INDUCED CONNECTIONS AND IMBEDDED RIEMANNIAN SPACES

SHOSHICHI KOBAYASHI ${ }^{1)}$

§ 1. Introduction

Let P be a principal fibre bundle over M with group G and with projection $\pi: P \rightarrow M$. By definition of a principal fibre bundle, G acts on P on the right. We shall denote this transformation law by ρ;

$$
\rho(u, s)=u \cdot s \in P \quad \text { for any } u \in P \text { and } s \in G .
$$

Given a continuous map h of a topological space M^{\prime} into M, let $h^{-1}(P)$ be the set of points $\left(x^{\prime}, u\right)$ of $M \times P$ such that $\pi(u)=h\left(x^{\prime}\right)$. Define the projection π^{\prime} of $h^{-1}(P)$ onto M^{\prime} and the right translations by G as follows;

$$
\begin{aligned}
\pi^{\prime}\left(x^{\prime}, u\right) & =x^{\prime} \\
\left(x^{\prime}, u\right)_{s} & =\left(x^{\prime}, u s\right) .
\end{aligned}
$$

The principal fibre bundle $h^{-1}(P)$, thus obtained, is said to be induced by h. The map \tilde{h} of $h^{-1}(P)$ into P defined by

$$
\widetilde{h}\left(x^{\prime}, u\right)=u
$$

is a bundle map in the sense that it commutes with the right translations by G.
A principal fibre bundle P is universal relative to a space M^{\prime}, if every principal fibre bundle over M^{\prime} with group G can be induced by a map h of M^{\prime} into M and if two such induced bundles are equivalent if and only if the maps are homotopic. It is well known that, if M^{\prime} is a manifold and G is a compact Lie group, then there exists always a universal bundle $P[7]$.

From now on, we assume that every bundle P is differentiable; P and M are differentiable manifolds and the projection π is differentiable and the structure group G is a Lie group (not necessarily connected).

Let P^{\prime} be a principal fibre bundle over M^{\prime} with group G and with projection π^{\prime}. Let \widetilde{h} be a bundle map of P^{\prime} into P. Assume that there is given

[^0]an infinitesimal connection in P, which will be defined by a q-valued linear differential form ω on P with the following properties (g is the Lie algebra of G) [2]. ${ }^{2)}$
(ω. 1) $\quad \omega(u \cdot \bar{s})=s^{-1} \bar{s} \quad$ for any $\bar{s} \in T_{s}(G)$ and $u \in P$;
(ω.2) $\quad \omega(\bar{u} \cdot s)=s^{-1} \omega(\bar{u})_{s} \quad$ for any $s \in G$ and $\bar{u} \in T(P)$.
Let ω^{\prime} be the differential form on P^{\prime} induced from ω by \widetilde{h}, i.e.,
$$
\omega^{\prime}=\omega \circ \delta \widetilde{h},
$$
where $\delta \widetilde{h}$ is the differential of \tilde{h}.
It is easy to see that the form ω^{\prime} satisfies the conditions ($\omega .1,2$), hence defines an infinitesimal connection in P^{\prime}. The connection in P^{\prime} obtained in this way is said to be induced from the connection in P by \widetilde{h}.

Naturally arises the following question. Let P be a universal principal fibre bundle relative to a manifold M^{\prime}. Given any connection in any principal fibre bundle P^{\prime} over M^{\prime} with group G, does there exist a connection in P, from which the connection in P^{\prime} is induced by a bundle map \widetilde{h} of P^{\prime} into P ? The purpose of the present paper is to study this question in the case where M^{\prime} is an imbedded Riemannian space and P^{\prime} is the bundle of orthogonal frames over M^{\prime}. Suppose that M^{\prime} is an n-dimensional Riemannian space imbedded in the $(n+k)$ dimensional Euclidean space. In the study of characteristic classes, Chern [1] and Pontrjagin [6] considered the natural map h (the generalization of Gaussian spherical map) of M^{\prime} into $M_{n, k}$ (the Grassmann manifold) and the induced homomorphism h^{*} of $H^{*}\left(M_{n, k}\right)$ into $H^{*}\left(M^{\prime}\right)$. Their results will be understood better if the problem is studied in the following two steps: (1) the relation between the canonical connection in the bundle of Grassmann $P_{n, k}$ and the Riemannian connection on M^{\prime} and (2) the relation between the canonical connection in $P_{n, k}$ and the invariant Riemannian connection on $M_{n, k}$, This paper deals with part (1), and part (2) will be studied in another paper.

