, there exist a compact set E of capacity zero in the z-plane and a single-valued meromorphic function $f(z)$ on its complementary domain Ω such that $f(z)$ has an essential singularity at each point of E and such that the set of exceptional values at each singularity coincides with K.

In the opposite direction, we do not know, except for countable sets, any characterization of sets E for which all functions have very few exceptional values. Here we raise the following question: Is there any perfect set E in the z-plane such that any function, which is single-valued and meromorphic in the complementary domain Ω of E and has an essential singularity at each point ζ of E, has "at most two" or "at most a countable number of" exceptional values at each $\zeta \in E$?

The purpose of this paper is to give a sufficient condition for sets E for which every function $f(z)$ has at most a finite number of exceptional values. We shall show the existence of such a perfect set E by means of a Cantor set.

[^0]2. Let $\left\{\Omega_{n}\right\}_{n=0,1,2}, \ldots$ be an exhaustion of Ω with the following conditions:
1.) $\Omega_{n} \supset \Omega_{n-1}$ for every n,
2°) for each n, the boundary $\partial \Omega_{n}$ of Ω_{n} consists of a finite number of closed analytic curves,
3°) each component of the open set $\mathscr{C} \bar{\Omega}_{n}^{3)}$ contains points of E,
4°) each component of the open set $\Omega_{n}-\Omega_{n-1}$ is doubly-connected.
We shall use in the sequel the graph associated with $\left\{\Omega_{n}\right\}$ which is defined as follows ${ }^{4}$: The open set $\Omega_{n}-\bar{\Omega}_{n-1}(n \geqq 1)$ consists of a finite number of doubly-connected domains $R_{n, k}(k=1,2, \ldots, N(n))$. The boundary of $R_{n, k}$ consists of closed curves contained in $\partial \Omega_{n-1} \cup \partial \Omega_{n}$. Denote by $\alpha_{n-1, k}$ the part of the boundary of $R_{n, k}$ on $\partial \Omega_{n-1}$ and $\beta_{n, k}$ that on $\partial \Omega_{n}$. Let $u_{n, k}(z)$ be the harmonic function in $R_{n, k}$ which vanishes on $\alpha_{n-1, k}$ and is equal to a constant $\mu_{n, k}$ on $\beta_{n, k}$ and whose conjugate function $v_{n, k}(z)$ satisfies
$$
\int_{\beta n, k} d v_{n, k}=2 \pi,
$$
where the integral is taken in the positive sense with respect to $R_{n, k}$. The quantity $\mu_{n, k}$ is called the harmonic modulus of $R_{n, k}$. Now we define the harmonic modulus σ_{n} of the open set $\Omega_{n}-\Omega_{n-1}$. Let $u_{n}(z)$ be the harmonic function in $\Omega_{n}-\bar{\Omega}_{n-1}$ which is equal to zero on $\partial \Omega_{n-1}$ and to σ_{n} on $\partial \Omega_{n}$ and whose conjugate function $v_{n}(z)$ has the variation 2π, i.e.,
$$
\int_{\partial \Omega_{n-1}} d v_{n}=2 \pi
$$

This quantity σ_{n} is called the harmonic modulus of $\Omega_{n}-\bar{\Omega}_{n-1}$. If we choose an additive constant of $v_{n}(z)$ suitably, the regular function $u_{n}(z)+i v_{n}(z)$ maps $R_{n, k}$ $(k=1,2, \ldots, N(n))$ with one suitable slit onto a rectangle $0<u_{n}<\sigma_{n}, b_{k}<v_{n}$ $<a_{k}+b_{k}$ one-to-one conformally, where $a_{k}(k=1,2, \ldots, N(n))$ and $b_{k}(k=1$, $2, \ldots, N(n))$ are constants satisfying the relations that

$$
a_{k}=2 \pi_{\mu_{n, k}}^{\sigma_{n}}, \sum_{k=1}^{N(n)} a_{k}=2 \pi
$$

and

$$
b_{1}=0, b_{k}=\sum_{i=1}^{k-1} a_{i} \quad(1<k \leqq N(n))
$$

[^1]Consequently, the function $u_{n}(z)+i v_{n}(z)$ maps $\Omega_{n}-\bar{\Omega}_{n-1}$ with $N(n)$ suitable slits onto a slit-rectangle $0<u_{n}<\sigma_{n}, 0<v_{n}<2 \pi$ one-to-one conformally. We define the function $u(z)+i v(z)$ by $u_{n}(z)+i v_{n}(z)+\sum_{j=1}^{n-1} \sigma_{j}$ on each $\Omega_{n}-\Omega_{n-1}(n \geqq 1)$. Then this function $u(z)+i v(z)$ maps $\Omega-\Omega_{0}$ with at most a countable number of suitable slits onto a strip domain $0<u<R, 0<v<2 \pi$ with a countable number of slits one-to-one conformally, where

$$
R=\sum_{j=1}^{\infty} \sigma_{j} \leqq+\infty .
$$

This strip domain is the graph of Ω associated with the exhaustion $\left\{\Omega_{n}\right\}$ in the sense of Noshiro [8]. The number R is called the length of this graph. By the theorems of Sario [11] and Noshiro [8], Ω is the complementary domain of a compact set of capacity zero in the z-plane if and only if there exists a graph of Ω whose length R is infinite.
3. Let γ_{r} be the niveau curve $u(z)=r(0<r<R)$ on Ω. The niveau curve γ_{r} consists of a finite number of simple closed curves $\gamma_{r, k}(k=1,2, \ldots, n(r))$. If $\sum_{j=1}^{n-1} \sigma_{j}<r<\sum_{j=1}^{n} \sigma_{j}$, then each $\gamma_{r, k}(k=1,2, \ldots, n(r)=N(n))$ is a simple closed analytic curve in $R_{n, k}$ which separates $\alpha_{n-1, k}$ from $\beta_{n, k}$. If $r=\sum_{j=1}^{n-1} \sigma_{j}$, then each $r_{r . k}(k=1,2, \ldots, n(r)=N(n))$ coincides with $\alpha_{n-1, k}$. We shall call each component of the open set $\Omega_{n}-\bar{\Omega}_{m}(n>m)$ an R-chain. For every $\gamma_{r, k}(0<r$ $<R, 1 \leqq k \leqq n(\boldsymbol{r})$) we consider the longest doubly-connected R-chain $R\left(\gamma_{r, k}\right)$ such that $\gamma_{r, k}$ is contained in $R\left(\gamma_{r, k}\right)$ or is the one of the two boundary components of $R\left(\gamma_{r, k}\right)$, and denote by $\mu\left(\gamma_{r, k}\right)$ the harmonic modulus of this R-chain. We set

$$
\mu(r)=\min _{1 \leqq k \leqq n(r)} \mu\left(\gamma_{r, k}\right) .
$$

Here we note that if $\sum_{j=1}^{n-1} \sigma_{j} \leqq r<\sum_{j=1}^{n} \sigma_{j}$, then $R\left(\tau_{r, k}\right) \supset R_{n, k}$ because of the condition 4°) of $\left\{\Omega_{n}\right\}$.

Generally $R_{n, k}$ may branch off into a finite number of $R_{n+1, m^{\prime}}$ s. If every $R_{n, k}(n=1,2, \ldots ; k=1,2, \ldots, N(n))$ branches off into at most ρ number of $R_{n+1, m}$'s, we say that the exhaustion $\left\{\Omega_{n}\right\}$ branches off at most ρ-times everywhere. Then we obtain the following

Theorem 1. Let E be a compact set of capacity zero in the z-plane and let
Ω be its complementary domain. If there exists an exhaustion $\left\{\Omega_{n}\right\}$ of Ω which satisfies the conditions 1°), 2°), 3°) and 4°) stated in $\S 2$, branhces off at most ρ_{0}-times everywhere and has the graph with infinite length satisfying the conditions that

$$
\lim _{r \rightarrow \infty} \mu(r)=+\infty \quad \text { and } \quad \lim _{r \rightarrow \infty} \frac{n(r)}{r}=0,
$$

then every function, which is single-valued and meromorphic in Ω and has an essential singularity at each point ζ of E, has at most $\rho_{0}+1$ exceptional values at each singularity.

