SUM OF TWO FOURTH POWERS OF INTEGERS

MINORU TSUNEKAWA

Introduction. Problems concerning the sum of two fourth powers of integers seem to be so difficult that little has been known since long years [3]. For instance, it is an important problem to determine whether there are infinitely many prime numbers which are represented in the form $p=a^{4}+b^{4}$. But nothing is known except that the density of such prime numbers is easily proved to be 0 ; accordingly it is difficult to obtain a necessary and sufficient condition under which p is represented in such a form.

In this paper we propose to derive several theorems on the above subject by investigating the sum of two fourth powers of integers in the biquadratic number field $R(\sqrt{i})$ or in its subfields. We shall use as main tools the decomposition law of prime numbers in $R(\sqrt{i})$ and the concrete expression of a fundamental unit in $R(\sqrt{i})$.

Hereinafter we say that an integer in a certain number field is of B type if it is represented as a sum of two fourth powers of integers belonging to the field and we denote by B. P. "the representation as a sum of two fourth powers of integers".

The contents of $\S 1$ relate to the existence problem of B type prime numbers in the subfield of $R(\sqrt{i})$ different from the rational number field, $\S 2$ to the uniqueness problem of B. P. and $\S 3$ to B. P. of the product of several B type prime numbers.

Here the writer would like to express his thanks to Prof. S. Kuroda and Dr. T. Kubota for their instructive advices.

Notations and Preliminaries

(1) $i=\sqrt{-1}, R=$ rational number field.
(2) Minimal basis of $R(i), R(\sqrt{2}), R(\sqrt{-2})$ or $R(\sqrt{i})$ are respectively (1 , $i),(1, \sqrt{2}),(1, \sqrt{-2})$ or $(1, \sqrt{i}, i, i \sqrt{i})$, and their class numbers are all 1.

Hence every ideal in each field is principal.
(3) The fundamental unit in $R(\sqrt{ } i)$, as well as $R(\sqrt{ } 2)$, is $\varepsilon=1+\sqrt{2}$. For the sake of convenience, we put $\sqrt{i}=(1+i) / \sqrt{ } 2$, and so $\varepsilon=1+\sqrt{2}=1+$ $(1-i) \sqrt{i}$. Hence, for $n=0, \pm 1, \pm 2, \ldots, \varepsilon^{n}=r+s(1-i) \sqrt{i}$, where r and s are rational integers satisfying $r^{2}-2 s^{2}=(-1)^{n}$.
(4) Necessary and sufficient condition under which a rational prime number p is completely decomposed in $R(\sqrt{i})$ is $p \equiv 1(\bmod 8)$.
(5) The notation $a \mid b$ or $a+b$ respectively means that a is a divisor of b or not, where a and b are integers.
§1. Concerning the existence of B type prime numbers, we have the following results.

Theorem 1. There is no B type prime number ($\ddagger R$) in $R(i)$.
Proof. Let a prime number $\pi(\notin R)$ in $R(i)$ be of B type and put

$$
\begin{equation*}
\pi=\alpha^{4}+\beta^{4}=(\alpha+\beta \sqrt{i})(\alpha-\beta \sqrt{i})(\alpha+\beta i \sqrt{i})(\alpha-\beta i \sqrt{i}) ; \alpha, \beta \in R(i) \tag{1.1}
\end{equation*}
$$

Since then π is prime in $R(i)$, at least two factors in the right hand side of (1.1) must be of the form $\pm(\sqrt{i})^{k} \varepsilon^{n}$, where $k=0,1,2$ or 3 and $n=0, \pm 1$, $\pm 2, \ldots$ Suppose, for instance, $\alpha+\beta \sqrt{i}= \pm(\sqrt{i})^{k} \varepsilon^{n}$ and put $\varepsilon^{n}=r+s(1-i) \sqrt{i}$, then

$$
\begin{equation*}
\alpha+\beta \sqrt{i}= \pm(\sqrt{i})^{k}\{r+s(1-i) \sqrt{i}\} \tag{1.2}
\end{equation*}
$$

Therefore
(1) If $k=0$, then $\alpha= \pm r, \beta= \pm s(1-i)$
(2) If $k=1$, then $\alpha= \pm s(1+i), \beta= \pm r$
(3) If $k=2$, then $\alpha= \pm r i, \beta= \pm s(1+i)$
(4) If $k=3$, then $\alpha=\mp s(1-i), \beta= \pm r i$.

