LEMMA ON LOGARITHMIC DERIVATIVES AND HOLOMORPHIC CURVES IN ALGEBRAIC VARIETIES ${ }^{1)}$

JUNJIRO NOGUCHI

Nevanlinna's lemma on logarithmic derivatives played an essential role in the proof of the second main theorem for meromorphic functions on the complex plane C (cf., e.g., [17]). In [19, Lemma 2.3] it was generalized for entire holomorphic curves $f: C \rightarrow M$ in a compact complex manifold M (Lemma 2.3 in [19] is still valid for non-Kähler M). Here we call, in general, a holomorphic mapping from a domain of C or a Riemann surface into M a holomorphic curve in M, and sometimes use it in the sense of its image if no confusion occurs. Applying the above generalized lemma on logarithmic derivatives to holomorphic curves $f: C \rightarrow V$ in a complex projective algebraic smooth variety V and making use of Ochiai [22, Theorem A], we had an inequality of the second main theorem type for f and divisors on V (see [19, Main Theorem] and [20]). Other generalizations of Nevanlinna's lemma on logarithmic derivatives were obtained by Nevanlinna [16], Griffiths-King [10, § 9] and Vitter [23].

In this paper we first deal with holomorphic curves $f: \Delta^{*} \rightarrow M$ from the punctured disc $\Delta^{*}=\{|z| \geqq 1\}$ with center at the infinity ∞ of the Riemann sphere into a compact Kähler manifold M. Our first aim is to prove the following lemma on logarithmic derivatives which is a generalization of Nevanlinna [16, III, p. 370] and will play a crucial role in $\S \S 3$ and 4 (see $\S 1$ as to the notation):

Main Lemma (2.2). Let $f: \Delta^{*} \rightarrow M$ be a holomorphic curve in M, $\omega \in H^{0}\left(M, \mathfrak{Q}_{M}^{1}\right)$ a d-closed meromorphic 1-form with logarithmic poles and put $f^{*} \omega=\zeta(z) d z$. Then we have

$$
m(r, \zeta) \leqq O\left(\log ^{+} T_{f}(r)\right)+O(\log r)
$$

as $r \rightarrow \infty$ except for $r \in E$, where E is a subset of $[1, \infty)$ with finite linear

1) Work supported in part by the Sakkokai Foundation.
measure.
The difficulty of the present case comes from the fact that the domain Δ^{*} is not simply connected. In the proof we shall apply the negative curvature method introduced by Griffiths-King [10, Propositions (6.9) and (9.3)] as in Vitter [23].

In $\S 3$ we shall be concerned with the value distribution of holomorphic curves $f: \Delta^{*} \rightarrow V$ in a complex projective algebraic smooth variety V. Let D be an effective reduced divisor on V. Combining Main Lemma (2.2) with Ochiai [22, Theorem A] as in [19, §3] and [20], we shall obtain an inequality of the second main theorem type

$$
\begin{equation*}
K T_{f}(r) \leqq N\left(r, \operatorname{Supp}\left(f^{*} D\right)\right)+S(r), \tag{3.2}
\end{equation*}
$$

where K is a positive constant independent of f and $S(r)$ is a small term such as

$$
S(r) \leqq O\left(\log ^{+} T_{f}(r)\right)+O(\log r)
$$

as $r \rightarrow \infty$ outside a set of r with finite linear measure (see Theorem (3.1)). As a corollary, we shall see that an inequality similar to (3.2) holds for a holomorphic curve from a compact Riemann surface minus a finite number of points into V (Corollary (3.3)).

In $\S 4$ we shall study the extension problem of big Picard type for holomorphic curves $f: \Delta^{*} \rightarrow X$ in an algebraic subvariety X of general type in a quasi-Abelian variety A (cf. § 4). Let W be the union of subvarieties of X which are translations of non-trivial closed algebraic subgroups of A. Then W is a proper algebraic subvariety of X such that each irreducible component of W is foliated by translations of a non-trivial closed algebraic subgroup of A (see Lemma (4.1) whose proof is essentially due to Kawamata [13]). Using Lemma (4.4) due to M. Green by which he completed Ochiai's work [22] on Bloch's conjecture [2], and applying Main Lemma (2.2), we shall prove the following extension theorem of big Picard type:

Theorem (4.5). Any holomorphic curve $f: \Delta^{*} \rightarrow X$ has a holomorphic extension $\tilde{f}: \Delta=\Delta^{*} \cup\{\infty\} \rightarrow \bar{X}$ unless $f\left(\Delta^{*}\right) \subset W$, where \bar{X} is a completion of X.

As a corollary of Theorem (4.5) we will see that any holomorphic mapping $f: N-S \rightarrow X$ from a complex manifold N minus a thin analytic set S into X extends meromorphically over N unless $f(N-S) \subset W$
(Corollary (4.7)). Fujimoto ([3], [5]) and Green ([8]) obtained extension theorems of big Picard type for holomorphic mappings into projective space omitting hyperplanes in general position or intersecting them with positive defects (cf. also [4] and [7]). We will discuss the relationship between our results and those of Fujimoto and Green.

§ 1. Preliminaries

We set

$$
\begin{aligned}
& \Delta^{*}=\{z \in C ;|z| \geqq 1\}, \quad \Delta^{*}(r)=\{1 \leqq|z|<r\} \\
& \Gamma(r)=\{|z|=r\}, \quad d=\partial+\bar{\partial}, \quad d^{c}=\frac{i}{4 \pi}(\bar{\partial}-\partial) .
\end{aligned}
$$

In this paper we assume that functions on Δ^{*} and mappings from Δ^{*} are defined in neighborhoods of Δ^{*} in C. Let ξ be a function on Δ^{*} satisfying
(i) ξ is differentiable outside a discrete set of points,
(ii) ξ is locally written as a difference of two subharmonic functions. Then we have

$$
\begin{align*}
\int_{1}^{r} \frac{d t}{t} \int_{\Delta^{*}(t)} d d^{c} \xi= & \frac{1}{4 \pi} \int_{\Gamma(r)} \xi\left(r e^{i \theta}\right) d \theta-\frac{1}{4 \pi} \int_{\Gamma(1)} \xi\left(e^{i \theta}\right) d \theta \\
& -(\log r) \int_{\Gamma(1)} d^{c} \xi \tag{1.1}
\end{align*}
$$

where $d d^{c} \xi$ is taken in the sense of currents (cf., e.g., [10]). Let F be a multiplicative meromorphic function on Δ^{*}, i.e., F is a many-valued meromorphic function such that the modulus $|F|$ is one-valued. We set

$$
m(r, F)=\frac{1}{2 \pi} \int_{\Gamma(r)} \log ^{+}\left|F\left(r e^{i \theta}\right)\right| d \theta
$$

where $\log ^{+}|F|=\max \{0, \log |F|\}$. Let $D=\sum_{i=1}^{\infty} \nu_{i} a_{i}$ be a divisor with integral coefficients $\nu_{i} \in \mathbf{Z}$ on Δ^{*} and set

$$
\begin{gathered}
n(t, D)=\sum_{1 \leqq\left|\sum_{i}\right|<t} \nu_{i}, \\
N(r, D)=\int_{1}^{r} \frac{n(t, D)}{t} d t
\end{gathered}
$$