If we replace the last condition of the above by the condition

$$
\varlimsup_{r \rightarrow \infty} \frac{n(r)}{r}<+\infty,
$$

then the functions have at most a finite number of exceptional values at each singularity.
4. Before proving the theorem, we give two lemmas. Let C_{1} and C_{2} be two disjoint closed discs in the extended w-plane and let $\{\Lambda\}$ be the class of rectifiable curves ${ }^{5}$) which lie outside C_{1} and C_{2} except for their end points and join C_{1} and C_{2}. For a subclass $\left\{\Lambda^{\prime}\right\}$ of $\{\Lambda\}$, we can consider the extremal length $\lambda\left\{A^{\prime}\right\}$, which is defined as follows: Let $\{\rho\}$ be the collection of functions ρ which are non-negative and lower semi-continuous in the extended w-plane. The quantity

$$
\lambda\left\{\Lambda^{\prime}\right\}=\sup _{\rho} \frac{\operatorname{mif}_{\Lambda^{\prime}} \int_{\Lambda^{\prime}} \rho|d w|}{\iint \rho^{2} d u d v} \quad(w=u+i v)
$$

is called the extremal length of $\left\{A^{\prime}\right\}$, where we understand that $0 / 0=\infty / \infty=0$ (Ahlfors and Beurling [1], Ahlfors and Sario [2]).' ${ }^{6)}$ We have

$$
0<\lambda\{1\}<+\infty .
$$

If we consider a set c consisting of a finite number of continua in the closure of the ring domain (C_{1}, C_{2}) and set

[^2]$$
\left\{\Lambda^{\prime}\right\}_{c}=\left\{\Lambda^{\prime} \in\{\Lambda\} ; \Lambda^{\prime} \cap c=\phi\right\}
$$
then it holds that
$$
+\infty \geqq \lambda\left\{\Lambda^{\prime}\right\}_{c} \geqq \lambda\{\Lambda\} .
$$

Given a positve number τ, we shall denote by C_{τ} the class of sets c with the property that

$$
\sum_{\nu} d\left(\kappa_{\nu}\right)<\tau
$$

where $\left\{\kappa_{\nu}\right\}$ are the components of c and $d\left(\kappa_{\nu}\right)$ means the spherical diameter of κ_{v}.

Lemma 1. There is a positive number τ such that

$$
\sup _{c \in C_{\tau}} \lambda\left\{A^{\prime}\right\}_{c}<+\infty .
$$

Proof. By means of linear transformations, which correspond to rotations of sphere around the center and hence do not change spherical distance, we may assume that C_{2} is a disc $|w| \geqq R$. If we denote by $d_{e}\left(\kappa_{\nu}\right)$ the diameter of κ_{ν} with respect to the euclidean metric, then we have that

$$
\sum_{v} d_{e}\left(\kappa_{\nu}\right) \leqq\left(1+R^{2}\right) \sum_{v} d\left(\kappa_{\nu}\right) .
$$

We map the ring domain (C_{1}, C_{2}) conformally onto the annulus $1<|\zeta|<\mu$ by $\zeta(w)$, where $\mu=e^{2 \pi \lambda(\Lambda)}$. With an interior point α of C_{1}, we can represent the function $\zeta(w)$ by

$$
\zeta(w)=e^{i \theta} \mu R \frac{w-\alpha}{R^{2}-\bar{\alpha} w}
$$

and hence we see that

$$
M=\sup _{w_{1}, v_{2} \in\left(c_{1}, c_{2}\right)} \frac{\left|\zeta\left(w_{1}\right)-\zeta\left(w_{2}\right)\right|}{\left|w_{1}-w_{2}\right|} \leqq \frac{\mu(R+|\alpha|)}{R(R-|\alpha|)}<+\infty .
$$

Therefore we have that

$$
\sum_{\nu} d_{e}\left(\zeta\left(\kappa_{\nu}\right)\right) \leqq M \sum_{\nu} d_{e}\left(\kappa_{\nu}\right) \leqq M\left(1+R^{2}\right) \sum_{\nu} d\left(\kappa_{\nu}\right) .
$$

The number

$$
\tau=\stackrel{\pi}{M\left(1+R^{2}\right)}
$$

is one of the wanted. In fact, if we delete from the annulus $1<|\zeta|<\mu$ all segments $s_{\theta}: \arg \zeta=\theta(0 \leqq \theta<2 \pi), 1<|\zeta|<\mu$, which intersect $\bigcup_{\nu} \zeta\left(\kappa_{\nu}\right)$, then we have a finite number of domains $D_{i}: \theta_{2 i-1}<\arg \zeta<\theta_{2 i}, 1<|\zeta|<\mu(i=1,2, \ldots$, N) such that they are disjoint from each other and

$$
\sum_{i=1}^{N}\left(\theta_{2 i}-\theta_{2 i-1}\right) \geqq \pi .
$$

Let $\{\gamma\}$ be the class of all curves in the annulus $1<|\zeta|<\mu$ which join two boundary circles of the annulus and do not touch $\bigcup_{\nu} \zeta\left(\kappa_{\nu}\right)$ and let $\left\{s_{i}\right\}$ be the class of segments $s_{\theta}: \theta_{2 i-1}<\theta<\theta_{2 i}$. Then

$$
\left.\lambda\left\{s_{i}\right\}=\frac{1}{\theta_{2 i}-\theta_{2 i-1}} \log \mu=\frac{2 \pi \lambda\{\Lambda\}}{\theta_{2 i}-\theta_{2 i-1}} 6\right)
$$

and since domains D_{i} are disjoint from each other

$$
\lambda\left\{\Lambda^{\prime}\right\}_{c}=\lambda\{r\} \leqq \lambda\left(\bigcup_{i=1}^{N}\left\{s_{i}\right\}\right)=\frac{1}{\sum_{i=1}^{N}-\frac{1}{\lambda\left\{s_{i}\right\}}}=\frac{2 \pi \lambda\{\Lambda\}}{\sum_{i=1}^{N}\left(\theta_{2 i}-\theta_{2 i-1}\right)} \leqq 2 \lambda\{\Lambda\}^{6}
$$

Thus our proof is complete.
We shall consider distinct $n(\geqq 3)$ points $w_{1}, w_{2}, \ldots, w_{n}$ in the extended w-plane and denote by $\zeta=T_{j}^{i}, m(w)(i \neq j, m$ and $j \neq m)$ the linear transformation which transforms w_{i}, w_{j} and w_{m} to the point at infinity, the origin and the point $\zeta=1$ respectively. Now we prove the following lemma which is a consequence of Bohr-Landau's theorem [3]:

If $g(z)$ is regular in $|z|<1$ and $g(z) \neq 0,1$ there, then

$$
\max _{|z|=r}|g(z)| \leqq \exp \left(\frac{A \log (|g(0)|+2)}{1-r}\right) \quad \text { for all } r<1
$$

where A is a positive constant (a precise form of Schottky's theorem).
Lemma 2. Let R be an annulus $a<|z|<b$ in the z-plane and let c and d be positive numbers such that

$$
a<c<d<b \text { and } \log \frac{c}{a}, \log \frac{b}{d} \geqq \sigma(\sigma>0) .
$$

Then there is a positive constant δ with the following properties:

1) the spherical closed discs $C_{i}(i=1,2, \ldots, n)$ with the centers at w_{i} and with the spherical radius δ are mutually disjoint and

$$
C_{i} \subset\left(T_{i, j}^{m}\right)^{-1}(U)^{i} \quad(i \neq j, m \text { and } j \neq m)
$$

where U is the unit disc $|\zeta|<1$,
2) if, for all $r(c \leqq r \leqq d)$, a single-valued meromorphic function $f(z)$ in R omitting the values $w_{1}, w_{2}, \ldots, w_{n}$ takes on $|z|=r$ a value contained in $\left(T_{j, m}^{i}\right)^{-1}(U)$, then $f(z)$ takes no value in C_{i} in the annulus $c<|z|<d$.

Here δ depends only on σ and does not depend on R and $f(z)$.
Proof. From Bohr-Landau's theorem we can see easily that if $g(z)$ is a regular function in R such that

$$
g(z) \neq 0,1 \text { and } \min _{|z|=r}|g(z)|<1 \text { for all } r: c \leqq r \leqq d,
$$

then there is a positive constant K depending only on σ and satisfying

$$
|g(z)| \leqq K \quad \text { for every } z: c \leqq|z| \leqq d
$$

Therefore, if $T_{j, m}^{i}(f(z))$ has the same properties as $g(z)$, it holds that

$$
\left|T_{j, m}^{i}(f(z))\right| \leqq K \quad \text { for every } z: c \leqq|z| \leqq d .
$$

Hence the image of the outside V of $|\zeta| \leqq K$ by $\left(T_{j, m}^{i}\right)^{-1}$ is an open disc which contains w_{i} and has the following property: If, for all $r(c \leqq r \leqq d), f(z)$ takes on $|z|=r$ a value contained in $\left(T_{j, m}^{i}\right)^{-1}(U), f(z)$ takes no value in $\left(T_{j, m}^{i}\right)^{-1}(V)$ in the annulus $c<|z|<d$. Set

$$
U\left(w_{i}\right)=\bigcap_{\substack{j \neq m \\ j, m \neq i}}^{\cap}\left(\left(T_{j, m}^{i}\right)^{-1}(V) \cap\left(T_{i, j}^{m}\right)^{-1}(U)\right)
$$

Since $\left(T_{j, m}^{i}\right)^{-1}(V)$ and $\left(T_{i, j}^{m}\right)^{-1}(U)$ are open discs containing w_{i}, each term in the right side is a non-empty open set containing w_{i} and hence $U\left(w_{i}\right)$ is also a non-empty open set containing w_{i}. Therefore

$$
0<\delta_{i}=\min _{w \in \partial U\left(w_{i}\right)} \frac{\left|w-w_{i}\right|}{\sqrt{\left(1+|w|^{2}\right)\left(1+\left|w_{i}\right|^{2}\right)}}
$$

and hence

$$
\delta^{\prime}=\min _{1 \leqq i \leqq n} \delta_{i}>0 .
$$

If we choose a positive number $\delta \leqq \delta^{\prime}$ so that the spherical closed disc C_{i} with

[^3]the centers at w_{i} and with the spherical radius δ are mutually disjoint, then discs C_{i} satisfy all conditions of the lemma.
5. Proof of the theorem. In the case where $\rho_{0}=1, E$ consists of just one point and hence our assertion is true from Picard's theorem.