In these four cases, we have $\pi= \pm\left(r^{4}-4 s^{4}\right)$ after all. But this is contrary to the assumption $\pi \notin R$. Next we suppose that the left hand side of (1.2) is equal to $\alpha-\beta \sqrt{i}, \alpha+\beta i \sqrt{i}$ or $\alpha-\beta i \sqrt{i}$. In these cases proof will be similarly carried out by interchanging β with $-\beta$ or with $\pm \alpha$.

Theorem 1'. The only B type prime numbers $(\notin R)$ in $R(\sqrt{2})$ are $5 \varepsilon^{4 m}$ $(m= \pm 1, \pm 2, \ldots)$ and there is no B type prime number $(\notin R)$ in $R(\sqrt{-2})$.

Proof. In the case of $R(\sqrt{ } 2)$, let a prime number $\pi(\notin R)$ in $R(\sqrt{2})$ be of B type and put

$$
\begin{equation*}
\pi=\alpha^{4}+\beta^{4}=(\alpha+\beta \sqrt{ } i)(\alpha-\beta \sqrt{ } i)(\alpha+\beta i \sqrt{ } i)(\alpha-\beta i \sqrt{ } i), \tag{1.3}
\end{equation*}
$$

where $\alpha, \beta \in R(\sqrt{2})$ and $(\alpha, \beta)=1$. Since then π is prime in $R(\sqrt{2})$, at least two factors in the right hand side of (1.3) must be of the form $\pm(\sqrt{i})^{k} \varepsilon^{m}$, where $k=0,1,2$ or 3 and $m=0, \pm 1, \pm 2, \ldots$ First we treat the case:

$$
\begin{equation*}
\alpha+\beta \sqrt{i}= \pm(\sqrt{ } i)^{k} \varepsilon^{m} . \tag{1.4}
\end{equation*}
$$

It is easily seen that (1.4) is impossible for $k=0,1$, so we closely examine the remaining cases of $k=2,3$.
(1) If $k=2$, then taking square of the both sides of (1.4) we have $2 \alpha \beta \sqrt{i}$ $=-\left(\varepsilon^{2 m}+\alpha^{2}+\beta^{2} i\right)$, whence

$$
4 \alpha^{2} \beta^{2} i=\left(\varepsilon^{2 m}+\alpha^{2}\right)^{2}-\beta^{4}+2 \beta^{2}\left(\varepsilon^{2 m}+\alpha^{2}\right) i .
$$

Since α, β and $\varepsilon \in R(\sqrt{2})$ and $\beta \neq 0$, we obtain $\alpha^{2}=\varepsilon^{2 m}$ and so $\beta^{2}=2 \varepsilon^{2 m}$. Hence $\pi=\alpha^{4}+\beta^{4}=5 \varepsilon^{4 m}(m \neq 0)$.
(2) If $k=3$, then (1.4) gives the relation $\alpha= \pm(\sqrt{i})^{3} \varepsilon^{m}-\beta \sqrt{i}$. Hence $\alpha^{2}=\left(\beta^{2}-\varepsilon^{2 m}\right) i \pm 2 \varepsilon^{m} \beta$. This means $\alpha^{2}= \pm 2 \varepsilon^{m} \beta$ and $\beta^{2}-\varepsilon^{2 m}=0$. Consequently $\beta^{4}=\varepsilon^{4 m}, \alpha^{4}=4 \varepsilon^{4 m}$ and $\pi=\alpha^{4}+\beta^{4}=5 \varepsilon^{4 m}(m \neq 0)$.

Assuming that the left hand side of (1.4) is respectively equal to $\alpha-\beta \sqrt{ } i$, $\alpha+\beta i \sqrt{i}$ or $\alpha-\beta i \sqrt{i}$, the proof will be similarly carried out through interchanging β with $-\beta$ or $\pm \alpha$.

Accordingly it has been decided that $\pi=5 \varepsilon^{4 m}$ is a necessary condition for a prime number π in $R(\sqrt{2})$ to be of B type. This is clearly sufficient, for $5 \varepsilon^{4 m}=\left(2 \varepsilon^{m}\right)^{4}+\left(\varepsilon^{m}\right)^{4}$.

