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Introduction

Montel [10] proved in 1912 the following theorem: Let w=f(z) be an

analytic function in the horizontal strip B : 0 < x < -f oo, 0 <;y < 1 (z =• x -\- iy)

which is continuous on 0 < x < + oo, 0 ^ ^ < i and omits at least two values.

If fix) converges to a value w0 as x-* -f °°, then f(z) converges to WQ as z

tends to co in 0 < ΛΓ < -f °°, 0 = y <1 — ε for any e such that 0 < s < 1.

Next the following fact was proved by Lindelof [9] in 1915: If a function

f(z), bounded and analytic in J3, converges to a value WQ as z tends to oo along

a curve L in B, then f(z) converges to WQ as z tends to oo in any strictly nar-

rower substrip 1 ' : 0 < * < -f oo, ε < ^ < l - e ( O < e < 1/2).

In 1918, Gross [6] generalized this theorem. He called in [5] a mero-

morphic function w-f{z) defined in B exceptionally ramified (ausnahmsver-

zweigt) if there exist a finite number of points {wu) in the extended w -plane

and integers μk ^ 2 with Σ ( l ~ 1// )̂ > 2, such that, with at most a finite

number of exceptions, the roots of the equations f(z) =^Wk have multiplicities

divisible by μk. If the equation f(z) ~Wk has only a finite number of roots we

may set μk - oo. Thus, for instance, if /(z) excludes at least three values, it

is exceptionally ramified. The result obtained by him is as follows: If f(z) is

meromorphic and exceptionally ramified in B and converges to ιvQ as z tends to

co along a curve L in B, then f(z) converges to Wo as z tends to oo in any

strictly narrower substrip.

He did not explicitly include the case in which L coincides with the positive

ΛΓ-axis, but it is easily seen that the same conclusion as in the above mentioned

MonteΓs theorem can be obtained. Conversely, once the theorem is established

both in the case that L is identical with the positive #-axis and in the case that
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1} We say that a substrip is strictly narrower than B if both its sides are in B.

• 1 2 9



130 MAKOTO OHTSUKA

L coincides with the upper side of B, it can be proved for any L inside B. To

see this, we suppose that L is a curve in B which starts from a point iy

(0 <y < 1) and extends to z =• oo, and denote by Zλ and D% the domains between

L and the upper and lower sides respectively. We map A conformally onto a

strip Bζ : 0 < ξ < 4- °°, 0 < ->? < 1 so that L and the upper side of B are trans-

formed into the positive £-axis and the upper side of Bζ respectively. Then the

inverse image of the line 0 < ? < + <*>, y = l — e for any e such that 0 < ε < 1/2

is included in the domain between the line y = 1 - e and the line y = 1. This

follows from the fact that the bounded harmonic function in D, equal to 0 on L

and to 1 on the upper side and with vanishing normal derivative on the rest

of the boundary, is smaller than the harmonic function y. Therefore, if the

theorem is true in Bζ, the convergence is concluded in the part of B between

L and the line y = 1 — ε. The same reasoning applies to D2 and we see that

the convergence holds for ε <y < 1 - e.

The theorem is, however, no longer always true for the class of ordinary

meromorphic functions of bounded type as an example shows (see [8], p. 44).

We might then raise the question as to whether the finiteness of the area of the

Riemann surface of an inverse function is enough for the conclusion. This is

answered affirmatively if we observe that, in this case, at least three values are

taken at most finite times so that Gross's result can be applied.2)

In our paper, we shall refine the Montel-Lindelofs theorem from other

several general points of view. In particular, we shall stress the question as to

what size of a set on the real axis is needed in order to conclude, from the

convergence of a function along the set, the convergence of the function as the

variable tends to oo in any strictly narrower substrip. We shall not treat the

problem when a set along which a function tends to a limit is given inside B.

It seems rather difficult to give it a decisive answer.

Chapter I will be devoted to (2) parabolic transformations. An (2) parabolic

transformation is such as the number of sheets of the covering surface associated

with the inverse transformation is under a certain restriction above neighbor-

hoods of an element 2, which is in a sense small. Such transformations were

defined and used in n° 6 of [15]. After mentioning some notions defined in [15]

and defining (2) parabolic transformations of schlicht type, a generalization of

2) I owe this remark to Professor Noshiro and Mr. Oikawa (Tokyo University).
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the Montel-Lindelόfs theorem, will be stated in n° 1 for these transformations.

Four lemmas on extremal length and one more lemma will be given in n°' 2-3.

We shall prove Theorem 1 in n° 4 and remark that the result can be applied to

the problem of conformal mappings. In n° 5, we shall consider transformations

which are not necessarily of schlicht type, and define (2) parabolic transfor-

mations. Theorem 2 gives an example of (£) parabolic transformation. The

condition in it is the same as imposed in n° 7 of [15] to obtain an extension of

a theorem of Beurling. We shall prove in n° 6 a generalization of the Montel-

Lindelofs theorem for (2) parabolic transformations. Throughout this chapter,

the condition that a function tends to a limit along the real axis will be relaxed

to the condition that the function tends to a limit along a part of the axis, whose

size is characterized in terms of logarithmic capacity. The convergence will be

concluded even on the line y = 1 outside a small set.

In Chapter II, we shall deal with the analytic functions taking values on

Riemann surfaces whose universal covering surfaces are of hyperbolic type, or,

more generally, the analytic functions which are exceptionally ramified in a

generalized sense. The precise definition of such functions will be given at the

beginning of n() 1. We shall introduce a new element to a Riemann surface

with the aid of a superharmonic function on it, and sets on the tf-axis having

positive average linear measure near x = -f °o. With these notions, a theorem

of the Montel-Lindelδf type will be stated for a Riemann surface with positive

boundary, generalizing a special case proved by Kuramochi [7] and by the

author [14]. Here, the limit will be the element just introduced, and the set

on the real axis, which ensures the convergence in any strictly narrower sub-

strip, will have positive average linear measure near JC= +«>. The condition

on the linear measure of the set is less restrictive than the condition in Chapter

I on the logarithmic capacity of the set. One may compare this situation with

the refinements of Fatou's theorem and Riesz's theorem by Beurling under ad-

ditional conditions. In n° 2, some properties and examples of the above defined

element will be given, and, in n° 3, the theorem stated in n° 1 will be proved.

Theorem 5 will show that the condition that we obtain in the theorem is in a

sense the best possible. In no s 4-5, Riemann surfaces with null boundary will

be the object of discussion. In this case, in order to conclude the convergence

in any strictly narrower substrip, we must take the whole axis as the set along

which the function tends to a limit. It will be proved in Theorem 7.
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To extend our results to pseudo-analytic functions we need some properties

of quasi-conformal mappings of one strip onto another. A similar discussion

was carried out by Yujδbδ [24; 25] for his class of quasi-conformal mappings,

but we are interested in the class of functions defined by Pfluger [16] and

Ahlfors [1], which is more general than Yujόbδ's. We shall mention this ques-

tion at the end of our paper his result follows from ours.

Chapter I. (£) Parabolic Transformations

1. First we shall define the extremal length of a family of systems of

curves and the dilatation of a transformation.

Let $* be a connected topological space, and $ a subset of g*, composed

of a countable number of Riemann surfaces. A set of at most countably many

curves on ft* will be called a system of curves. We shall say that a system of

curves separates two given mutually disjoint sets on g* with respect to an open

subset of £y* if it intersects all curves, if any, which connect the two sets in the

open set.3) A covariant quantity p, 0 ^ p *= + w , defined on g will be called

admissible for a family of systems {c} in ^ if j pds ^ 14) for all c ε ( c } . Given

a real-valued function π(P), 0 ^ π(P) *= -f <*>, on g, we set M^{c) = inf f f πp2dτ

for admissible ρ} where dτ is the area of surface element, and set λ^{c)

= l/Mn{c}; the latter quantity will be called the extremal length of {c) with

weight π. In case π(P) = l, M{c) and λ{c) will represent Mι{c) and λι{c)

respectively and λ{c) will be called simply extremal length. The extremal dis-

tance of two sets Xi and X2 on a Riemann surface with respect to an open set

G is defined by the extremal length of the family of all curves which connect

points of Xi with points of X2 in G, and we shall denote it by μβίXiy X2) \ if

there is no such curve we set the extremal distance equal to 00.

Let f(P) be a homeomorphism of $ onto another countable set $1 of Rie-

mann surfaces, and PG^y a point at which u(f(Pix, y))) and v(f(P(x, y)))

are totally differentiate, where z = x -f iy is a local parameter at P and w = u + iυ

is a local parameter at f(P) we shall say simply that f(P) is totally differ-

entiable at P. We set, at this point, DBW = Dβw(z) = lim (w(z + rei0) - w(z))/reiQ

r->0

3) Curves may terminate at boundary points of the open set. We shall omit this
remark hereafter.

4) For the precise definition of this lower integral, see n°3 1-2 of [15].
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{0ί=θ<2π) and J(z) = uxvy — uyvx; the dilatation q(P) is defined as

max I DQw\2/ \J{Z) | at points P where f{P) is totally differentiable and J(z)*Q.

It is set equal to -b oo at other points of g.5) The value of the dilatation does

not depend on the choice of local parameters.

We shall call f(P) absolutely continuous on a system of curves^ if some

arc of the system is not rectifiable, or, otherwise, if, for a local parameter z at

any point P on the system and for a local parameter w at f(P), w(f(P(z)))

is absolutely continuous on the z-image of the system so far as the function is

well-defined. The inequality: λ{d) ^λllQ{c}( e) in n° 2 of [15]) is valid for a

family of systems {c} of curves in &, on each of which f{P) is absolutely con-

tinuous and totally differentiable almost everywhere (a.e.),7) and for the family

of their images {cλ} in #i. This inequality will be used later.

Now let $ be a filter with a countable base {Dn}, composed of open sets

in ιy*.S) We let $ define a new element 2 and introduce a topology into 5* + {2}

5 ) We can show by an elementary calculation that the dilatation of f(P) and that of

its inverse function at corresponding points are equal. We remark also that we can

define dilatation similarly even if f(P) is not schlicht.
6 ) We did not define this notion clearly in [15] but there too the notion should be

understood in this sense.
7 ) We mean by this that, for any arc of c which corresponds to a rectifiable arc cz

in a parameter circle | z | < l , f(P) is totally differentiable at the point P(z(s)) for almost

every value of s, where z(s) is the representation of cz in terms of the arc-length (see

[18], p. 258). This property does not depend on the choice of local parameter.

