REMARKS TO THE PAPER "ON MONTEL'S THEOREM" BY KAWAKAMI

MAKOTO OHTSUKA

1. We take a measurable set E on the positive η-axis and denote by $\mu(r)$ the linear measure of the part of E in the interval $0<\eta<r$. The lower density of E at $\eta=0$ is defined by

$$
\lambda=\lim _{r \rightarrow 0} \frac{\mu(r)}{r} .
$$

Theorem by Kawakami [1] asserts that if λ is positive, if a function $f(\zeta)$ $=f(\xi+i \eta)$ is bounded analytic in $\xi>0$ and continuous at E, and if $f(\zeta) \rightarrow A$ as $\zeta \rightarrow 0$ along E, then $f(\zeta) \rightarrow A$ as $\zeta \rightarrow 0$ in $|\eta| \leqq k \leqslant$ for any $k>0$. He also has shown that one obtains the same conclusion if the assumption $\lambda>0$ is replaced, in the above conditions, by the assumption that the following quantity is positive:

$$
\lambda_{\alpha}=\lim _{r \rightarrow 0} r^{\alpha-1} \int_{r}^{1} \frac{d \mu(t)}{t^{\alpha}},
$$

where α is any number not smaller than 2 .
We observe that, for any $\alpha>\alpha^{\prime}>1$,

$$
r^{\alpha-1} \int_{r}^{1} \frac{d \mu(t)}{t^{\alpha}} \leqq r^{\alpha-\alpha^{\prime}} r^{\alpha^{\prime}-1} \int_{r}^{1} \frac{d \mu(t)}{r^{\alpha-\alpha^{\prime}} t^{\alpha^{\prime}}}=r^{\alpha^{\prime-1}} \int_{r}^{1} \frac{d \mu(t)}{t^{\alpha^{\prime}}}
$$

and hence that $\lambda_{\alpha}>0$ implies $\lambda_{\alpha^{\prime}}>0$ whenever $\alpha>\alpha^{\prime}>1$.
In this section we shall prove that, for any $\alpha>1, \lambda>0$ is equivalent to $\lambda_{\alpha}>0$.
(i) $\lambda>0 \rightarrow \lambda_{\alpha}>0$: First we note that $\mu(r)$ is a continuous non-decreasing function such that

$$
\begin{equation*}
\mu\left(\boldsymbol{r}_{2}\right)-\mu\left(\boldsymbol{r}_{1}\right) \leqq \boldsymbol{r}_{2}-\boldsymbol{r}_{1} \tag{1}
\end{equation*}
$$

for any r_{1} and $r_{2}, 0 \leqq r_{1} \leqq r_{2}$.

Received April 19, 1956.

We suppose that there exists a positive constant $\varepsilon<1$ such that $\mu(r) \geqslant \varepsilon x$ for all $r(0<r<1)$. By (1), in $0<r \leqq t \leqq 1, \mu t)$ is not smaller than the following continuous function:

$$
p_{r}(t)=\left\{\begin{array}{lll}
\mu(r) & \text { for } & r \leqq t \leqq \mu(r) / \varepsilon \\
\varepsilon t & \text { for } & \mu(r) / \varepsilon \leqq t \leqq r_{0} \\
t-(1-\mu(1)) & \text { for } & r_{0} \leqq t \leqq 1
\end{array}\right.
$$

where r_{0} is determined by $\varepsilon r_{0}=r_{0}-(1-\mu(1))$. Except for the trivial case that $\mu(1)=1$, we see that $\mu(r) / \varepsilon<r_{0}$ for sufficiently small r.

Now, for any $\alpha>1$ and for sufficiently small r,

$$
\begin{aligned}
& r^{\alpha-1} \int_{r}^{1} \frac{d \mu(t)}{t^{\alpha}}=r^{\alpha-1}\left[\frac{\mu(t)}{t^{\alpha}}\right]_{r}^{1}+\alpha r^{\alpha-1} \int_{r}^{1} \frac{\mu(t)}{t^{\alpha+1}} d t \\
& \geqslant r^{\alpha-1}\left[\frac{p_{r}(t)}{t^{\alpha}}\right]_{r}^{1}+\alpha r^{\alpha-1} \int_{r}^{1} \frac{p_{r}(t)}{t^{\alpha+1}} d t \\
&=r^{\alpha-1} \int_{r}^{1} \frac{d p_{r}(t)}{t^{\alpha}}=\varepsilon r^{\alpha-1} \int_{\mu(r) \varepsilon}^{r_{0}} d t \\
& t^{\alpha}
\end{aligned}+r^{\alpha-1} \int_{r_{0}}^{1} \frac{d t}{t^{\alpha}} .
$$