Let ρ_{0} be greater than 1. Contrary to our assertion, let us suppose that there exists a function $f(z)$ which is single-valued and meromorphic in Ω, has an essential singularity at each point of E and has more than $\rho_{0}+1$ exceptional values at a singularity $\zeta \in E$. We denote by $U(\zeta)$ a neighborhond of ζ where $f(z)$ does not take distinct $\rho_{0}+2$ values $w_{1}, w_{2}, \ldots, w_{\rho_{0}+2}$. Then we can find an n and a k such that the domain $R_{n, k}$ is contained in $U(\zeta)$ and separates the boundary of $U(\zeta)$ from ζ. Consider the component Ω^{\prime}, containing ζ, of the complement of Ω_{n-1} with respect to the extended z-plane. The complement of the closed set $E \cap \Omega^{\prime}$ with respect to the extended z-plane is a domain and if we take $\mathscr{C} \bar{\Omega}$, as the first domain of an exhaustion $\left\{\Omega_{m}^{\prime}\right\}$ of $\mathscr{C}\left(E \cap \Omega^{\prime}\right)$ and $\mathscr{C} \Omega^{\prime} \cup\left(\Omega^{\prime} \cap \Omega_{n+p-1}\right)$ as the ($p+1$)-th ($p \geqq 1$), the graph associated with this exhaustion satisfies our conditions too. In the below we shall use the notation Ω instead of $\mathscr{C}\left(E \cap \Omega^{\prime}\right)$ and the notation $\left\{\Omega_{n}\right\}$ instead of $\left\{\Omega_{m}^{\prime}\right\}$. We consider the graph associated with this exhaustion and denote by $u(z)+i v(z)$ the function which maps one-to-one conformally $\Omega-\Omega_{0}$ with at most a countable number of suitable slits onto our graph.

First we shall show that there exist a positive number τ and an r_{0} such that for all $r \geqq r_{0}$, the spherical length of the image of the niveau curve r_{r} : $u(z)=r$ is not less than τ, i.e., for all $r \geqq r_{0}$,

$$
L(r)=\int_{r_{r}} \frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}|d z| \geqq \tau>0 .
$$

Applying Lemma 2 to the set of points $w_{1}, w_{2}, \ldots, w_{\rho_{\mathrm{\rho}}+2}$, we can find a positive constant δ such that the spherical closed discs $C_{i}\left(i=1,2, \ldots, \rho_{0}+2\right)$ with the centers at w_{i} and with the spherical radius δ satisfy the conditions of the lemma.

Let $\left\{A_{i, j}\right\}(i \neq j)$ be the class of rectifiable curves in the extended w-plane which lie outside C_{i} and C_{j} except for their end points and join C_{i} and C_{j}. From Lemma 1 we can find a positive constant $\tau_{i, j}$ such that

$$
\mu_{i, j}^{\prime}=2 \pi \sup _{c \in \tau_{\tau_{i, j}}} \lambda\left\{\Lambda_{i, j}^{\prime}\right\}_{c}<+\infty,
$$

where the definition of $C_{\tau i, j}$ was given just before Lemma 1.
Set

$$
\tau^{\prime}=\min _{i \neq j} \tau_{i, j}, \quad \tau=\min \left\{\begin{array}{cc}
\tau^{\prime}, & \delta \\
2 & 2
\end{array}\right\}
$$

and

$$
\mu=\max _{i \neq j} \mu_{i, j}^{\prime} .
$$

Suppose that there is an increasing sequence of positive numbers $\left\{\boldsymbol{r}_{n}\right\}$ such that

$$
r_{1}<r_{2}<\cdots<r_{n}<\cdots \rightarrow+\infty
$$

and for each n,

$$
L\left(\boldsymbol{r}_{n}\right)<\tau .
$$

We may assume from the assumption of our theorem that

$$
\mu(r)>\mu+2 \sigma
$$

for all $r \geqq r_{\text {: }}$, where σ is a positive constant. Further we may assume that $f(z)$ takes in a component $\Omega\left(r_{1}, r_{2}\right)$ of the open set $r_{1}<u(z)<r_{2}$ two values w_{0}^{\prime} and $w_{0}^{\prime \prime}$ such that they lie outside $\bigcup_{i=1}^{\text {pot }^{2}} C_{i}$ and the spherical distance between them is greater than 2τ, because E is of capacity zero and hence $f(z)$ takes all values w infinitely often with possible exception of a set of capacity zero in any neighborhood of each point of E. Let n and p be positive integers with the property that

$$
\sum_{j=1}^{n-p-1} \sigma_{j} \leqq r_{1}<\sum_{j=1}^{n-p} \sigma_{j} \text { and } \sum_{j=1}^{n-1} \sigma_{j} \leqq r_{2}<\sum_{j=1}^{n} \sigma_{j} .
$$

The boundary $\partial \Omega\left(\boldsymbol{r}_{1}, r_{2}\right)$ of $\Omega\left(\boldsymbol{r}_{1}, r_{2}\right)$ consists of one of $\left\{r_{r_{1}}, k\right\}_{k=1,2, \ldots, n\left(r_{1}\right) \text {, say }}$ $\gamma_{r_{1}, 1}$, and some of $\left\langle\gamma_{r_{2}, k}\right\rangle_{k=1,2}, \ldots, n\left(r_{2}\right.$, , say $\left\langle r_{r_{2}, k}\right\rangle_{k=1,2, \ldots, m}\left(m \leqq n\left(r_{2}\right)\right)$. We shall say that $\gamma_{r_{2}, i}$ and $\gamma_{r_{2}, j}$ are of ν-th kin if a component $R\left(\gamma_{r_{2}, i}, \gamma_{r_{2}, j}\right)$ of $\Omega_{n}-$ $\Omega_{n-\nu-1}$ is the smallest R-chain which contains $\gamma_{r_{2}, i} \cup \gamma_{r_{2}, j}$. Since

$$
d\left(f\left(r_{r_{1}, 1}\right)\right) \leqq \underset{2}{L\left(r_{1}\right)}<\frac{\tau}{2} \text { and } \sum_{k=1}^{m} d\left(f\left(r_{r, k}\right)\right) \leqq \underset{2}{L\left(r_{2}\right)}<\frac{\tau}{2}
$$

we can cover $\bigcup_{k=1}^{m} f\left(r_{r_{2}, k}\right)$ by a finite number of mutually disjoint spherical closed discs $S_{q}\left(q=1,2, \ldots, m^{\prime} ; m^{\prime} \leqq m\right)$ with the property that

$$
\sum_{q=1}^{m^{\prime}} d\left(S_{q}\right)<\tau
$$

and $\bigcup_{k=1}^{m} f\left(\gamma_{r_{2}, k}\right) \cup f\left(\gamma_{r_{1}, 1}\right)$ by a finite number of mutually disjoint spherical closed discs $S_{q}^{\prime}\left(q=1,2, \ldots, m^{\prime \prime} ; m^{\prime \prime} \leqq m^{\prime}+1\right)$ satisfying that

$$
\bigcup_{q=1}^{m^{\prime}} S_{q} \subset \bigcup_{q=1}^{m^{\prime \prime}} S_{q}^{\prime} \text { and } \sum_{q=1}^{m^{\prime \prime}} d\left(S_{q}^{\prime}\right)<2 \tau
$$