[^1]
§ 2. Universal bundles

Let R^{n+k} be the $(n+k)$-dimensional Euclidean space. Taking a point o in R^{n+k} as origin, we identify R^{n+k} with the $(n+k)$-dimensional vector space. A frame at o is a set of ordered vectors e_{1}, \ldots, e_{n+k} at o which are orthonormal. Then there is a one-one correspondence between the set of all frames at o and the orthogonal group $O(n+k)$ in $n+k$ variables. If w_{0} is a particular frame at o, the correspondence is given by

$$
s\left(w_{0}\right) \leftrightarrow s \quad s \in O(n+k) .
$$

Let $M_{n, k}$ denote the set of all n-planes through the origin of R^{n+k}. If R^{n} is a fixed n-plane and R^{k} is its orthogonal complement, then we may identify

$$
M_{n, k}=O(n+k) / O(n) \times O(k),
$$

where $O(n)$ is the orthogonal subgroup leaving R^{k} pointwise fixed and $O(k)$ is the orthogonal subgroup leaving R^{n} pointwise fixed [7]. The manifold $M_{n, k}$ is called the Grassmann manifold of n-planes in $(n+k)$-space.

Remark. Our notation for the Grassmann manifold is slightly different from the one in Steenrod's book [7].

Let $S O(r)$ be the rotaion subgroup of $O(r)$ and define

$$
\widetilde{M}_{n, k}=S O(n+k) / S O(n) \times S O(k),
$$

which will be called the Grassmann manifold of oriented n-planes in $(n+k)$. space.

Then $\tilde{M}_{n, k}$ is the simply connected two-fold covering of $M_{n, k}$.
Let

$$
P_{n, k}=O(n+k) /\{1\} \times O(k), \quad \widetilde{P}_{n, k}=S O(n+k) /\{1\} \times S O(k)
$$

The action of $O(n) \times\{1\}$ (resp. $S O(n) \times\{1\}$) on $O(n+k)$ (resp. $S O(n+k)$) on the right induces the action of $O(n) \times\{1\}$) (resp. $\mathrm{S} O(n) \times\{1\}$) on $P_{n, k}$ (resp. $\widetilde{P}_{n, k}$) on the right, hence $P_{n, k}$ (resp. $\widetilde{P}_{n, k}$) is a principal fibre bundle over $M_{n, k}$ (resp. $\tilde{M}_{n, k}$) with $\operatorname{group} O(n)$ (resp. $\mathrm{SO}(n)$).
§3. Canonical connections in $P_{n, k}$ and $\widetilde{P}_{n, k}$
Let $\mathfrak{p}(n+k), \mathfrak{p}(n)$ and $\mathfrak{p}(k)$ be the Lie algebras of $O(n+k), O(n)$ and $O(k)$ respectively. Since the algebra $\mathfrak{D}(n+k)$ is semi-simple and compact, the so-
called Killing-Cartan bilinear form on $\mathfrak{p}(n+k)$ is definite.
Let $\mathrm{m}_{n, k}$ be the orthogonal complement to $\mathfrak{d}(n) \dot{+}(k)$ with respect to the Killing-Cartan bilinear form. Then

$$
\begin{gathered}
\mathfrak{v}(n+k)=\mathfrak{p}(n) \dot{+} \mathfrak{p}(k) \dot{\mathrm{m}_{n, k}} \\
\operatorname{ad}(s) \cdot \mathrm{m}_{n, k} \cong \mathrm{~m}_{n, k} \quad \text { for any } s \in O(n) \times O(k)
\end{gathered}
$$

Let θ be the left invariant $0(n+k)$-valued linear differential form on $O(n+k)$ defined by

$$
\theta(\bar{s})=s^{-1} \bar{s} \quad \text { for any } \bar{s} \in T_{s}(O(n+k))
$$