In the case of $K(\sqrt{-2})$, we have (1.4) with $\alpha, \beta \in R(\sqrt{-2})$ and can conclude quite similarly that $\pi=5 \varepsilon^{4 m}(m \neq 0)$ are the only B type prime numbers in $R(\sqrt{-2})$. But $5 \varepsilon^{4 m} \notin R(\sqrt{-2})$.

Theorem $1^{\prime \prime}$. There is no B type prime number $(\notin R, R(\sqrt{2}))$ in $R(\sqrt{i})$.
The proof of this theorem shall well be omitted, because it is essentially the same as in the case of theorem 1 in spite of a comparatively complicated computation.
§2. It seems very difficult to determine in a general form the number of
B. P. of a given integer in a field. Until now the following results with regard to a product of two prime numbers has only been obtained.

Theorem 2. Let r, s be rational prime numbers which are either 2 or of the form $8 h+1$ and further let the product rs be of B type, then the $B . P$. of $r s$ is unique.

Proof. Assume $r s=x_{1}^{4}+y_{1}^{4}=x_{2}^{4}+y_{2}^{4}$ under the condition $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$ $=1$ and consider the following decompositions in $R(\sqrt{i})$,

$$
\begin{align*}
& x_{1}^{4}+y_{1}^{4}=\left(x_{1}+y_{1} \sqrt{i}\right)\left(x_{1}-y_{1} \sqrt{i}\right)\left(x_{1}+y_{1} i \sqrt{i}\right)\left(x_{1}-y_{1} i \sqrt{i}\right) . \tag{2.1}\\
& x_{2}^{4}+y_{2}^{4}=\left(x_{2}+y_{2} \sqrt{i}\right)\left(x_{2}-y_{2} \sqrt{i}\right)\left(x_{2}+y_{2} i \sqrt{i}\right)\left(x_{2}-y_{2} i \sqrt{i}\right) . \tag{2.2}
\end{align*}
$$

On the other hand, decompose respectively r, s into $r=\pi \bar{\pi}, s=\sigma \bar{\sigma}$ in $R(i)$, and respectively $\pi, \bar{\pi}, \sigma$, and $\bar{\sigma}$ into $\pi=\pi_{1} \pi_{2}, \bar{\pi}=\bar{\pi}_{1} \bar{\pi}_{2}, \sigma=\sigma_{1} \sigma_{2}$ and $\bar{\sigma}=\bar{\sigma}_{1} \bar{\sigma}_{2}$ in $R(\sqrt{ } i)$: i.e.

$$
\begin{align*}
& r=\pi \bar{\pi}=\pi_{1} \pi_{2} \bar{\pi}_{1} \bar{\pi}_{2} \tag{2.3}\\
& s=\sigma \bar{\sigma}=\sigma_{1} \sigma_{2} \bar{\sigma}_{1} \bar{\sigma}_{2} . \tag{2.4}
\end{align*}
$$

Now each factor in the right hand sides of (2.3) and (2.4) is distributed into each factor of the right hand sides of (2.1) and (2.2). (Consider the norm from $R(\sqrt{i})$ to R. Notations being suitably selected, we may assume that

$$
\begin{equation*}
\pi_{1} \sigma_{1}!\left(x_{1}+y_{1} \sqrt{i}\right) \tag{2.5}
\end{equation*}
$$

Here let us examine other factors;
(1) Suppose first that $\pi_{1} \sigma_{1}$ is also contained in a factor of (2.2), for instance, in $x_{2}+y_{2} \sqrt{i}$. Then, using (2.5), we obtain $\pi_{1} \sigma_{1} \mid\left(x_{1} y_{2}-x_{2} y_{1}\right)$ which causes the following relation

$$
\begin{equation*}
r s \mid\left(x_{1} y_{2}-x_{2} y_{1}\right) \tag{2.6}
\end{equation*}
$$

As $\left|x_{1} y_{2}-x_{2} y_{1}\right|<r s$ unless $\left|x_{1}\right|=\left|y_{1}\right|=\left|x_{2}\right|=\left|y_{2}\right|=1$, it follows from (2.6) that $x_{1} y_{2}-x_{2} y_{1}=0$, which yields $x_{2}= \pm x_{1}, y_{2}= \pm y_{1}$, for $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)=1$. Accordingly B. P. is unique. If $\pi_{1} \sigma_{1}$ is contained in one of any other three factors of (2.2) than $x_{2}+y_{2} \sqrt{i}$, a similar proof is available.
(2) Suppose secondly that $\pi_{1} \sigma_{1}$ is not contained in any factor of (2.2). Then, notations being suitably chosen, we can assume

$$
\begin{equation*}
\pi_{1} \sigma_{2} \mid\left(x_{2}+y_{2} \sqrt{i}\right) \tag{2.7}
\end{equation*}
$$

