THE SPACE OF DIRICHLET-FINITE SOLUTIONS OF THE EQUATION $\Delta u=P u$ ON A RIEMANN SURFACE

MITSURU NAKAI

Introduction and preliminaries

1. Let R be an open Riemann surface. By a density P on R we mean a non-negative and continuously differentiable functions $P(z)$ of local parameters $z=x+i y$ such that the expression $P(z) d x d y$ is invariant under the change of local parameters z. In this paper we always assume that $P \neq 0$ unless the contrary is explicitly mentioned. We consider an elliptic partial differential equation

$$
\begin{equation*}
\Delta u=P u, \quad \Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}, \tag{1}
\end{equation*}
$$

which is invariantly defined on R. For absolutely continuous functions f in the sense of Tonelli defined on R, we denote Dirichlet integrals and energy integrals of f taken over R by

$$
D_{R}[f]=\iint_{R}\left(|\partial f / \partial x|^{2}+|\partial f / \partial y|^{2}\right) d x d y
$$

and

$$
E_{R}[f]=\iint_{R}\left(|\partial f / \partial x|^{2}+|\partial f / \partial y|^{2}+P|f|^{2}\right) d x d y
$$

respectively. By a solution of (1) on R we mean a twice continuously differentiable function which satisfies the relation (1) on R. We denote by $P B$ (or $P D$ or $P E$) the totality of bounded (or Dirichlet-finite or energy-finite) solutions of (1) on R. We also denote by $P B D=P B \cap P D$ and $P B E=P B \cap P E$. If the class X contains no non-constant function, then we denote the fact by $R \in O_{X}$, where X stands for one of classes $P B, P D, P E, P B D$ or $P B E$. Here we remark that a constant solution of (1) is necessarily zero, since we have assumed that $P \equiv 0$ on R. We also use the notation $R \in O_{\theta}$ to denote the fact that R is a
parabolic Riemann surface. Ozawa [5], [6] proved that

$$
O_{G} \subset O_{P B} \subset O_{P R}=O_{P B E}
$$

and under the condition $\iint_{R} P d x d y<\infty, O_{P B}=O_{P E}=O_{P B F}$.
Functions considered in this paper are always assumed to be real-valued. For a class \mathfrak{X} of functions, we denote by \mathfrak{X}^{+}the totality of non-negative functions in \mathfrak{X}.

A subdomain of R is said to be analytic if its relative boundary consists of a finite number of analytic closed Jordan curves.
2. As far as the author knows a little is published about the class $P D$ or $O_{P D}$ (cf. Royden [8]). The aim of the present paper is to show that the class $P D$ shares in many properties of the class $H D$, the totality of Dirichlet-finite harmonic functions on R. First we show $O_{P B} \subset O_{P D}$ (Theorem 1). With the classification scheme of Ozawa we then get

$$
O_{G} \subset O_{P B} \subset O_{P D} \subset O_{P B D} \subset O_{P E}=O_{P B E}
$$

and under the condition $\iint_{R} P d x d y<\infty, O_{P B}=O_{P D}=O_{P B D}=O_{P R}=O_{P B F}$. It is an interesting open question to settle whether the above inclusions are proper or not when $\iint_{R} P d x d y=\infty$. Next we prove that the class $P D$ forms a vector lattice (Theorem 2). Hence in particular any Dirichlet-finite solution is represented as a difference of two non-negative Dirichlet-finite solutions. We believe that this will make further investigations of the class $P D$ much easier. We then prove that the vector space structure of $P D$ is completely determined by the behaviour of P at the ideal boundary of R. In other words, if R_{0} is an analytic compact subdomain of R such that $R-\bar{R}_{0}$ is connected and if we denote by $P_{0} D$ the class of all Dirichlet-finite solutions on $R-\bar{R}_{0}$ which vanish continuously on ∂R_{0}, then the classes $P D$ and $P_{0} D$ are isomorphic as vector spaces (Theorem 3). Here $P_{0} D$ forms a Hilbert space with reproducing kernel with respect to Dirichlet-norm (Theorem 4). Finally we characterize the property $O_{P D}$ by a maximum principle (Theorem 5). A similar consideration as our Theorem 5 for the property $O_{P E}$ is found in the recent work of Ozawa [6].
3. For convenience we state some fundamental facts for solutions of (1) which we shall use later. In this section we admit the case $P \equiv 0$. A non-
negative (or non-positive) solution on R does not take its maximum (or minimum) in R unless it is a constant. A solution on R which takes both of positive and negative values does not take its maximum and minimum in R. If R is a bordered compact surface and u is a non-negative solution of (1) and h is a harmonic function such that u and h are continuous on $R \cup \partial R$ and $h \geq u$ on ∂R, then $h \geq u$ on R. We shall quote these facts as maximum principle.

For a compact subset K of R, there exists a positive constant k such that it holds the inequality

$$
k^{-1} u(p) \leq u(q) \leq k u(p)
$$

for any non-negative solution u on R and for any two points p and q in K. We shall call this inequality as Harnack type inequality.

A monotone sequence of solutions on R which is bounded at a point of R converges to a solution uniformly on any compact subset of R. A bounded sequence of solutions on R contains a subsequence converging to a solution on R uniformly on any compact subset of R. We shall quote these facts as Harnack type theorem.

If a sequence of solutions on R converges to a function uniformly on each compact subset of R, then the limiting function is a solution and the sequence of differentials of these solutions converges to the differential of this limiting solution.

A bounded solution on R except a compact subset of logarithmic capacity zero can be continued to a solution defined on R.

Other important facts for the equation $\Delta u=P u$ is the solvability of Dirichlet problem on any analytic compact subdomain with continuous boundary value and the existence of Green's function of $\Delta u=P u$ with respect to an arbitrary Riemann surface R unless $P \equiv 0$ on R.

For proofs of these facts, refer to Myrberg's fundamental work [2] and [3].
4. For an analytic compact subdomain D of R and a continuous function f defined on a set S containing D, we denote by f_{D} the continuous function on S defined by $f_{D}=f$ on $S-D$ and $\Delta f_{D}=P f_{D}$ on D.

A continuous function f defined on a subdomain U of R is said to be a
subsolution (or supersolution) if for any point p_{0} in U there exists an analytic compact subdomain D_{0} of R such that $p_{0} \in D_{0} \subset \bar{D}_{0} \subset U$ and $f_{D} \geq f$ (or $f_{D} \leq f$) on U for any analytic subdomain D of D_{0} with $p_{0} \in D \subset \bar{D} \subset D_{0}$. A nonpositive (or non-negative) constant is a subsolution (or supersolution). The functions $c f+g$, where c is a non-negative constant, and $\max (f, g)$ (or $\min (f, g)$) are subsolutions (or supersolutions) along with f and g. A solution is a subsolution and at the same time supersolution. Although the notions of subsolutions and supersolutions are of local character, we can derive the following global properties.

Lemma 1. Let f be a subsolution (or supersolution) defined on a subdomain U of R such that $\sup _{V} f \geq 0$ (or $\inf _{U} f \leq 0$). Then f does not take its maximum (or minimum) in U unless f is a constant.