Since $|F|$ is one-valued, the divisor (F) determined by F is defined on Δ^{*} and so is the divisor $(F)_{0}$ (resp. $(F)_{\infty}$) of zeros (resp. poles) of F. We put

$$
\begin{equation*}
T(r, F)=N\left(r,(F)_{\infty}\right)+m(r, F) \tag{1.2}
\end{equation*}
$$

Applying (1.1) to $\xi=\log |F|^{2}$, we get

$$
\begin{equation*}
T\left(r, \frac{1}{F}\right)=T(r, F)-\frac{1}{2 \pi} \int_{\Gamma(1)} \log |F| d \theta-(\log r) \int_{\Gamma(1)} d^{c} \log |F|^{2} \tag{1.3}
\end{equation*}
$$

(cf. [16, I, p. 369]).
Let M be a compact Kähler manifold and Ω a (1, 1)-form on M. We set

$$
T_{f}(r, \Omega)=\int_{1}^{r} \frac{d t}{t} \int_{\Delta^{*}(t)} f^{*} \Omega
$$

for a holomorphic curve $f: \Delta^{*} \rightarrow M$. Let D be an effective divisor on M and $f: \Delta^{*} \rightarrow M$ a holomorphic curve such that $f\left(\Delta^{*}\right)$ is not contained in the support $\operatorname{Supp}(D)$ of D. We take a metric $\|\cdot\|$ in the line bundle [D] determined by D and denote by Ω_{0} the curvature form of the metric. Letting $\sigma \in H^{\circ}(M,[D])$ be a global holomorphic section of [D] such that the divisor (σ) determined by σ equals D and $\|\sigma\| \leqq 1$, we put

$$
m_{f}(r, D)=\frac{1}{2 \pi} \int_{\Gamma(r)} \log _{\frac{1}{\|\sigma \circ f\|}} d \theta
$$

Applying (1.1) to $\xi=f^{*} \log \|\sigma\|^{2}$, we obtain

$$
\begin{align*}
T_{f}\left(r, \Omega_{0}\right)= & N\left(r, f^{*} D\right)+m_{f}(r, D)-m_{f}(1, D) \\
& +(\log r) \int_{\Gamma(1)} d^{c} \log \|\sigma \circ f\|^{2}, \tag{1.4}
\end{align*}
$$

where $f^{*} D$ denotes the pull-backed divisor of D by f (cf. [10]). Let $\mathfrak{M}_{\boldsymbol{M}}^{*}$ be the sheaf of germs of meromorphic functions which do not identically vanish, and define a sheaf \mathfrak{Q}_{M}^{1} by

where C^{*} denotes the multiplicative group of non-zero complex numbers (cf. [19, §1(b)]). Let $\omega \in H^{0}\left(M, \mathfrak{Y}_{M}^{1}\right)$. Then we have the residue Res (ω) which is a divisor homologous to zero such that the line bundle [Res (ω)] equals $\delta \omega$, where $\delta: H^{0}\left(M, \mathscr{Y}_{M}^{1}\right) \rightarrow H^{1}\left(M, C^{*}\right)$ is the coboundary operator associated with (1.5) (cf. [19, § $1(\mathrm{~b})]$). By Weil [24, p. 101] there is a multiplicative meromorphic funnction Θ on M such that the divisor (Θ) equals $\operatorname{Res}(\omega)$. Since $d \log \Theta \in H^{0}\left(M, \mathfrak{R}_{M}^{1}\right)$ and $\omega-d \log \Theta$ is holomorphic every-
where on M, we have the decomposition

$$
\begin{equation*}
\omega=d \log \Theta+\omega_{1} \tag{1.6}
\end{equation*}
$$

where ω_{1} is a holomorphic 1-form on M.

§ 2. Lemma on logarithmic derivatives

Let $f: \Delta^{*} \rightarrow M$ be a holomorphic curve in a compact Kähler manifold M with Kähler metric h and the associated form Ω, and set

$$
T_{f}(r)=T_{f}(r, \Omega)
$$

Let $\omega \in H^{0}\left(M, \mathfrak{Y}_{M}^{1}\right)$ and $\omega=d \log \Theta+\omega_{1}$ be the decomposition as (1.6). We set

$$
\operatorname{Res}^{+}(\omega)=(\Theta)_{0}, \quad \operatorname{Res}^{-}(\omega)=(\Theta)_{\infty}
$$

Then by [24, p. 101] there is respectively a metric $\|\cdot\|$ in each of [$\operatorname{Res}^{+}(\omega)$] and $\left[\operatorname{Res}^{-}(\omega)\right]$ such that both metrics have the same curvature form Ω_{0}; furthermore there are sections $\sigma_{1} \in H^{0}\left(M,\left[\operatorname{Res}^{-}(\omega)\right]\right)$ and $\sigma_{2} \in H^{0}\left(M,\left[\operatorname{Res}^{+}(\omega)\right]\right)$ such that $\left(\sigma_{1}\right)=\operatorname{Res}^{-}(\omega),\left(\sigma_{2}\right)=\operatorname{Res}^{+}(\omega),\left\|\sigma_{i}\right\| \leqq 1$ and

$$
\begin{equation*}
|\Theta|=\frac{\left\|\sigma_{2}\right\|}{\left\|\sigma_{1}\right\|} \tag{2.1}
\end{equation*}
$$

We put $f^{*} \omega=\zeta(z) d z$.
Main Lemma (2.2). Let the notation be as above. Assume that Supp $(\operatorname{Res}(\omega)) \not \supset f\left(\Delta^{*}\right)$. Then

$$
\begin{equation*}
m(r, \zeta) \leqq 18 \log ^{+} T_{f}(r)+O(\log r) \tag{2.3}
\end{equation*}
$$

for $r \geqq 1$ outside a set of r with finite linear measure.
Proof. Set $f^{*} d \log \Theta=\zeta_{0} d z$ and $f^{*} \omega_{1}=\zeta_{1} d z$. Then we have

$$
\begin{equation*}
m(r, \zeta) \leqq m\left(r, \zeta_{0}\right)+m\left(r, \zeta_{1}\right)+\log 2 \tag{2.4}
\end{equation*}
$$