We shall show that, in case c is a simple rectifiable curve in a plane, this is equiva-

lent to saying that the exceptional set on c has vanishing outer length in the sense of

Caratheodory. If we use the representation of c in terms of the arc-length and if we

define an interval function and then an outer measure s*(A) for sets A in (0, so) as in

n° 1 of [15], where so denotes the total length of c, then s*(A) is equal to the outer

Lebesgue linear measure. Since it is shown (see p. 155 of [20]) that the s*(Λ)-value of

any set A in (0, so) is equal to the outer length of the corresponding set in the plane

in the sense of Caratheodory, our assertion follows.

The author made a misstatement at lines 20-24, p. 203 in [15]; it follows from proper-

ty i) only that g~HP) is totally differentiable a.e. on c(un) for almost every value un.

In order to correct this error, we require the function to be totally differentiable a.e.

on a system of curves instead of requiring it to be totally differentiable everywhere on

the system, at line 4, p. 193; line 22, p. 194; line 18, p. 196 in [15]. We notice that Lemma 1

and e) in n° 2 still hold and that the subsequent statements remain valid. At line 20, p. 203,

we define C' to be the subfamily of C,< such that, on each element c{un)^dn, the restric-

tion of g~ι(P) to ft is totally differentiable a.e. and absolutely continuous. Then, from

properties i) and iii), it follows that c{ua)^C\ for almost every un such that 0 < ^ n < l .

8 1 The intersection Γ\Dn needs not be empty. Therefore, it can happen, for instance,

that 23 is the filter of the neighborhoods of an inner point of ft*.
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by taking {Dn + {2}} as a base of the neighborhoods of 2 and preserving the

original bases of the neighborhoods of the points of 3* A continuous transfor-

mation f(P) of a space 3, composed of a countable number of Riemann surfaces,

into 3* will be called an (2) parabolic transformation of schlicht type, if the

restriction of fiP) to { ? G g ; / ( P ) 6 5> is schlicht and if we can find for

a base of 25 a decreasing sequence {Dn) of open sets, with mutually disjoint

relative boundaries {cn), such that, for every pair n and m (n < m), there

exists a family of systems {cn'm} of curves in 3> which separate cn and cm

with respect to 3*> with the property that, on every cn>m, f~1(P) is totally

differentiable a.e. and absolutely continuous and that λi/Q{cn'm) -> 0 as m -> °o

while n is kept fixed, where q-q(P) represents the dilatation of f~\P).

To formulate the first theorem, we introduce one more notion. A closed

set F on the positive tf-axis is said to have positive average logarithmic capacity

near x — f oo if there exist ΛΓ0 > 0 and a > 0 such that the logarithmic capacity

of the part Fa(x) of F in the interval (x-a, x + a) is greater than a finite

constant d > 0 for all x > x0.

Now we state the following extension of the Montel-Lindelof s theorem for

(2) parabolic transformations of schlicht type.

THEOREM 1. Let 3* be a connected topological space, 3 a subset of 3*>

composed of a countable number of Riemann surfaces, and 2 a new element

defined by means of a filter 35 on 3*. Suppose that there exists a base {Dn} of

25, composed of open sets, such that every relative boundary cn of Dn is nonempty

and consists of a countable number of mutually disjoint Jordan closed curves or

open arcs in 3^ of which at most a finite number are compact in 3, and intro-

duce a topology into 3*-MS) in the customary way. Let B be the strip

0 < x < +co, 0 < j y < l in the z-plane, and F a closed set on the positive x-axis

having positive average logarithmic capacity near x— -f- oo. Let f(z) be an (2)

parabolic transformation of schlicht type of B into 3*> which is a continuous

mapping of B + F into 3* + {2}. If fix) -»2 as F3ΛΓ-> +coy then we can

find a set Ω, relatively closed in B and approaching the boundary of B as z -> oo,

such that fίz)-*2 as z -» oo outside of Ω, with the property that the extremal

distance of F and Ω with respect to any open set G C B tends to -f °° as G as a

whole recedes to the point at infinity.

9> Each end of every open arc terminates at a point in % or tends to the boundary of
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//, in addition, f{z) is continuous on the line y = 1, then fix -f- i) converges

to 2 cis x -> + oo outside of a closed set whose part in an interval of definite

length, whatever this length may be, has a logarithmic capacity tending to zero

as the interval recedes to oo.

2. In this section we shall give four lemmas concerning extremal length.

First we mention the following result by Brelot and Choquet ([3], p. 243)

which will be used in the proofs of lemmas:

Let $ be a Riemann surface with positive boundary, K a compact set in £y

bounded by a finite number of closed analytic curves, u(P) the harmonic measure

of the boundary of Jy with respect to £y - K, and viP) its locally defined conjugate.

Then almost every v-level curve starts from a point of K and tends to the boundary

of $, and u(P) increases monotonously from 0 to 1 on it.

We shall prove

LEMMA 1. Let R be a rectangle 0 < x < a, 0 < y < π in the z-plane,

z — x -f iy, and F a closed set on the right side of R with positive logarithmic

capacity. Let u(z) be the bounded harmonic function in R, equal to 0 on the

left side I and to 1 on F except for a set of logarithmic capacity zero and with

vanishing normal derivative on the rest of the boundary}® Then for the extremal

distance μR(I, F) between I and F, there holds

1 1 n )

μR(I, F) = -ΎTΓΓ/T = "^ 'DίuJ ί,dυ

where D\_u~\ is the Dirichlet integral of u(z) in R and viz) is the conjugate of

u(z).

Proof12) We surround F by a finite number of closed analytic curves and

denote by d their parts inside R. We surround F again by a finite number of

closed analytic curves which lie inside the curves taken the first time, and denote

by Co their parts inside R. In this way we obtain an approximation {Rn} of R

10) On R, u(z) equals the harmonic measure of F with respect to the double of R
minus /.

π> The variation I dυ is taken in the positive sense always in this paper.
12) We may apply Theorem 2 of Strebel [21] to obtain this relation.
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such that cn is the part of the boundary of Rn in R and converges to F as

n -» oo. Let un(P) be the bounded harmonic function in Rn, equal to 0 on 7 and

to 1 on cn and having vanishing normal derivative on the rest of the boundary,

and let vn(P) be its conjugate. We proved in Theorem 4 in [15] that μR(I, F)

= lim l/Dίunl. Since Dlunl -* Dίul and Dίunl = \ dvn -* \ dυ as n -* oo,

our lemma is obtained.

Secondly we give

LEMMA 2. Let % be a Riemann surface, ci and c2 two nonempty disjoint

closed sets which consist of countably many mutually disjoint Jordan closed curves

or open arcs in £y, and Δ an open set with relative boundary ci -f c2. We take

an exhaustion {Bn) of % such that, for every n, the boundary Γn of Bn consists

of a finite number of closed analytic curves, let un(P) be the bounded harmonic

function in Δ Π Bn, equal to 0 on c\ Π (Bn + Γn) and to 1 on c2Γ\ (Bn + Γn)

except for sets of logarithmic capacity zero and having vanishing normal deriva-

tive on ΔΓ\Γn, and let υn(P) be its conjugate. Then we have

\dVn

and this common value tends to μΛci9 c2) as n -> oo, where \ dυn is taken along

the Un-level curve for an arbitrary value un such that 0 < un < 1.

Proof. The fact seems simple but the proof will be tediously long on ac-

count of the general character of cΛ and c2.

We form the double Bn of Bn along Γn, and denote by cM and c'n the respec-

tive doubles of CιΓ\{B-\-Γn) and c2Γ\(Bn + Γn) and by ΔnCBn the double of

ΔΓ)Bn along Δ Π Γ«. Then Δn is bounded by cn + cf

n. We may suppose that

cn^Φ and in^φ for all n ^ 1. The harmonic measure of c'n with respect to

Δn is equal to un(P) in ΔΓ\Bn and will be denoted by the same notation un(P).

For an arbitrarily fixed value «0, 0 < «o < 1, we take a regular piece of the

Wn-level curve c0 : un(P) = «o, start from the points of this piece and trace #M-

level curves in both directions until we meet multiple points or points on cn or

c'n. Since un(P) varies monotonously on our route, it is not a closed curve. If

there is a route which terminates at a point of cn+c'n and along which un(P)

tends to a positive value less than 1, then this point is an irregular boundary
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point of the open set Δn in Dirichlet problem. It is well known that such ir-

regular points form an F0-set of logarithmic capacity zero in Bn, and hence ap-

plying Theorem 2 of [14] we see that, on almost all routes, un(P) increases

monotonously from 0 to 1. Since this is true for any regular piece of the un-

level curve c0, it follows that, on almost all vnΛeve\ curves passing £0> un(P)

increases monotonously from 0 to 1.

Let now Po be any point of Δn around which un(P) is not constant. In a

similar way we see that the set of tvlevel curves on which un{P) increases

monotonously from 0 to 1 covers a neighborhood of Po except for a set of

{un, vn)-measure zero. But each one of such zvlevel curves cuts the level curve CQ.

Thus the set En of all points, lying in An on the υnΛeγe\ curves along which

Un(P) varies from 0 to 1, covers the part of An in which uΛP) is not constant,

except for a set of {un, t>n)-measure zero. Therefore, by Fubini's theorem, we

obtain

- \ \ dUndϋn = \ dvn,
J J An En •>

the integral \dυn being taken along any un-level curve c{n) : un(P) = const. un,

0<Un<l in ΔC\Bn.

For any admissible p for the family of all curves, which connect d and c2

in Δ Π Bn, with respect to un + ivni we have by Schwarz's inequality that

1 ^ [ p2dun \ dun = \p2dun, where the integrals are taken along a vn-\eve\ curve

in ΔfΛBn on which un(P) increases from 0 to 1. Since this relation is true for

almost all zvlevel curves, it follows that \ dvn ^ \ \ p2dun dvn and hence

/jtΔnBn(cχ, c2) ^ DΛnBn W " 1 . To obtain the inverse inequality, we take an exhaus-

tion {Bn) of An such that Bn is bounded by a finite number of closed analytic

curves. For large p, these curves are separated into two disjoint families and

these families approach cn and c'n respectively as p ~> co. Let us define the

harmonic measure u(p)(P) of the latter family of curves with respect to Bt It

is immediate to see that /t±nBn(c}, c2) ϊ± DAnnzlu^Y1. Since DΔn%lu{p)l

-* Dsnntιί
uni as £ ^ c o , the inequality μ±nκu(

cu c^ ^ DannSunY1 follows.