Let ω be the $\mathfrak{d}(n)$-component of θ relative to the above decomposition of the Lie algebra $\mathfrak{o}(n+k)$. We shall show that this $\mathfrak{p}(n)$-valued differential form ω on $O(n+k)$ induces an $\mathfrak{D}(n)$:valued differential form on $P_{n, k}$ which defines a connection in $P_{n, k}$. Let \bar{s}^{\prime} be any element of $T_{s^{\prime}}(O(k))$, where s^{\prime} is an arbitrary point of $O(k)$. Then

$$
\begin{aligned}
\theta\left(\bar{s} \cdot \bar{s}^{\prime}\right) & =\left(s s^{\prime}\right)^{-1}\left(\bar{s} \cdot \bar{s}^{\prime}\right)=s^{\prime-1}\left(s^{-1} \bar{s}\right) s^{\prime}\left(s^{\prime-1} \bar{s}^{\prime}\right) \\
& =a d\left(s^{\prime}\right) \cdot\left(s^{-1} \stackrel{\rightharpoonup}{s}\right)+\left(s^{\prime-1} \bar{s}^{\prime}\right),
\end{aligned}
$$

because both $s^{-1} \bar{s}$ and $s^{\prime-1} \bar{s}^{\prime}$ are considered to be in the Lie algebra $\mathfrak{o}(n+k)$ and the product of two elements in $T_{e}(O(n+k))$ (where e is the unit of the group) corresponds to the sum of corresponding two elements in the Lie algebra $\mathfrak{n}(n+k)$. Since $s^{\prime-1} \bar{s}^{\prime}$ is in $\mathfrak{o}(k)$ and all $\mathfrak{o}(n), \mathfrak{o}(k)$ and $\mathrm{m}_{n, k}$ are stable by $a d\left(s^{\prime}\right)$ and furthermore the elements of $\mathfrak{p}(n)$ are pointwise fixed by $a d\left(s^{\prime}\right)$, we obtain

$$
\omega\left(\bar{s} \cdot \bar{s}^{\prime}\right)=\omega(\bar{s}) \quad \text { for any } \bar{s} \in T(O(n+k)) \text { and } \bar{s}^{\prime} \in T(O(k)) .
$$

Therefore ω induces an $\mathfrak{o}(\boldsymbol{n})$-valued linear differential form on $P_{n, k}$, which we shall denote by the same letter ω. Now we shall show that the form ω satisfies the conditions $(\omega .1,2)$ in Section 1. Let $u \in P_{n, k}$ and $\bar{s} \in T_{s}(O(n))$. If $s^{\prime} \in O(n+k)$ is a representative for u, then

$$
\theta\left(s^{\prime} \bar{s}\right)=\left(s^{\prime} s\right)^{-1}\left(s^{\prime} \bar{s}\right)=s^{-1} \bar{s} .
$$

This proves Condition ($\omega .1$). Let $\bar{u} \in T\left(P_{n, k}\right)$ and $s \in O(n)$. If $\bar{s}^{\prime} \in T(O(n+k))$ is a representative for \bar{u}, then

$$
\theta\left(\bar{s}^{\prime} s\right)=\left(s^{\prime} s\right)^{-1}\left(\bar{s}^{\prime} s\right)=s^{-1} s^{\prime-1} \bar{s}^{\prime} s=s^{-1} \theta\left(\bar{s}^{\prime}\right) s,
$$

hence

$$
\omega(\bar{u} S)=s^{-1} \omega(\bar{u}) s .
$$

Ws call the canonical connection in $P_{n, k}$ the connection defined by the form ω. Now we shall find the structure equation for the canonical connection. Let η and ζ be the $\mathfrak{o}(k)$-component and the $\mathrm{m}_{n, k}$-component of θ respectively;

$$
\theta=\omega+\eta+\zeta
$$

By a similar argument for ω, we can prove that the $\mathrm{m}_{n, k}$-valued form on $O(n+k)$ induces naturally an $\mathrm{m}_{n, k}$-valued form on $P_{n, k}$, which we shall denote by the same letter ζ. From the equation of Maurer-Cartan: ${ }^{3)}$