Let z_{0}^{\prime} and $z_{0}^{\prime \prime}$ be the points of $\Omega\left(r_{1}, r_{2}\right)$ satisfying that $f\left(z_{0}^{\prime}\right)=w_{0}^{\prime}$ and $f\left(z_{0}^{\prime \prime}\right)$ $=w_{0}^{\prime \prime}$ and let r be an arbitrary curve in $\Omega\left(r_{1}, r_{2}\right)$ joining z_{0}^{\prime} and $z_{0}^{\prime \prime}$. Since the image $f(\gamma)$ of γ joins w_{0}^{\prime} and $w_{0}^{\prime \prime}$ and the spherical distance between w_{0}^{\prime} and $w_{0}^{\prime \prime}$ is greater than 2τ, we can find a point $w_{0} \in f(r)$ such that for all i there are curves Λ_{i} which join w_{0} and \widetilde{C}_{i} and do not touch $\bigcup_{q=1}^{m^{\prime \prime}} S_{q}^{\prime}$. Here we denote by \widetilde{C}_{i} the concentric spherical closed disc of C_{i} with the spherical diameter δ. Let $z_{0} \in r$ be a point satisfying that $f\left(z_{0}\right)=w_{0}$. Since $f(z)$ does not take values $\left\{w_{i}\right\}_{i=1,2, \ldots, p_{0}+2}$ on $\bar{\Omega}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)$, all curves in \widetilde{C}_{i} joining the end point of Λ_{i} on \widetilde{C}_{i} and w_{i} intersect the image of $\partial \Omega\left(r_{1}, r_{2}\right)$. In fact, if there is a curve $\tilde{\Lambda}$ not intersecting this image, the element $e\left(w ; z_{0}\right)$ of the inverse function f^{-1} corresponding to z_{0} can be continued analytically in the wider sense along $\Lambda_{i} \cup \tilde{\Lambda}$ up to a point arbitrarily near w_{i} so that the path corresponding to this continuation is contained in $\Omega\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)$. This is a contradiction. Observing that

$$
d\left(f\left(\gamma_{r_{2}, k}\right)\right) \leqq \frac{L\left(r_{2}\right)}{2} \leqq \frac{\tau}{2} \leqq \frac{\delta}{4} \quad(k=1,2, \ldots, m),
$$

we see that the inside of each C_{i} contains the image of at least one $\boldsymbol{\gamma}_{r_{2}, k} \subset \partial \Omega\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)$ possibly except for one C_{i} which may contain the image of $\gamma_{r_{1}, 1}$. Let ($\gamma_{r_{2}, h}$, $\gamma_{r_{2}, h^{\prime}}$) be one of the nearest of kin among all pairs ($\gamma_{r_{2}, k}, \gamma_{r_{2}, k^{\prime}}$) whose images are contained in distinct discs, let C_{i} and $C_{i},\left(i \neq i^{\prime}\right)$ be the discs containing their images respectively, let them be of ν-th kin and let $R_{n-v, t}$ be the domain which determines their kinship. Since our exhaustion branches off at most ρ_{0} times everywhere, we can find at least two discs, say C_{j} and $C_{j},\left(j \neq j^{\prime}\right)$, which do not contain the image of any $\gamma_{r_{2}, k}$ of ν-th or nearer than ν-th kin to $\gamma_{r_{2}, h}$ or $\gamma_{r_{2}, h^{\prime}}$.

Let R be the longest doubly-connected R-chain containing $R_{n-\nu, t}$. Then from our assumption the harmonic modulus of R is greater than $\mu+2 \sigma$. Further $R \neq R\left(\gamma_{r_{1}, 1}\right)$ and hence $R \subset \Omega\left(\boldsymbol{r}_{1}, r_{2}\right)$, for if $R=R\left(\gamma_{r_{1}, 1}\right)$ all $\gamma_{r_{2}, k}(k=1,2, \ldots, \cdot m)$
are of ν-th or nearer than ν-th kin to $\gamma_{r_{2}, h}$ or $\gamma r_{2}, h^{\prime}$ and C_{j} and C_{j}, can not contain the image of any $\gamma_{r_{2}, k}(k=1,2, \ldots, m)$. We may consider R as an annulus $a<|z|<b(\log b / a>\mu+2 \sigma)$ and denote $a e^{\sigma}$ and $b e^{-\sigma}$ by c and d respectively. We observe that for each $s(a<s<b)$ the image of the circle $K_{s}:|z|=s$ by $f(z)$ intersects $\left(T_{i^{\prime}, j^{\prime}}^{i}\right)^{-1}(U)$ and $\left(T_{\left.i^{\prime}, j^{\prime},\right)^{-1}}^{j}(U)\right.$. In fact, we know that $C_{i^{\prime}} \subset$ $\left(T_{i^{\prime}, j^{\prime}}^{i}\right)^{-1}(U) \cap\left(T_{i^{\prime}, j^{\prime}}^{j}\right)^{-1}(U)$. Suppose that $f\left(K_{s}\right) \cap C_{i^{\prime}}=\phi$ and denote by $\gamma\left(h^{\prime}\right)$ a curve in $\Omega\left(r_{1}, r_{2}\right)$ joining z_{0} and a point of $r_{r_{2}, h^{\prime}}$. The images of $\gamma_{r_{2}, k}$ of ν-th or nearer than ν-th kin to $\gamma_{r_{2}, h}$ or $\gamma_{r_{2}, h^{\prime}}$ are covered by some of $\left\{S_{q}\right\}\left(1 \leqq q \leqq m^{\prime}\right)$, say $\left\{S_{q}\right\}\left(1 \leqq q \leqq m_{0}^{\prime} ; m_{0}^{\prime}<m^{\prime}\right)$. Since

$$
\sum_{q=1}^{m_{0}^{\circ}} d\left(S_{q}\right)<\tau \leqq \frac{\delta}{2}
$$

and since $\left(T_{i^{\prime}, j^{\prime}}^{j^{\prime}}\right)^{-1}(U)$ is spherical disc containing $C_{i^{\prime}}$, there are point $w^{\prime} \in$ $f\left(\gamma\left(h^{\prime}\right)\right) \cap C_{i}$, outside $\bigcup_{q=1}^{m_{0}^{\prime}} S_{q}$ and a curve A in $\left(T_{i^{\prime}, j^{\prime}}^{i}\right)^{-1}(U)$ which joins w^{\prime} and w_{j}, and does not touch ${\underset{q}{ }=1}_{m_{0}^{\prime}} S_{q}$. Let z^{\prime} be the point of $\gamma\left(h^{\prime}\right)$ such that $f\left(z^{\prime}\right)=w^{\prime}$ and let $e\left(w ; z^{\prime}\right)$ be the element of f^{-1} corresponding to z^{\prime}. Continue $e\left(w ; z^{\prime}\right)$ along A. If A does not intersect $f\left(K_{s}\right), f(z)$ must take the value w_{j}, in $\Omega\left(r_{1}, r_{2}\right)$; this is a contradiction. By the same reasoning we see that $f\left(K_{s}\right) \cap\left(T_{i^{\prime}, j^{\prime}}^{j}\right)^{-1}(U) \neq \emptyset$. It now follows by Lemma 2 that $f(z)$ does not take any value of $C_{i} \cap C_{j}$ in $c<|z|<d$. Consequently if we consider the class of all rectifiable curves $\left\{A_{i, j}\right\}$ which lie outside $C_{i} \cup C_{j}$ except for their end points, join C_{i} and C_{j} and do not intersect $\bigcup_{q=1}^{m^{\prime \prime}} S_{q}^{\prime}$, then by the same reasoning as above, we can see easily that each $A_{i, j}$ contains a curve which is the image of a curve Γ^{\prime} in the annulus $c<|z|<d$ joining its two boundary circles. Let $\{T\}$ be the class of all rectifiable curves in $c<|z|<d$ joining its two boundary circles and let $\left\{\Gamma^{\prime}\right\}$ be the subclass of $\{\Gamma\}$ such that for each Γ^{\prime} there is a $\Lambda_{i, j}$ containing its image $f\left(\Gamma^{\prime}\right)$. Then we have that

$$
\lambda\{\Gamma\} \leqq \lambda\left\{\Gamma^{\prime}\right\} \leqq \lambda\left\{f\left(\Gamma^{\prime}\right)\right\} \leqq \lambda\left\{A_{i, j}\right\} .^{6)}
$$

Since

$$
\sum_{q=1}^{m^{\prime \prime}} d\left(S_{q}^{\prime}\right)<2 \tau \leqq \tau^{\prime},
$$

we see from the definitions of τ^{\prime} and μ that

$$
2 \pi \lambda\left\{\Lambda_{i, j}\right\} \leqq \mu
$$

and hence

$$
2 \pi \lambda\{\Gamma\} \leqq \mu
$$

But on the other hand we have

$$
2 \pi \lambda\left\{I^{\prime}\right\}=\bmod (\text { the annulus } c<|z|<d)>\mu^{8) 6}
$$

Thus we are led to a contradiction and we can conclude that there is an r_{0} such that

$$
L(r) \geqq \tau
$$

for all $r \geqq r_{0}$.
Let Ω_{r} denote the subdomain of Ω bounded by the niveau curve $\gamma_{r}: u(z)$ $=r$, let $\mathscr{\Phi}_{r}$ denote the Riemannian image of Ω_{r} and let $A(r)$ denote the spherical area of $\mathscr{\emptyset}_{r}$. Then

$$
A(r)=\int_{0}^{r} \int_{0}^{2 \pi} \frac{\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}}\left|\varphi^{\prime}(u+i v)\right|^{2} d v d u
$$

where we denote by φ the invease function of $u(z)+i v(z)$. Set

$$
S(r)=\frac{A(r)}{\pi} \quad \text { and } \quad \xi=\lim _{r \rightarrow \infty} \frac{n(r)}{S(r)}
$$

Then the following holds:
If s is finite, then $f(z)$ takes every value in the extended w-plane infinitely often with possibie $2+[\xi]$ exceptions, where [$\xi]$ denotes the greatest integer not exceeding s (Hällström [4], Tsuji [12], [13]).