We first estimate the term $m\left(r, \zeta_{1}\right)$. Take a positive constant C_{1} so that

$$
\left|\omega_{1}(v)\right|^{2} \leqq C_{1} h(v, v)
$$

for every holomorphic tangent vector $v \in T(M)$. Setting $f^{*} \Omega=s(z)(i / 2)$ $d z \wedge d \bar{z}$, we get

$$
\begin{equation*}
\left|\zeta_{1}(z)\right|^{2} \leqq C_{1} s(z) \tag{2.5}
\end{equation*}
$$

so that

$$
\begin{align*}
m\left(r, \zeta_{1}\right) & \leqq \frac{1}{4 \pi} \int_{\Gamma(r)} \log \left(1+\left|\zeta_{1}\right|^{2}\right) d \theta \leqq \frac{1}{2} \log \left(1+\frac{C_{1}}{2 \pi} \int_{\Gamma(r)} s d \theta\right) \\
& \leqq \frac{1}{2} \log \left(1+\frac{C_{1}}{2 \pi r} \frac{d}{d r} \int_{d^{*}(r)} f^{*} \Omega\right) \tag{2.6}
\end{align*}
$$

Since $\int_{\Delta^{*}(r)} f^{*} \Omega$ is a monotone increasing function in $r \geqq 1$, the inequality

$$
\frac{d}{d r} \int_{d^{*}(r)} f^{*} \Omega \leqq\left(\int_{\Delta^{*}(r)} f^{*} \Omega\right)^{2}
$$

holds for $r \geqq 1$ outside a set E_{1} of r with finite linear measure. Combining this with (2.6), we have

$$
\begin{equation*}
m\left(r, \zeta_{1}\right) \leqq \frac{1}{2} \log \left(1+\frac{C_{1}}{2 \pi r}\left(\int_{\Delta^{*}(r)} f^{*} \Omega\right)^{2}\right) \tag{2.7}
\end{equation*}
$$

for $r \notin E_{1}$; moreover we have

$$
\begin{equation*}
\int_{\Delta^{*}(r)} f^{*} \Omega=r \frac{d}{d r} \int_{1}^{r} \frac{d t}{t} \int_{d^{*}(t)} f^{*} \Omega=r \frac{d}{d r} T_{f}(r) \leqq r\left(T_{f}(r)\right)^{2} \tag{2.8}
\end{equation*}
$$

for $r \notin E_{2}$, where E_{2} is a set similar to E_{1}. It follows from (2.7) and (2.8) that

$$
\begin{equation*}
m\left(r, \zeta_{1}\right) \leqq 2 \log ^{+} T_{f}(r)+\frac{1}{2} \log r+\frac{1}{2} \log ^{+} \frac{C_{1}}{2 \pi}+\frac{1}{2} \log 2 \tag{2.9}
\end{equation*}
$$

for $r \notin E_{1} \cup E_{2}$.
Now we estimate the term $m\left(r, \zeta_{0}\right)$ in (2.4). Set $F=f^{*} \Theta$. Then F is a multiplicative meromorphic function on Δ^{*} and by (2.1), $|F|=\left\|\sigma_{2} \circ f\right\| /$ $\left\|\sigma_{1} \circ f\right\|$, so that

$$
m(r, F) \leqq \frac{1}{2 \pi} \int_{\Gamma(r)} \log \frac{1}{\left\|\sigma_{1} \circ f\right\|} d \theta=m_{f}\left(r, \operatorname{Res}^{-}(\omega)\right)
$$

On the other hand, $N\left(r,(F)_{\infty}\right) \leqq N\left(r, f^{*} \operatorname{Res}^{-}(\omega)\right)$. Thus we see, taking into account (1.4), that

$$
\begin{equation*}
T(r, F) \leqq T_{f}\left(r, \Omega_{0}\right)+C_{2} \log r+C_{3} \tag{2.10}
\end{equation*}
$$

where C_{2} and C_{3} are some non-negative constants. Letting C_{4} be a positive constant such that $\Omega_{0} \leqq C_{4} \Omega$, we have

$$
\begin{equation*}
T_{f}\left(r, \Omega_{0}\right) \leqq C_{4} T_{f}(r) . \tag{2.11}
\end{equation*}
$$

We complete the proof by combining (2.9) with (2.10), (2.11) and the following one variable lemma.

Lemma (2.12). Let G be a multiplicative meromorphic function on Δ^{*}. Then the inequality

$$
m\left(r, G^{\prime} / G\right) \leqq 16 \log ^{+} T(r, G)+O(\log r)
$$

holds for $r \geqq 1$ outside a set E of r with finite linear measure.
Proof. Let w be an inhomogeneous coordinate of the 1-dimensional complex projective space \boldsymbol{P}^{1}. Then the standard Kähler form ψ_{0} on \boldsymbol{P}^{1} is written as

$$
\psi_{0}=\frac{1}{\left(1+|w|^{2}\right)^{2}} \frac{i}{2 \pi} d w \wedge d \bar{w}
$$

By Griffiths-King [10, Proposition (6.9)] we see that the singular form

$$
\Psi=\frac{a_{0}\left(|w|+|w|^{-1}\right)^{2+2 \epsilon}}{\left(\log b_{0}\left(1+|w|^{2}\right)\right)^{2}\left(\log b_{0}\left(1+|w|^{-2}\right)\right)^{2}} \psi_{0}
$$

satisfies

$$
\begin{equation*}
\operatorname{Ric} \Psi \geqq\left(|w|+|w|^{-1}\right)^{-2 \iota} \Psi \tag{2.13}
\end{equation*}
$$

for suitably chosen positive constants a_{0}, b_{0} and $\varepsilon(\varepsilon<1)$. Since Ψ is invariant by transformations, $w \rightarrow e^{i \theta} w$, with real $\theta \in \boldsymbol{R}$ and G is multiplicative, the pull-backed form $G^{*} \Psi$ of Ψ by G is well-defined. We set

$$
\left\{\begin{align*}
& g=\frac{G^{\prime}}{G} \tag{2.14}\\
& G^{*} \Psi=\xi \frac{i}{2 \pi} d z \wedge d \bar{z}= \frac{a_{0}\left(|G|+|G|^{-1}\right)^{26}}{\left(\log b_{0}\left(1+|G|^{2}\right)\right)^{2}\left(\log b_{0}\left(1+|G|^{-2}\right)\right)^{2}} \\
& \times|g|^{2} \frac{i}{2 \pi} d z \wedge d \bar{z}
\end{align*}\right.
$$

Then by (2.13) we have

$$
\begin{equation*}
G^{*} \operatorname{Ric} \Psi=d d^{c} \log \xi \geqq\left(|G|+|G|^{-1}\right)^{-2 \iota} \xi \frac{i}{2 \pi} d z \wedge d \bar{z} \tag{2.15}
\end{equation*}
$$

Furthermore, taking $d d^{c} \log \xi$ in the sense of currents, we get

$$
\begin{equation*}
d d^{c} \log \xi=G^{*} \operatorname{Ric} \Psi-\varepsilon\left((G)_{0}+(G)_{\infty}\right)+(g)_{0}-(g)_{\infty} \tag{2.16}
\end{equation*}
$$

Noting that $(g)_{\infty}=\operatorname{Supp}\left((G)_{0}+(G)_{\infty}\right) \leqq(G)_{0}+(G)_{\infty}$, we deduce from (2.15) and (2.16) that
(2.17) $\left(|G|+|G|^{-1}\right)^{-2 \bullet} \xi \frac{i}{2 \pi} d z \wedge d \bar{z} \leqq(1+\varepsilon)\left((G)_{0}+(G)_{\infty}\right)+d d^{c} \log \xi$.