$$
d \theta=-\frac{1}{2}[\theta, \theta]
$$

it follows that

$$
d H=-\frac{1}{2}[\omega, \omega]-\frac{1}{2}[\eta, \eta]-\frac{1}{2}[\omega+\eta, \zeta]-\frac{1}{2}[\zeta, \omega+\eta]-\frac{1}{2}[\zeta, \zeta],
$$

because

$$
[\eta, \omega]=[\omega, \eta]=0 .
$$

If we compare the $\mathfrak{D}(n)$-component of both sides, then we obtain

$$
d \omega=-\frac{1}{2}[\omega, \omega]-\frac{1}{2}[\zeta, \zeta]_{1},
$$

where $[\zeta, \zeta]_{1}$ is the $\mathfrak{o}(n)$-component of $[\zeta, \zeta]$ (we shall see later that $[\zeta, \zeta]$ has its values in $\mathfrak{o}(n)+\mathfrak{o}(k))$.

Hence the curvature form Ω of the canonical connection is given by

$$
\Omega=-\frac{1}{2}[\zeta, \zeta]_{1} .
$$

We can apply the same reasoning to $\widetilde{P}_{n, k}$; starting from $\widetilde{\theta}$, which is the restriction of θ on $S O(n+k)$, we define similarly the forms $\widetilde{\omega}, \tilde{y}$ and $\widetilde{\zeta}$. We have also the following structure equation of E. Cartan:

$$
d \widetilde{\omega}=\frac{1}{2}[\widetilde{\omega}, \widetilde{\omega}]-\frac{1}{2}[\widetilde{\zeta}, \widetilde{\zeta}]_{1},
$$

\S 4. Natural coordinates in $P_{n, k}$ and $\widetilde{P}_{n, k}$

We take an orthogonal basis for R^{n+k} in such a way that the elements of $O(n)$ and $O(k)$ can be expressed respectively as follows:

[^2]\[

\left($$
\begin{array}{cc}
* & 0 \\
0 & I_{k}
\end{array}
$$\right), \quad\left($$
\begin{array}{cc}
I_{n} & 0 \\
0 & *
\end{array}
$$\right)
\]

where I_{k} and I_{n} are the identity matrices of degree k and n respectively. Then the elements in the Lie algebras $\mathfrak{o}(n)$ and $\mathfrak{o}(k)$ are expressed respectively as follows:

$$
\left(\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
0 & 0 \\
0 & B
\end{array}\right)
$$

where A and B are skew-symmetric matrices of degree n and k respectively.
Let matrices (v_{b}^{a}) and $\left(w_{b}^{a}\right),(a, b=1, \ldots, n+k)$, be elements in the Lie algebra $\mathfrak{o}(n+k)$. Then the Killing-Cartan bilinear form \mathscr{D} on $\mathfrak{D}(n+k)$ is given by

$$
\mathscr{D}(v, w)=\sum_{a, b=1}^{n_{+} k} v_{b}^{a} w_{a}^{b} .
$$

An easy calculation shows that the subspace $\mathrm{m}_{n, k}$ of $\mathfrak{o}(n+k)$ consists of the matrices of the following form:

$$
\left(\begin{array}{ll}
0 & C \\
{ }^{t} C & 0
\end{array}\right)
$$

where C is a matrix of ($k-n$)-type.
Now we shall prove the
Proposition 1. There is a natural one-one correspondence between the points in $P_{n, k}$ and the matrices with the following properties: ${ }^{4)}$

$$
\left(\begin{array}{c}
y_{1}^{1} \ldots y_{n}^{1} \\
\cdot \ldots \ldots y_{n}^{n} \\
y_{1}^{n} \\
\cdots \cdots y_{n}^{n} \\
y_{1}^{i n+k} \ldots y_{n}^{n+k}
\end{array}\right) \quad \sum_{a=1}^{n+k} y_{i}^{a} y_{j}^{a}=\delta_{i j} \quad i, j=1, \ldots, n
$$

Proof. By adding k columns, a matrix of above type can be completed to an orthogonal matrix, which gives an element of $P_{n, k}$ by the natural projection map of $O(n+k)$ onto $P_{n, k}$. The element of $P_{n, k}$ obtained in this way depends only on the initial matrix $\left(y_{i}^{q}\right)$ and is independent from the choice of k columns added to it. Because, if both