Thus we have the required equality.12)

We shall prove that I/DAΠ/^CMO] = βmBn(ci, c>>) ~* μΛci, c2) as n->co.
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The proof will be somewhat similar to that of Theorem 3 of [15].13) Since

{un(P)) are uniformly bounded we can choose a subsequence {unj(P)} which

is uniformly convergent locally in Δ. We shall show that the limiting function

uo(P) is continuous on Δ + ci + c2 and equal to 0 on cι and to 1 on c2. Let Pi

be any point of ciΓ)Bn, and a a Jordan arc of ci containing Pi. We draw a

small Jordan domain around Pi, disjoint from c2 in Bn, such that it is divided

by a into two parts and at least one of them contains points of Δ if Pi is an

end point of a component of cίt a domain slit along an arc of a is obtained.

We add to Δ such one part or a domain slit along an arc of a and denote the

enlarged open set thus obtained by Δ'. The function u'n(P), similar to un(P)

and defined in Δ' Π Bn, is not less than w«(P). On account of the reflexion

principle we can choose a subsequence of {u'nj(P)} which converges uniformly

in a neighborhood of Pi. Hence the limiting function, which is not less than

UQ(P), vanishes continuously at Pi. Thus uo(P) vanishes continuously at Pi.

This is true for any point of ci, and hence UQ(P) is continuous and vanishes on

cu In the same way, we can prove that UQ(P) takes the value 1 continuously

on c2.

In view of an elementary property of extremal length, we see that

UAnA>n(ci, c2) is decreasing as n -> co and lim 1/A\n/?„[#»] = lim μAnBn(cιf c2)

^ μΛcu c2). Next we shall prove that lim DΔΠJBU[KH] ̂  £>ΔOO] and that μΛcu c2)
it-* oo

^ 1/DAZUQI. In fact, since unj(P) -> uo(P) uniformly locally in Δ, it is obvious

that DAZUOI ί= tim DAnFnjίun3 = lim DAnFnίunl. Oh the other hand, p = l is
J-*T3 TJ- .̂00

admissible for curves which connect d and c2 in Δ with respect to uo + ivo, and

hence there holds /ιΔ(ci, c2) fel/DΔ[w0]. These three relations together yield

lim βAnBuicί, c2) =UΔ(CI, C2), which is the required relation.

Thirdly we shall prove

LEMMA 3. Let R be a rectangle 0 < x < a <au 0 <y < π in the z-plane, I

its left side, and F a closed set on the right side with logarithmic capacity greater

than k > 0, Then μR(I, F) has a finite major ant depending only on a\ and k.

Proof. We map R by iv = ez onto the upper half of an annulus A : K\w\

13) w e g j v e h e r e a correction of [15]: The assumption that both Cι and c> are closed
sets and every point of c{ and c2 has a neighborhood such that the part of cL and c2 in
it is a crossing arc of the neighborhood was left qut by mistake at line 18, p. 197 and
in the statement of Theorem 3 of [15].
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< ea. It is easy to see that -the image Fw of F on the outer circle has a loga-

rithmic capacity greater than a positive constant depending only on k, if we take

into consideration the fact that the logarithmic capacity of any closed set is equal

to the corresponding transfinite diameter. The same is obviously true of the

union Fw of Fw and its reflexion on the lower semicircle. It is immediately seen

that μA(\w\ = 1, Fw) is equal to the half of μR{I, F). The following proof of the

fact that μA(\w\~l,Fw) is dominated by a constant depending only on ai and

k is analogous to that of Theorem 1 of [17].

Let U(w) = J \ogl/\ιv- ω\dμ{ω) be the equilibrium potential of Fw in the

tv-plane with equilibrium constant K, and take the sum U(w) = U(tv) -f U(e2a/ϊv).

Then on \w\ = 1, U(w) ^ log l/{eα(l -f eaf). Let us consider the set <S of all

level curves of the conjugate V(w) of ϋ(w) which are simple curves starting

from the origin and on which U(w) increases monotonously from - oo to 2π.

Since ύ(w) is symmetric with respect to \w\=ea> these level curves are located

inside this circle. The set of the V-values such that the corresponding F-level

curves belong to S has linear measure 2π on account of the above mentioned

result by Brelot-Choquet. For, if we take a value uQ sufficiently large, the level

curve U(w) — — uo consists of two simple closed curves γ and γf around iv — 0

and w; = oo respectively, and the parts of the F-level curves in the domain

bounded by Fw + r + ϊ' are identical with the orthogonal trajectories of the level

curves of the harmonic measure of Fw with respect to the domain. We shall

denote by (rp) the parts of the curves of @ between Fw and the U-level curve:

U(tϋ) = logll{ea(l-\-ea)2). It is easy to see that λ{r?} = 12K + log{ea(l + eaΫUl2π.

This value is smaller than a certain constant c(aι, k) which depends only on aι

and k. On the other hand, we have μA(\w\ = 1, Fw) ^ λ{γp} in view of ele-

mentary properties of extremal length. Thus μA(\w\ = 1, Fw) < c{aι, k) and the

lemma is proved.

The last lemma in this section is

LEMMA 4. Let G be a rectangle - aQ < x < α0, 0 < v < 1 in the z-plane, FQ

a closed set in — aQ/2 < x < ao/2 on the lower side with logarithmic capacity

ko > 0, and suppose that, given a positive ε < 1, Ω is a continuum which con-

tains at least one point of the interval ε < y < 1 -- ε on the imaginary axis and

one point on the boundary of G. Then the extremal length of any family of

systems {c) of curves in G separating Fo from Ω with respect to G is greater
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than a positive finite number which depends only on aQf ko and e.

Proof. We may assume that ε < ao/2. Let S be the domain between the

sides of two rectangles Ri : - ao/2 < x < ao/2, ε < y < 1 - ε and R2 '- - aQ/2

-e/2<x<ao/2 + e/2, ε/2 < jy < 1 - ε/2. Let u(z) be the function bounded

and harmonic in the rectangle R* - - ao/2 < x < ao/2, 0 < y < ε, equal to 1 on

Fo except for a set of logarithmic capacity zero and to 0 on the upper side and

with vanishing normal derivative on the rest of the boundary. The total vari-

ation of its conjugate is equal to the Dirichlet integral Dίu] and greater than

a positive number do depending only on ao and #0> according to Lemmas 1 and

3. Almost every orthogonal trajectory of the ^-level curve connects a point of

Fo with a point of the upper side of Rs and u(z) decreases montonously from

1 to 0 on it, on account of the above mentioned result by Brelot-Choquet. We

set pi = (u2x-\-vz

y)
1/2/DLu] in Rz and =0 in G-Rz with respect to z = x -h iy.

If a system c of our family {c) cuts all these trajectories, then the integral

I pids ̂  1. Suppose that there exists a trajectory a which does not meet this
J c

system c. Let R(y) be the side of the rectangle in S, passing the point (0, y)f

where ε/2 < y < ε, and keeping the same distance y - ε/2 from the side of R2.

We start from the lower end point of <;, go along σ, turn to the left at the point

intersecting R(y) and proceed along R(y) until we meet Ω. By the hypothesis,

R(y) necessarily meets Ω. Since c separates Fo from Ω, it cuts our route. This

is true for all y in (ε/2, ε), that is, c intersects all R(y), ε/2 < y < ε. There-

fore, the ordinary length of c is ^ ε/2. So if we set p2 = 2/e in G with respect

to z = x + iy and set p = pi-t-p2, then pds ^ 1 for all c£{c) . Thus l/λ{c}
J c

^\\/d%dy-2\\ (Pi + ̂ ) ^ φ = 2 ( l / D M + 8αo/ε2) ^ 2(1/Λ + Sajε2) and the

lemma is proved.

3. We shall give one more lemma before we prove the theorem.

LEMMA 5. Under the same conditions as in Theorem 1, for every n,

Ωn = {z ELB f(z) G ^ - D'n) approaches the boundary of B as z -> oo and

the extremal distance of F and Ωn with respect to any open set G C B tends to

infinity as G as a whole recedes to the point at infinity.

Proof. Let {Dn} be a base which satisfies the conditions required in the

definition of (ΰ) parabolic transformation of schlicht type. For every n, there
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exists v(n) such that. D^{n) C D'h. By assumption, there is a family of systems

{cΛn)'m} of curves in #, which separate cv ( w, and cm (m > v(n)), with respect to

5*, such that λnQ{cΛn)'m) -> 0 as w -* ^o. For every ?n>v(n) we can find

7r(w) which satisfies Z)'π(m) C A«. Each system cΛn)'m separates c'n and every

c'k with & ̂  π(m), with respect to 5 Therefore, for every m> n} there eixsts

a family of systems of curves in £y which separate <cj, and c,?7. with respect to

δ*, on each of which f~1(P) is totally differentiable a.e. and absolutely con-

tinuous, and whose extremal length with weight 1/q tends to zero as m -» °°.

We may now assume, without loss of generality, that {cn) and {c'n) are identical.

Suppose that there exists a sequence of points {zp}, zp = Xp + ivp, in Ωn such

that ε < yp < 1 - ε for a certain ε > 0 and Xp -* + °° as p -» oo. Let G/> be the

rectangle Λ:/, - 2« < A: < ΛΓ/, + 2«, 0 < j> < 1, where # > 0 is a number for which

the logarithmic capacity of Fa(x) is greater than d > 0 for all # > xQ > 0. Given

w > n, if we take p sufficiently large, then xp > x0 and the image of F2a(xp)

lies in Dm-\-{2}- We may suppose that the boundary of Ωn has no compact

component in Gp, because cn has at most a finite number of compact com-

ponents and f(z) is schlicht on {zE: B fίz) G g }. Denote by c|' ; / z the inverse

image in Gp of cn'm. Each cj!'m intersects all curves in Gp which connect F and

the component of Ωn that contains 2/>. Hence, by Lemma 4, ^ {c^'m) ^ λo > 0 where

Λo is a constant depending only upon a, d and ε. On the other hand, if Cnm

denotes the inverse image of cn'm in B, there holds λ{chm) ύ λ\ιq{cn'm) as

pointed out in n° 1 ( e) of [15]). These two inequlities are, however, not com-

patible, because λ{cl'm) ^ λ{cnpm) and λι,Q{en'm) -> 0 as m -> oo. Thus the first

part is proved.

Next let G C B be an open set which is not disjoint from Ωn. Let B\ be

the smallest strip, containing G, of the form Xι < x < -f co, 0 < y < 1. Since

μih(Fy Ωn) ^ /^G(F, i?n), it is enough to show that μIh(F, Ωn) -> 4- co as Xι -» -f oo.