We infer from (1.1) and (2.17) that

$$
\begin{gather*}
\int_{1}^{r} \frac{d t}{t} \int_{4^{*}(t)} \frac{\xi}{\left(|G|+|G|^{-1}\right)^{2 \epsilon}} \frac{i}{2 \pi} d z \wedge d \bar{z} \leqq(1+\varepsilon)\left(N\left(r,(G)_{0}\right)+N\left(r,(G)_{\infty}\right)\right) \tag{2.18}\\
\quad+\frac{1}{4 \pi} \int_{\Gamma(r)} \log \xi d \theta-(\log r) \int_{\Gamma(1)} d^{c} \log \xi-\frac{1}{4 \pi} \int_{\Gamma(1)} \log \xi d \theta
\end{gather*}
$$

We have by the definition of ξ in (2.14)

$$
\begin{align*}
\frac{1}{4 \pi} \int_{\Gamma(r)} \log \xi d \theta \leqq & m(r, g)+\varepsilon\left(m(r, G)+m\left(r, \frac{1}{G}\right)\right) \tag{2.19}\\
& +\log ^{+} a_{0}+\log ^{+}\left(\log b_{0}\right)^{-2}+\varepsilon \log 2
\end{align*}
$$

We put

$$
\left\{\begin{array}{l}
A(t)=\int_{\Delta^{*}(t)} \frac{\xi}{\left(|G|+|G|^{-1}\right)^{2 \epsilon}} \frac{i}{2 \pi} d z \wedge d \bar{z} \tag{2.20}\\
B(r)=\int_{1}^{r} \frac{A(t)}{t} d t
\end{array}\right.
$$

Then inequalities (2.18), (2.19), (1.3) and $\varepsilon<1$ yield

$$
\begin{equation*}
B(r) \leqq m(r, g)+4 T(r, G)+O(\log r)+O(1) \tag{2.21}
\end{equation*}
$$

Let us compute $m(r, g)$:

$$
\begin{align*}
m(r, g)= & \frac{1}{4 \pi} \int_{\Gamma(r)} \log ^{+}\left(\xi\left(|G|+|G|^{-1}\right)^{-2 \varepsilon} \frac{1}{a_{0}}\right. \\
& \left.\times\left(\log b_{0}\left(1+|G|^{2}\right)\right)^{2}\left(\log b_{0}\left(1+|G|^{-2}\right)\right)^{2}\right) d \theta \\
\leqq & \frac{1}{4 \pi} \int_{\Gamma(r)} \log \left(1+\xi\left(|G|+|G|^{-1}\right)^{-2 \varepsilon}\right) d \theta \\
& +\frac{1}{2 \pi} \int_{\Gamma(r)} \log \left(1+\log ^{+} b_{0}+2 \log ^{+}|G|\right) d \theta \\
& +\frac{1}{2 \pi} \int_{\Gamma(r)} \log \left(1+\log ^{+} b_{0}+2 \log ^{+} \frac{1}{|G|}\right) d \theta+\log ^{+} \frac{1}{a_{0}} \tag{2.22}
\end{align*}
$$

$$
\begin{aligned}
\leqq & \frac{1}{2} \log \left(1+\frac{1}{2 \pi} \int_{\Gamma(r)} \xi\left(|G|+|G|^{-1}\right)^{-2 \iota} d \theta\right) \\
& +\log \left(1+\log ^{+} b_{0}+2 m(r, G)\right) \\
& +\log \left(1+\log ^{+} b_{0}+2 m\left(r, \frac{1}{G}\right)\right)+\log ^{+} \frac{1}{a_{0}}
\end{aligned}
$$

(by the concavity of "log")
$\leqq \frac{1}{2} \log \left(1+\frac{1}{2 r} \frac{d}{d r} A(r)\right)+2 \log ^{+} T(r, G)+O(\log r)+O(1)$.
Since $A(r)$ and $B(r)$ are monotone increasing, we see that the inequalities

$$
\left\{\begin{array}{l}
\frac{d}{d r} A(r) \leqq(A(r))^{2} \tag{2.23}\\
\frac{d}{d r} B(r) \leqq(B(r))^{2}
\end{array}\right.
$$

hold for $r \geqq 1$ outside a set E of r with finite linear measure. Using the identity, $d B(r) / d r=A(r) / r$, and combining (2.22) with (2.21) and (2.23), we have

$$
\begin{aligned}
m(r, g) & \leqq \frac{1}{2} \log \left(1+\frac{1}{2} r(B(r))^{4}\right)+2 \log ^{+} T(r, G)+O(\log r)+O(1) \\
& \leqq 2 \log ^{+} m(r, g)+4 \log ^{+} T(r, G)+O(\log r)+O(1)
\end{aligned}
$$

for $r \notin E$. Note that $2 \log ^{+} m(r, g) \leqq 2 m(r, g) / e$ and $1-2 / e>1 / 4$. Hence we infer that

$$
\begin{equation*}
m(r, g) \leqq 16 \log ^{+} T(r, G)+O(\log r)+O(1) \tag{2.24}
\end{equation*}
$$

for $r \notin E$. This completes the proof.
Remark 1. In the above proof we used the metric form (cf. (2.14)) due to Griffiths-King [10, Proposition (6.9)] as in Vitter [23], whose curvature behaves nicely. If we use the following metric form due to GrauertReckziegel [6] which is simpler than (2.14)

$$
\Phi=\left(1+|G|^{2 z}\right)|G|^{2 s}|g|^{2} \frac{i}{2 \pi} d z \wedge d \bar{z}
$$

with any $\varepsilon>0$, we have

$$
\operatorname{Ric} \Phi=\varepsilon^{2}\left(|G|^{\bullet}+|G|^{-\iota}\right)^{-2}|g|^{2} \frac{i}{2 \pi} d z \wedge d \bar{z}
$$

and obtain the following estimate:

$$
\begin{gather*}
m(r, g) \leqq 8 \varepsilon T(r, G)+4 \log ^{+} \frac{1}{\varepsilon}+8 \log ^{+} T(r, G) \tag{2.25}\\
+\left(\varepsilon C_{1}+2\right) \log r+\varepsilon C_{2}+C_{3}
\end{gather*}
$$

for $r \geqq 1$ outside a set E of r with finite linear measure, where $C_{i}, i=1$, 2,3, are non-negative constants independent of r and ε, and E is independent of ε. Because of the presence of the term $8 \varepsilon T(r, G)$ in (2.25), inequality (2.24) is better than (2.25), but inequality (2.25) is also sufficient for the later use in $\S \S 3$ and 4.