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \text { and }\left(\begin{array}{cc}
A & F \\
C & G
\end{array}\right)
$$

[^3]are orthogonal matrices, then
\[

\left($$
\begin{array}{cc}
A & B \\
C & D
\end{array}
$$\right)^{-1}\left($$
\begin{array}{cc}
A & F \\
C & G
\end{array}
$$\right)=\left($$
\begin{array}{cc}
{ }^{t} A & { }^{t} C \\
{ }^{t} B & { }^{t} D
\end{array}
$$\right)\left($$
\begin{array}{cc}
A & F \\
C & G
\end{array}
$$\right)=\left($$
\begin{array}{cc}
I_{n} & O \\
O & { }^{t} B F+{ }^{t} D G
\end{array}
$$\right)
\]

Now it is easy to see that the mapping thus defined gives a one-one correspondence between the matrices $\left(y_{i}^{a}\right)$'s and the points of $P_{n, k}$.

Therefore we shall take $\left(y_{i}^{a}\right)$ as coordinate functions of $P_{n, k}$ (observe that they are not independent from each others, however they are valid throughout $P_{n, k}$). We shall express the canonical connection in $P_{n, k}$ in terms of these natural coordinate functions. The left invariant form on $O(n+k)$ is given by the following matrix

$$
\left(\theta_{b}^{a}\right)=\left(y_{b}^{a}\right)^{-1}\left(d y_{b}^{a}\right),
$$

where the $y_{b}^{a \prime}$ s are the natural coordinate functions on $O(n+k)$. Hence the differential form ω defining the canonical connection in $P_{n, k}$ is given by the matrix (ω_{j}^{i}) defined by

$$
\omega_{j}^{i}=\sum_{a=1}^{n+k} y_{i}^{a} d y_{j}^{a} .
$$

The same result holds for $\widetilde{P}_{n, k}$; first of all, we note that Proposition 1 holds for $\widetilde{P}_{n, k}$. (We complete (y_{i}^{a}) to a proper orthogonal matrix by adding k columns, which is possible for $k \geq 1$.) Then the rest of argument is perfectly the same.

Proposition 2. The forms for the canonical connections in $P_{n, k}$ and $\widetilde{P}_{n, k}$ are given by

$$
\omega_{j}^{i}=\sum y_{i}^{a} d y_{j}^{a} \quad \widetilde{\omega}_{j}^{i}=\sum y_{i}^{a} d y_{j}^{a}
$$

where the $y_{i}^{\prime \prime}$'s are the natural coordinate functions on $P_{n, k}$ and $\hat{P}_{n, k}$.

§5. Riemannian connections

Let M^{\prime} be an n-dimensional Riemannian space and P^{\prime} the bundle of orthogonal frames over M^{\prime}. If M^{\prime} is non-orientable, then P^{\prime} is connected; and if M^{\prime} is orientable, P^{\prime} has two connected components and to choose one of them is to choose an orientation for M^{\prime}. Now we shall define an R^{n}-valued linear differential form θ^{\prime} on P^{\prime}. Let \bar{u} be any vector tangent to P^{\prime} at u and \bar{x} its
projection on M^{\prime}, i.e., if π^{\prime} is the projection of P^{\prime} onto M^{\prime}, then $\delta \pi^{\prime}(\bar{u})=\bar{x}$. Since u is an orthogonal transformation of R^{n} onto $T_{x}\left(M^{\prime}\right), u^{-1}(\bar{x})$ is an element of R^{n}. We define

$$
\theta^{\prime}(\bar{u})=u^{-1}(\bar{x}) .
$$

Remark 1. The form θ^{\prime} gives the structure of soudure in the tangent bundle $T\left(M^{\prime}\right)$ and is called the form of soudure [2], [5]. The definition of θ^{\prime} in terms of local coordinates is given in [3].