We take ΛΓI SO large that the part of F on the boundary of Bι is mapped into

Dm+ {2} (m>n). We denote by δm the inverse image in Bι of Dm-\r cm. It

is obvious that μpn(F, Ωn) ^ βn^δm, Ωn). We approximate i?i by an increasing

sequence of rectangles {Rp} with boundaries {Γp} such that the closure of RP

is included in Rp+i. Let w/>(2) be the harmonic function in Rp — Ωn — δm, equal

to the harmonic measure of the double of δmΓ\(Rp + Γp) with respect to the

double of Rp - Ωn ~ δm, which is a part of the double of Rp formed along Γp.

If vp(z) denotes the conjugate of u/,(z), then almost all vp-level curves connect
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Ωn to δm, as we have seen in the proof of Lemma 2. Therefore, the inverse

image cn

B\
m in Bι of every cn'm intersects all these vpΛevel curves. Consequently,

if we set p = l/DZupl = l/\ dυp with respect to up + ivp in Rp-~Ωn-δm

J Uμ- const.

and to 0 in Bι-Rp, then p is admissible for {c?>[m), and hence λ{cB\
m) ^ DZupl.

Then we apply Lemma 2 and obtain lim I/DZupl = μ!h-Ωu-δm(δm, Ωn) = μβ^δmt Ωn).

If we combine these relations with the already obtained inequality μπSδm, Ω?t)

έμjiJFyΩn), then it follows that l/λ{cl\m) ^ μBi(F, Ωn). Since λ{cB\
m)

^.λ1/Q{cn'm) and λi/Q{cn'm) -» 0 as m-* ™, we see that μSl(F, Ωn) -> + ^ as
ΛΓi-> 4- o o .

4. PTΌO/ O/ Theorem 1. We take 0 < #i < x2 < . . . so that, Bn being the

strip xn< x < -f °°, 0 < jy < 1, the jy-coordinate of the points of Bn Π Ωn satisfies

0 < y < 1/w or 1 - 1/w < y < 1 and so that μBn(F, Ωn) > 2n, and we determine

0 < x[ < x-2 < . . . so that x'n - xn > 2n. We set Ωn Π {(x, y) x» ^ x ^ x'n+i,

0 <y <1) = Ωn and U i2w = J2. Then i2 approaches the boundary of B as z -+ °°
n - l

and /(z) -> 2 as 2̂ 3 2 -> °°.

In order to prove that μQ(F, Ω) -> 4- °° as G -> 00, it is sufficient to show

that μn'JF, Ω) tends to 4- ^ as n - °°, where J3« is the strip: AΓ« < x < 4- °°,

0 < v < 1. For each k ^ n, we divide the family {γk) of all curves in J5ή, which

connect points of Ωk and points of FΠZxn, + °° ), into two subfamilies: one

part {γ'k) consists of the curves situated entirely in Bk except for their end

points and the other part {γί) consists of the rest of the curves. Then λ{γ'u)

^ μnk(F, Ωk) > 2k and λ {γk) ^ x'k - Xk > 2*. We shall use the following general

property of extremal length : M( U {cn)) Φ Σ M { c n } this follows from the re-

lation I \p2dτ ^ Σ \ \ Pndτ, where pn is admissible for {cn) and p = suppn at
CO

every point, because then p is admissible for U {cn). Thus we have l/μB:SF, Ω)
n=l

^ Έl/λ{γk) ^ lhi/λ{γk)+ Έl/λin) ^2Σl/2^ = l/2""2. This relation shows
k = n Jc=u Jc^n k = n

that μn'n(F, Ω) -+ 4- 00 as w -> «>.

To prove the last relation under the assumption that f(z) is continuous in

0 < # < 4- oc, 0<jy?=l , first we shall show that the extremal distance of the

closed set δn = {x 4- i I fix -hi) G 5};: - Dn) and the line j = 1/2 with respect to

any rectangle R, which has two sides on the lines y = 1/2 and y = l> tends to

4- °° as R -* °°. Given m> n, we take R sufficiently near to z = 00 that the
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image of the lower side of R is contained in Dm- Let u(z) be the bounded

harmonic function in R which is equal to 0 on the lower side and to 1 on on

except for a set of logarithmic capacity zero and whose normal derivative

vanishes on the rest of the boundary. As we have shown several times, the

extremal length of the inverse images {c7Rm} in R of {cn'm) is not less than

Diiίu] which is equal to l/μR(δn, y = 1/2) by Lemma 1.* Since λ{cn

R'm)

^ λi}q{cn>m) -» 0 as m -* - , it is concluded that μϋ(δn, jy = 1/2) tends to -j- «.»

as R -> co. Then the same reasoning as above shows that we can find a closed

set δ on the line y = 1 outside of which f{z) -* 2 and which has μΛδ, y — 1/2)

tending to + °° as G -* co. Hence by Lemma 3 the logarithmic capacity of the

part of δ in [#, x + a] tends to 0 as x -> + >̂ for any « > 0. Thus the proof

is completed.

Remark 1. If /(z) is continuous on the #-axis, it is concluded that fix) -> 2

as # -> -4- » outside of a set whose part in \_xt # 4- &] has a logarithmic capacity

tending to 0 as x -> -f oo for any finite # > 0, just for the same reason as on

the line v = 1. Thus in this case, the convergence of fix) to 2 along compara-

tively small set, which may be of linear measure zero, ensures the convergence

of fix) to S as x -> -f °° along a fairly large set.

Remark 2. Let D be the unit square 0 < ξ < 1, 0 < -η < 1 (C = ξ -f άy), slit

along sΛ : ς = 1/w, 0 < -η < 1 - 1/w (^ = 2, 3, . . . ). We map D conformally in

a one-to-one manner onto B such that z - °° corresponds to the point C = i and

that the upper side of D is transformed to the positive real axis. We may take

the C-plane for 5* = δs concentric circular domains converging to C = f for {Dn)

and the whole positive #-axis for F. Then we can apply Theorem 1 and see

that the function C =f(z) mapping B onto D tends to the value C = i as z -* °°

on the line jy = 1 outside a certain small set. This shows that the image of the

parts of the slits {sn} outside any neighborhood of C = ί is quite small near

z = co on the line y = 1.

Let us consider another example. Let £>* be the unit square 0 < £ < 1,

0 < τ ? < 1, slit along sn : f = 1/w, 0 < T? < 1 - l/« and 5̂  : ξ = {1/w-f 1/U + l)}/2,

l/w < 77 < 1 (w = 2, 3, , . . ). This is a simply-connected domain. The left side

is a boundary element in the sense of Caratheodory and no point on it is ac-

cessible. We map D conformally in a one-to-one manner onto B such that

z = oo corresponds to the left side. Applying Theorem 1, we see that the image
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of the upper side of D* has not positive average logarithmic capacity near

x = + °°. This shows that the image of the slits {sf

n} is not so small near

x- + °° on the. real axis.

Remark 3. Even if the domain has a more complicated form than a strip,

or even if the set F on the tf-axis along which fix) does not satisfy the con-

dition required to its size in the theorem, the reasoning in the above proof

allows, in some cases, to conclude the convergence of f{z) to 2 as z -> oo along

a certain part of the domain near F.

Remark 4. The reasoning may be utilized also in the case that a set along

which f(z) tends to a limit lies inside B. For instance, let F be a closed set

on the line y-1/2 which has positive average logarithmic capacity near 2= oo.

Under the same condition as in the theorem, if fiz) -> 2 along F then j (z) -» 2

as z -> 00 in any strictly narrower substrip of B and hence along the line v = 1/2

with no exception.

5. We shall consider, in the rest of this chapter, continuous transformations

which have not necessarily schlicht character. An (2) parabolic transformation

of a space #, composed of a countable number of Riemann surfaces, into a

Riemann surface 9f is defined as follows, as in n° 6 of [15]:

Let f(P) be a continuous transformation of § into 9£ which is locally

pseudo-analytic in the sense of Pfluger-Ahlfors outside a closed set E C gr with

image R in 3? of linear measure zero. Let 2 be an element which is defined

by means of a filter with a countable base which consists of open sets in 9f.

We suppose that we can find a decreasing sequence {Dn} of open sets, which

form a base of the filter, in such a manner that each relative boundary cn is

composed of a countable number of mutually disjoint Jordan closed curves or

open arcs,9) that {cn} are disjoint from each other and from R and that, for

every pair n and m (n < m) there exists a harmonic function un}7n{P) in

Dn - Dm - cm, with ϊim un m(P) ί= 0 and lim un m(P) ^ 1 for which
C C

°̂ \dV
(1)

as m -* oo while n is kept fixed, where q(P) denotes the dilatation of/(P),1

14) See footnote 6).
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Vn,m(P) is the conjugate of un,m(P) and j qdvn,m means the integral

\q{P)dVn,m(f(P)) taken along the inverse image of the level curve un>m{P}

=. const. w»,m, 0 < un,m < 1 which has no point in common with E. Then f(P)

will be called an (2) parabolic transformation of § into 3£.

To give an example of such transformation, we consider the special case

where 2 rnay be identified with an inner point P of 2? Let ω=-teΐφ be a local

parameter such that ω = 0 corresponds to P . We set Z)rt equal to the image

on 2? of I co I < 1/n and cn to that of | ω | -lln. The following fact was proved

in n° 7 of [15].

THEOREM 2. Z,£ί f(P) be a continuous transformation of a space $, com-

posed of a countable set of Riemann surfaces, into a Riemann surface Sft, which

is locally pseudo-analytic in the sense of Pfluger-Ahlfors outside a closed set E

with image in 9£ of linear measure zero. Let the filter of the neighborhoods of

an inner point P of 2i define an element 2. Let ω - tev? be a local parameter

such that ω = 0 corresponds to P, denote by g p the party lying over I ω j < p, of

the covering Riemann surface which is homeomorphic to B - E, and denote by

Sip) the area of §> : j [qtdψdt, measured with density equal to the dilatation

q. If we can find

1 > Pi > p i ̂  p-2 > P 2 ^ . . . ~> 0

such that

^i S(p,)-Sipi)

for every integer μ > 0,15) then f(P) is an (S) parabolic transformation.

6. We shall establish a theorem of the Montel-Lindelof type for (2) para-

bolic transformations.

THEOREM 3. Let 2L be a Riemann surface, and 2 an element defined by

means of a filter S on i t Let B be the strip Q<x< QQ, 0 < ^ < 1, and F a

closed set on the positive x-axis which has positive average logarithmic capacity

near x- 4- °°. Let f(z) be an (2) parabolic transformation of B into 3L which

is a continuous transformation of B-i-F into 9ί + {2.}, and suppose that we can

15' The corresponding statement in Theorem 6 of [15] should be corrected in this way.
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find a base {Dn} of 95, composed of open sets, with relative boundaries {cn} which

are disjoint from each other and from E_ and each of which is composed of a

countable number of mutually disjoint Jordan closed curves or open arcs9) and

has only a finite number of compact components. If fix)-*2 as FΈ$X -> + °°,

then we have the same conclusions as in Theorem 1.