Remark 2. It is hoped that Main Lemma (2.2) can be applied to the study of holomorphic curves in compact Kähler manifolds.

Example. We give an example of $f: \Delta^{*} \rightarrow M$ and Θ such that $f^{*} \Theta$ is really infinitely many-valued. Let $M=C /(Z+\tau Z)$ be an elliptic curve with $\operatorname{Im} \tau>0$ and $\pi: C \rightarrow M$ the universal covering. Take any two points a, b of M so that $n(a-b) \neq 0$ for all $n \in Z$. Then there is a multiplicative meromorphic function Θ on M such that $(\Theta)_{0}=a$ and $(\Theta)_{\infty}=b$. Since $n(a-b) \neq 0$ for all $n \in Z, \Theta$ is infinitely many-valued. Let γ_{1} (resp. γ_{2}) be the cycle in M defined by $\gamma_{1}:[0,1] \ni t \rightarrow \pi(t) \in M$ (resp. $\gamma_{2}:[0,1] \ni t \rightarrow$ $\pi(t \tau) \in M)$. Then $\left\{\gamma_{1}, \gamma_{2}\right\}$ is a basis of the first homology group $H_{1}(M, Z)$. One of the periods $\frac{1}{2 \pi i} \int_{r j} d \log \Theta, j=1,2$, is irrational. Suppose that $\frac{1}{2 \pi i} \int_{r_{1}} d \log \Theta$ is irrational. The covering $C \xrightarrow{\pi} M$ is decomposed as

$$
C \xrightarrow{\pi_{0}} C / Z \xrightarrow{\pi_{1}} C /(Z+\tau Z)=M .
$$

Set $\gamma:[0,1] \ni t \rightarrow \pi_{0}(t) \in \boldsymbol{C} / \boldsymbol{Z}=\boldsymbol{C}^{*}$, which is a cycle around ∞ (or 0). Then $\pi_{1 * \gamma}=\gamma_{1}$, so that the period $\frac{1}{2 \pi i} \int_{r} d \log \Theta \circ \pi_{1}$ is irrational. Let i : $\Delta^{*} \rightarrow C^{*}$ be the natural inclusion mapping and put $f=\pi_{1} \circ i: \Delta^{*} \rightarrow M$. Then $f^{*} \Theta$ is infinitely many-valued.

Let $\zeta^{(k)}$ denote the k-th derivative of ζ. Using Main Lemma (2.2) inductively, one easily see the following:

Corollary (2.26). Let the notation be as above. Then the inequality

$$
T\left(r, \zeta^{(k)}\right) \leqq(k+1) N\left(r, \operatorname{Supp}\left(f^{*} \operatorname{Res}(\omega)\right)\right)+O\left(\log ^{+} T_{f}(r)\right)+O(\log r)
$$

holds for $r \geqq 1$ outside a set E with finite linear measure.

§ 3. Inequality of the second main theorem type

Let V be a complex projective algebraic smooth variety of dimension n, D an effective reduced divisor on V and $\Omega_{V}^{1}(\log D)$ the sheaf of logarithmic 1-forms along D (cf., e.g., [12], [19]). Then $\left\{\omega \in H^{\circ}\left(V, \mathfrak{Y}_{V}^{1}\right)\right.$; $\operatorname{Supp}(\operatorname{Res}(\omega)) \subset D\}$ spans $H^{0}\left(V, \Omega_{V}^{1}(\log D)\right)$ over C (see [19, Proposition 1.2]). Assume that there is a system $\left\{\omega_{i}\right\}_{i=1}^{n+1}$ in $H^{0}\left(V, \Omega_{V}^{1}(\log D)\right)$ such that $\phi_{i}=\omega_{1} \wedge \cdots \wedge \omega_{i-1} \wedge \omega_{i+1} \wedge \cdots \wedge \omega_{n+1}, 1 \leqq i \leqq n+1$, are linearly independent over C. Let $f: \Delta^{*} \rightarrow V$ be a holomorphic curve such that $f\left(\Delta^{*}\right) \not \subset D$. Assume that f is non-degenerate with respect to $\left\{\omega_{i}\right\}_{i=1}^{n+1}$, i.e., $f\left(\Delta^{*}\right) \not \subset\left\{\sum c_{i} \phi_{i}=0\right\}$ for any $\left(c_{i}\right) \in C^{n+1}-\{O\}$. Let Ω be a Kähler form on V and set $T_{f}(r)=$ $T_{f}(r, \Omega)$. Making use of Corollary (2.26) and Ochiai [22, Theorem A] as in [19, § 3] and [20], we have the following theorem.

Theorem (3.1). Let $\left\{\omega_{i}\right\}_{i=1}^{n+1} \subset H^{0}\left(V, \Omega_{V}^{1}(\log D)\right)$ and $f: \Delta^{*} \rightarrow V$ be as above. Then there is a positive constant K depending only on Ω and $\left\{\omega_{i}\right\}_{i=1}^{n+1}$, such that

$$
\begin{equation*}
K T_{f}(r)<N\left(r, \operatorname{Supp}\left(f^{*} D\right)\right)+S(r) \tag{3.2}
\end{equation*}
$$

where $S(r)=O\left(\log ^{+} T_{f}(r)\right)+O(\log r)$ as $r \rightarrow \infty$ outside a set of r with finite linear measure.

Let \bar{R} be a compact Riemann surface, $R=\bar{R}-\left\{a_{i}\right\}_{i=1}^{q}$ with distinct $a_{i} \in \bar{R}$ and $q<\infty$, and $a_{0} \in R$ any point. Then there is a multiplicative meromorphic function α such that $(\alpha)=q a_{0}-\sum a_{i}$. The modulus $|\alpha|$ turns out to be an exhaustion function of R. Set

$$
R(t)=\{|\alpha|<t\} .
$$

Let $f: R \rightarrow V$ be a holomorphic curve. Put

$$
T_{f}(r)=\int_{1}^{r} \frac{d t}{t} \int_{R(t)} f^{*} \Omega
$$

for f and

$$
n\left(t, \sum_{i=1}^{\infty} \nu_{i} b_{i}\right)=\sum_{\left|\alpha\left(b_{i}\right)\right|<t} \nu_{i}, \quad N\left(r, \sum_{i=1}^{\infty} \nu_{i} b_{i}\right)=\int_{1}^{r} \frac{n\left(t, \sum \nu_{i} b_{i}\right)}{t} d t
$$

for a divisor $\sum_{i=1}^{\infty} \nu_{i} b_{i}$ on R (cf. § 1 and [10, § 2]). For r_{0} large enough, $R-R\left(r_{0}\right)$ is a union of $\Delta_{i}^{*}, i=1, \cdots, q$, where $\Delta_{i}^{*} \cap \Delta_{j}^{*}=\emptyset$ for $i \neq j$ and $\Delta_{i}=\Delta_{i}^{*} \cup\left\{a_{i}\right\}$ are a neighborhood of a_{i} in \bar{R}. Moreover the restriction
$1 / z_{i}=1 /\left(\left.\alpha\right|_{A_{i}}\right)$ of $1 / \alpha$ on every Δ_{i} gives rise to a local coordinate in Δ_{i} and Δ_{1}^{*} is written as $\Delta_{i}^{*}=\left\{r_{0} \leqq\left|z_{i}\right|<\infty\right\}$. Therefore we have the following corollary of Theorem (3.1):