Proof. We only treat the case when f is a subsolution, since the situation for supersolution is quite parallel to that of subsolution. Contrary to the assertion, assume that u takes its maximum in U. Then we can find a point p_{0} in U which lies in the boundary of the set $\left\{p ; u(p)=\max _{U} u\right\}$, since f is not constant in U. Now we can find an analytic compact domain D_{0} such that $p_{0} \in D_{0} \subset \bar{D}_{0} \subset U$ and $f_{D} \geq f$ for any analytic subdomain D of D_{0} with $p_{0} \in D$ $\subset \bar{D} \subset D$. At any point p in ∂D,

$$
f_{D}\left(p_{0}\right) \geq f\left(p_{0}\right) \geq f(p)=f_{D}(p)
$$

This shows that the solution f_{D} in D takes its maximum in D. Hence by the maximum principle f_{D} is a constant and so $f=f\left(p_{0}\right)$ on ∂D. By arbitrariness of D in D_{0}, we conclude that $f=f\left(p_{0}\right)$ in D_{0}, which contradicts the definition of p_{0}.
Q.E.D.

Lemma 2. A continuous function f defined on a subdomain U of R is a subsolution (or supersolution) if and only if $f_{D} \geq f\left(o r f_{D} \leq f\right)$ for any analytic compact subdomain D such that $D \subset U$.

Proof. Consider the function $\varphi=f-f_{D}$ on D. This is a subsolution in D and so from Lemma $1 \sup _{D} \varphi=\sup _{\partial D} \varphi=0$. Thus $\varphi \leq 0$ on D or $f_{D} \geq f$. Q.E.D.

From this lemma we can conclude that a function which is a subsolution and at the same time a supersolution is a solution.

Lemma 3. Suppose that f is a twice continuously differentiable function
defined on a subdomain U of R. Then f is a subsolution (or supersolution) in U if and only if $\Delta f-P f \geq 0$ (or $\Delta f-P f \leq 0$) on U.

Proof. First we show the sufficiency of our condition. Let D be an arbitrary analytic compact subdomain such that $D \subset U$. Put $\varphi=f-f_{D}$ on D. We denote by G the Green's function with respect to D with the pole p, which is an arbitrary point in D. By Green's formula,

$$
\varphi(p)=(2 \pi)^{-1} \iint_{D}(\Delta \varphi-P \varphi) G d x d y
$$

As $\Delta \varphi-P \varphi \geq 0$ (or $\Delta \varphi-P \varphi \leq 0$), so $\varphi(p) \geq 0$ (or $\varphi(p) \leq 0)$. Thus $\varphi \geq 0$ (or $\varphi \leq 0$) on D or $f_{D} \geq f$ (or $f_{D} \leq f$). Hence f is a subsolution (or supersolution).

Next we show the necessity of our condition. Contrary to the assertion, assume the existence of a point in D and hence a subdomain D of U such that $\Delta f-P f<0$ (or $\Delta f-P f>0$) in D. Then from the sufficiency of our condition we conclude that f is a supersolution (or subsolution) in D. As f is a suband supersolution in D, so f is a solution in D. Then $\Delta f-P f=0$ in D. This is a contradiction. Thus we have shown that $\Delta f-P f \geq 0$ (or $\Delta f-P f \leq 0$) in U.
Q.E.D.
5. Let U be an analytic compact subdomain of R. We denote by $M(\bar{U})$ the totality of continuous functions on \bar{U} which are absolutely continuous in the sense of Tonelli in U with finite Dirichlet integral taken over U. We also denote by $M^{\rho}(\bar{U})$ the totality of functions f in $M(\bar{U})$ with $f=\varphi$ on ∂U, where φ is a fixed element in $M(\bar{U})$. Then we have

Dirichlet Principle: if u satisfies $\Delta u=0$ on U and $u=\varphi$ on ∂U, then $D_{c}[u] \leq D_{c}[f]$ for all f in $M^{p}(\bar{U})$, where the equality holds only for $f=u$.

This simple fact plays an important and almost essential role in the study of the class $H D$ in the theory of harmonic functions. This Dirichlet principle is a special case, i.e. $P \equiv 0$ on U, of the following

Energy Principle: if u satisfies $\Delta u=P u$ on U and $u=\varphi$ on ∂U, then $E_{c}[u] \leq E_{U}[f]$ for all f in $M^{p}(\bar{U})$, where the equality holds only for $f=u$.

The proof of this is an immediate consequence of the identity $E_{U}[f]$ $=E_{U}[u]+E_{U}[f-u]$ which follows from Green's formula. From the standpoint that we are asking to what extent the theory of the class $H D$ can be extended
to the class $P D$, we desire to get the validity of Dirichlet principle for solutions of $\Delta u=P u$. Needless to say, this cannot be expected in general unless $P \equiv 0$. Hence to get the validity of Dirichlet principle for solutions of $\Delta u=P u$, we have to impose some restrictions on the class $M^{\varphi}(\bar{U})$. For the aim, we denote by $S(\bar{U})$ the class of all non-negative functions in $M(\bar{U})$ which are subsolutions in U and by $S^{\varphi}(\bar{U})$ the totality of functions in $S(\bar{U})$ such that $f=\varphi$ on ∂U, where $\dot{\varphi}$ is a fixed function in $S(\bar{U})$. Then we have the following almost trivial but very useful fact, which we shall quote as weak Dirichlet principle.
lemma 4 [Weak Dirichlet Principle]. If u satisfies $\Delta u=P u$ on U and $u=\varphi$ on ∂U, then $D_{v}[u] \leq D_{U}[f]$ for all f in $S^{\rho}(\bar{U})$, where the equality holds only for $f=u$.

Proof. As $f-u$ is a subsolution in U with $f-u=0$ on ∂U, so by maximum principle (Lemma 1) $f-u \leq 0$ in U. Since f is non-negative, $u^{2}-f^{2} \geq 0$ on U. From this and the energy principle

$$
D_{U}[f]-D_{U}[u] \geq \iint_{U} P\left(u^{2}-f^{2}\right) d x d y \geq 0
$$

Next suppose that $D_{v}[f]=D_{U}[u]$. Then from above we get $E_{v}[f]=E_{U}[u]$. By the energy principle, we finally get $f=u$.
Q.E.D.

Existence of bounded solutions

6. Virtanen [9] proved that the existence of a non-constant Dirichletfinite harmonic function implies the existence of a non-constant bounded harmonic function. First we prove such a Virtanen type theorem for the equation $\Delta u=P u$.

Theorem 1. The existence of a non-constant Dirichlet-finite solution of $\Delta u=P u$ implies the existence of a non-constant bounded solution of $\Delta u=P u$.

Proof. Let u be a non-constant $P D$-function on R. Contrary to the assertion, assume that there exists no non-constant bounded solution of $\Delta u=P u$ on R. Hence, in particular, u is not bounded. We take an exhaustion $\left\{R_{n}\right\}_{1}^{\infty}$ of R consisting of analytic compact subdomains R_{n} such that $R-\bar{R}_{1}$ is connected. Without loss of generality, we may assume $u>0$ on ∂R_{1}. Let u_{n}^{*} be•
the continuous function defined on $\bar{R}_{n}-R_{1}$ such that u_{n}^{*} is the solution in $R_{n}-\bar{R}_{1}$ and $u_{n}^{*}=0$ on ∂R_{n} and $u_{n}^{*}=u$ on ∂R_{1}. By the maximum principle

$$
m \geq n_{n+1}^{*} \geq u_{n}^{*} \geq 0
$$

on $\bar{R}_{n}-R_{1}$, where $m=\sup _{\partial R_{1}} u$. Hence by the Harnack type theorem $\left\{\boldsymbol{u}_{n}^{*}\right\}$ converges to a solution u^{*} on $R-\bar{R}_{1}$ which is continuous on $R-R_{1}$ with boundary value $u^{*}=u$ on ∂R_{1} and $m \geq u^{*} \geq 0$ on $R-R_{1}$. By energy principle

$$
E_{R_{n}-\bar{R}_{1}}\left[u_{n}^{*}\right] \geq E_{R_{n+1}-\bar{R}_{1}}\left[u_{n+1}^{*}\right] .
$$

By Fatou's lemma $E_{R-\bar{R}_{1}}\left[u^{*}\right]<\infty$ and a fortiori $D_{R-\bar{R}_{1}}\left[u^{*}\right]<\infty$. We put $u^{* *}$ $=u-u^{*}$, which is not identically zero, since $u^{* *} \equiv 0$ implies the boundedness of u. Then $u^{* *}$ is a non-constant Dirichlet-finite solution in $R-\bar{R}_{1}$ vanishing on ∂R_{1}.