If we choose an orthogonal basis for R^{n}, then θ^{\prime} is a set of n real valued linear differential forms $\theta^{i}, i=1, \ldots, n$. Then the Riemannian connection in $P^{\prime}\left(\right.$ or on $\left.M^{\prime}\right)$ is a connection in P^{\prime} defined by an $\mathfrak{D}(n)$-valued linear differential form $\omega^{\prime}=\left(\omega^{\prime \prime}\right)$ such that

$$
d \theta^{\prime i}=-\sum \omega_{j}^{i j} .
$$

Remark 2. The Riemannian metric is parallel with respect to any connection in P^{\prime}. The above condition implies the so-called torsionfreeness. It is well known that there is a unique connection with above property.

§ 6. Imbedded Riemannian spaces

Let M^{\prime} be an n-dimensional Riemannian manifold imbedded isometrically in the ($n+k$) -dimensional Euclidean space R^{n+k}. Let u be any element of P^{\prime}; it is an orthogonal frame at a point x of M^{\prime} and can be considered as an orthogonal transformation of R^{n} onto $T_{x}\left(M^{\prime}\right)$ sending the origin of R^{n} into x. Let V_{x} be the n-plane in R^{n+k} which is parallel to $T_{x}\left(M^{\prime}\right)$ and passes through the origin o of R^{n+k} and let u^{\prime} be the orthogonal transformation of R^{n} onto V_{x} corresponding to u. Considering R^{n} as a fixed subspace of R^{n+k} passing through the origin o, we extend u^{\prime} to an orthogonal transformation u^{*} of R^{n+k} onto itself. Let v be the image of u^{*} under the natural projection of $O(n+k)$ onto $P_{n, k}$. Then it can be proved, by a similar method as in Proposition 1, that v depends only upon u and is independent from the choice of u^{*}. We shall denote by \widetilde{h} the mapping of P^{\prime} into $P_{n, k}$ sending u to v. From the definition of \widetilde{h}, it follows immediately that \widetilde{h} is a bundle map of P^{\prime} into $P_{n, k}$.

If M^{\prime} is orientable, we take the connected component of the bundle of orthogonal frames over M^{\prime} corresponding to the orientation and denote it by P^{\prime}. Then P^{\prime} is a principal fibre bundle over M^{\prime} with group $S O(n)$, which may
be called the bundle of oriented orthogonal frames over M^{\prime}. In the same way as above, we define a bundle map \tilde{h} of P^{\prime} into $P_{n, k}$.

We shall now introduce a coordinate system in P^{\prime} as follows. Let x^{1}, \ldots, $x^{n}, x^{n+1}, \ldots, x^{n+k}$ be a Cartesian coordinate system in R^{n+k} such that x^{1}, \ldots, x^{n} form a coordinate system for the fixed subspace R^{n}. Let

$$
e_{i}=\left(\partial / \partial x^{i}\right)_{0} \quad i=1, \ldots, n
$$

Then the e_{i} 's form an orthogonal frame in R^{n} at the origin o. If u is an element of P^{\prime}, then

$$
u\left(e_{i}\right)=\sum_{a=1}^{n+k} x_{i}^{a}\left(\partial / \partial x^{a}\right)_{x} \quad i=1, \ldots, n
$$

where $x=\pi^{\prime}(u)$ and the $x_{i}^{n \text { 's }}$ have the following property:

$$
\sum x_{i}^{a} x_{j}^{a}=\delta_{i j} \quad i, j=1, \ldots, n
$$

We shall take $\left(x^{a} ; x_{i}^{b}\right)$, where $a, b=1, \ldots, n+k$ and $i=1, \ldots, n$, as a coordinate system in P^{\prime}, even though these functions are not independent on P^{\prime}. With respect to this coordinate system, the form of soudure θ^{\prime} can be expressed as follows:

$$
\theta^{\prime i}=\sum x_{i}^{a} d x^{a}
$$

To prove this, we shall show first the following
Proposition 3. We have

$$
\sum_{b, j} x_{j}^{a} x_{j}^{b} d x^{b}=d x^{a} \quad \text { on } P^{\prime}
$$

Proof. Let \bar{u} be any vector tangent to P^{\prime} at u. Set

$$
\lambda^{a}=d x^{a}\left(\delta \pi^{\prime}(\bar{u})\right) .
$$

Then

$$
\delta \pi^{\prime}(\bar{u})=\sum \lambda^{a}\left(\partial / \partial x^{a}\right)_{x}
$$