Corollary (3.3). Let $\left\{\omega_{i}\right\}_{i=1}^{n+1} \subset H^{0}\left(V, \Omega_{V}^{1}(\log D)\right)$ be as in Theorem (3.1). Let $f: R \rightarrow V$ be a holomorphic curve which is non-degenerate with respect to $\left\{\omega_{i}\right\}_{i=1}^{n+1}$. Then there is a positive constant K depending only on Ω and $\left\{\omega_{i}\right\}$ such that

$$
K T_{f}(r) \leqq N\left(r, \operatorname{Supp}\left(f^{*} D\right)\right)+S(r)
$$

where $S(r)$ is a small quantity as in (3.2).
Remark. Assume that $\operatorname{dim} V=1$, and let us calculate sharp K in (3.2) in the way of the proof. The higher dimensional case will be discussed in $\S 4$. Set $T_{f}(r)=T_{f}(r, \Omega)$ for Ω such that $\int_{V} \Omega=1$.
(1) Let $V=\boldsymbol{P}^{1}$. If the assumption of Theorem (3.1) for D is satisfied, D must consist of at least three points. Let $D=\sum_{i=1}^{q} w_{i}$ be an effective reduced divisor on P^{1} with inhomogeneous coordinate w such that $w_{1}=0$, $w_{2}=\infty$ and $q \geqq 3$. Let $w_{0} \in \boldsymbol{P}^{1}-D$ and set

$$
\begin{aligned}
& \omega_{1}=d \log w \in H^{0}\left(P^{1}, \Omega_{P 1}^{1}(\log D)\right) \\
& \omega_{2}=d \log \frac{\prod_{i=3}^{q}\left(w-w_{i}\right)}{\left(w-w_{0}\right)^{q-2}} \in H^{0}\left(P^{1}, \Omega_{P_{1}}^{1}\left(\log \left(D+w_{0}\right)\right)\right)
\end{aligned}
$$

Then $\phi=\omega_{2} / \omega_{1}$ is a rational function such that the degree deg $(\phi)_{\infty}$ of the divisor $(\phi)_{\infty}$ is $q-1$. We have by [18, Theorem 1]

$$
\begin{equation*}
T\left(r, f^{*} \phi\right)=(q-1) T_{f}(r)+O(1) \tag{3.4}
\end{equation*}
$$

Setting $f^{*} \omega_{i}=\zeta_{i} d z$ for $i=1$, 2, we obtain

$$
\begin{align*}
T\left(r, f^{*} \phi\right) & =T\left(r, \frac{\zeta_{1}}{\zeta_{2}}\right) \leqq T\left(r, \zeta_{1}\right)+T\left(r, \zeta_{2}\right)+O(\log r)+O(1) \tag{3.5}\\
& =N\left(r, f^{-1}\left(w_{0}\right)\right)+\sum_{i=1}^{q} N\left(r, f^{-1}\left(w_{i}\right)\right)+S(r)
\end{align*}
$$

Hence we have by (3.4), (3.5) and the first main theorem (1.4)

$$
(q-2) T_{f}(r) \leqq \sum_{i=1}^{q} N\left(r, f^{-1}\left(w_{i}\right)\right)+S(r)
$$

which is the famous second main theorem for meromorphic functions on C.
(2) Let V be an elliptic curve. Then inequality (3.2) holds if D
consists of one point $a_{0} \in V$. On the other hand, $H^{0}\left(V, \Omega_{V}^{1}\left(\log a_{0}\right)\right)=H^{0}(V$, Ω_{V}^{1}) is of dimension 1 , where Ω_{V}^{1} denotes the sheaf of germs of holomorphic 1 -forms over V, so that the assumption of Theorem (3.1) is not fulfilled, but we can derive (3.2) for $D=a_{0}$ by the method of the proof of Theorem (3.1) as follows. Take any point $a_{1} \in V-\left\{a_{0}\right\}$. Then there is a multiplicative meromorphic function Θ such that $(\Theta)=a_{0}-a_{1}$. Set $\omega_{1}=d \log \Theta \in$ $H^{0}\left(V, \Omega_{V}^{1}\left(\log \left(a_{0}+a_{1}\right)\right)\right)$ and let $\omega_{2} \in H^{0}\left(V, \Omega_{V}^{1}\right)$ and $\omega_{2} \neq 0$. We put $\phi=$ ω_{1} / ω_{2}. Then ϕ is a rational function on V such that $\operatorname{deg}(\phi)_{\infty}=\operatorname{deg}\left(a_{0}+a_{1}\right)=$ 2, so that by [18, Theorem 1] we have

$$
\begin{equation*}
T\left(r, f^{*} \phi\right)=2 T_{f}(r)+O(1) \tag{3.6}
\end{equation*}
$$

Letting $f^{*} \omega_{i}=\zeta_{i} d z, i=1$, 2 , we see that

$$
\begin{align*}
T\left(r, f^{*} \phi\right) & =T\left(r, \frac{\zeta_{1}}{\zeta_{2}}\right) \leqq T\left(r, \zeta_{1}\right)+T\left(r, \zeta_{2}\right)+O(\log r)+O(1) \tag{3.7}\\
& =N\left(r, f^{-1}\left(a_{0}\right)\right)+N\left(r, f^{-1}\left(a_{1}\right)\right)+S(r)
\end{align*}
$$

Therefore it follows from (3.6) and (3.7) that

$$
T_{f}(r) \leqq N\left(r, f^{-1}\left(a_{0}\right)\right)+S(r)
$$

(3) Let V be a compact Riemann surface of genus $\geqq 2$. Then $\operatorname{dim} H^{\circ}\left(V, \Omega_{V}^{1}\right) \geqq 2$, so that the condition of Theorem (3.1) is satisfied with $D=0$. This implies the well-known fact that the isolated singularity of a holomorphic curve in V of genus $\geqq 2$ is removable.