Next we put $f=\left|u^{* *}\right|$. This is a Dirichlet-finite subsolution in $R-\bar{R}_{1}$ vanishing on ∂R_{1}. We denote by v_{n} (resp. h_{n}) the continuous function on $\bar{R}_{n}-R_{1}$ which is a solution (resp. harmonic) in $R_{n}-\bar{R}_{1}$ with boundary value f on $\partial\left(R_{n}-\bar{R}_{1}\right)$. By maximum principle

$$
f \leq v_{n} \leq h_{n}
$$

and the sequences $\left\{v_{n}\right\}$ and $\left\{h_{n}\right\}$ are non-decreasing. By using Dirichlet principle.

$$
D_{R_{n}-\bar{R}_{1}}\left[h_{n}\right] \leq D_{R_{n}-\bar{R}_{1}}[f] .
$$

As ∂R_{1} consists of analytic curves and $h_{n}=0$ on ∂R_{1} and Dirichlet integral of h_{n} is bounded by $D[f]$, so $\left\{h_{n}\right\}$ converges to a harmonic function h with finite Dirichlet integral on $R-\bar{R}_{1}$. Thus $f \leq v_{n} \leq h$ and so by the Harnack type theorem, $\left\{v_{n}\right\}$ converges to a solution v such that

$$
f \leq v \leq h,
$$

which shows $v=0$ on ∂R_{1} and $v>0$ in $R-\bar{R}_{1}$. As $D\lceil h]<\infty$, so h^{2} admits a harmonic majorant h^{*} (cf. Parreau [7]). Hence v^{2} admits a harmonic majorant h^{*}. Here we notice that v^{2} is a subsolution. In fact,

$$
\Delta v^{2}-P v^{2}=P v^{2}+2|\operatorname{grad} v|^{2} \geq 0 .
$$

Hence by Lemma 3, v^{2} is a subsolution. We denote by v_{n}^{*} the continuous function on $\bar{R}_{n}-R_{1}$ such that v_{n}^{*} is the solution in $R_{n}-\bar{R}_{1}$ with boundary value v^{2}
on $\partial\left(R_{n}-\bar{R}_{1}\right)$. Then by the maximum principle

$$
v^{2} \leq v_{n}^{*} \leq v_{n+1}^{*} \leq h^{*}
$$

on $\bar{R}_{n}-R_{1}$. Hence by the Harnack type theorem $\left\{v_{n}^{*}\right\}$ converges to a solution v^{*} such that $v^{2} \leq v^{*}$.

Let w_{n} be the continuous function on $\bar{R}_{n}-R_{1}$ and the solution in $R_{n}-R_{1}$ with boundary values $w_{n}=0$ on ∂R_{1} and $w_{n}=1$ on ∂R_{n}. By the maximum principle

$$
1 \geq w_{n} \geq w_{n+1} \geq 0
$$

on $\bar{R}_{n}-R_{1}$ and so by the Harnack type theorem $\left\{w_{n}\right\}$ converges to a solution $w\left(p ; \partial R, R-\bar{R}_{1}\right)$ on $R-\bar{R}_{1}$. As we have assumed $R \in 0_{P B}$, so by a theorem of Ozawa [5], $w\left(p ; \partial R, R-\bar{R}_{1}\right) \equiv 0$.

Fix an arbitrary point p in $R-\bar{R}_{1}$. For integers n such that $R_{n}-\bar{R}_{1}$ contains p, we denote by $G_{n}(q, p)$ the Green's function of the equation $\Delta u-P u$ $=0$ with respect to $R_{n}-\bar{R}_{1}$ with pole p. We put

$$
d \mu_{n}(q)=\frac{1}{2 \pi} \frac{\partial G_{n}(q, p)}{\partial \nu_{q}} d s_{q}
$$

on $\partial\left(R_{n}-\bar{R}_{1}\right)$, where $\partial / \partial \nu$ denotes the inner normal derivative on $\partial\left(R_{n}-\bar{R}_{1}\right)$ and $d s$ denotes the line element of $\partial\left(R_{n}-\bar{R}_{1}\right)$. By Green's formula

$$
v(p)=\int_{\partial R_{n}} v d \mu \mu_{n}
$$

and

$$
v^{*}(p)=\int_{\partial \mathbb{R}_{n}} v^{*} d \mu n
$$

and

$$
w_{n}(p)=\int_{\partial R_{n}} w_{n} d \mu_{n} .
$$

By Schwarz's inequality

$$
(v(p))^{2}=\left(\int_{\partial R_{n}} v d / \mu_{n}\right)^{2} \leq \int_{\partial R_{n}} d \mu_{n} \cdot \int_{\partial R_{n}} v^{2} d \mu_{n}
$$

Using $v^{2} \leq v^{*}$, we get $(v(p))^{2} \leq w_{n}(p) v^{*}(p)$. Hence by making $n \nearrow \infty$,

$$
(v(p))^{2} \leq w\left(p ; \partial R, R-\bar{R}_{1}\right) v^{*}(p)
$$

Since p is arbitrary in $R-\bar{R}_{1}$ and $w\left(p ; \partial R, R-\bar{R}_{1}\right) \equiv 0$, we get $v \equiv 0$. This is a contradiction. Thus $R \notin O_{P B}$.
Q.E.D.
7. Remark to Theorem 1. Let R_{0} be an analytic compact subdomain of R such that $R-\bar{R}_{0}$ is connected. Assume that there exists a non-constant Dirichlet-finite solution u of $\Delta u=P u$ on $R-\bar{R}_{0}$ which vanishes continuously on ∂R_{0}. Then there exists a non-constant bounded solution of $\Delta u=P u$.

The proof of this fact is contained in the proof of Theorem 1 . We must notice that this fact is not true in general in the case when $P \equiv 0$ on R , i.e. in the harmonic case. In fact, if $R \in O_{H B}-O_{G}$, then the harmonic measure of the ideal boundary of R relative to the domain $R-\bar{R}_{0}$ is a non-constant and Dirichlet-finite harmonic function on $R-\bar{R}_{0}$ which vanishes on ∂R_{0} but there exists no non-constant bounded harmonic function on R. ($O_{H B}$ denotes the class of all Riemann surfaces on which no non-constant bounded harmonic function exist. For the existence of R in $O_{H B}-O_{f}$, confer Tôki [9].)

Lattice property of the class $P D$

8. It is known that the class $H D$ forms a vector lattice (cf. [4]). Here the lattice operations in $H D$ are induced one from the usual function ordering in the class of all harmonic functions. Corresponding to this fact, we prove that the class $P D$ forms a vector lattice with lattice operations induced by the function ordering in the class of all solutions. More precisely, for two solutions u and v we denote by $u \vee v$ (or $u \wedge v$) the solution w such that $w \geq u$ and v (or $w \leq u$ and v) and $w \leq w^{\prime}$ (or $w \geq w^{\prime}$) for any solution w^{\prime} such that $w^{\prime} \geq u$ and v (or $w^{\prime} \leq u$ and v). The function $u \vee v$ does not exist in general. Clearly the necessary and sufficient condition for the existence of $u \vee v$ is that there exists a solution which is less smaller than u and v.