Therefore, using (2.5) and (2.7), we have

$$
\begin{equation*}
r \mid\left(x_{1} y_{2}-x_{2} y_{1}\right) \tag{2.8}
\end{equation*}
$$

similarly to the above case (1). Here again we closely examine the factor of (2.2) which contains σ_{1}.
(i) If $\sigma_{1} \mid\left(x_{2}-y_{2} \sqrt{i}\right)$, then from (2.5) we obtain $s \mid\left(x_{1} y_{2}+x_{2} y_{1}\right)$ and the relation $r s \mid\left\{\left(x_{1} y_{2}\right)^{2}-\left(x_{2} y_{1}\right)^{2}\right\}$ through (2.8). Since $\left|\left(x_{1} y_{2}\right)^{2}-\left(x_{2} y_{1}\right)^{2}\right|<\left(x_{1} y_{2}\right)^{2}$ $+\left(x_{2} y_{1}\right)^{2}<\frac{1}{2}\left(x_{1}^{4}+y_{2}^{4}+x_{2}^{4}+y_{1}^{4}\right)=r s$, we have $\left(x_{1} y_{2}\right)^{2}=\left(x_{2} y_{1}\right)^{2}$. Therefore x_{2} $= \pm x_{1}, y_{2}= \pm y_{1}$.
(ii) If $\sigma_{1} \mid\left(x_{2}+y_{2} i \sqrt{ } i\right)$, then $s \mid\left(x_{1} x_{2}+y_{1} y_{2}\right)$ after all. Hence, $r s \mid\left(x_{1} x_{2}+y_{1} y_{2}\right)$ $\left(x_{1} y_{2}-x_{2} y_{1}\right)$ holds by (2.8). Since $\left|\left(x_{1} x_{2}+y_{1} y_{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)\right| \leqq \frac{1}{2}\left\{\left(x_{1} x_{2}+y_{1} y_{2}\right)^{2}\right.$ $\left.+\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}\right\}<r s$, we have $\left(x_{1} x_{2}+y_{1} y_{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)=0$, which leads to the same conclusion.
(iii) If $\sigma_{1} \mid\left(x_{2}-y_{2} i \sqrt{ } i\right)$, then a similar proof is available.
(3) In other remaining cases where $\pi_{1} \sigma_{2}$ is contained in any one of (x_{2} $\left.-y_{2} \sqrt{i}\right),\left(x_{2}+y_{2} i \sqrt{ } i\right)$ or $\left(x_{2}-y_{2} i \sqrt{ } i\right)$, we can also obtain similar proofs.

Theorem 2'. If a product $\pi \sigma(\notin R)$ of two prime numbers π, σ in $R(i)$ is of B type, then its $B . P$ is unique.

Proof. Under conditions $\alpha, \beta \in R(i)$ and $(\alpha, \beta)=1$, we put

$$
\begin{equation*}
\pi \sigma=\alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2} i\right)\left(\alpha^{2}-\beta^{2} i\right) \tag{2.9}
\end{equation*}
$$

If $(1+i, \pi \sigma)=1$, then $\left(\alpha^{2}+\beta^{2} i, \alpha^{2}-\beta^{2} i\right)=1$ and if $(1+i, \pi \sigma) \neq 1$, then $\alpha^{2}+\beta^{2} i$ and $\alpha^{2}-\beta^{2} i$ have the common factor $1+i$ at least, and so $\pi \sigma= \pm(1+i)^{2}$ $= \pm 2 i$. If further any one of the factors in (2.9) is ± 1 or $\pm i$, then, quite similarly to (1.2), we get $\pi \sigma= \pm\left(r^{4}-4 s^{4}\right)$. This is, however, contrary to the assumption $\pi \sigma \notin R$. Hence π and σ must be contained separately in two factors of (2.9). If $\pi= \pm\left(\alpha^{2}+\beta^{2} i\right)$ and $\sigma= \pm\left(\alpha^{2}-\beta^{2} i\right)$, then

$$
\begin{equation*}
\alpha^{2}= \pm(\pi+\sigma) / 2, \quad \beta^{2}=\mp i(\pi-\sigma) / 2 . \tag{2.10}
\end{equation*}
$$