§4. Extension theorem of big Picard type

Let A be a quasi-Abelian variety (see [11] and [12]), i.e., A is an 曗 algebraic group which is commutative and admits the exact sequence

$$
0 \longrightarrow\left(C^{*}\right)^{l} \longrightarrow A \xrightarrow{\rho} A_{0} \longrightarrow 0,
$$

where A_{0} is an Abelian variety. Taking the natural embedding $\left(C^{*}\right)^{l} \subset$ $\left(P^{1}\right)^{l}$, we have a smooth completion $\bar{A}=\left(P^{1}\right)^{l} \times{ }_{\left(c^{*}\right)^{l}} A$ of A with boundary divisor D which has only normal crossings, and the canonical projection $\bar{\rho}: \bar{A} \rightarrow A_{0}$. One may regard $\bar{\rho}: \bar{A} \rightarrow A_{0}$ as a fibre bundle over A_{0} with fibre $\left(P^{1}\right)^{l}$ and structure group $\left(C^{*}\right)^{2}$. Let X be an algebraic subvariety of A which is of general type or equally of hyperbolic type (cf. [11]). In the present case, X is of general type if and only if the group $\{a \in A ; X+a=$ X \} of translations which preserve X is finite (see [11] and [12]). Let
W be the union of subvarieties of X which are translations of non-trivial closed algebraic subgroups of A.

Lemma (4.1). Let X and W be as above. Then W is a proper algebraic subvariety of X, of which each irreducible component is foliated by translations of a non-trivial closed algebraic subgroup of A.

Remark. This lemma was proved in [21] when $\operatorname{dim} X=2$. In [13], Kawamata proved it in the case when A is an Abelian variety. To prove it in the present form, we need further consideration. The idea of the following proof is due to Kawamata.

Proof. Let $\pi: C^{m} \rightarrow A$ be the universal covering with $m=\operatorname{dim} A$, $A=C^{m} / \Lambda$ with a discrete subgroup Λ (cf. [12]), and $\lambda: C^{m}-\{O\} \rightarrow \boldsymbol{P}^{m-1}$ the natural mapping into the projective space P^{m-1} of lines in C^{m} through the origin O. Let U be a small open set in P^{m-1} and set

$$
s(\bar{X})=\bigcup_{x \in U}(\bar{X}+\pi(s(x)), x) \subset \bar{A} \times U
$$

for a holomorphic section $s \in \Gamma\left(U, C^{m}-\{O\}\right)$, where \bar{X} is the Zariski closure of X in \bar{A} and " $+\pi(s(x)$)" stands for the natural action of A on \bar{A}. Hence $s(\bar{X})$ is an analytic subset of $\bar{A} \times U$. We set

$$
Y_{U}=\bigcap_{s \in \Gamma\left(U, C^{m}-\left\{O_{\}}\right)\right.} s(\bar{X}) \subset \bar{A} \times U .
$$

Then Y_{U} is again an analytic subset of $\bar{A} \times U$ and we see that a point $(a, x) \in \bar{A} \times U$ belongs to Y_{U} if and only if $a+\phi(t) \in \bar{X}$ for every $t \in C$, where $\phi(t)$ is the analytic 1-parameter subgroup of A such that $d \phi / d t(0)=$ x. Let B_{x} denote the Zariski closure in A of the analytic 1-parameter subgroup of A associated with the vector x. Then we have that

$$
\begin{equation*}
(a, x) \in Y_{U} \Longleftrightarrow a+B_{x} \subset \bar{X} . \tag{4.2}
\end{equation*}
$$

Let U^{\prime} be another small open set in P^{m-1}. Then it follows from (4.2) that Y_{U} coincides with $Y_{U^{\prime}}$ in $\bar{A} \times\left(U \cap U^{\prime}\right)$, so that $Y=\cup_{U} Y_{U}$ is a well-defined analytic subset of $\bar{A} \times \boldsymbol{P}^{m-1}$ and so algebraic in $\bar{A} \times P^{m-1}$. Let $Y_{0}=Y \cap$ $\left(A \times P^{m-1}\right)$ and $p: A \times P^{m-1} \rightarrow A$ be the projection. Then by (4.2) and the definition of $W, p\left(Y_{0}\right)=W$. Since p is proper and rational, W is a closed algebraic subvariety of X. Now we must show that $W \neq X$ and each irreducible component of W is foliated by translations of a non-trivial closed algebraic subgroup of A. Since there are only countably many
non-trivial closed algebraic subgroups in A as in the case of an Abelian variety (cf. [12]), we denote them by $\left\{B_{i}\right\}_{i=1}^{\infty}$. We see by (4.2) that

$$
\begin{equation*}
a \in W \Longleftrightarrow a+B_{i} \subset W \text { for some } B_{i} . \tag{4.3}
\end{equation*}
$$

Let $h_{i}: X \rightarrow A / B_{i}$ be the restriction of the natural morphism from A onto the quotient A / B_{i} on X and put

$$
W_{i}=\left\{x \in X ; \operatorname{dim}_{x} h_{i}^{-1}\left(h_{i}(x)\right)=\operatorname{dim} B_{i}\right\} .
$$

Then W_{i} is a proper algebraic subvariety of X because X is of general type, and $W=\bigcup_{i} W_{i}$ by (4.3). Let $W_{i}=\bigcup_{j} W_{i j}$ be the irreducible decomposition of W_{i}. We get a countable covering $W=\bigcup_{i j} W_{i j}$. It is clear that every $W_{i j} \neq X$. By virtue of Baire's theorem we see that $W \neq X$ and that an irreducible component of W must be one $W_{i j}$ which is foliated by translations of B_{i}.

Let Z be an algebraic subvariety of A and $Z_{\text {reg }}$ the set of regular points of Z with the inclusion mapping $i: Z_{\text {reg }} \rightarrow A$. Let $J_{\nu}\left(Z_{\text {reg }}\right)$ (resp. $J_{\nu}(A)$) be the ν-th holomorphic jet bundle over $Z_{\text {reg }}$ (resp. A) (see [22]). Then the mapping i naturally induces a bundle homomorphism $i_{*}: J_{\nu}\left(Z_{\text {reg }}\right) \rightarrow J_{\nu}(A)$. Since A is a quasi-Abelian variety, there is a regular isomorphism $J_{\nu}(A)$ $\cong A \times C^{\nu m}$. Let $q: A \times C^{\nu m} \rightarrow C^{\nu m}$ be the projection and set

$$
I_{\nu}=q \circ i_{*}: J_{\nu}\left(Z_{\text {reg }}\right) \rightarrow C^{\nu m} \quad(\text { cf. }[22]) .
$$

We denote by $j_{\nu} g$ the ν-th jet of a holomorphic curve $g:(C, 0) \rightarrow Z_{\text {reg }}$ from a neighborhood of the origin 0 of C into $Z_{\text {reg }}$.

Lemma (4.4). Let X and W be as in Lemma (4.1). Let $g:(C, 0) \rightarrow X$ be a holomorphic curve such that $g(0) \notin W$ and $g(0) \in Z_{\text {reg }}$, where Z is the Zariski closure of the image of g in X. Then the differential

$$
d I_{\nu}: T\left(J_{\nu}\left(Z_{\text {reg }}\right)\right) \rightarrow T\left(C^{\nu m}\right)
$$

is injective at $j_{\nu} g$ for all large ν, where $T(\cdot)$ denotes the holomorphic tangent bundle.