Hence our theorem is obtained immediately. In fact, we showed in the above that for all $r \geqq r_{0}$

$$
\tau \leqq L(r)=\int_{0}^{2 \pi} \frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}\left|\varphi^{\prime}(u+i v)\right| d v
$$

By the Schwarz inequality, we have

$$
\tau^{2} \leqq 2 \pi \int_{0}^{2 \pi} \frac{\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}}\left|\varphi^{\prime}(u+i v)\right|^{2} d v
$$

and hence

$$
\frac{\tau^{2}}{2 \pi}\left(r-r_{0}\right) \leqq \int_{0}^{r} \int_{0}^{2 \pi} \frac{\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}}\left|\varphi^{\prime}(u+i v)\right|^{2} d v d u=A(r)
$$

[^4]From our condition, it follows that

$$
0 \leqq \lim _{r \rightarrow \infty} \frac{n(r)}{S(r)} \leqq \frac{2 \pi^{2}}{\tau^{2}} \lim _{r \rightarrow \infty} \frac{n(r)}{\left(r-r_{0}\right)}=\frac{2 \pi^{2}}{\tau^{2}} \lim _{r \rightarrow \infty} \frac{n(r)}{r}=0 .
$$

This contradicts the assumption that $f(z)$ has more than two exceptional values.
By the same arguments, we can see that $f(z)$ has at most a finite number of exceptional values if

$$
\varlimsup_{r \rightarrow \infty} \frac{n(r)}{r}<+\infty .
$$

Thus our theorem is established.
Remark. Let D be a domain containing E completely. From our proof we can see that every function, which is single-valued and meromorphic in the domain $D-E$ and has an essential singularity at each point of E, has at most $\rho_{0}+1$ exceptional values at each singularity.
6. Let E be the boundary of a domain D in the z-plane and let ζ be a point of E. If ζ has a neighborhood $U(\zeta)$ whose boundary consists of one closed analytic curve not touching $E, \Omega_{\zeta}=D \cap U(\zeta)$ is a domain. An exhaustion of Ω_{ζ} whose first domain is $\mathscr{C} \overline{U(\zeta)}$ is called a local exhaustion of D at ζ and the graph associated with this is called a local graph at ζ.

Theorem 2. Let E be the boundary of a domain D in the z-plane and let ζ be a point of E. If there is a local exhaustion at ζ which satisfies the conditions 1°), 2°), 3°) and 4°) stated in § 2, branches off at most ρ_{0}-times everywhere and has the local graph with infinite length satisfying the conditions that

$$
\lim _{r \rightarrow \infty} \mu(r)=+\infty \quad \text { and } \quad \lim _{r \rightarrow \infty} \frac{n(r)}{r}=0,
$$

or if there exists a sequence of points $\left\{\zeta_{n}\right\}$ of E converging to ζ, at each point of which the local exhaustion with the same properties as above is found, then every function, which is single-valued and meromorphic in D and has an essential singularity at each point of E, llas at most $\rho_{0}+1$ exceptional values at ζ.

If at each ζ_{n}, the local exhaustion branches off at most ρ_{n}-times everywhere and has the local graph with infinite length satisfying the conditions that

$$
\lim _{r \rightarrow \infty} \mu(r)=+\infty . \text { and } \lim _{r \rightarrow \infty} \frac{n(r)}{r}<+\infty,
$$

then the funstions have at most a countable number of exceptional values at ζ. (We remark that integers ρ_{n} depend on n and need not be bounded.)

For in the case where there is a local exhaustion at ζ satisfying our conditions, the assertion is true obviously from Theorem 1. If ζ is the limiting point of $\left\{\zeta_{n}\right\}$, each neighborhood contains points of $\left\{\zeta_{n}\right\}$ and hence $f(z)$ has at most $\rho_{0}+1$ exceptional values at ζ.

If we replace the condition $\lim _{r \rightarrow \infty} n(r) / r=0$ by $\lim _{r \rightarrow \infty} n(r) / r<+\infty$ and if $f(z)$ has non-countable number of exceptional values, then we can find a neighborhood where $f(z)$ does not take an infinite number of values; this contradicts the fact that this neighborhood contains points of $\left\{\zeta_{n}\right\}$ where $f(z)$ has at most a finite number of exceptional values.
7. In this section we shall show the existence of general Cantor sets in whose complement the functions have a finite number of exceptional values.

First we state the definition of general Cantor sets. ${ }^{9}$ Let k_{1}, k_{2}, \ldots be integers greater than 1 and let p_{1}, p_{2}, \ldots be finite numbers also greater than 1. We set $h_{q}=1 /\left(k_{q} p_{q}\right)$. Let I be a closed interval with the length $d>0$. We delete ($k_{q}-1$) intervals of equal length from I so that there remain k_{q} intervals of equal length $h_{q} d$. We call this operation the g-operation applied to I. We begin by applying the 1 -operation to $[0,1]$, next apply the 2 -operation to each of the remaining intervals $I_{1 \nu}\left(1 \leqq \nu \leqq k_{1}\right)$, further apply the 3 -operation to each of the remaining intervals $I_{2 \nu}\left(1 \leqq \nu \leqq k_{1} k_{2}\right)$ and so on. We call the limiting set of the union of $I_{n \nu} s\left(1 \leqq \nu \leqq \prod_{q=1}^{n} k_{q}\right)$ a general Cantor set and denote by $F\left(k_{q}, p_{q}\right)$.

Now we prove the following
Theorem 3. If

$$
k_{q} \leqq \rho_{0}(q \geqq 1) \quad \text { and } \quad \lim _{q \rightarrow \infty} p_{q}=+\infty,
$$

and if

$$
\varlimsup_{n \rightarrow \infty} \frac{\prod_{q=1}^{n-1} k_{q}}{\sum_{j=2}^{n-1} \frac{1}{\prod_{q=1}^{\frac{1}{j}} k_{q}} \log \frac{1+\frac{\rho_{0}}{\rho_{0}-1}\left(P_{j-1}-1\right)}{2}}=0 \quad(<+\infty, \text { resp. }),
$$

[^5]then every function, which is single-valued and meromorpic in the complementary domain Ω of $F\left(k_{q}, p_{q}\right)^{101}$ and has an essential singularity at each point of $F\left(k_{q}, p_{q}\right)$, has at most $\rho_{0}+1$ (a finite number of resp.) exceptional values at each singularity.

Proof. It is sufficient for us to prove that under the conditions of the theorem, $F\left(k_{q}, p_{q}\right)$ has the complement satisfying the conditions of Theorem 1.