Theorem 2. The class PD forms a vector lattice with lattice operations \vee and \wedge. In particular any Dirichlet-finite solution of $\Delta u=P u$ can be represented as a difference of two non-negative Dirichlet-finite solutions of Δu $=P u$.

Proof. If $P D$ does not contains no non-constant function, our assertion is obvious. Hence we may assume $R \notin O_{P D}$ and so by Theorem $1 R \notin O_{P B}$. It is known that $O_{G} \subset O_{P B}$ (cf. Ozawa [j]). Thus $R \notin O_{G}$.

First we prove that $u \vee 0$ exists and belongs to $P D$ for any u in $P D$. For the aim we put $f=\max (u, 0)$, which is a subsolution on R. We take an exhaustion $\left\{R_{n}\right\}_{0}^{\infty}$ of R consisting of analytic subdomains. Let v_{n} be the solution in R_{n} with boundary value u on $\partial R_{n}(n \geq 1)$. By the maximum principle

$$
f \leq \boldsymbol{v}_{n} \leq \boldsymbol{v}_{n+1}
$$

on R_{n} and by the weak Dirichlet principle

$$
\begin{equation*}
D_{R_{n}}\left[v_{n}\right] \leq D_{R_{n}}[f] . \tag{1}
\end{equation*}
$$

We denote by h_{n} the harmonic function in $R_{n}-\bar{R}_{0}$ with boundary value 1 on ∂R_{0} and 0 on ∂R_{n}. Then by the maximum principle and Diriclet principle

$$
0 \leq h_{n} \leq h_{n+1} \leq 1
$$

and

$$
D_{R_{n}-\bar{R}_{0}}\left[h_{n}\right] \geq D_{R_{n+1}-\bar{R}_{0}}\left[h_{n+1}\right]
$$

and $\left\{h_{n}\right\}$ converges to a harmonic function h on $R-\bar{R}_{0}$ and

$$
D_{R-\bar{R}_{0}}[h]=\lim _{n} D_{R_{n}-\bar{R}_{0}}\left[h_{n}\right] .
$$

By $R \notin O_{G}, h$ is non-constant and $D_{R-\bar{R}_{0}}[h]>0$. By Green's formula

$$
\begin{align*}
\int_{\partial R_{0}}\left(v_{n}-f\right)^{*} d h_{n} & =\int_{\partial\left(R_{n}-\bar{R}_{0}\right)}\left(v_{n}-f\right)^{*} d h_{n} \tag{2}\\
& =\iint_{R_{n}-\bar{R}_{0}} d\left(v_{n}-f\right) \wedge^{*} d h_{n} .
\end{align*}
$$

By Schwarz's inequality and by (1)

$$
\begin{align*}
\left.\iint_{R_{n}-\bar{R}_{0}} d\left(v_{n}-f\right) \wedge^{*} d h_{n}\right|^{2} & \leq D_{R_{n}-\bar{R}_{0}}\left[v_{n}-f\right] D_{R_{n}-\bar{K}_{0}}\left[h_{n}\right] \tag{3}\\
& \leq 4 D[f] D_{R_{n}-\bar{K}_{0}}\left[h_{n}\right] .
\end{align*}
$$

As we have from (2) and (3)

$$
\inf _{\partial R_{0}}\left|v_{n}-f\right| \int_{\partial R_{0}} * d h_{n} \leq 2\left(D[f] D_{R_{n}-\bar{R}_{0}}\left[h_{n}\right]\right)^{1 / 2}
$$

and by Green's formula

$$
\int_{\partial R_{n}}{ }^{*} d h_{n}=D_{R_{n}-\bar{R}_{0}}\left[h_{n}\right]
$$

so we get

$$
\inf _{\partial R_{0}}\left|v_{n}-f\right| \leq 2\left(D[f] / D_{R_{n}-\bar{R}_{0}}\left[h_{n}\right]\right)^{1 / 2} \leq 2\left(D[f] / D_{R-\bar{R}_{0}}[h]\right)^{1 / 2} .
$$

We fix a point p_{0} in R_{0}. By the Harnack type inequality there exists a finite and positive constant k such that

$$
v_{n}\left(p_{0}\right) \leq k \inf _{\partial R_{0}} v_{n} .
$$

Hence by putting $m=\sup _{\partial \mathrm{R}_{0}}|f|$,

$$
v_{n}\left(p_{0}\right) \leq k m+2 k\left(D[f] / D_{R-\bar{R}_{0}}[h]\right)^{1 / 2} .
$$

Thus by the Harnack type theorem the non-decreasin sequence $\left\{v_{n}\right\}$ of solutions converges to a solution v on R and by Fatou's lemma

$$
D[v] \leq \lim _{n} D_{R_{n}}\left[v_{n}\right] \leq D[f]<\infty .
$$

Hence v belongs to the class $P D$ and $v \geq f$ or $v \geq u$ and 0 . To conclude $v=u \vee 0$, we have to show that $v^{\prime} \geq v$ for any solution v^{\prime} such that $v^{\prime} \geq u$ and 0 . This follows from the inequality $v^{\prime} \geq v_{n} \geq f$, which is a consequence of the maximum principle.

For two arbitrary elements u and v in $P D,(u-v) \vee 0$ exists and belongs to the class $P D$ as we have seen above. Clearly the element $w=(u-v) \vee 0+v$ belongs to the class $P D$ and $w=u \vee v$. The existence $u \wedge v$ in $P D$ is immediate if we notice the relation $u \wedge v=-((-u) \vee(-v))$.

Hence we have proved that the class $P D$ forms a lattice with respect to the operations \vee and \wedge. These operations are easily seen to be compatible with the vector space structure of $P D$. Thus the class $P D$ forms a vector lattice with lattice operations \vee and \wedge.

The last part is nothing but the Jordan decomposition of the element u in $P D: u=u \vee 0-(-(u \wedge 0))$.
Q.E.D.
9. Remark 1 to Theorem 2. Suppose that R is embedded into a Riemann surface R^{\prime} as its subsurface and Γ consists of a finite number of analytic closed Jordon curves which are contained in the boundary of R relative to R^{\prime}. Moreover suppose that the density P on R is the restriction of a density P^{\prime} on R^{\prime} to R. Assume that two functions u and v in $P D(R)$ are continuously extended to $R \cup \Gamma$. Then $u \vee v$ and $u \wedge v$ are continuously extended to $R \cup \Gamma$ and $u \vee v$ $=\max (u, v)$ and $u \wedge v=\min (u, v)$ on Γ.

Proof. As we have identities $u \vee v=(u-v) \vee 0+v, \max (u, v)=\max (u$
$-v, 0)+v, u \wedge v=-((-u) \vee(-v))$ and $\min (u, v)=-\max -(u,-v)$, so we have only to prove the above assertion for $u-v$ and 0 in $P D(R)$ and for the operation \vee. Hence we have to prove that $u \vee 0$ is continuously extended on $R \cup \Gamma$ and $u \vee 0=\max (u, 0)$ on Γ if u is continuous on $R \cup \Gamma$.