Since $\delta \pi^{\prime}(\bar{u})$ is tangent to M^{\prime} at $x=\pi(u)$, it is a linear combination of $u\left(e_{1}\right)$, $\ldots, u\left(e_{n}\right)$. Hence, if $u_{j}^{a}=x_{j}^{a}(u)$, then

$$
\sum \lambda^{a}\left(\partial / \partial x^{a}\right)_{x}=\sum \mu^{i} u_{i}^{a}\left(\partial / \partial x^{a}\right)_{x}
$$

or

$$
\lambda^{a}=\sum \mu^{i} u_{i}^{a} \quad \text { for some real numbers } \mu^{i} .
$$

Then

$$
\begin{aligned}
\left(\sum x_{j}^{a} x_{j}^{b} d x^{b}\right)(\bar{u}) & =\sum u_{j}^{a} u_{j}^{b} \cdot d x^{b}\left(\delta \pi^{\prime}(\bar{u})\right)=\sum u_{j}^{a} u_{j}^{b} \lambda^{b} \\
& =\sum u_{j}^{a} u_{j}^{b} \mu^{i} u_{i}^{b}=\sum u_{i}^{a} \mu^{i}=\lambda^{a}=d x^{a}(\bar{u}) .
\end{aligned}
$$

This completes the proof of the proposition.
We can now prove that the above defined form $\theta^{\prime}=\left(\theta^{i}\right)$ is the form of soudure; that is, we shall show that

$$
u\left(\theta^{\prime}(\bar{u})\right)=\delta \pi^{\prime}(\bar{u})
$$

Using the same notations as in the proof of the proposition 3, we have

$$
\begin{aligned}
u\left(\theta^{\prime}(\bar{u})\right) & =u\left(\sum \theta^{i}(\bar{u}) \cdot e_{i}\right)=\sum\left(x_{i}^{b} d x^{b} x_{i}^{a}\right)(\bar{u}) \cdot\left(\partial / \partial x^{a}\right)_{x} \\
& =\sum d x^{a}(\bar{u}) \cdot\left(\partial / \partial x^{a}\right)_{x}=\delta \pi^{\prime}(\bar{u}) .
\end{aligned}
$$

Let $\omega=\left(\omega_{j}^{i}\right)$ be the form defining the canonical connection in $P_{n, k}$. Then the linear differential form $\omega^{\prime}=\left(\omega_{j}^{i}\right)$ defining the connection induced from the canonical connection by \widetilde{h} is given as follows in terms of the coordinate system:

$$
\omega_{j}^{\prime i}=\sum x_{i}^{a} d x_{j}^{a}
$$

This follows immediately from Proposition 2 and from the fact that

$$
x_{i}^{a}(u)=y_{i}^{a}(\widetilde{h}(u)) \quad \text { for any } u \in P^{\prime} .
$$

We claim that the connection defined by ω^{\prime} is the Riemannian connection on M^{\prime}. In fact

$$
\begin{aligned}
d \theta^{i}+\sum \omega_{j}^{i} \wedge \theta^{\prime j} & =\sum d x_{i}^{a} \wedge d x^{a}+\sum\left(x_{i}^{a} d x_{j}^{a}\right) \wedge\left(x_{j}^{b} d x^{b}\right) \\
& =\sum d x_{i}^{a} \wedge d x^{a}-\sum\left(d x_{i}^{a} x_{j}^{a}\right) \wedge\left(x_{j}^{b} d x^{b}\right) \\
& =\sum d x_{i}^{a} \wedge d x^{a}-\sum d x_{i}^{a} \wedge d x^{a}=0 \quad \text { (Prop. 3) }
\end{aligned}
$$

A similar argument holds for $\widetilde{P}_{n, k}$ if M^{\prime} is oriented.
Theorem I. Let M^{\prime} be an n-dimensional Riemannian space imbedded in the $(n+k)$-dimensional Euclidean space and let \tilde{h} be the natural bundle map of P^{\prime} (the bundle of orthogonal frames over M^{\prime}) into $P_{n, k}$. Then the connection in P^{\prime} induced from the canonical connection in $P_{n, k}$ by \tilde{h} is nothing but the Riemannian connection on M^{\prime}.