If $\pi= \pm i\left(\alpha^{2}+\beta^{2} i\right), \sigma=\mp i\left(\alpha^{2}-\beta^{2} i\right)$, then

$$
\alpha^{2}= \pm i(\pi-\sigma) / 2, \quad \beta^{2}= \pm(\pi+\sigma) / 2 .
$$

The latter can be obtained from (2.10) by interchanging α with β. Thus, α and β are uniquely determined through (2.10).

Note. There are many examples which show that the above theorems 2, 2^{\prime} do not necessarily hold for a product of more than two prime numbers.

Ex. 1. $17 \cdot 63113 \cdot 80537=542^{4}+103^{4}=514^{4}+359^{4}$
Ex. 2. $2 \cdot 113 \cdot 4889 \cdot 2953=239^{4}+7^{4}=227^{4}+157^{4}$
Ex. 3. $(1+4 i)(7-8 i)(3+20 i)=(10+3 i)^{4}+(9-5 i)^{4}$

$$
=(5+2 i)^{4}+3^{4}(1+i)^{4} .
$$

§3. It is also a hard problem to determine generally whether a product of several given B type prime numbers has B. P. or not. First let us state a preliminary lemma without proof.

Lemma. Let a product $N=p_{1} p_{2} \cdots p_{n}$ of different B type rational prime numbers $p_{m}=a_{m}^{4}+b_{m}^{4}(m=1,2, \ldots, n)$ be of B type and put

$$
\begin{equation*}
N=a^{4}+b^{4}, \quad(a, b)=1, \tag{3.1}
\end{equation*}
$$

then the following relation holds;

$$
\begin{equation*}
\prod_{n=1}^{n}\left(a_{m}+b_{m} \sqrt{ } i\right)= \pm(\sqrt{ } i)^{k} \varepsilon^{l}(a+b \sqrt{i}) \tag{3.2}
\end{equation*}
$$

where $k=0,1,2$ or $3, l=0, \pm 1, \pm 2, \ldots$ and $\varepsilon^{l}=r+s(1-i) \sqrt{ } i$. Without any loss of generality, the following conditions can be added:

$$
\begin{equation*}
a>0, \quad b>0, \quad 2 \mid b, \quad a_{m}>0, \quad r>0 . \tag{3.3}
\end{equation*}
$$

Under these conditions the right hand side of (3.2) is written as follows:

$$
\begin{equation*}
\prod_{m=1}^{n}\left(a_{m}+b_{m} \sqrt{i}\right)= \pm(\sqrt{ } i)^{k}\{r a+s b+(r b+s a) \sqrt{i}+s b i-s a i \sqrt{ } i\} \tag{3.4}
\end{equation*}
$$

For $N=2 p_{1} p_{2} \cdots p_{n}$, we have similarly

$$
\begin{align*}
(1+i) & \prod_{m=1}^{n}\left(a_{m}+b_{m} \sqrt{ } i\right) \tag{3.5}\\
& = \pm(\sqrt{ } i)^{k}\{r a+s b+(r b+s a) \sqrt{ } i+s b i-s a i \sqrt{ } i\}
\end{align*}
$$

where $a b$ is to be odd.
Theorem 3. Notations being as in the preceding lemma, none of the products $p_{1} p_{2}, p_{1} p_{2} p_{3}, 2 p_{1}, 2 p_{1} p_{2}$ and $2 p_{1} p_{2} p_{3}$ can be of B type.

Proof. In the case of $N=p_{1} p_{2}$, (3.4) gives

$$
\begin{align*}
& \left(a_{1}+b_{1} \sqrt{i}\right)\left(a_{2}+b_{2} \sqrt{i}\right) \tag{3.6}\\
& \quad= \pm(\sqrt{i})^{k}\{r a+s b+(r b+s a) \sqrt{i}+s b i-s a i \sqrt{i}\}
\end{align*}
$$