Let $\left\{R_{n}^{*}\right\}_{1}$ be a sequence of analytic compact subdomains R_{n}^{*} of R^{\prime} such that $R_{n}^{*} \subset R_{n+1}^{*}$ and ∂R_{n}^{*} (relative to R^{\prime}) contains Γ and $\partial R_{n}^{*}-I$ is contained in R and $R=\cup_{n} R_{n}^{*}$. We put $f=\max (u, 0)$, which is continuous on $R \cup \Gamma$ and a subsolution in R. We denote by v_{n}^{*} the solution of $\Delta u=P u$ in R_{n}^{*} with boundary value f on ∂R_{n}^{*}. By the maximum principle,

$$
f \leq v_{n}^{*} \leq v_{n+1}^{*} \leq u \vee 0
$$

on R_{n}^{*}. Hence by the definition of $u \vee 0, u \vee 0=\lim _{n} v_{n}^{*}$. Now we denote by w the solution of $\Delta u=P u$ on R_{1}^{*} with boundary value f on Γ and $u \vee 0$ on $\partial R_{1}^{*}-\Gamma$. Again by the maximum principle, $f \leq v_{n}^{*} \leq w$ on R_{1}^{*} and by making $n \nmid \infty, f \leq u \vee 0 \leq w$, which shows that $u \vee 0=w$ on R_{1}^{*} and so $u \vee 0$ is continuous on $R_{1}^{*} \cup \partial R_{1}^{*}$ and a fortiori on $R \cup r$ and $u \vee 0=f=\max (u, 0)$.

Remark 2 to Theorem 2. From the proof of Theorem 2, we can easily see that the following inequality holds:

$$
D_{R}[u \vee 0], \dot{D}_{R}[u \wedge 0] \leq D_{R}[u] .
$$

The class $P D$ and the ideal boundary of R

10. It is well known that $O_{H D}$-property of a Riemann surface is determined by its ideal boundary. The corresponding facts are also valid for the equation $\Delta u=P u$. In our case, more strong facts hold, i.e. the vector space structure of the class $P D$ is completely determined by the behaviour of P at the ideal boundary of R. This means that vector spaces $P D$ and $P^{\prime} D$ are isomorphic if P and P^{\prime} are two densities on R which are not identically zero on R and $P \equiv P^{\prime}$ except a compact subset of R. This fact is also formulated as follows. Let R_{0} be an analytic compact subdomain of R such that $R-\bar{R}_{0}$ is connected. We denote by $P_{0} D$ the class of all Dirichlet-finite solutions of $\Delta u=P u$ on $R-\bar{R}_{0}$ vanishing continuously at ∂R_{0}. Then we have

Theorem 3. The class $P D$ is isomorphic to the class $P_{0} D$ as vector spaces.
Proof. We take an exhaustion $\left\{R_{n}\right\}_{0}^{\infty}$ of R such that R_{n} is an analytic
compact subdomain of R. With each u in $P D^{+}$, we associate a function u^{*} as follows. We denote by u_{n}^{*} the solution in $R_{n}-\bar{R}_{0}(n \geq 1)$ with boundary values $u_{n}^{*}=u$ on ∂R_{0} and $u_{n}^{*}=0$ on ∂R_{n}. By the maximum principle,

$$
u_{n}^{*} \leq u_{n+1}^{*} \leq u
$$

and

$$
0 \leq u_{n}^{*} \leq \sup _{\partial R_{0}} u
$$

By the Harnack type theorem, $\left\{u_{n}^{*}\right\}$ converges to a solution u^{*} in $R-\bar{R}_{0}$ such that $u^{*}=u$ on ∂R_{0} and $0 \leq u^{*} \leq u$ and $0 \leq u^{*} \leq \sup _{\forall R_{0}} u$ on $R-\widetilde{R}_{0}$. By the energy principle,

$$
E_{R_{n+1}-\bar{R}_{0}}\left[u_{n+1}^{*}\right] \leq E_{R_{n}-R_{0}}\left[u_{n}^{*}\right]<\infty .
$$

Hence by Fatou's lemma

$$
E_{R-\bar{R}_{0}}\left[u^{*}\right] \leq \lim _{n} E_{R_{n}-\bar{R}_{0}}\left[u_{n}^{*}\right] \leq E_{R_{1}-\bar{B}_{0}}\left[u_{1}^{*}\right]<\infty
$$

and a fortiori

$$
D_{R-\bar{R}_{0}}\left[u^{*}\right]<\infty .
$$

Clearly the mapping $u \rightarrow u^{*}$ satisfies

$$
\begin{equation*}
\left(u_{1}+u_{2}\right)^{*}=u_{1}^{*}+u_{2}^{*} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(c u)^{*}=c u^{*}, \tag{2}
\end{equation*}
$$

where c is a non-negative constant. Now we put $\pi u=u-u$, which is an element in $P_{0} D^{+}$. Hence we get a mapping π of $P D^{+}$into $P_{0} D^{+}$such that

$$
\begin{equation*}
\pi\left(u_{1}+u_{2}\right)=\pi u_{1}+\pi u_{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi(c u)=c \pi u \tag{4}
\end{equation*}
$$

where c is a non-negative constant. These follow from (1) and (2).
We first show that π is onto, i.e. there exists a w in $P D^{+}$such that $\pi w=v$ for any v in $P_{0} D^{+}$. If $v \equiv 0$, then we have only to take $w \equiv 0$. So we may suppose that $v \neq 0$. We fix a point p_{0} in R_{0} and a sequence $\left\{R_{-m}\right\}_{1}$ of analytic subdomains of R such that $R_{0} \supset \bar{R}_{-m} \supset R_{-m} \supset \bar{R}_{-(m+1)}$ and $\cap{ }_{1}^{\infty} \bar{R}_{-m}=\left\{p_{0}\right\}$. We denote by $w_{m, n}$ the solution in $R_{n}-\bar{R}_{-m}$ with boundary values v on ∂R_{n} and 0
on ∂R_{-m}. By the maximum principle

$$
0 \leq w_{m, n} \leq w_{m+1, n} \leq \sup _{\partial R_{n}} v .
$$

Hence by the Harnack type theorem $\left\{w_{m, n}\right\}_{m=1}^{\infty}$ converges to a solution w_{n} on $R_{n}-\left\{p_{0}\right\}$ such that

$$
0 \leq w_{n} \leq \sup _{\partial R n} v
$$

and

$$
w_{n} \geq v
$$

on $R_{n}-R_{0}$. Hence w_{n} can be continued to R_{n} so as to be a solution on R_{n} and if we set $w_{m, n}=0$ (resp. $v=0$) in R_{-m} (resp. R_{0}), then $w_{m, n}$ (resp. v) is a subsolution in R_{n}. By the weak Dirichlet principle,

$$
D_{R-\bar{R}_{0}}[v] \geq D_{R_{n}-\bar{R}_{-m}}\left[w_{m, n}\right] \geq D_{R_{n}-\bar{R}_{-}(m+1)}\left[w_{m+1, n}\right] .
$$

Hence by Fatou's lemma, we get

$$
D_{R_{n}}\left[w_{n}\right] \leq D[v] .
$$

As $v \leq w_{n}$, so by the maximum principle

$$
v \leq w_{n} \leq w_{n+1}
$$

Now we take an analytic compact subdomain V in $R_{1}-\bar{R}_{0}$ such that ($R_{1}-\bar{R}_{0}$) $-\bar{V}$ is a domain. We denote by h_{n} the harmonic function with boundary values 1 on ∂V and 0 on ∂R_{n}. Then by Green's formula

$$
\begin{align*}
\int_{\partial V}\left(w_{n}-v\right)^{*} d h_{n} & =\int_{\left.\partial, R_{n}-\bar{\nu}\right)}\left(w_{n}-v\right)^{*} d h_{n} \tag{5}\\
& =\iint_{R_{n}-\bar{V}} d\left(w_{n}-v\right) \wedge^{*} d h_{n}
\end{align*}
$$

By Schwarz's inequality

$$
\begin{equation*}
\iint_{R_{n}-V} d\left(w_{n}-v\right) \wedge^{*} d h_{n}{ }^{2} \leq D_{R_{n}}\left[w_{n}-v\right] D_{R_{n}-\bar{V}}\left[h_{n}\right] . \tag{6}
\end{equation*}
$$