Proof. We form a kind of covering surface g* over ]R, as in n° 6 of [15],

in such a way that a subspace ff of $*, composed of a countable number of

Riemann surfaces, on one hand corresponds to B — E in a one-to-one manner

and, on the other hand, is ordinary Riemann covering surfaces of j R - £ . Let

{Dn} be the open sets taken in the definition of (2) parabolic transformation.

Let Dn be the part of $* which is projected into Dn> cn be the relative boundary

of Dn> and the filter having {Dn} as its base define an element 2. As is shown

in [15], condition (1) implies that, for each n, λijQ{cn'm} -> 0 as m -> oo while n

is kept fixed, where cn> m is a system of curves in ft* projected into a level curve

Un,m(P) = Un,m, 0 < Un.m < 1, disjoint from E_

Contrary to the conclusion, we assume that there exists n0 such that the

inverse image of D? — Z)«o contains a sequence of points {zp} tending to oo in a

strictly narrower substrip of B. We can find v(nQ) such that D^{na) C Df

no. If

we take m> v(τh) sufficiently large, then the integral in (1) with p(n0) and in

is positive. Let ra0 be any number such that Df

mo C Dm. If it is shown that

there are at most a finite number of compact components of the inverse images

of c_m0, containing at least one of {zp} in each inside, then we can apply the

reasoning in Lemma 5 to $* and 2 and a contradiction will be led. Other con-

clusions can be obtained in the same way as in Theorem 1.

We suppose that there exists a closed curve c in B whose image is con-

tained in Cm0 and which contains zp in its inside. We connect zp with a point

of c by a curve / inside c, and consider its image / ( / ) in 9?. There is a part

L of / (/ ) which lies in a component D'o of Df

no - Dm0 - £mQ and connects a point

P'n0 of c!»0 with a point of c^0. Denote by z1 the inverse image of Pn0 on /.

The connected component, passing zr, of the inverse image of c*nu is a complete

image and compact inside c, and hence the component of cnf> which contains

Pf

n() is compact. Since we can connect any point of Do - R and a point of L_

by a curve in J2i which does not meet Ry the part in Do of almost every level

curve of wy(Mo)>m(P) has a complete inverse image inside c.
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Suppose now that there are an infinite number of closed curves {c1} in B

each of which contains at least one of {zp} in its inside and whose images are

contained in j2m0. For each cι there exists at least one component like Do of

Πn0 - Dm0 - £mo Since <2w0 has only a finite number of closed components, we

can find a component D* of Dno — Dm0 — Hm0 like fio and an infinite subsequence

{c1j} such that the part in D* of almost every level curve of u^{nΰ),7n{P) has a

complete inverse image inside each ctj. Then the integral | qdyv{nίi),m ^ l dv.Λnΰ),m

= -f oo along almost every wv(Λθ),m-level curve, and hence the integral in (1) is

zero. This contradicts our assumption and the theorem is proved.

The same remarks as Remarks 1, 3 and 4 in n° 4 may be given to Theorem 3.

Let w =/(z) be an ordinary meromorphic function in B which is continuous

at a closed set F on the #-axis having positive average logarithmic capacity near

x= -{- oo and which tends to a value along F. If the covering Riemann surface

of the inverse function of f(z) satisfies the condition on S(p) required in Theorem

2, then the conclusions in Theorem 3 are valid for f(z). However, it is an open

question whether the finiteness of the Dirichlet integral of f(z), instead of the

condition on S(p), is sufficient to have the same conclusions or not.

Chapter II . Exceptionally Ramified Transformations

1. The condition for a transformation to be (2) parabolic has a character

that restricts the number of sheets of the covering surface associated with the

inverse transformation. In Chapter II, we shall deal with transformations with

the property that the universal covering surfaces of their ranges of values are

of hyperbolic type, or, more generally, with exceptionally ramified transfor-

mations bounded analytic functions are examples. We shall be concerned only

with analytic transformations in the sequel except at the end.

First we shall give the definition for analytic transformations to be excep-

tionally ramified in the ge?ιeralized sensed Let f(z) be an analytic transfor-

mation of a plane domain into a Riemann surface j£. When 9£ is planar, we

may suppose that f{z) is a meromorphic function assuming values in the ex-

tended zi -plane. We shall then call f(z) exceptionally ramified, with Gross [5],

if f(z) satisfies the condition stated in the introduction. When 3? is of genus

16> It may be more adequate to define exceptionally ramified covering surfaces instead
of defining exceptionally ramified functions. But here we follow the Gross's definition in
[5].
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1, we regard f(z) as a transformation into a torus. If there exists at least one

point Po of the torus such that every point, situated above J?o, of the Riemann

surface of the inverse function of f(z) is a branch point of multiplicity divisible

by an integer μ0 ^ 2 possibly with a finite number of exceptions, then we shall

call f(z) exceptionally ramified. If at most finitely many points cover _P0, we

set μo= 4- ™. When the genus of SR is greater than one, fiz) will be called so

unconditionally. It is to be remarked that, if jR has a positive boundary, f(z)

is always exceptionally ramified.

We now map B into a Riemann surface JR. by an exceptionally ramified

analytic transformation f(z). If f(z) is continuous on £* : 0<x< -f °o,

0 -ύ y < 1 and fix) tends to an inner point _P of M as x -> -f °°, then it is easily

seen that f(z) tends to P as z -> °° in any narrower strip 0 < x < -f oo,

0 ^ >> < 1 - ε. The difficulty lies in the case that /(*) tends to the boundary of

]R as x~» + oo. We proved in Lemma 4 of [14] an extension of the Montel-

Lindelofs theorem in the case when f(z) tends to a boundary component Pc of

harmonic measure zero and when there exists a closed curve T surrounding _Pc

such that the part of the boundary of JR. which is separated by r from Pc is of

positive harmonic measure.17) A proof of a special case, which essentially covers

the full case, was given already in [7], using the idea in pp. 65-66 of [12], and

the proof was simpler than that of [14].

To extend these results, we shall introduce notions corresponding to an

element 2 (or 2) and a set of positive average logarithmic capacity near x= + oo,

which were frequently used in Chapter I.

Let S be a filter on 9? with a countable base which consists of open sets.

We associate a new element 2 with 58, and introduce a topology into 9ϊ + {§}

in the usual way (cf. n° 1 of Chapter I). The intersection of the sets of 58 will

be called the trace of 2 on jR and that of the closures, taken relatively to ]R,

of the sets of 58 the closed trace of 2 on SR. They will be denoted by τ(2) and

?(£) respectively. These may be empty. Suppose that there exists a function

17) In the statement of Lemma 4 of [14], it is required that there exists a set of posi-
tive logarithmic capacity which f{z) does not assume near z = oo or that there exists a
closed curve γ of the character just stated. But in the first case, we exclude, from tfϊ a
closed set of positive logarithmic capacity, not assumed by f{z) near z = oo, in a domain
corresponding to a parameter circle, and thus the first case reduces to the second case,
because the image of the circumference of the parameter circle may be considered to
be a simple closed curve in 9ϊ and taken for γ in the second case.
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v(P) on 9ί which satisfies:

i) viP) is superharmonic possibly except at a certain point £ 0 φ r ( 2 ) ,

ii)'v(P) is bounded from below everywhere or outside every neighborhood

of JPO if this is exceptional,

iii) v(P) -* -h °° when and only when P-> 2.

Then we shall say that 2 is complete and of harmonic measure zero, and call

v(P) a function associated with 2. It is easy to see that τ(2) = ( f G Ά v(.f)

= -f oo }. We shall give further properties and examples of such 2 in the next

section.

We shall say that a closed set F on the positive #-axis has positive average

linear measure near x = + °° if there exist finite numbers Xo > 0 and a > 0 such

that the part Fa(x) of F in the interval (# - a, x+ a) has linear measure greater

than a certain positive number for all x> xd.

We shall give theorems, distinguishing two cases the case where Riemann

surfaces have a positive boundary and the case where they have a null boundary.

The reason why these two cases are distinguished will be explained by Theorem

7. In the first place, we shall be concerned with the first case.

THEOREM 4. Let 2 be a complete element of harmonic measure zero added

to a Riemann surface 3i with positive boundary, and F a closed set having posi-

tive average linear measure near x~ -h °° on the x-axis. Let f(z) be a continuous

transformation of B + F into Hi+ {2} which is analytic in B. If fix) tends to

2 as F 3 # - » +°° , then f(z) tends to 2 as z -> °° in any strictly narrower

sub strip.

2. In this section we shall discuss on complete elements of harmonic

measure zero in more details and give examples.

The following lemma will be used in the proof of Theorem 4.

LEMMA 6. Let 2 be an element which is complete and of harmonic measure

zero. Then, for any point P o ΐ r ( ϊ ) , we can find an associated function super-

harmonic outside PQ. In case 3? has a positive boundary, there exists a positive

associated function superharmonic everywhere on 3i.

Proof. First we consider the case in which 9f has a null boundary. Let

viP) be an associated function superharmonic outside a point P* $ r (S ί ) . We

take a domain outside τ(2) corresponding to a parameter circle I col < 2 such
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that ω = 0 corresponds to P* and that v(P) is positive outside the domain cor-

responding to |ω| < 1. We replace v(P) by the solution of the Dirichlet problem

in a ring domain 1 < |ω | < 3/2 for boundary value 0 on |ω| = 1 and v(P(ω)) on

! ω I = 3/2, and add the function corresponding to a log I ω! in | ω I < 1, where

a is a positive number. If a is sufficiently large, the resulting function v*(P)

is superharmonic except at _PQ and an associated function of 8. Now let

PQ*P* be any point not belonging to r(2). There exists a function h(P),

which is bounded and harmonic outside neighborhoods of ϋΌ* and _P0 and has

positive and negative logarithmic singularities at _P* and _P0 respectively. The

sum v*(P) 4- ah(P) is an associated function of 2, superharmonic outside _PQ.

If jR has a positive boundary and if an associated function v(P) is not

superharmonic at J?o, then we define v*(P) in the same way as above and add

to v*(P) a times the Green's function with pole at .Pt and also a certain large

positive constant. Thus we have a positive associated function of 2, super-

harmonic everywhere on JR..