Since $p_{q} \rightarrow \infty$ as $q \rightarrow \infty$ and since it suffices to prove locally, we may assume that $p_{q} \geqq 2$ for all q. We define an exhaustion $\left\{\Omega_{n}\right\}$ of Ω as follows: First we take the outside of the disc $\left|z-\frac{1}{2}\right| \leqq 1$ as the first domain Ω_{0}. Let $C_{1 v}(1 \leqq \nu$ $\left.\leqq k_{1}\right)$ be the circles with the centers at the middle points of $I_{1 \nu}\left(1 \leqq \nu \leqq k_{1}\right)$ and with the same radius

$$
\frac{1}{2}\left(h_{1}+\frac{1}{k_{1}-1}\left(1-\frac{1}{p_{1}}\right)\right) .
$$

Then for each $\nu\left(1 \leqq \nu<k_{1}\right) C_{1 \nu}$ touches $C_{1(\nu+1)}$. The domain bounded by all of $C_{1 v}$ is taken the second domain $\Omega_{1} . \Omega_{1}-\bar{\Omega}_{0}$ is a doubly-connected domain with the harmonic modulus

$$
\mu_{1,1}=\sigma_{1}>\log \frac{2}{1+\frac{1}{k_{1}-1}\left(1-\frac{1}{p_{1}}\right)}>0,
$$

because it contains the annulus $1>\left|z-\frac{1}{2}\right|>\frac{1}{2}\left(1+\frac{1}{k_{1}-1}\left(1-\frac{1}{p_{1}}\right)\right)$. Next we draw the circles $C_{2 \nu}\left(1 \leqq \nu \leqq k_{1} k_{2}\right)$ with the centers at the middle points of $I_{2 \nu}$ ($1 \leqq \nu \leqq k_{1} k_{2}$) and with the equal radius

$$
\frac{1}{2} h_{1}\left(h_{2}+\frac{1}{k_{2}-1}\left(1-\frac{1}{p_{2}}\right)\right) .
$$

Then for each $\nu\left((m-1) k_{2}+1 \leqq \nu<m k_{2} ; m=1,2, \ldots, k_{1}\right) C_{2 \nu}$ touches $C_{2(\nu+1)}$. We take as the third domain Ω_{2} the domain bounded by all of $C_{2 \nu}$ and see that the open set $\Omega_{2}-\bar{\Omega}_{1}$ consists of k_{1} doubly-connected domains $R_{2,1}, R_{2,2}, \ldots, R_{2, k_{1}}$ which are congruent and hence have the equal harmonic modulus

$$
\begin{array}{r}
\mu_{2, k}=k_{1} \sigma_{2}>\log \frac{h_{1}+\frac{1}{k_{1}-1}\left(1-\frac{1}{p_{1}}\right)}{h_{1}\left(1+\frac{1}{k_{2}-1}\left(1-\frac{1}{p_{2}}\right)\right)} \geqq \log \frac{1+\frac{\rho_{0}}{\rho_{0}-1}\left(p_{1}-1\right)}{2}>0 \\
\quad\left(k=1,2, \ldots, \dot{k}_{1}\right),
\end{array}
$$

[^6]because they contain the annulus bounded by the concentric circles with radii $\frac{1}{2}\left(h_{1}+\frac{1}{k_{1}-1}\left(1-\frac{1}{p_{1}}\right)\right)$ and $\frac{1}{2} h_{1}\left(1+\frac{1}{k_{2}-1}\left(1-\frac{1}{p_{2}}\right)\right)$. Generally, let $C_{n \nu}(1 \leqq$ $\left.\nu \leqq \prod_{q=1}^{n} k_{q}\right)$ be the circles with the centers at the middle points of $I_{n \nu}\left(1 \leqq \nu \leqq \prod_{q=1}^{n} k_{q}\right)$ and with the equal radius
$$
\frac{1}{2} \prod_{q=1}^{n-1} h_{q}\left(h_{n}+\frac{1}{k_{n}-1}\left(1-\frac{1}{p_{n}}\right)\right) .
$$

Take the domain bounded by these circles as the ($n+1$) -th domain Ω_{n}. Then, since for each $\nu\left((m-1) k_{n}+1 \leqq \nu<m k_{n} ; m=1,2, \ldots, \prod_{q=1}^{n-1} k_{q}\right) C_{n \nu}$ touches $C_{n(\nu+1)}$, the open set $\Omega_{n}-\bar{\Omega}_{n-1}$ consists of $\prod_{q=1}^{n-1} k_{q}$ congruent doubly-connected domains $R_{n, k}\left(1 \leqq k \leqq \prod_{q=1}^{n-1} k_{q}\right.$) with the equal harmonic modulus

$$
\begin{array}{r}
\mu_{n, k}=\left(\prod_{q=1}^{n-1} k_{q}\right)_{\sigma_{n}}>\log \frac{h_{n-1}+\frac{1}{k_{n-1}-1}\left(1-\frac{1}{p_{n-1}}\right)}{h_{n-1}\left(1+\frac{1}{k_{n}-1}\left(1-\frac{1}{p_{n}}\right)\right)} \geqq \log \frac{1+\frac{\rho_{0}}{\rho_{0}-1}\left(p_{n-1}-1\right)}{2}>0 \\
\left(1 \leqq k \leqq \prod_{q=1}^{n-1} k_{q}\right) .
\end{array}
$$

For they contain the annulus bounded by the concentric circles with radii $\frac{1}{2}\left(\prod_{q=1}^{n-2} h_{q}\right)\left(h_{n-1}+\frac{1}{k_{n-1}-1}\left(1-\frac{1}{p_{n-1}}\right)\right)$ and $\frac{1}{2}\left(\prod_{q=1}^{n-1} h_{q}\right)\left(1+\frac{1}{k_{n}-1}\left(1-\frac{1}{p_{n}}\right)\right)$. The domains Ω_{n} form obviously an exhaustion of Ω which satisfies 1°), 2°), 3°) and 4°) in $\S 2$ and branches off at most ρ_{0}-times everywhere.

Now we consider the graph associated with this exhaustion. The open sets $\Omega_{n}-\Omega_{n-1}(n \geqq 1)$ have harmonic moduli σ_{n} such that

$$
\sigma_{1}>0 \quad \text { and } \quad \sigma_{n}=\frac{\mu_{n, k}}{\prod_{q=1}^{n-1} k_{q}}>\frac{1}{\prod_{q=1}^{n-1} k_{q}} \log \frac{1+\frac{\rho_{0}}{\rho_{0}-1}\left(p_{n-1}-1\right)}{2} \quad(n \geqq 2)
$$

and hence we see from our assumption that

$$
R=\sum_{n=1}^{\infty} \sigma_{n}>\sum_{n=2}^{\infty} \frac{1}{\prod_{q=1}^{n-1} k_{q}} \log \frac{1+\frac{\rho_{0}}{\rho_{0}-1}\left(p_{n-1}-1\right)}{2}=+\infty
$$

that is, the length of the graph is infinite. We shall show that

$$
\lim _{r \rightarrow \infty} \mu(r)=+\infty \quad \text { and } \quad \lim _{r \rightarrow \infty} \frac{n(r)}{r}=0 \quad(<+\infty, \text { resp. }) .
$$

Since

$$
\mu(r)=\mu_{n, k}>\log \frac{1+\frac{\rho_{0}}{\rho_{0}-1}\left(p_{n-1}-1\right)}{2} \quad\left(\sum_{j=1}^{n-1} \sigma_{j} \leqq r<\sum_{j=1}^{n} \sigma_{j}\right)
$$

and since $p_{n} \rightarrow+\infty$ as $n \rightarrow \infty$, the first relation holds. From our condition and from the facts that

$$
n(r)=\prod_{q=1}^{n-1} k_{q}\left(\sum_{j=1}^{n-1} \sigma_{j} \leqq r<\sum_{j=1}^{n} \sigma_{j}\right) \text { and } \sum_{j=1}^{n-1} \sigma_{j}>\sum_{j=2}^{n-1} \frac{1}{\prod_{q=1}^{j-1} k_{q}} \log \frac{1+\frac{\rho_{0}}{\rho_{0}-1}\left(p_{n-1}-1\right)}{2},
$$

we have

$$
\overline{\varlimsup_{r \rightarrow \infty}} \frac{n(r)}{r} \leqq \varlimsup_{n \rightarrow \infty} \frac{\prod_{q=1}^{n-1} k_{q}}{\sum_{j=2}^{n-1} \frac{1}{\prod_{q=1}^{j-1} k_{q}} \log \frac{1+\frac{\rho_{0}}{\rho_{0}-1}\left(p_{j-1}-1\right)}{2}}=0
$$

$$
\text { (}<+\infty \text {, resp. }) .
$$

Thus we see that all conditions of Theorem 1 are satisfied. The proof is now complete.

For instance, the general Cantor set $F\left(k_{q}, p_{q}\right)$ such that

$$
k_{q}=\rho_{0}(q \geqq 1) \quad \text { and } \quad p_{q}=2 \exp \rho_{0}^{\alpha q} \quad(\alpha>2)
$$

satisfies the conditions of Theorem 3. In fact, we have that

$$
\lim _{n \rightarrow \infty} \frac{\rho_{0}^{n-1}}{\sum_{j=2}^{n-1} \frac{1}{\rho_{0}^{j-1}} \log \frac{1+\frac{\rho_{0}}{\rho_{0}-1}\left(2 e^{\rho_{0}^{\alpha(j-1)}}-1\right)}{2}} \leqq \lim _{n \rightarrow \infty} \frac{\rho_{0}^{n-1}}{\sum_{j=2}^{n-1} \rho_{0}^{(\alpha-1)(j-1)}}=0 .
$$

8. In this last section, we shall show by an example that the conditions of Theorem 1 for $\rho_{0}=2$ are not sufficient'in order that the number of exceptional values is not greater than two, that is, there exist a perfect set E satisfying the conditions of Theorem 1 for $\rho_{0}=2$ and a function $f(z)$ which is single valued and meromorphic in the complement of E, has an essential singularity at each point of E and has three exceptional values at each singularity.