The last quantity tends to $\frac{\varepsilon^{\alpha}}{\alpha-1}$ as $r \rightarrow 0$. Thus

$$
\lambda_{\alpha}=\lim _{r \rightarrow 0} r^{\alpha-1} \int_{r}^{1} \frac{d \mu(t)}{t^{\alpha}}>0
$$

for any $\alpha>1$.
(ii) $\lambda_{\alpha}>0 \rightarrow \lambda>0$: Suppose that

$$
\lambda=\lim _{r \rightarrow 0} \frac{\mu(t)}{r}=0 .
$$

Then we can choose $1>r_{n} \downarrow 0$ such that

$$
\begin{equation*}
\frac{\mu\left(\boldsymbol{r}_{n}\right)}{\boldsymbol{r}_{n}}<\frac{1}{n^{2}} . \tag{2}
\end{equation*}
$$

Let us define in $\left[r_{n} / n, 1\right]$ the following function:

$$
q_{n}(t)= \begin{cases}\mu\left(r_{n} / n\right)+t-r_{n} / n & \text { for } r_{n} / n \leqq t \leqq \rho_{1} \\ \mu\left(r_{n}\right) & \text { for } \rho_{1} \leqq t \leqq r_{n} \\ \mu\left(r_{n}\right)+t-r_{n} & \text { for } r_{n} \leqq t \leqq \rho_{2} \\ \mu(1) & \text { for } \rho_{2} \leqq t \leqq 1\end{cases}
$$

where ρ_{1} is determined by $\mu\left(r_{n} / n\right)+\rho_{1}-r_{n} / n=\mu\left(\boldsymbol{r}_{n}\right)$ and ρ_{2} is determined by $\mu\left(r_{n}\right)+\rho_{2}-r_{n}=\mu(1)$. By (1), it follows that $q_{n}(t) \geqq \mu(t)$ in $r_{n} / n \leqq t \leqq 1$. For any $\alpha>1$,

$$
\begin{aligned}
& \left(\frac{r_{n}}{n}\right)^{\alpha-1} \int_{r_{n} / n}^{r_{n}} \frac{d \mu(t)}{t^{\alpha}}=\left(\frac{r_{n}}{n}\right)^{\alpha-1}\left[\frac{\mu(t)}{t^{\alpha}}\right]_{r_{n} / n}^{r_{n}}+\alpha\left(\frac{r_{n}}{n}\right)^{\alpha-1} \int_{r_{n} / n}^{r_{n}} \frac{\mu(t)}{t^{\alpha+1}} d t \\
& \quad \leqq\left(\frac{r_{n}}{n}\right)^{\alpha-1}\left[\frac{q_{n}(t)}{t^{\alpha}}\right]_{r_{n} / n}^{r_{n}}+\alpha\left(\frac{r_{n}}{n}\right)^{\alpha-1} \int_{r_{n} / n}^{r_{n}} \frac{q_{n}(t)}{t^{\alpha+1}} d t=\binom{r_{n}}{n}^{\alpha-1} \int_{r_{n} / n}^{r_{n}} d q_{n}(t) \\
& \quad=\left(\frac{r_{n}}{n}\right)^{\alpha-1} \int_{r_{n} / n}^{\rho_{1}} \frac{d t}{t^{\alpha}} \leqq\left(\frac{r_{n}}{n}\right)^{\alpha-1} \int_{r_{n} / n}^{\left(r_{n / n}+\mu\left(r_{n}\right)\right.} \frac{d t}{t^{\alpha}} \\
& \left.\quad=\frac{1}{\alpha-1}\left(\frac{r_{n}}{n}\right)^{\alpha-1}\left[\left(\frac{n}{r_{n}}\right)^{\alpha-1}-\frac{1}{n}+\mu\left(r_{n}\right)\right\}^{\alpha-1}\right] \\
& \quad=\frac{1}{\alpha-1}\left[1-\frac{1}{\left.\left\{1+n \frac{\mu\left(r_{n}\right)}{r_{n}}\right\}^{\alpha-1}\right] \leqq \frac{1}{\alpha-1}\left\{1-\frac{1}{\left(1+\frac{1}{n}\right)^{\alpha-1}}\right\}} .\right.
\end{aligned}
$$

where we use (2). The last quantity tends to 0 as $n \rightarrow \infty$. We also see that

$$
\left(\frac{r_{n}}{n}\right)^{\alpha-1} \int_{r_{n}}^{1} \frac{d \mu(t)}{t^{\alpha}} \leqq\left(\frac{r_{n}}{n}\right)^{\alpha-1} \int_{r_{n}}^{1} \frac{d q_{n}(t)}{t^{\alpha}} \leqq\binom{ r_{n}}{n}^{\alpha-1} \int_{r_{n}}^{1} \frac{d t}{t^{\alpha}} \leqq \frac{1}{\alpha-1} \cdot \frac{1}{n^{\alpha-1}}
$$

These two evaluations give

$$
\binom{r_{n}}{n}^{\alpha-1} \int_{r_{n} / n}^{1} \frac{d \mu(t)}{t^{\alpha}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

That is,

$$
\lambda_{\alpha}=\lim _{r \rightarrow 0} r^{\alpha-1} \int_{r}^{1} \frac{d \mu(t)}{t^{\alpha}}=0
$$

for any $\alpha>1$.
The equivalence has thus been proved. It is now seen that the theorem by Kawakami is concluded if $\lambda_{\alpha}>0$ for a certain $\alpha>1$.