One way of obtaining 2 is as follows: Given a function v(P), superharmonic

on SR possibly outside an isolated negative logarithmic singularity at a point Po

and bounded from below everywhere or outside a certain neighborhood of Po

if this is a singular point, we obtain an 2 which is complete and of harmonic

measure zero if we define a base of a filter by {P v(P) > n) in = 1, 2, . . . ) .

We shall say that v{P) determines 2.

We shall give more directly several examples of complete element of har-

monic measure zero. Let £ be a GVset of logarithmic capacity zero on 9ϊ.

If 2i has a null boundary, we add the assumption that there is an outer point

Po of £ on 1 . In case jR has a positive boundary, we take the Green's func-

tion of 9? as kernel of potential. In case 3£ has a null boundary, we remove a

small neighborhood of j?o and take the Green's function of the remaining surface

as kernel. Then there exists a potential U(P) such that E = {P U(P) = -f «>}

as is remarked in [4]. In the case that ]£ has a null boundary, we prolong

U(P) to a superharmonic function on jR except at a negative logarithmic singu-

larity located at _P0. The potential U(P) or this prolonged U(P) determines a

complete element of harmonic measure zero whose trace coincides with E.

Next let IR be a domain with positive boundary and relatively compact in

a Riemann surface So, and F a closed set on the boundary ]£* of SR with har-
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monic measure zero with respect to 9f We shall show that there exists a finite-

valued positive superharmonic function υ(P) in 9£ such that v(P)~* + °° when

and only when P -> F.

We take a sequence {Gn} of open sets decreasing to F in D?o, whose

boundaries {Gn} are regular and disjoint from each other and pass no irregular

boundary points of 9?δ. Since F is of harmonic measure zero, there exists a

positive superharmonic function vn(P) = 1 in |£ tending to 1 as _/*-»£. We

replace this function in jg. - Gn+i - G^α by the solution of the Dirichlet problem

for boundary value equal to vn(P) on j£ Π G«+i and to 0 everywhere on 9Jδ

- Gn+1, and denote the resulting function defined in jR by vn{P). Since Gb

n has

a positive distance from Gb

t+i (with respect to a certain metric on 9f0) and all

points of 3ib Γ) Gn are regular points, vn(P) vanishes continuously at the points

of Rb Π Gb

n. So we take an open set Δn D I 6 Π G* in ]R0 bounded by a finite

number of closed analytic curves such that vf

n(P) < l/n2 in Δn Π ]R. The differ-

ence Kn = ί jff Π GM) — An being compact in 9L we can find a positive superhar-

monic function v*(P)έl in jR such that lim vί(P) = 1 and v%(P)<l/n2 on

Xrt. Preserving the boundary value, we harmonize mί(vn{P), Vn(P)) in

S ~ Gn - Gn and denote the superharmonic function thus obtained in jβ. by vn(P)

This function has the property that 0 < vn(P) £1 everywhere, \imvn(P)=l
00

and Vn(P) < l/n2 outside Gn. The sum v{P) = *Συn(P) is again positive super-
n = 1

. V - l OD

harmonic and tends to -f «> as _P-» F, and ι (P) ^ *Σvn(P) -f Σl/w 2 ^ (ΛΓ-1)
n - 1 n = Λ'

< + ^ in R-GN. Thus v(P) ~> + °o if and only if P-> F.
n = l

Another example is given when a filter defines a closed set Fc of boundary

components of harmonic measure zero of a Riemann surface 2L Then there

exists a base consisting of open sets {Gn}, having no point of accumulation in

2ϊ and bounded by closed analytic curves {Gn} disjoint from each other, and

the harmonic measure ωn(P) of Gn with respect to Gt - Gn - Gn tends to zero

as n -» °°.

We shall show the existence of a function associated with this FΓ. First

we set fiί = 1 and shall define {πk) by induction. We choose nu such that

ωnic(P) <l/k2 on Gi-Gnk_L. We prolong ωnk(P) into Gnκ by 1 so that it is

superharmonic everywhere in Gu and denote the function thus obtained again

by a)nk(P). The sum vQ(P)= *Σωnk(P) is positive superharmonic in GΛ and
fc l
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lim Vo(P) = -f °° if and only if P tends to Fc. We draw a finite number of

closed analytic curves Ci near G? in Gx such that £1 and <Ξ? enclose a finite

number of annuli. We solve the Dirichlet problem in these annuli with boundary

value equal to 0 on G_\ and to Vo(P) on clt The function defined in 9? - Qι - <2i

by setting equal to a Green's function with pole at some point Pm in each com-

ponent DT will be denoted by giP). Then the function ViiP) defined by — agiP)

in JW — Qu and by VQ{P) in (2i which is replaced by the above solution in the

annuli is superharmonic on jW except at Pm, if a is taken sufficiently large.

Let hm(P) im> 1) be harmonic on 3? outside a negative logarithmic singularity

at £ι and a positive one at _Pm of the form log 1/r and bounded outside neighbor-

hoods of these points. The sum ViiP) -f a Σ hm{P) gives a required associated
m>l

function.

3. To prove Theorem 4 we give one more lemma.

LEMMA 7. Z,£ί e (z) be a positive superharmonic function, defined in B and

lower semicontinuous on B-\-F {the value -f- °° is admitted), where F is a closed

set having positive average linear measure near x = -h °° on the real axis. If

vix) -> 4- °° along F, then viz) -* + °° as z -* Φ in any strictly narrower substrip

0 < x < -f °°, 0 < e < y < 1 - ε. If, in particular, F coincides with the positive

real axis, then viz) -* -f °° as z -> °° in 0 < Λ: < -f °o, 0 ^ jy < 1 — ε.

Λ-w/. There exist xQ > 0, ^ > 0 and rf > 0 such that m(Fa(x)) > d for all

x>xQ. Let 7?(Λ:), A;>AT0, be the rectangle with vertices x - a} x~\-a, x + a + i,

x-a + i and denote by ωx(z) the harmonic measure of Fa(x) with respect to

R(x). Since m(Fa(x)) >d>0, there holds o)x(x-\- iy) > ω0 > 0 uniformly for

x > Xo and ^, ε < ^ < l - ε ; this is seen by mapping R(x) onto a disc. If x is

sufficiently large, then vix) > n on Fα(#). Thus V(AΓ+/JV) > /2ω0 for this x and

)iG(ε, 1 - ε). This shows that viz) -> + oo a s z - » o o i n ε < ^ < l - ε . The

latter part of the lemma is obvious.

Now we give

Proof of Theorem 4. By Lemma 6 there exists a positive associated function

viP) superharmonic on ]R. The composed function vifiz)) is positive super-

harmonic in B and lower semicontinuous on B-f F. Since vifiz)) ->• -f °° along

F, vifiz))-* + ° ° as z -* oo in any strictly narrower substrip by Lemma 7.

Therefore, / ( z ) tends to 2 as 2 -» °° in any strictly narrower substrip in view
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of property iii) of v{P).

We shall show that the condition on F in the theorem can not be replaced

by any -weaker condition.

THEOREM 5. Let F be any closed set on the positive x-axis which has not

positive average linear measure near x = + °o. Then there exists a nonconstant

bounded analytic function f(z) in B which is continuous at F such that f(z) -> 0

along F but \f(z) \ -» sup \f(z) \ along a sequence of points tending to °° on the

line y = 1/2.

Proof. First we determine some numbers with respect to Bf : - °° < x

< 4- °°, 0 <jy < 1. Let ωr, r > 0, be the maximum value, on the left half x ~ 0

of B', of the harmonic measure of the interval [r, -f °°) on the real axis with

respect to B'. As r -* + °°, obviously ωr -» 0. We shall denote by bn the

infimum of r such that ωr < l/2n in = 1, 2, . . . ).

By hypothesis, for any x > 0, a > 0 and ε > 0, there exists a closed interval

/ situated in (x, + °° ) and of length > a such that m(FΓ\ I) < ε. We take a

closed interval 7i of center #j > 0 and of length 2 «i such that #i > bY and

m(FΠIι) < 1/2, and a closed interval 72 of center ΛΓ2 and of length 2a* such

that a2 > b2, m(FΓ\ I2) < 1/22 and 72 lies in (xi + oi-f 62, + ° ° ) , and we continue

this process. We cover each F Π In by an open set Gn which consists of a finite

number of intervals such that Gn Γ\ Gn+i = Φ and m(Gn) < 1/2*"1.

We shall show that, given xQ > 0 and 5 > 0, there exists a number tf(#0, 5) > 0

such that if the linear measure of any set A consisting of a finite number of

open intervals in ( - ΛΓ0, #0) is less than d(xo, δ) then the harmonic measure of

the set at 2 = z/2 with respect to B' is less than δ. We map 5 ' conformally

onto the upper half plane by C = £π 2 Then the linear measure m(/(Λ)) of the

image of A is given by π \ enxdx and hence £πenX°m(A). We know that,
J A

among sets of the same linear measure m(f(A)) each of which consists of a

finite number of open intervals on the f-axis, the interval ( - m(f(A))/2y

m(f(A))/2) has the largest harmonic measure at C = i with respect to the upper

half plane. Since the harmonic measure at C = i of /(A) is equal to the harmonic

measure at z = i!2 of A, the latter becomes arbitrarily small if m(A) is suf-

ficiently small.

Now we determine nx < n2 < . . . so that, for each β> m(Gnp) > d(bp, Il2p).
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As we have just seen, the harmonic measure hp at znp = Xnp + i/2 of Gnp C\(xnp- bp,

Xnv + bp) with respect to B' is less than 1/2Λ Let Jp be the interval interposed

between Inp and 7WpH and put G = U (GnpΓ\Jp). Obviously FCG. We define

a nonnegative function ψ(x) on the :r-axis to be equal to 0 outside G and to a

constant cj on each interval Ay of G such that <̂ l#) ^ i > - 1 in 0 < x < xnp and

ψ(x)'-* 4- °° as x~+ + °° along G. Let uj(z) be the harmonic measure of Kj
CO

with respect to B\ and set u(z) = ^ΣCJU/Z). We shall show that this is con-

vergent. First notice that aUp > bnp > bpy and that

ψ(χ) ^ib

where X represents the characteristic function of sets. If we denote by Up(z)

the harmonic measure of Lxnp + bp, + °°) with respect to B't then there holds

u(Znp) <pUp(Znp)+php+ (p+l)Up(znp) + Up + 1(Znp) + Up+2(Znv) + . . .

* ^ 0 as ^ ->. oo.

By a similar evaluation we see that the convergence of the series is uniform on

any bounded set in B' + G. Therefore, u(z) is harmonic in B1 and takes the

value CJ continuously at Kj.