Example. We delete from the w-plane the origin and the point $w=1$ and denote by R the resulting domain. By induction we shall construct convering surfaces \hat{R}^{n} of the w-plane and define an exhaustion $\left\{\hat{R}_{k}\right\}_{k=0,1,2, \ldots}$ of their limiting surface \hat{R} in the below.

Let A, B, C, \ldots denote simple closed analytic curves in R. Consider three points : the point at infinity, the origin and the point $w=1$. We shall denote by $\{A, B ; C, D, E\}_{\infty}\left(\{A, B ; C, D, E\}_{0},\{A, B ; C, D, E\}_{1}\right.$, resp.) a set of five curves such that A and B separate the point at infinity (the origin, the point $w=1$, resp.) from the other two points and touch each other, such that C separates A from the point at infinity (the origin, the point $w=1$, resp.) and such that D and E surround the origin and the point $w=1$ respectively (the point $w=1$ and the point at infinity respectively, the point at infinity and the origin respectively, resp.), touch each other and form with B the boundary of a doubly-connected domain $(B, D \cup E)^{11}$. Further we shall denote by $\{F, G$; $H, I\}_{\infty}\left(\{F, G ; H, \mathrm{I}\}_{0},\{F, G ; H, I\}_{1}\right.$, resp. $)$ a set of four curves such that F separates the point at infinity (the origin, the point $w=1$, resp.) from the others, G is homotopic to zero with respect to R and they touch each other and that H and I separate F and G, respectively, from the point at infinity (the origin, the point $w=1$, resp.).

First we take a replica \hat{R}^{1} of R. We can determine there $\left\{\alpha_{1,1}, \alpha_{1,2} ; \alpha_{2,1}\right.$, $\left.\alpha_{2,2}, \alpha_{2,3}\right\}_{\infty}$ so that the harmonic moduli of doubly connected domains ($\alpha_{1,1}, \alpha_{2,1}$) and ($\boldsymbol{\alpha}_{1,2}, \boldsymbol{\alpha}_{2,2} \cup \boldsymbol{\alpha}_{2,3}$) are not less than 8 . In fact, first we determine curves $\boldsymbol{\alpha}_{2,2}$ and $\alpha_{2,3}$, next determine $\alpha_{1,2}$ so that

$$
\bmod \left(\alpha_{1,2}, \alpha_{2,2} \cup \alpha_{2,3}\right) \geqq 8
$$

and last determine $\alpha_{1,1}$ and $\alpha_{2,1}$ so that

$$
\bmod \left(\alpha_{1,1}, \alpha_{2,1}\right) \geqq 8
$$

The domain bounded by $\alpha_{1,1} \cup \alpha_{1,2}$ is taken as \hat{R}_{1} and the domain bounded by $\alpha_{2,1} \cup \alpha_{2,2} \cup \boldsymbol{\alpha}_{2,3}$ is taken as \hat{R}_{2}. We determine \hat{R}_{0} so that $\overline{\hat{R}}_{0} \subset \hat{R}_{1}$ and $\hat{R}_{1}-\overline{\hat{R}}_{0}$ is a doubly-connected domain with the harmonic modulus not less than 2. Denoting by σ_{j} the harmonic moduli of the open sets $\hat{R}_{j}-\overline{\hat{R}}_{j-1}$, we observe that

$$
\sigma_{1} \geqq 2, \sigma_{2} \geqq 4 \text { and } n(r) \leqq 2 \text { for all } r: 0 \leqq r<\sigma_{1}+\sigma_{2} .
$$

[^7]Next we take three replicas $\left\{R_{i}\right\}_{i=1,2,3}$ of R. We draw $\left\{\alpha_{3,1}, \alpha_{3,2} ; \alpha_{4,1}, \alpha_{5,1}\right\}_{\infty}$ in \hat{R}^{1} and $\left\{\alpha_{4,2}, \alpha_{4,2} ; \alpha_{5,2}, \alpha_{5,3}, \alpha_{5,4}\right\}_{\infty}$ in R_{1} as follows: First we determine $\alpha_{4,3}$, $\alpha_{5,3}$ and $\alpha_{5,4}$ in R_{1} so that

$$
\bmod \left(\alpha_{4,3}, \alpha_{5,3} \cup \alpha_{5,4}\right) \geqq 9 \cdot 2^{5}
$$

and next determine $\left\{\alpha_{3,1}, \alpha_{3,2} ; \alpha_{4,1}, \alpha_{5,1}\right\}_{\infty}$ in \hat{R}^{1} so that $\alpha_{3,1} \cup \alpha_{3,2}$ is contained in the end part of \hat{R}^{1} bounded by $\alpha_{2,1}$ and does not intersect the same curve as $\alpha_{4,3}$ drawn in \hat{R}^{1}, and that
$\bmod \left(\alpha_{2,1}, \alpha_{3,1} \cup \alpha_{3,2}\right) \geqq 3 \cdot 2^{3}, \bmod \left(\alpha_{3,1}, \alpha_{4,1}\right) \geqq 6 \cdot 2^{4}$ and $\bmod \left(\alpha_{4,1}, \alpha_{\overline{5}, 1}\right) \geqq 9 \cdot 2^{5}$.
Last we determine $\alpha_{1,2}$ and $\alpha_{\overline{5}, 2}$ so that the domain bounded by $\alpha_{1,2}$ and $\alpha_{1,3}$ contains the same curve as $\alpha_{3,2}$ drawn in R_{1} and

$$
\bmod \left(\alpha_{4,2}, \alpha_{5,2}\right) \geqq 9 \cdot 2^{5}
$$

We connect R_{1} with \hat{R}^{1} crosswise across a slit in the domain bounded by $\alpha_{3,2}$. If we choose this slit sufficiently small, we have

$$
\bmod \left(\alpha_{3,2}, \alpha_{4,2} \cup \alpha_{4,3}\right) \geqq 6 \cdot 2^{1} .
$$

In the similar manner, we draw $\left\{\alpha_{3,3}, \alpha_{3,4} ; \alpha_{4,4,}, \alpha_{\overline{5}, 3}\right\}_{0}$ and $\left\{\alpha_{3,5}, \alpha_{3,6} ; \alpha_{1,5,} \alpha_{5,5}\right\}_{1}$ in $\hat{R}^{1},\left\{\dot{\alpha}_{4,5}, \alpha_{4,6} ; \alpha_{\overline{5}, 6}, \alpha_{5,7}, \alpha_{\overline{5}, 3}\right\}_{0}$ in R_{2} and $\left\{\alpha_{4,8}, \alpha_{4,5 ;} ; \alpha_{5,10}, \alpha_{5,11}, \alpha_{5,12}\right\}_{1}$ in $R_{: 3}$ and connect R_{2} and R_{3} with \hat{R}^{1} across suitable slits in domains bounded by $\alpha_{3,4}$ and $\alpha_{3,6}$. The resulting surface is denoted by \hat{R}^{2}. We take as \hat{R}_{3} the domain of \hat{R}^{2} bounded by $\bigcup_{i=1}^{6} \alpha_{3, i}$, as \hat{R}_{4} one bounded by $\bigcup_{i=1}^{9} \alpha_{4, i}$ and as $\hat{R}_{;}$one bounded by $\bigcup_{i=1}^{12} \alpha_{5, i}$. Then we see that

$$
\sigma_{j} \geqq 2^{j}(1 \leqq j \leqq 5) \text { and } n(r) \leqq 9 \text { for all } r: \sum_{j=1}^{2} \sigma_{j} \leqq r<\sum_{j=1}^{5} \sigma_{j} .
$$

Suppose that \hat{R}^{n} and $\hat{R}_{k}(0 \leqq k \leqq 3 n-1)$ are obtained so that \hat{R}^{n} has 4^{n-1} sheets and $\partial \hat{R}_{3 n-1}$ consists of $3 \cdot 4^{n-1}$ simple closed analytic curves $\alpha_{3 n-1, i}\left(1 \leqq i \leqq 3 \cdot 4^{n-1}\right)$, each of which separates one of the three points from the other two, and that

$$
\begin{aligned}
\sigma_{j} \geqq 2^{j}(1 \leqq j \leqq 3 n-1) \text { and } n(r) \leqq 9 \cdot 4^{p-2} \text { for all } r: \sum_{j=1}^{3 p-4} \sigma_{j} \leqq r< & \sum_{j=1}^{3 \mu-1} \sigma_{j} \\
& (2 \leqq p \leqq n) .
\end{aligned}
$$