If M^{\prime} is oriented, let \tilde{h} be the natural bundle map of P^{\prime} (the bundle of oriented orthogonal frames over M^{\prime}) into $\widetilde{P}_{n, k}$. Then a statement similar to the above one is true.

§ 7. Hypersurfaces

Consider the case where $k=1$ and M^{\prime} is oriented. We shall identify $\widetilde{P}_{n, 1}$ $=S O(n+1)$ with the bundle of oriented orthogonal frames Q over the n-dimensional unit sphere S^{n} in the following manner. Let R^{n} be a fixed n-plane in R^{n+1} and R its orthogonal complement. Let z be a unit vector in R (or a point in R with unit distance from the origin). Then for each $s \in P_{n, 1}=S O(n+1)$, $s z$ is a point on the unit sphere S^{n}, and $s\left(R^{n}\right)$ is an n-plane in R^{n+1} parallel to the tangent space $T_{s z}\left(S^{n}\right)$. Hence s defines naturally an orthogonal transformation of R^{n} onto $T_{s z}\left(S^{n}\right)$ and s can be considered as an orthogonal frame (oriented) over S^{n} at $s z$. It is easy to see that this correspondence is a bundle isomorphism between $P_{n, 1}$ and Q and that it is nothing but the inverse of the bundle map \tilde{h}, applied to a particular case where $M^{\prime}=S^{n}$. Hence the canonical connection in $\widetilde{P}_{n, 1}$ corresponds to the Riemannian connection in Q (or on S^{n}) (See Th. 1.) From this fact and from Theorem I, follows the

Theorem II. Let M^{\prime} be an n-dimensional Riemannian manifold imbedded in the $(n+1)$-dimensional Euclidean space and let \tilde{h} be the natural bundle map of P^{\prime} (the bundle of oriented orthogonal frames over M^{\prime}) into Q (the bundle of oriented orthogonal frames over the unit sphere S^{n}). Then the connection induced from the Riemannian connection on S^{n} by \tilde{h} is the Riemannian connection on M^{\prime}.

Remark. For the geometrical interpretation of Theorem II, see [4].

Bibliography

[1] Chern, S-S., La géométrie des sous-variétés d'un espace euclidien à plusieurs dimensions, Enseignement Math. 40 (1955), 26-46. See also: Topics in differential geometry, Mimeographed notes, Princeton (1951).
[2] Ehresmann, C., Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, Bruxelles (1950), 29-55.
[3] Kobayashi, S., Espaces à connexions affines et riemanniennes symétriques, Nagoya Math. J. 9 (1955), 25-37.
[4] Kobayashi, S., Holonomy groups of hypersurfaces, this journal.
[5] Kobayashi, S., Theory of connections I, Mimeographed notes (1955).
[6] Pontrjagin, L., Some topological invariants of closed Riemannian manifolds, Izvestiya Akad. Nauk SSSR, Ser. Math. 13 (1949), 125-162; Amer. Math. Soc. Trans. No. 49.
[7] Steenrod, N., Topology of fibre bundles (1951).

University of Washington

[^0]: ${ }^{1)}$ Supported by National Science Foundation Grant.

[^1]: ${ }^{2}$) If G is a Lie group whose multiplication law is given by $\rho: G \times G \rightarrow G$, then $T(G)$ (the set of all tangent vectors to G) is also a Lie group whose multiplication law is the differential $\delta \varnothing$ of φ. And G is considered as a subgroup of $T(G)$. The Lie algebra of G can be identified with $T_{e}(G)$ (the set of all tangent vectors to G at the unit e). The differential $\delta \rho$ of ρ gives the transformation law of $T(G)$ acting on $T(P)$. The notations in ($\omega .1,2$) should be understood in this sense. For the detail, see [5].

[^2]: ${ }^{3 j}[\theta, \theta]$ will be understood as follows: $[\theta, \theta] \cdot\left(\bar{s}, \bar{s}^{\prime}\right)=\left[\theta(\bar{s}), \theta\left(\bar{s}^{\prime}\right)\right] \quad$ for any $\bar{s}, \bar{s} \in T_{s}(O(n+k))$.

[^3]: 4) In this paper, the indices a, b run from 1 to $n+k$ and i, j run from 1 to n.