Hence by (5) and (6)

$$
\inf _{\partial v}\left(w_{n}-v\right) \int_{\partial V} * d h_{n} \leq 2\left(D_{R_{n}}[v] D_{R_{n}-\bar{r}}\left[h_{n}\right]\right)^{1 / 2}
$$

As we have by Green's formula

$$
\int_{\partial V}^{*} d h_{n}=D_{R_{n}-\bar{V}}\left[h_{n}\right]
$$

so we get

$$
\inf _{\partial v}\left(w_{n}-v\right) \leq 2\left(D[v] / D_{R_{n}-}\left[h_{n}\right]\right)^{1 / 2} .
$$

By the remark to Theorem 1, R does not belong to $O_{P B}$ and so by Ozawa's lemma R does not belong to O_{G}, since $v \equiv 0$. Hence $\left\{h_{n}\right\}$ converges increasingly to a non-constant harmonic function h on $R-\bar{V}$ and the sequence $\left\{D_{R_{n}-\bar{v}}\left[h_{n}\right]\right\}$ converges decreasingly to $D_{R-\bar{v}}[h]$, which is strictly positive. By the Harnack type inequality there exists a constant k for a fixed point p in V such that $w_{n}(p) \leq k \inf _{\partial v} w_{n}$ for all n. Hence by putting $a=\sup _{\partial v} v$,

$$
w_{n}(p) \leq k a+2 k\left(D[v] / D_{R-\bar{v}}[h]\right)^{1 / 2}<\infty .
$$

So, by the Harnack type theorem, the non-decreasing sequence $\left\{w_{n}\right\}$ converges to a solution w on R such that $w \geq v$ and by Fatou's lemma

$$
D[w] \leq \lim _{n} D_{R_{n}}\left[w_{n}\right] \leq D[v]<\infty .
$$

Thus w belongs to the class $P D^{+}$. To conclude $\pi w=v$, we have to show $w^{*}=w-v$. For the aim we put $w_{n}^{\prime}=w_{n}-v \geq 0$. As $w_{n}-v=w_{n}$ converges to $w-v=w$ uniformly on ∂R_{0}, so we can find for an arbitrary given positive number ε an N such that for any $n \geq N$

$$
0 \leq w_{n}^{*}-w_{n}^{\prime} \leq \varepsilon
$$

on ∂R_{0}, where w_{n}^{*} is, by the definition of the operation ${ }^{*}$, the solution in $R_{n}-\bar{R}_{0}$ with boundary values w on ∂R_{0} and 0 on ∂R_{n}. As $w_{n}^{\prime}=0$ on ∂R_{n}, so we get by the maximum principle

$$
0 \leq w_{n}^{*}-w_{n}^{\prime} \leq \varepsilon
$$

on $R_{n}-\bar{R}_{0}$. Notice that $\lim _{n} w_{n}^{*}=w^{*}$ and $\lim _{n} w_{n}^{\prime}=w-v$. Hence by making $n \nearrow \infty$ in the above inequality, $0 \leq w^{*}-(w-v) \leq \varepsilon$. This shows that $w^{*}=w-v$. Thus we have proved that $\pi w=v, w \in P D^{+}$, or that π is a mapping of $P D^{+}$ onto $P_{0} D^{+}$.

Now we extend π to the mapping of $P D$ onto $P_{0} D$. By Theorem 2, any function u in $P D$ can be expressed as

$$
u=u^{\prime}-u^{\prime \prime},
$$

where u^{\prime} and $u^{\prime \prime}$ are in $P D^{+}$. We define πu by

$$
\pi u=\pi u^{\prime}-\pi u^{\prime \prime}
$$

which belongs to $P_{0} D$. This definition does not depend on the special choice of the decomposition $u=u^{\prime}-u^{\prime \prime}$. In fact, assume that $u=\tilde{u}^{\prime}-\check{u}^{\prime \prime}$ is another such decomposition. Then $u^{\prime}+\widetilde{u}^{\prime \prime}=\widetilde{u}^{\prime}+u^{\prime \prime}$. Hence by (3), $\pi u^{\prime}+\pi \widetilde{u}^{\prime \prime}=\pi \widetilde{u}^{\prime}+\pi u^{\prime \prime}$ or $\pi u^{\prime}-\pi u^{\prime \prime}=\pi \widetilde{u}^{\prime}-\pi \widetilde{u}^{\prime \prime}$. It is easily seen from (3) and (4) that π is a linear mapping of $P D$ into $P_{0} D$.

By Remark 1 to Theorem 2, any v in $P_{0} D$ can be expressed as $v=v^{\prime}-v^{\prime \prime}$, where v^{\prime} and $v^{\prime \prime}$ are in $P_{0} D^{+}$. As π maps $P D^{+}$onto $P_{0} D^{+}$, so the extended π maps $P D$ onto $P_{0} D$.

Finally we show that π is one-to-one. Assume that $\pi u=0$ for a u in $P D$. We have to show that $u=0$. Let $u=u^{\prime}-u^{\prime \prime}$ be a decomposition such that u^{\prime} and $u^{\prime \prime}$ are in $P D^{+}$. Then $\pi u^{\prime}=\pi u^{\prime \prime}$ or $u^{\prime}-u^{\prime *}=u^{\prime \prime}-u^{\prime \prime *}$ or

$$
u^{\prime}-u^{\prime \prime}=u^{\prime *}-u^{\prime \prime *}
$$

From this we have to conclude that $u^{\prime}-u^{\prime \prime} \equiv 0$. Contrary to the assertion assume that $u^{\prime}-u^{\prime \prime} \equiv 0$. Let $\left\{u_{n}^{\prime *}\right\}$ and $\left\{u_{n}^{\prime \prime *}\right\}$ be defining sequences of $u^{\prime *}$ and $u^{\prime \prime *}$ respectively. Then $u_{n}^{\prime *}-u_{n}^{\prime \prime *}$ vanishes on ∂R_{n} and $v_{n}^{\prime *}-v_{n}^{\prime \prime *}=v_{n}^{\prime}-v_{n}^{\prime \prime}$ on ∂R_{0}. By the maximum principle,

$$
\left|u_{n}^{\prime *}-u_{n}^{\prime \prime *}\right| \leq \sup _{D_{R_{0}}}\left|u^{\prime}-u^{\prime \prime}\right| .
$$

As $\boldsymbol{u}_{n}^{\prime *}-\boldsymbol{u}_{n}^{\prime \prime *}$ converges to $\boldsymbol{u}^{\prime *}-\boldsymbol{u}^{\prime \prime *}$, so

$$
\left|u^{\prime *}-u^{\prime \prime *}\right| \leq \sup _{\partial R_{0}}\left|u^{\prime}-u^{\prime \prime}\right| .
$$

Thus we have

$$
\begin{aligned}
\sup _{R}\left|u^{\prime}-u^{\prime \prime}\right| & =\max \left(\sup _{R-\bar{R}_{0}}\left|u^{\prime}-u^{\prime \prime}\right|, \sup _{R_{0}}\left|u^{\prime}-u^{\prime \prime}\right|\right) \\
& =\max \left(\sup _{R-\bar{R}_{0}}\left|u^{\prime *}-u^{\prime \prime *}\right|, \sup _{\not{ }^{R_{0}}}\left|u^{\prime}-u^{\prime \prime}\right|\right) \\
& =\sup _{\partial R_{0}}\left|u^{\prime}-u^{\prime \prime}\right| .
\end{aligned}
$$

There exists a point p in ∂R_{0} such that

$$
\sup _{\partial R_{0}}\left|u^{\prime}-u^{\prime \prime}\right|=\left|u^{\prime}(p)-u^{\prime \prime}(p)\right|
$$