Then we take $3 \cdot 4^{n-1}$ replicas $R_{i}\left(1 \leqq i \leqq 3 \cdot 4^{n-1}\right)$ of R and connect each R_{i} with \hat{R}^{n} crosswise across a suitable slit in the end part of \hat{R}^{n} divided by $\alpha_{3 n-1, i}$ as
follows: We consider only the case where $\alpha_{3 n-1, i}$ surrounds the point at infinity. (In the other cases, it is sufficient for us to replace ∞ by 0 or 1 in the below.) In a similar way as above we determine $\left\{\alpha_{3 n, 2 i-1}, \alpha_{3 n, 2 i} ; \alpha_{3 n+1,3 i-2}, \alpha_{3 n+2,4 i-3}\right\}_{\infty}$ in the end part of \hat{R}^{n} divided by $\alpha_{3 n-1, i}$ and $\left\{\alpha_{3 n+1,3 i-1}, \alpha_{3 n+1,3 i} ; \alpha_{3 n+2,4 i-2}\right.$, $\left.\alpha_{3 n+2,1 i-1}, \alpha_{3 n+2,4 i}\right\}_{\infty}$ in R_{i} so that the harmonic moduli of the doubly-connected domains $\left(\alpha_{3 n+1,3 i-2}, \alpha_{3 n+2,4 i-3}\right),\left(\alpha_{3 n+1,3 i-1}, \alpha_{3 n+2,4 i-2}\right)$ and ($\alpha_{3 n+1,3 i}, \alpha_{3 n+2,4 i-1} \cup$ $\left.\alpha_{3 n+2,4 i}\right)$ are not less than $2^{3 n+2}$, and that

$$
\bmod \left(\alpha_{3 n, 2 i-1}, \alpha_{3 n+1,3 i-2}\right) \geqq 2^{3 n+1} \text { and } \bmod \left(\alpha_{3 n-1, i}, \alpha_{3 n, 2 i-1}\right) \geqq 2^{3 n}
$$

Then we connect R_{i} with \dot{R}^{n} crosswise across a slit in the domain bounded by $\alpha_{3 n, 2 i}$, where we choose it so small that

$$
\bmod \left(\alpha_{3 n, 2 i}, \alpha_{3 n+1,3 i-1} \cup \alpha_{3 n+1,3 i}\right) \geqq 2^{3 n+1}
$$

In the surface \hat{R}^{n+1} thus obtained we determine $\hat{R}_{3 n}, \hat{R}_{3 n+1}$ and $\hat{R}_{3 n+2}$ as the domains bounded by $\bigcup_{i} \alpha_{3 n, i}, \bigcup_{i} \alpha_{3 n+1, i}$ and $\bigcup_{i} \alpha_{3 n+2, i}$ respectively. It is easily seen that \hat{R}^{n+1} and $\hat{R}_{k}(0 \leqq k \leqq 3 n+2)$ satisfy the all conditions added on \hat{R}^{n} and $\hat{R}_{k}(0 \leqq k \leqq 3 n-1)$ for $n+1$. The limiting surface \hat{R} is a covering surface of the w-plane, has a null boundery and is of planar character.

We map \hat{R} one-to-one conformally onto a domain Ω in the z-plane which is the complement of a compact set E of capacity zero and denote this mapping function by \hat{f}. By the same arguments used in [7] we see that $f(z)=$ $\varphi \circ \hat{f}^{-1}(z)$ is single-valued and meromorphic in Ω, has an essential singularity at each point of E and has at each singularity three exceptional values: values 0,1 and infinity, where we denote by φ the projection of \hat{R} into the w-plane. But E satisfies the conditions of Theorem 1. In fact, if we take as an exhaustion of $\Omega\left\{\Omega_{k}=\hat{f}^{-1}\left(\hat{R}_{k}\right)\right\}_{k=0,1,2, \ldots}$, it satisfies obviously the conditions $\left.\left.1^{\circ}\right), 2^{\circ}\right)$, 3°) and 4°) in $\S 2$ and branches off at most 2 -times everywhere. Furthermore since the harmonic moduli of the open sets $\Omega_{k}-\Omega_{k-1}(k \geqq 1)$ are equal to $\sigma_{k} \geqq 2^{k}$ and since

$$
n(r) \leqq 9 \cdot 4^{p-2} \text { for all } r: \sum_{j=1}^{3 p-4} \sigma_{j} \leqq r<\sum_{j=1}^{3 \nu-1} \sigma_{j} \quad(p \geqq 2),
$$

we have that

$$
\lim _{r \rightarrow \infty} \mu(r) \geqq \lim _{k \rightarrow \infty} 2^{k}=+\infty \text { and } \lim _{r \rightarrow \infty} \frac{n(r)}{r} \leqq \lim _{p \rightarrow \infty} \frac{9 \cdot 4^{p-1}}{\sum_{j=1}^{3_{p-1}^{p-1}} 2^{j}}=\frac{9}{4} \lim _{y \rightarrow \infty} \frac{1}{2^{p}\left(1-2^{-3 p}\right)}=0
$$

Remark. It is still open whether there is a perfect set E for which every function has at most two exceptional values at each singularity.

References

[1] L. V. Ahlfors and A. Beurling: Conformal invariants and function-theoretic null-sets, Acta Math., 83 (1950), pp. 101-129.
[2] L. V. Ahlfors and L. Sario: Riemann surfaces, Princeton Univ. Press (1960).
[3] H. Bohr and E. Landau: Über das Verhalten von $\zeta(s)$ und $\zeta_{h}(s)$ in der Nähe der Geraden $\sigma=1$, Göttinger Nachr., (1910).
[4] G. af Hällström: Über meromorphe Funktionen mit mehrfach zusammenhängenden Existenzgebieten, Acta Acad. Aboensis, Math. et Phys., 12 (1939), pp. 1-100.
[5] J. Hersch: Longueurs extrémales et théorie des fonctions, Comment. Math. Helv., 29 (1955), pp. 301-337.
[6] T. Kuroda: On analytic functions on some Riemann surfaces, Nagoya Math. Journ., 10 (1956), pp. 27-50.
[7] K. Matsumoto: Exceptional values of meromorphic functions in a neighborhood of the set of singularities, Journ. Sci. Hiroshima Univ., A. 24 (1960), pp. 143-153.
[8] K. Noshiro: Open Riemann surface with null boundary, Nagoya Math. Journ., 3 (1951), pp. 73-79.
[9] M. Ohtsuka: Selected topics in function theory, Kyôritsu, Tokyo (1957), 132 pp ., (Japanese).
[10] M. Ohtsuka: Capacité d'ensembles de Cantor généralisés, Nagoya Math. Journ., 11 (1957), pp. 151-160.
[11] L. Sario: Modular criterion on Riemann surfaces, Duke Math. Journ., 20 (1953), pp. 279-286.
[12] M. Tsuji: On the behaviour of a meromorphic function in the neighbourhood of a closed set of capacity zero, Proc. Imp. Acad., 18 (1942), pp. 213-219.
[13] M. Tsuji: Theory of meromorphic functions in a neighbourhood of a closed set of capacity zero, Jap. Journ. Math., 19 (1944), pp. 139-154.

Department of Mathematics

Hiroshima University

Added in proofs: During the proofs of this paper, the author found that Carleson gave an important theorem, which is closely related to ours, in his recent paper: A remark on Picard's theorem, Bull. Amer. Math. Soc. 67 (1961), pp. 142-144.

[^0]: Received December 15, 1960.
 ${ }^{1)}$ In this paper, capacity is always logarithmic.
 ${ }^{2)}$ By a K_{σ}-set we mean the union of an at most countable number of compact sets.

[^1]: ${ }^{3)}$ We denote the complement of a set A with respect to the extended complex plane by $\mathscr{C} A$.
 ${ }^{4)}$ See Kuroda [6].

[^2]: ${ }^{5)}$ This means that curves are rectifiable with respect to the spherical distance.
 ${ }^{6}$ Fcr properties of extremal lengths, see, e.g., Ahlfors and Sario [2], Hersch [5], Ohtsuka [9].

[^3]: ${ }^{\text {7) }}$ Note that $T_{i, j}^{m} \neq T_{j, n}^{i}$; that is, $T_{i, j}^{m}$ transforms w_{i}, w_{j} and w_{m} to the origin, the point $w=1$ and the point at infinity respectively and $T_{j, m}^{i}$ transforms w_{i}, w_{j} and w_{m} to the point at infinity, the origin and the point $w=1$ respectively.

[^4]: ${ }^{8)}$ We denote by $\bmod R$ the harmonic modulus of a doubly-connected domain R.

[^5]: ${ }^{9)}$ See Ohtsuka [10].

[^6]: ${ }^{10)}$ See the remark of Theorem 1.

[^7]: 11) We denote by (C_{1}, C_{2}) a doubly-connected domain, if C_{1} is one of its boundary components and C_{2} is the other.