We take any branch viz) of the conjugate of u(z) and set f(z) = e~u[z)~tthZ\

Then \/(z) I ?= 1 and \f(znp) I -> 1 as ^ -» °°. By the reflexion principle, /(z) is

continuous at G and \f(x)\ ~e~φ(x). Since F C G , and ^(Λ:) -> -f°o asΛΓ-̂  -f-°°,

f(z) is continuous at F and /(ΛΓ) ->0a

4. In the rest of the paper, we shall deal with the second case in which

Sί. has a null boundary. First we state

THEOREM β. Let S be a complete element of harmonic measure zero added

to a Riemann surface 3? with null boundary, and f(z) a continuous transfor-

mation of 0 < x < -t-°°, 0 ^ y < 1 into 2? -h {2} which is analytic and exceptionally

ramified in B. If fix) tends to 2 as x-^ + °°, then f(z) tends to 2 as z-+ °°

in any narrower substrip 0 < x< +°° , 0 ^y < 1 — e.

In order to prove this theorem, we need two lemmas. In this section, we

shall discuss the first lemma concerning the .type problem. In the case that

fR. has genus ^ 2, it is known that the Schottky covering surface of planar
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character of 9? has a positive boundary, or is known something more (see [19],

[22], [23]). It seems that the following lemma has not been proved in the case

where 3? is of infinite genus.

LEMMA 8. Let 31 be a Riemann surface of genus ^ 2. If we draw two dis-

joint analytic loops & and c i on 3L which do not separate 3ί, and if we join

different replicas of 9ϊ, having cuts at £i and £2, along opposite shores of the

replicas of cx and c2 indefinitely, then the Riemann surface 9ΐ(cc) thus obtained

has a positive bonndary.18)

Proof. Obviously we may suppose that 9ί has a null boundary. Let c0 be

a replica of clm It separates SRίM) into two parts. We shall show that the har-

monic measure of cQ with respect to any one 3ΐί"3) of them is not a constant.

We denote by 9ί0 the replica of 9? which has c0 on its boundary and is

contained in 9?ίΌ), and by cOi, cQ2 and cO3 the other shores of 9ΐo corresponding to

c\ and Co. The three replicas adjoining to 9ίc through cou Cm and eO3 will be

denoted by 9fOi, 9?02 and 9? 03 respectively. We proceed in this manner and obtain

the partial surface 3fi. We define the harmonic measure α>o(P) of coi + cO2-f C03

with respect to 8ϊ0. Next on 9ϊoi, we define the harmonic measure ωoiiP) of the

three shores rOn> £012 and c^ which are not identified with cOu and define ωO2(P)

and O)M(P) similarly on %2 and 3fO3 respectively. We continue this process.

Denote the conjugates of ωo(P) and ωoy(P) by ωύ{P) and άϊoy(P) respectively,

and set 1 dJ)0 = b0, \ dω0 ~ boj and dωQ = b[j (/ = 1, 2, 3), where c[j is the

boundary of %j identified with cQj. We consider on 9foy the level curves ωaj(P)

- const., starting from c[j. They terminate at multiple points or tend to the

ideal boundary of 9?oy or reach coju (j, k-l, 2, 3). Take arbitrary points Σ\ & ^1

and P2 e r2t denote the corresponding points on cΌj by P[j and determine the

branch of ωOj(P) so that ϋ>oj{Plj)=0. By the function {boj/(bob'ύj)}{ωoj(P)

+ iωoj(P)} the level curves are mapped onto a rectangle RQJ : 0 < ς < boj/iboboj),

0 < 7? < &0.//&0 with slits in the C = f + /77-plane. These slits are parallel to the ξ-

axis and have projection on the τ?-axis of linear measure zero on account of

Theorem 2 of [14].

We determine a branch ωoJ\P) of ώo(P) so that it vanishes at the point

151 We can prove, what is more, that there exists a nonconstant harmonic function
with finite Dirichlet integral but no nonconstant analytic function with finite Dirichlet
integral on ΐft{:a) if we follow the lines of the discussion at the end of n° 3 in [22].
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Poj on coj which corresponds to jR or P2 and continue the function b^i

-l-\-iώ()J)(P)} analytically along coy in the direction such that the image of cQj

coincides with the left side of RQJ. We choose a, 0 < a < 1, sufficiently small

that, on Sfto and SRoy (j=l, 2, 3), the level curves ωQ(P) = a and ωoj(P) = oc en-

close neat annuli together with c0 and c'Oj respectively. The point on cίy, cor-

responding to PGcoj will be denoted by P'. We connect, by a straight line,

every image iΰ(oJ)(P)/bQ with {&oy/(&o#oy)}{a 4- imj(P')) in the partial rectangle

Roj(a) : 0 < ζ <boj/(bobΌj), 0<-η<b0j/b0. Thus Roj(a) is transformed onto

itself. If we leave the rest of Roj unchanged, then a continuous automorphism

Toy of the slit Roj is obtained. It is continuously differentiable except on the

segment ωoy = aboj/(bobΌj) and has bounded dilatation.

Let us now map the first replica SRo by the aid of boι{ωo(P) +iωo(P)} onto

a rectangle RQ : 0 < ξ < 1/bo, 0 < -η < 1 with slits parallel to the ?-axis so that

CQ corresponds to the left side. This slit rectangle consists of the images of the

regular ωo-level curves on %, and the projection of the slits on the ??-axis has

linear measure zero on account of Theorem 2 of C14J. The right side contains

the images of {cOj} (j = l, 2, 3) which are composed of a countable number of

open intervals {/μ} that have the total measure 1. We may now assume that

the points Poj, previously defined on coy, are the end points of some of {/μ}.

We divide by the horizontal lines the Toy-images of i?oy, into thin slit rectangles

with the same widths whose left sides are congruent to {/μ}. We translate

these rectangles and join them to Ro by identifying, the corresponding intervals.

In such a manner, a continuous transformation of So + 3foi -f 9?o2 -f M03, slit along

some curves, onto a collection of rectangles of width l/6o4-W(Woi) or l/b0

Λ-bwJ(bφw) or 1/̂ 0 + ^03/(̂ 0^03), with some slits parallel to the £-axis, is obtained.

We continue this process and obtain a topological mapping T(P) of 3ίί°0), slit

along some curves, onto a domain G of the form 0 < ξ < h(η) ^ -f °°, 0 < ^ < 1,

where, for almost all 5?, the image of 0 < ξ < h(-η) tends to the boundary of Sΐί^

while passing through 9ft0, one of 9foy, and so on. In addition, T(P) is continu-

ously differentiable except at a countable number of segments parallel to the

τ?-axis, which correspond to the sides of the rectangles RQy /?oy, . . . or to the

level curves ωo(P) = αr, ωQj{P) = a, . . . , and the dilatation q(P) of T(P) at the

points, where TiP) is continuously differentiable, is uniformly bounded: q{P)

t= Qo < -f °°, because we have only 4 types of 3ΐo> 3ίoy, . . . .

We shall show that h(η) is uniformly bounded. Because there are only 4
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types of 9?o, 9ίoy, . . - , the total variations of ωo(P), COQJ(P), . . . have at most 4

different values. We denote by b the smallest number of them. Next the

maximum of the 12 ratios boj/bv and bojk/bΌj {j, k = lt 2, 3) is denoted by β,

where bojk = dώQj. Obviously 0 < β < 1. The width of Ro is ^ 1/& and the

widths of Λ)/ are ^ β/#, the widths of the next ones are ^ β2lb, and so on.

Therefore h(y) £ b~\l + β + /92 + . . . ) = {6(1 - /5)}"1 < + °°.

Suppose that Oti*0 has ideal boundary of harmonic measure zero. We shall

denote by ciί}, c{2\ . . . the new free edges appearing as we add new replicas

to 9ίo, to U?oi + 9fo2-f 5Ro3, and so on. The harmonic measure ωin)(P) (n ^ 1) of

c{n) with respect to the domain between c0 and c{n) tends to 0 as w -> °°. The

T-image in G of the level curve of ω{n\P) intersects the segment 0 < ζ < h(η)

for almost all η such that 0 < -η < 1. Therefore, its length is ^ 1. On using

Schwarz's inequality, we have

|
^ - c o n s t .

and then

dωκn) C(\ dC I2 dωn)

7

Since g(P) ^ Qo < -f- °°? the left side ^ f(/o J dώin)) . However, this tends to

+ °° as w -* °° and a contradiction arises.

To obtain a contradiction in another way, we may apply Theorem 5 of [15J

after having known that T(P) is everywhere quasi-conformal in the sense of

Pfluger-Ahlfors in virtue of Theorem 2' of [11].

Remark. Since any covering surface of a Riemann surface of hyperbolic

type is of hyperbolic type, the Riemann surface obtained by joining indefinitely

the replicas of Si, which are cut along p (2 ^p ^ + °° ) disjoint closed curves

that do not separate 9ί, has a positive boundary. The idea of the proof of our

lemma will be used to discuss the type problem in general in another paper,

5. The second lemma for the proof of Theorem 6 is:

LEMMA iλ Let viP) be a superharmonic function on a Riemann surface iK.

If there is a curve l_, which may oscillate, such that v(P) -> -f °° along I and

I has at least one point J?n of accumulation in ])is then L must terminate at ϋ
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and v{P) = + °°.

Proof. We take a parameter circle ! ω \ < 1 such that ω - 0 corresponds to

PQ, and set viPiω))~ V(ω). If 7(0) were finite, there would exist a sequence

of circles | ω | = e« such that ε ^ O a s w - ^ °° a nd V(ω) -> 7(0) along them (see

[2]). This is impossible, because V(ω) -* + °° along the image of 1 in \ω\ < 1

and 1 comes arbitrarily close to P(). Therefore 7(0) = + °°. If L oscillated,

there would be a continuum in I ω \ < 1 at which 7( ω) = + °°. This contradicts

the fact that the set of points where a superharmonic function assumes -f °°

is of logarithmic capacity zero. Thus L terminates at PQ and v(PQ) = + °°.