In a letter, Professor Kawakami raised the following question: Can we draw the same conclusion from the assumption that

$$
\lambda_{\alpha}^{\prime}=\lim _{r \rightarrow 0} r^{\alpha-1} \int_{0}^{r} \frac{d_{\mu}(t)}{t^{\alpha}}>0
$$

for α between 0 and 1 ?
By a similar but simpler calculation, we can in fact prove that, for any α, $0<\alpha<1$, also $\lambda_{\alpha}^{\prime}>0$ is equivalent to $\lambda>0$.
2. Theorem 4 in the preceding paper [2] by the present writer is concerned with the same problem as the theorem by Kawakami, although the domains are different. ${ }^{1)}$ In [2], the domain is the strip $B: 0<x<+\infty, 0<y<1$ and the closed set F on the positive real axis along which the function tends to a limit is required to have the following property:

Denoting by $F_{a}(x)$ the part of F in the interval $[x-a, x+a]$, there exist $x_{0}>0, a>0$ and $d>0$ such that the linear measure $m\left(F_{a}(x)\right)>d$ for all $x>x_{0}$.
Then F is said in [2] to have positive average linear measure near $x=+\infty$. What does this mean of the image F^{\prime} of F on the positive η-axis if B is mapped onto the half plane $\xi>0(\zeta=\xi+i \eta)$ in a one-to-one conformal manner in such a way that $\zeta=0$ corresponds to $x=+\infty$?

In this section we shall show that it simply means the positiveness of the lower density at $\eta=0$ of F^{\prime}.

We map B onto the right half of the disc $|Z|<1$ in the Z-plane ($Z=X+i Y$) by $Z=i e^{-\pi z}$, so that $Z=0$ corresponds to $x=+\infty$ and the image F_{1} of F lies on the positive Y-axis. It is easy to see that the lower density of F_{1} at $Y=0$ is positive if and only if that of F^{\prime} stated above is positive. So we shall prove that the lower density of F_{1} at $Y=0$ is positive if and only if F has positive average linear measure near $x=+\infty$.

First we suppose that F satisfies the required condition. Then

$$
\frac{m\left(F_{1} \cap(0, Y)\right)}{Y}=\pi \int_{F \cap[x,+\infty)} e^{\pi(x-t)} d t \geqslant \pi \int_{F_{G}(x+a)} e^{\pi(x-t)} d t>\pi e^{-2 \pi a} d>0
$$

where $x=-\frac{1}{\pi} \log Y$ is taken so that it is greater than x_{0}. Thus the lower density of F_{1} at $Y=0$ is positive.

Next suppose that, for every $a>0$, there is a sequence of points $x_{n}(a)$ $\rightarrow+\infty$ such that $m\left(F_{a}\left(x_{n}(a)\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. Then if we set $Y_{n}(a)$ $=e^{-\pi\left(x_{n}(a)-a\right)}$, it follows that

[^0]\[

$$
\begin{aligned}
& \frac{m\left(F_{1} \cap\left(0, Y_{n}(a)\right)\right)}{Y_{n}(a)}=\pi \int_{F \cap\left[x_{n}(a)-a,+\infty\right)} e^{\pi\left(x_{n}(a)-a-t\right)} d t \\
& \quad \leqq \pi \int_{F_{a}\left(x_{n}(a)\right)} d t+\pi \int_{x_{n}(a)+a}^{\infty} e^{\pi\left(x_{n}(a)-a-t\right)} d t=\pi m\left(F_{a}\left(x_{n}(a)\right)\right)+e^{-2 \pi a}
\end{aligned}
$$
\]

This value is smaller than any assigned positive value, if we take first a and then n sufficiently large. Thus the lower density of F_{1} at $Y=0$ is zero.

On account of this equivalence, the theorem by Kawakami follows from Theorem 4 in [2] and, by Theorem 5 in [2], it is seen that the metrical condition $\lambda>0$ in the theorem by Kawakami is in a sense the best possible.

Bibliography

[1] Y. Kawakami : On Montel's theorem, Nagoya Math. J., 10 (1956), pp. 125-127.
[2] M. Ohtsuka : Generalizations of Montel-Lindelöf's theorem on asymptotic values, ibid., pp. 129-163.

Mathematical Institute

Nagoya University

[^0]: 1) We both gave talks on the same subject at the annual meeting of the Math. Soc. of Japan held in Tokyo in May, 1955, without knowing one another's work.