Replacing $u^{\prime}-u^{\prime \prime}$ by $u^{\prime \prime}-u^{\prime}$, if necessary, we may assume that

$$
u^{\prime}(p)-u^{\prime \prime}(p)>0
$$

Then there exists a compact neighborhood U of such that $u^{\prime}-u^{\prime \prime}>0$ in U. As $u^{\prime}-u^{\prime \prime}$ does not take its maximum in U unless it is a constant, so $u^{\prime}-u^{\prime \prime} \equiv c$ in U, where c is a positive constant. Now we put

$$
R_{c}=\left\{q \in R ; u^{\prime}(q)-u^{\prime \prime}(q)=c\right\} .
$$

Then R_{c} contains p and so it is not empty. By the similar argument as above, R_{c} is open in R. Clearly R_{c} is closed. Thus by the connectedness of $R, R_{c}=R$, or $u^{\prime}-u^{\prime \prime} \equiv c>0$. This is a contradiction, since any non-zero constant is not a solution. Thus we have proved $u^{\prime}-u^{\prime \prime} \equiv 0$ or $u \equiv 0$. This shows that π is one-to-one.

Hence π is a one-to-one linear mapping of $P D$ onto $P_{\mathrm{c}} D$ and so the class $P D$ is isomorphic to $P_{0} D$ as vector spaces.
Q.E.D.
11. Remark to Theorem 3. In the proof of Theorem 3, we have constructed an isomorphism π of $P D$ onto $P_{0} D$. From the proof we can easily see that

$$
\sup _{R-\bar{R}_{0}}|\pi u|=\sup _{R}|u| .
$$

Hence π and π^{-1} preserve boundedness. If we denote by $P_{0} B D$ the totality of bounded functions in $P_{0} D$, then we can state that the normed spaces $P B D$ and $P_{0} B D$ are isometrically isomorphic, where the norms in $P B D$ and $P_{0} B D$ are sup. norms.

Thus the condition $R \notin O_{P B n}$ is equivalent to the fact $P_{0} B D \neq\{0\}$.

Hilbert space $P_{0} D$ and its reproducing kernel

12. Only in this section we admit the case $P \equiv 0$. Let R_{0} be analytic compact subdomain of R such that $R-\bar{R}_{0}$ is connected. We denote by $P_{0} D$ the totality of Dirichlet-finite solutions on $R-\bar{R}_{0}$ vanishing continuously on ∂R_{0}. We define the inner product of elements u and v in $P_{0} D$ by the following

$$
(u, v)=\iint_{R-\bar{R}_{0}}\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}\right) d x d y .
$$

Hence $\|\boldsymbol{u}\|=(\boldsymbol{u}, \boldsymbol{u})^{1 / 2}=\left(\boldsymbol{D}_{R-\bar{x}_{0}}[\boldsymbol{u}]\right)^{2 / 2}$. First we prove the following
Lemma 5. There exist a finite-valued function $c(p)$ and a neighborhood $U(p)$ of p in $R-\bar{R}_{0}$ such that for any function u in the class $P_{0} D$

$$
|u(q)| \leq c(p)\|u\|
$$

holds for any q in $U(p)$.
Proof. First assume that u belongs to $P_{0} D^{*}$. We take a subarc γ of ∂R_{0}
with two end points a and b. Let Γ be analytic arc in R with end points a and b such that Γ is contained in $R-\bar{R}_{0}$ except its end points. Moreover we assume that $\gamma+\Gamma$ is the boundary ∂U of a simply connected subdomain U of $R-\bar{R}_{0}$ such that U contains p. We denote by h the harmonic function on U with boundary value u on ∂U. By the maximum principle and Dirichlet principle

$$
u \leq h
$$

on U and

$$
D_{v}[h] \leq D_{U}[u] \leq\|u\|^{2} .
$$

Let $z=\varphi(q)$ be the direct conformal mapping of U onto $\Pi^{+}=(z ; \operatorname{Im} z>0)$ such that $\varphi(b)=\varepsilon>0$ and $\varphi(a)=-\varepsilon$ and $\varphi(p)=y_{0} i\left(y_{0}>0\right)$. We put $H(z)$ $=h\left(\varphi^{-1}(z)\right)$ on Π^{+}. As $H(x)=0$ on $-\varepsilon<x<\varepsilon$, so $H(z)$ can be harmonically continued to $\Pi=(z ;|z|<\infty)-(x ; x \geq \varepsilon$ or $x \leq-\varepsilon)$. We denote by $\hat{H}(z)$ this extended function. We set $W=\left\{z ;\left|z-y_{0} i\right|<y_{0}\right\}$ and $r=\left(y_{0}^{2}+\varepsilon^{2}\right)^{1 / 2}-y_{0}$. We denote by $\hat{H}^{*}(z)$ the conjugate harmonic function of $\hat{H}(z)$ on Π such that $\hat{H}^{*}(0)=0$ and put $F(z)=\hat{H}(z)+i \hat{H}^{*}(z)$. Then $F(0)=0$ and

$$
\iint_{\mathrm{n}}\left|F^{\prime}(z)\right|^{2} d x d y=D_{\mathrm{n}}[\hat{H}]=2 D_{\mathrm{n}}+[H]=2 D_{U}[h] \leq 2\|u\|^{2}
$$

As $\left|F^{\prime}(z)\right|^{2}$ is subharmonic on Π, so for z_{0} in W

$$
\left|F^{\prime}\left(z_{0}\right)\right|^{2} \leq\left(1 / \pi r^{2}\right) \iint_{\left|z-z_{0}\right|<r}\left|F^{\prime}(z)\right|^{2} d x d y
$$

Thus we have for z_{1} in W

$$
H\left(z_{1}\right) \leq\left|F\left(z_{1}\right)\right| \leq \mid \int_{0}^{\left|z_{1}\right|} F^{\prime}\left(t e^{\arg z_{1}}\right) e^{\arg z_{1}} d t \leq\left(2 / \pi r^{2}\right)^{1 / 2}\|u\| .
$$

Hence if we set $U(p)=\varphi^{-1}(W)$, then

$$
u(q) \leq h(q)=H(\varphi(q)) \leq\left(2 / \pi r^{2}\right)^{1 / 2}\|u\| .
$$

For an arbitrary u in $P_{0} D$, we can apply Jordan decomposition $u=u$ $\vee 0+u \wedge 0$, since $P_{0} D$ is a vector lattice (cf. Theorem 2 and Remark 1 to Theorem 2). By Remark 2 to Theorem 2, $D_{R-\bar{R}_{0}}[u \vee 0], D_{R-\bar{R}_{0}}[u \wedge 0] \leq D_{R-\bar{R}_{0}}[u]$. Then from the above

$$
|u(q)| \leq|(u \vee 0)(q)|+|(-u \vee 0)(q)| \leq c(p)\|u\|,
$$

where $c(\boldsymbol{p})=2\left(2 / \pi r^{2}\right)^{1 / 2}$.
Q.E.D.