Now we give

Pra?/ o/ Theorem 6. Let 9ΐ be the covering surface of ]R which is defined

by means of fiz) and conformally equivalent to B. We shall say that a cover-

ing surface 9ϊ* is inserted between 9ΐ and jR, if 9ί is a covering surface of 9ί*

and ΣR* is that of JR. Suppose that a covering surface 9Γί: of positive boundary

with a complete element 8* of harmonic measure zero is inserted between 3ΐ

and 3f such that the image of the positive x-axis converges to 8* and that 8*

is projected into 8. By the last expression it is meant that every sequence of

points on 9ί* converging to 8* is projected to a sequence on 9f converging to

8. Then by Theorem 4 we obtain the conclusion of Theorem 6.

We shall show that we can actually find such 9ί* under the conditions of

the theorem. First we consider the case that 3L is planar. We may suppose

that JR. is a part of the extended zί -plane, that w = °° is an inner point of jR

and that an associated function viw) of 8 has its negative logarithmic singu-

larity at w - °°. Since 5R is a domain outside a bounded closed set of logarith-

mic capacity zero and viw) is bounded from below near it, viw) can be extended

so that it is superharmonic everywhere in the finite zi -plane. By Lemma 9 it

follows that fix) tends to a finite value w0 as #-* -f- °o and that the conver-

gence of a sequence of points of Jΐ to ẑ o implies the convergence to 8.

By our hypothesis, there exist points {ivk) and associated integers {/̂ },

μk ^ 2, such that Σ ( l - l/μk) > 2 and every point of 9ιλ situated above Wk has

multiplicity divisible by μk possibly with a finite number of exceptions, or, if

μk= -f oo, there exist at most a finite number of points of 9ϊ above ?^. If

necessary, taking a substrip of the same height 1 of B, we may suppose that

there is no exceptional point at all above any iVk. It is known that the regularly
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ramified simply-connected covering surface 3f of the extended w-plane, which

has branch points with multiplicity βk above Wk (if βk = -f °°, branch points are

logarithmic), is of hyperbolic type. If 3? is not identical with the extended w-

plane, then we take the part of 3? which lies above JR. Then 3f or this part

may be regarded as a surface 3ϊ* to be inserted between 3? and JR. If Wo does

not coincide with ivk for which βk = + °°, then the image of the positive #-axis

terminates at an inner point P o of 3h If we choose a sequence of domains {Dn}

around Po converging to it and take {J5M/Ί9t*} as a base of a filter to define

an element 2*, then 2* is a complete element of harmonic measure zero because

the Green's function on *R with pole at Po is an associated function if it is

considered on 3ί*. Thus all the requirements for 31* are satisfied. If Wo coin-

cides with a Wk for which βk— + °°, then the image of the positive #-axis

terminates at a logarithmic branch point of 3f. In this case, we map 3f con-

formally onto the upper half C-plane (C = ς + iη) such that the logarithmic branch

point corresponds to C = °o. Under this mapping, any upper half plane y > τ?0 > 0

corresponds to a neighborhood of the logarithmic branch point. Hence if we

consider y(P) as a function on 3ί*, then the complete element 2* of harmonic

measure zero determined by this function is projected into 2. Thus the theorem

is proved in this case.

We are next concerned with the case in which 3f is conf ormally equivalent

to a domain of a torus 3?0. We may suppose that 3ϊ is this domain itself. Any

associated function is prolongable to a function V(P) superharmonic everywhere

on 3ίo except at one point £'. In virtue of Lemma 9, f(z) tends to a point

PQ =*F J? ; of 3ίo along the positive real axis and the convergence of a sequence

of points of 31 to _P{) implies the convergence to 2. By the hypothesis, there

exists a point £ι such that every point of 3ί situated above £\ has multiplicity

divisible by βo ^ 2 with at most a finite number of exceptions, or there are at

most finitely many points of 3ΐ above _fi. The part above 21 of the regularly

ramified simply-connected covering surface of 3ίo with branch points of multi-

plicity βϋ or with logarithmic branch points above _£Ί will play the role of 3ί*.

In case the genus of 3f; is greater than 1 but finite, 3J may be regarded as

a part of a closed Riemann surface 3io The part above 1£ of the universal

covering surface of 3jE0 may be taken for 3t*.

Finally we consider the case that 3[ is of infinite genus. We see, by Lemma
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9, that fix) tends to an inner point or to a boundary component of E. as x-* -f <*>.

The former case can be treated easily by taking the universal covering surface

of 2ί as 9t*. In the latter case we choose two disjoint loops which do not

separate 3£ and form a Riemann surface Sft1^ in such a way as we did in Lemma

8. This has a positive boundary by Lemma 8. We insert 9?(:o) between Sfi and

Έ. in any way and take it for 9?*. The image of the positive #-axis then lies in

a replica of 2? and converges to a boundary component Pc of 9ΐί=0) = 9ί*. If we

transform an associated function of 2 to the function vo(P*) in the replica, then

this is superharmonic everywhere in it except at one point. We draw a closed

analytic curve c* in the replica such that it separates P* from the images of

the loop cuts of 2L and draw another closed analytic curve c* near c* so that

they enclose a neat annulus and c* is separated by ct from P*. By adding a

constant, if necessary, we may suppose that Vo(P*) is positive on this annulus.

We replace it by the solution of the Dirichlet problem with boundary value

vo(P*) on ct and 0 on c* and denote the function thus obtained again by vo{P*).

This is superharmonic on c*. Since M* = 5R(CO) has a positive boundary, the

harmonic measure u{P*) of c* with respect to the domain D* not containing

c* is not a constant. If a is taken sufficiently large, the function equal to

<x(u(P*) - 1) in D* and to vύ(P*) in SR* - D* is superharmonic on 9ΐ* and defines

a complete element 2* of harmonic measure zero to add to 31*. The image of

the positive #-axis by f(z) converges to 2* and 2* is obviously projected into

2. Thus the proof of our theorem is completed.

Remark. The beginning part of the proof suggests the possibility to extend

further the theorem.

6. The final theorem will show that the condition in Theorem 6 that

/(#)-» 2 as x-+ -f °° can not be replaced by the condition that fix) -> 2 as

x -* + °° along a part F of the tf-axis however large F may be metrically (with

regard to linear measure). Actually we shall prove

THEOREM 7. Let iR be any Riemann surface with null boundary, and _P0 any

point or boundary component of S. Then there exists an analytic mapping of

B into 3f such that it is continuous at the positive x-axis outside a closed set of

linear measure zero and tends to P$ as x -> + °° outside of the set, but has no

definite limit as z -* °° along any curve in B.
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Proof. If the universal coyering surface of jft-{jB)} is not conformally

equivalent to a disc, then we exclude one or two points from 9? so that this

condition- is fulfilled and denote still by jg. the remaining surface.

First we consider the case that _P0 is an inner point of jR, and fix a para-

meter circle | W\ < 1 of Po. We map the universal covering surface of 3i - {Po}

onto Uζ : IC | < 1 and denote by © the corresponding Fuchsian or Fuchsoid

group. Let Un C Uζ be any connected component of the image of the outside of

the part of 9? that corresponds to I W\ = l/n (n ^ 2 ) . We take them so that

Uί C U2 C . . . . The part γn in Uζ of the boundary of Un corresponds to the

circle \W\ =l/n and consists of a countable number of curves starting from

and terminating at the parabolic fixed points, which are defined with respect to

© and correspond to j?0. Since jR has a null boundary, the harmonic measure

of γn with respect to Un is the constant 1. In other words, ICI = 1 is of har-

monic measure zero with respect to Un. If we exclude the inside of the part

γn(A) of γn having end points on a closed arc A on | C | = 1 and denote the

remaining domain in Uζ by UΛ

n\ then the harmonic measure of A with respect

to UA

n) is zero. To prove this, it is sufficient to show that every closed subarc

A' of A is of harmonic measure zero with respect to Uψ. Suppose, to the

contrary, that the harmonic measure ω(C) of A' with respect to UΛ

n) were posi-

tive. We denote by m the supremum of ω(C) on γn. Then 0 < m < 1. The

function ω(C) - m would be < 1 and positive somewhere in Un, and would not

exceed 0 as C approaches γn. This contradicts the vanishing of the harmonic

measure of |C| = 1 with respect to Un.

Now let Co = etθ° be a hyperbolic fixed point on I ζ \ = 1 with respect to ©.

We take a sequence of points {ei%n}> θι < θ2 < . . . <0n -* 00, on |C| = 1 which

are not parabolic fixed points. We denote the arc between etQn~ι and eι()n by An

and consider γn(An) for n^2. The domain bounded by {γn{An)} and |C| = 1

in Uζ will be denoted by £70. As we have seen, the harmonic measure of the

arc et9ιetθo with respect to UQ is zero. We then map Uo onto B so that the

point at infinity corresponds to Co = etθ° and 2 = 0 corresponds to etQl. Under this

mapping, the image of the arc eιQletθ° is a closed set of linear measure zero on

the positive #-axis. If we consider the composition of the inverse of this mapping

and the mapping Uζ ~> IE, then it is obvious that it is the function required in

the theorem.
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Next we consider the case that Po is a boundary component of D? Let {£n}

be a sequence of closed curves in M shrinking to Po such that the outside of cx

is at least of triply-connected, and take c_n in stead of the image on 2? of

\W\ = 1/n in the first case. A component arc of the boundary γn in Uζ of Un

may terminate at hyperbolic fixed points but the harmonic measure of γn is

again 1 with respect to Un- Let Co = etQ° be a hyperbolic fixed point which is

on the boundary of C7Ί. We shall show that an arc of γι may terminate at Co

but an infinite number of arcs of γι cluster to Co at least from one side. First

we notice that U% is the image of the universal covering surface G? of the

domain Gι outside cλ on Oh We map £7Ί onto \Z\ < 1 in a one-to-one conformal

manner, and denote by %z the Fuchsian or Fuchsoid group corresponding to the

mapping of G? onto \Z\ < 1. The image Zo of Co is a hyperbolic fixed point

with respect to ®z. Therefore, at least from one side, an infinite number of

images of arcs of ri cluster to Zo. Thus an infinite number of arcs of n cluster

to Co at least from one side, say, in the counter-clockwise. We take θi < θ2 <

. . . < θn -* 0o such^that the points eiOn are on the boundary of Uu and denote

by An the arc etθn~ιetOn as before. The rest of the proof will be the same as in

the first case and the proof will be completed.

Thus it is really necessary to distinguish the case where 9£ has a null

boundary from the case where 2ί has a positive boundary.

We shall close this paper with a remark to the case of pseudo-analytic

functions (with bounded dilatation) in Pfluger-Ahlfors's sense. We refer to Mori

[11] for this class of functions (cf. [26], too). If we take into account the fact

that a quasi-conformal mapping with bounded dilatation in Pfluger-Ahlfors's

sense of a strip B onto another strip B1 can be extended so that it is topological

between the closures of B and B' and that the image of a strictly narrower

substrip of B is contained in some strictly narrower substrip of Bf (see [11]),

then it follows that Theorems 4 and 6, in case F is identical with the whole

positive tf-axis, are valid also for pseudo-analytic functions in the present sense.
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