Now let us closely examine four cases of $k=0,1,2$ and 3 .
(1) If $k=0$, then, since $(1, \sqrt{i}, i, i \sqrt{i})$ is a basis of $R(\sqrt{i})$, the following relations hold $(\rho= \pm 1)$:

$$
\begin{align*}
\rho(r a+s b) & =a_{1} a_{2} \\
\rho(r b+s a) & =a_{1} b_{2}+a_{2} b_{1} \\
\rho s b & =b_{1} b_{2} \tag{3.7}\\
-\rho s a & =0 .
\end{align*}
$$

From the last formula of (3.7) we have $s=0$, which is contrary to the assumption $b_{1} \neq 0, b_{2} \neq 0$.
(2) If $k=1$, then we have $\rho s b=0$ and $\rho s a=a_{1} a_{2}$, which is a contradiction.
(3) If $k=2$, then the following relations hold:

$$
\begin{align*}
\rho(r a+s b) & =b_{1} b_{2} \\
\rho(r b+s a) & =0 \\
-\rho s b & =a_{1} a_{2} \tag{3.8}\\
\rho s a & =a_{1} b_{2}+a_{2} b_{1} .
\end{align*}
$$

Here $s=0$ is impossible, for $a_{1} a_{2} \neq 0$. If $|s| \geqq 2$, then it follows from the 3rd and 4 th formulas of (3.8) that

$$
\begin{equation*}
b \leqq \frac{1}{2} a_{1} a_{2}, \quad a \leqq \max \left(\left|a_{1} b_{2}\right|,\left|a_{2} b_{1}\right|\right) \tag{3.9}
\end{equation*}
$$

But these can not be true, for $a^{4}+b^{4}=\left(a_{1} a_{2}\right)^{4}+\left(a_{1} b_{2}\right)^{4}+\left(a_{2} b_{1}\right)^{4}+\left(b_{1} b_{2}\right)^{4}$. Accordingly $|s|=1$, but this is also impossible from the 2 nd relation of (3.8).
(4) If $k=3$, the proof is similar to the case (3).

In the case of $N=p_{1} p_{2} p_{3}$, (3.4) yields
(3.10) $\prod_{m=1}^{3}\left(a_{m}+b_{m} \sqrt{ } i\right)= \pm(\sqrt{i})^{k}\{r a+s b+(r b+s a) \sqrt{ } i+s b i-s a i \sqrt{ } i\}$.

Put, for convenience,

$$
\begin{align*}
& A=a_{1} a_{2} a_{3} \\
& B=b_{1} a_{2} a_{3}+b_{2} a_{3} a_{1}+b_{3} a_{1} a_{2} \tag{3.11}\\
& C=a_{1} b_{2} b_{3}+a_{2} b_{3} b_{1}+a_{3} b_{1} b_{2} \\
& D=b_{1} b_{2} b_{3} .
\end{align*}
$$

Then one and only one of A, B, C and D is odd, because $a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}$ are all even. Now let us examine four cases of $k=0,1,2$ and 3 .
(1) If $k=0$, then it follows from (3.10) and (3.11), that
(3.12)

$$
\begin{aligned}
\rho(r a+s b) & =A \\
\rho(r b+s a) & =B \\
\rho s b & =C \\
-\rho s a & =D .
\end{aligned}
$$

If s is odd in (3.12), then A and D are odd, since b is even. This is, however, contrary to the fact mentioned above. Hence s must be even. If $s=0$, then $D=b_{1} b_{2} b_{3}=0$, which can not hold. If $|s| \geqq 4$, then the 3rd and 4th formulas of (3.12) give

$$
a \leqq \frac{1}{4}\left|b_{1} b_{2} b_{3}\right|, \quad b \leqq \frac{3}{4} \max \left(\left|a_{1} b_{2} b_{3}\right|, \quad\left|a_{2} b_{3} b_{1}\right|, \quad\left|a_{3} b_{1} b_{2}\right|\right),
$$

which can not hold by a quite similar reason as (3.9) did not. Finally suppose $|s|=2$, then the 1 st formula of (3.12) implies $2\left|a_{1} a_{2} a_{3}, 8\right| D, 8 \mid s a$ and $4 \mid a$, which contradicts the assumption $2+a$.
(2) If $k=1$, we have $\rho s b=D$ and $\rho s a=A$, which is impossible.
(3) If $k=2$, then (3.10) gives

$$
\left\{\begin{align*}
\rho(r a+s b) & =C \tag{3.13}\\
\rho(r b+s a) & =D \\
-\rho s b & =A \\
\rho s a & =B .
\end{align*}\right.
$$