Theorem 4. The class $P_{0} D$ forms a Hilbert space with respect to the inner product $(u, v)=\left(D_{R-\bar{R}_{0}}[u+v]-D_{R-\bar{R}_{0}}[u-v]\right) / 2$ and this Hilbert space posesses the reproducing kernel $k(p, q)$, i.e. the symmetric function on $\left(R-\bar{R}_{0}\right) \times\left(R-\bar{R}_{0}\right)$ such that $k(p, q)$ belongs to the space $P_{0} D$ as the function of p and for any u in $P_{0} D$

$$
u(q)=(u(p), k(p, b)) .
$$

Proof. To show that $P_{0} D$ is a Hilbert space, we have only to prove that $P_{0} D$ is complete. Let $\left\{u_{n}\right\}$ be a Cauchy sequence in the inner product space $P_{0} D$. By Lemma 5, u_{n} converges to a function u on $R-\bar{R}_{0}$ uniformly on each compact subset of $R-\bar{R}_{0}$. Hence u is a solution on $R-\bar{R}_{0}$. It is easy to see that u vanishes continuously on ∂R_{0}. By Fatou's lemma

$$
\left\|u-u_{n}\right\| \leq \underline{\lim }_{m}\left\|u_{m}-u_{n}\right\| .
$$

Hence u belongs to the class $P_{0} D$ and $\lim _{n}\left\|u-u_{n}\right\|=0$.
To prove the second part we notice that by Lemma 5 the linear functional $u \rightarrow u(p)$ is bounded. Thus by Riesz's theorem there exists an element u_{p} in $P_{0} D$ such that

$$
u(p)=\left(u, u_{p}\right)
$$

As $u_{p}(q)=\left(u_{p}, u_{q}\right)=\left(u_{q}, u_{p}\right)=u_{q}(p)$, so by putting $u_{q}(p)=k(p, q)$ we get the required kernel $k(p, q)$ of $P_{0} D$.
Q.E.D.

The property $O_{P D}$ and a maximum principle

13. A. Mori [1] proved that R belongs to $O_{H D}$ if and only if one of the following holds; $\sup _{R-\bar{R}_{0}} u=\sup _{\partial R_{0}} u$ and $\inf _{k-\bar{R}_{0}} u=\inf _{\partial R_{0}} u$, where R_{0} is an analytic compact subdomain of R such that $R-\bar{R}_{0}$ is connected and u is an arbitrary function in $H D\left(R-\bar{R}_{0}\right)$ such that u is continuous on $R-R_{0}$. We shall show that the corresponding fact also holds for $O_{P D}$. In this case, the above two inequalitsies can be replaced by $\sup _{R-\bar{R}_{0}}|u|=\sup _{{ }_{3} R_{0}}|u|$.

Theorem 5. The following three statements are mutually equivalent.
(a) R belongs to $O_{P D}$;
(b) for any analytic compact subdomain R_{0} such that $R-\bar{R}_{0}$ is connected, it holds that

$$
\sup _{R-\bar{R}_{0}}|u|=\sup _{{ }_{P_{0}}}|u|
$$

for any u in $P D\left(R-\bar{R}_{0}\right)$ such that u is continuous on $R-R_{0}$;
(c) there exists an analytic compact subdomain R_{0} such that $R-\bar{R}_{0}$ is connected and

$$
\sup _{R-\bar{R}_{0}}|u|=\sup _{{ }_{R_{0}}}|u|
$$

for any u in $P D\left(R-\bar{R}_{0}\right)$ such that u is continuous on $R-R_{0}$.
Proof. (a) implies (b). To prove this, take an arbitrary u in $P D\left(R-\bar{R}_{0}\right)$ which is continuous on $R-R_{0}$. By the remark 1 to Theorem $2, u$ can be decomposed as

$$
u=u_{1}-u_{2}
$$

where u_{1} and u_{2} are in $P D^{+}\left(R-\bar{R}_{0}\right)$ which are continuous on $R-R_{0}$ and

$$
u_{1}=\max (u, 0)
$$

and

$$
u_{2}=-\min (u, 0)
$$

on ∂R_{0}. We take an exhaustion $\left\{R_{n}\right\}_{0}^{\infty}$ of R such that R_{n} is an analytic compact subdomain of R. Let $v_{i, n}$ be the solution in $R_{n}-\bar{R}_{0}$ with boundary value u_{i} on ∂R_{0} and 0 on ∂R_{n}. By the maximum principle,

$$
0 \leq v_{i, n} \leq v_{i, n+1} \leq \sup _{\partial R_{0}} u_{i}
$$

and by the energy principle, $E_{R_{n}-\bar{R}_{0}}\left[v_{i, n}\right] \geq E_{R_{n+1}-\bar{R}_{0}}\left[v_{i, n+1}\right]$. By the Harnack type theorem and by Fatou's lemma, $\left\{v_{i, n}\right\}_{n=1}^{\infty}$ converges to a solution v_{i} in $R-\bar{R}_{0}$ such that

$$
0 \leq \boldsymbol{v}_{i} \leq \sup _{\partial \boldsymbol{R}_{0}} \boldsymbol{u}_{i}
$$

and $v_{i}=u_{i}$ on ∂R_{0} and

$$
E_{R-\bar{R}_{0}}\left[v_{i}\right] \leq \lim _{n} E_{R_{n}-\bar{R}_{0}}\left[v_{i, n}\right] \leq E_{R_{1}-\bar{R}_{0}}\left[v_{i, 1}\right]
$$

and a fortiori

$$
D_{R-\bar{R}_{0}}\left[v_{i}\right]<\infty .
$$

Hence by using $\sup _{{ }_{\not R_{0}}}|\boldsymbol{u}|=\max \left(\sup _{\partial R_{0}} u_{i} ; i=1,2\right)$,

$$
\begin{aligned}
\sup _{R-R_{0}} u & \leq \max \left(\sup _{R-\bar{R}_{0}} u_{i} ; i=1,2\right) \\
& =\max \left(\sup _{\partial R_{0}} u_{i} ; i=1,2\right)=\sup _{\partial R_{0}}|u| .
\end{aligned}
$$

From this we get (b).
The implication (b) \rightarrow (c) is clear. Finally we show that (c) implies (a). Contrary to the assertion, assume that R does not belong to $O_{P D}$. Then by Theorem 3, $P_{0} D$ contains a function u which is not identically zero. By Remark to Theorem 2, we may assume $u>0$ in $R-\bar{R}_{0}$ and $u=0$ on ∂R_{0}. Then

$$
\sup _{R-\bar{R}_{0}}|\boldsymbol{u}|>\sup _{\partial R_{0}} u=0
$$

which contradicts the assumption (c).
Q.E.D.

References

[1] A. Mori: On the existence of harmonic functions on a Riemann surface, Jour. Fac. Sci. Univ. Tokyo, I, 6, 247-257 (1951).
[2] L. Myrberg: Über die Integration der Differentialgleichung $\Delta u=c(P) u$ auf offenen Riemannschen Flächen, Math. Scand., 2, 142-152 (1954).
[3] L. Myrberg: Über die Existenz der Greenshen Funktion der Gleichung $\Delta u=c(P) u$ auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., A.I. 170 (1954).
[4] M. Nakai: A measure on the harmonic boundary of a Riemann surface, Nagoya Math. J., 17, 181-218 (1960).
[5] M. Ozawa: Classification of Riemann surfaces, Kôdai Math. Sem. Rep., 4, 63-76 (1954).
[6] M. Ozawa: A set of capacity zero and the equation $\Delta \boldsymbol{u}=P \boldsymbol{P}$, Kôdai Math. Sem. Rep., 12, 76-81 (1960).
[7] M. Parreau: Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. 1'Inst. Fourier, 3, 103-197 (1952).
[8] H. L. Royden: The equation $\Delta u=P u$, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., A.I. 271 (1959).
[9] Y. Tòki: On the examples in the classification of open Riemann surfaces (I), Osaka Math. J., 5, 267-280 (1953).
[10] K. I. Virtanen: Über die Existenz von beschränkten harmonischen Funktionen auf offenen Riemannschen Flächen, Ann. Acad. Sci. Fenn, A.I. 75 (1950).

Mathematical Institute

Nagoya University