Here s must be even from a similar reason to the case of $k=0$. But neither $s=0$ nor $|s| \geqq 4$ can hold. Hence $|s|=2(r=3)$. Now by eliminating a, b, a_{3} and b_{3} from (3.13), we obtain the relation

$$
\left(r^{2}-s^{2}\right) a_{1}^{2} a_{2}^{2}-r s\left(a_{1} b_{2}+a_{2} b_{1}\right)\left(a_{1} a_{2}+b_{1} b_{2}\right)+s^{2}\left\{b_{1}^{2} b_{2}^{2}+\left(a_{1} b_{2}+a_{2} b_{1}\right)^{2}\right\}=0
$$

Put $s=2 \rho_{1}\left(\rho_{1}= \pm 1\right)$ and $r=3$, and further put $\left(a_{1} / b_{1}\right)=t_{1}$ and $\left(a_{2} / b_{2}\right)=t$. Then by an easy computation the above relation turns out

$$
\begin{equation*}
\left(5 t_{2}^{2}+6 \rho_{1} t_{2}+4\right) t_{1}^{2}+2 \rho_{1}\left(3 t_{2}^{2}+4 \rho_{1} t_{2}+3\right) t_{1}+4 t_{2}^{2}+6 \rho_{1} t_{2}+4=0 . \tag{3.14}
\end{equation*}
$$

Now we can easily prove that (3.14) can not hold for any real values of t_{1} and t_{2}. For, first of all, $5 t_{2}^{2}+6 \rho_{1} t_{2}+4>0$, and, D being the discriminant with
respect to t_{1} of the left hand side of (3.14), we have

$$
D=\left(3 t_{2}^{2}+4 \rho_{1} t_{2}+3\right)^{2}-\left(5 t_{2}^{2}+6 \rho_{1} t_{2}+4\right)\left(4 t_{2}^{2}+6 \rho_{1} t_{2}+4\right),
$$

where $\quad 5 t_{2}^{2}+6 \rho_{1} t_{2}+4>3 t_{2}^{2}+4 \rho_{1} t_{2}+3$ and $4 t_{2}^{2}+6 \rho_{1} t_{2}+4>3 t_{2}^{2}+4 \rho_{1} t_{2}+3$. Hence $D<0$.
(4) If $k=3$, then a similar relation to (3.13) leads to a similar conclusion.

By means of (3.5) we can accomplish an almost same proof in the case of $N=2 p$, or $2 p_{1} p_{2}$ and a comparatively complicated but analogous one in the case of $N=2 p_{1} p_{2} p_{3}$.

Here we want to add a supplementary corollary and theorem derived almost immediately from theorem 3 and theorem 1^{\prime}.

Corollary. p_{1}^{2}, p_{1}^{3} and $p_{1}^{2} p_{2}$ cannot be of B type.
Proof. Clear, because the lemma is valid for $n \leqq 3$ even if p_{m} are not necessarily different.

Note. This corollary can, however, not be extended in general, for example, if $p_{1}=a_{1}^{4}+b_{1}^{4}$, then $p_{1} p_{2}^{4}=\left(a_{1} p_{2}\right)^{4}+\left(b_{1} p_{2}\right)^{4}$.

Theorem 3'. A product $\nu=\pi_{1} \pi_{2} \cdots \pi_{n}$ of B type prime numbers π_{m} (m $=1,2, \ldots, n)$ in $R(\sqrt{2})$ has B. P. in $R(\sqrt{2})$, if and only if $n=4 h+1$.

This theorem is well comprehended without proof, because it is easily seen that ν must be of the form $5^{n} \varepsilon^{4 k}$ from theorem 1^{\prime} and factors $2+i$ and $2-i$ of 5 are prime in $R(\sqrt{i})$.

Note. We can imagine that theorem 3 may not be extended in general, but for the product of four B type rational primes the theorem seems also to be true.

References

[1] S. Kuroda, Über den Dirichletschen Körper, Jour. of the Faculty of Science, University of Tokyo, Sec 1, vol. IV, Part 5 (1943), pp. 384-393.
[2] T. Takagi, Daisûteki Seisûron (The theory of algebraic numbers), Tokyo, 1948.
[3] L. E. Dickson, History of the theory of numbers, vol. 2 (1920), pp. 644-648.