This lemma is a refined version of a lemma due to M . Green by which he completed the work of Ochiai [22] on Bloch's conjecture [2] ${ }^{2)}$. M. Green showed it in case A is complete, i.e., A is an Abelian variety, but his proof works in the non-complete case.
2) M. Green gave the proof of the lemma at "Conference on Geometric Function Theory" held at Katata, Sept. 1-6, 1978.

Let \bar{X} be the Zariski closure of X in \bar{A}.
Theorem (4.5) (big Picard theorem). Let X and W be as above. Then any holomorphic curve $f: \Delta^{*} \rightarrow X$ has a holomorphic extension $\tilde{f}: \Delta=\Delta^{*} \cup$ $\{\infty\} \rightarrow \bar{X}$ unless $f\left(\Delta^{*}\right) \subset W$.

Proof. We fix a Kähler form Ω on \bar{A} and set $T_{f}(r)=T_{f}(r, \Omega)$. By (2.10), (2.11) and [16, I, p. 369], it suffices to prove that $T_{f}(r) / \log r$ is bounded as $r \rightarrow \infty$. Let Z be the Zariski closure of $f\left(\Delta^{*}\right)$ in X. Then $f(z) \notin W$ and $f(z) \in Z_{\text {reg }}$ for $z \in \Delta^{*}$ except for some discrete set of points. Making use of Lemma (4.4) and Main Lemma (2.2) (more precisely, Corollary (2.26)) as in [19], we have

$$
\begin{equation*}
T_{f}(r) \leqq K_{1} \log ^{+} T_{f}(r)+K_{2} \log r \tag{4.6}
\end{equation*}
$$

for $r \geqq 1$ outside a set E of r with finite linear measure, where K_{1} and K_{2} are non-negative constants independent of r. We may assume that f is not a constant curve. Then we see that $T_{f}(r) \uparrow \infty$ as $r \uparrow \infty$. Since $T_{f}(r)$ is a convex increasing function in $\log r, T_{f}(r) / \log r$ is monotone increasing. Therefore we have by (4.6)

$$
\lim _{r \rightarrow \infty} \frac{T_{f}(r)}{\log r} \leqq K_{2}
$$

which completes the proof.
Corollary (4.7). Let $f: N-S \rightarrow X$ be a holomorphic mapping from a complex manifold N minus a thin analytic set S into X. If $f(N-S) \not \subset W$, then f extends to a meromorphic mapping $\tilde{f}: N \rightarrow \bar{X}$.

Proof. We take an embedding $\bar{X} \subset \boldsymbol{P}^{N}$ into some projective space \boldsymbol{P}^{N} with a homogeneous coordinate system $\left(w_{0}, \cdots, w_{N}\right)$ such that $f(N-S) \not \subset$ $\left\{w_{0}=0\right\}$. Let $f_{i}=f^{*}\left(w_{i} / w_{0}\right)$. It is enough to prove that every f_{i} extends to a meromorphic function on N. By virtue of Hartogs' theorem, we may assume that $N=\Delta \times \Delta^{k-1}$ and $S=\{\infty\} \times \Delta^{k-1}(k=\operatorname{dim} N)$. Put $S^{\prime}=$ $\left\{z^{\prime} \in \Delta^{k-1} ; \Delta^{*} \times\left\{z^{\prime}\right\} \subset f^{-1}(W)\right\}$, which is a thin analytic set of Δ^{k-1}. By Hartogs' theorem, it suffices to show that f_{i} extends meromorphically over $\Delta \times\left(\Delta^{k-1}-S^{\prime}\right)$. For each $z_{0}^{\prime} \in \Delta^{k-1}-S^{\prime}$, the holomorphic curve $f\left(\cdot, z_{0}^{\prime}\right)$: $\Delta^{*} \ni z_{1} \mapsto f\left(z_{1}, z_{0}^{\prime}\right) \in X$ does not lie in W. By Theorem (4.5), f is extendable over Δ, so that $f_{i}\left(\cdot, z_{0}^{\prime}\right)$ is meromorphic in Δ. We put $f_{i}\left(z_{1}, z_{0}^{\prime}\right)=z_{1}^{\mu\left(z_{0}^{\prime}\right)}$. $g_{i}\left(z_{1}, z_{0}^{\prime}\right)$, where $\mu\left(z_{0}^{\prime}\right) \in Z$ and $g_{i}\left(\infty, z_{0}^{\prime}\right) \neq 0 ; \infty$. Take a small neighborhood U of z_{0}^{\prime}. Then we see that $\mu\left(z^{\prime}\right)$ is bounded in $z^{\prime} \in U$. Therefore $f_{i}\left(z_{1}, z^{\prime}\right)$
is meromorphic in $\Delta \times U$, and so is in $\Delta \times\left(\Delta^{k-1}-S^{\prime}\right)$.
Remark. Fujimoto ([3], [5]) and Green ([8]) proved extension theorems of big Picard type for holomorphic mappings into P^{n} omitting more than $n+1$ hyperplanes in general position. Their results will be discussed in Example 1 below. Here, let us give a simple and new observation to another theorem of Green [8, Parts 4 and 5] from the viewpoint of this paper. He proved the following interesting theorem:

Let $f: C \rightarrow V \subset P^{n}$ be a holomorphic curve into a subvariety V of \boldsymbol{P}^{N} omitting $\operatorname{dim} V+2$ non-redundant hyperplane sections of V. Then f is algebraically degenerate, i.e., $f(C)$ is contained in a proper subvariety of V.

Here "non-redundant" means that no one of the hyperplane sections is contained in the union of the others. Let D be the sum of the $\operatorname{dim} V+$ 2 hyperplane sections of V. Let $\pi: V^{\prime} \rightarrow V-D$ be a desingularization of $V-D$ and \bar{V}^{\prime} a smooth completion of V^{\prime} with boundary divisor D^{\prime} of normal crossing type. Setting $\bar{q}\left(V^{\prime}\right)=\operatorname{dim} H^{0}\left(\bar{V}^{\prime}, \Omega_{\bar{V}}^{1}\left(\log D^{\prime}\right)\right)$ which is called the logarithmic irregularity of V^{\prime} ([12]), we have by the assumption for D

$$
\begin{equation*}
\bar{q}\left(V^{\prime}\right)<\operatorname{dim} V^{\prime} \tag{4.8}
\end{equation*}
$$

We may assume that f can be lifted to a holomorphic curve $f^{\prime}: C \rightarrow V^{\prime}$ such that $\pi \circ f^{\prime}=f$. Let $\alpha: V^{\prime} \rightarrow A$ be the quasi-Albanese mapping (see [12]), $X=\overline{\alpha\left(V^{\prime}\right)}$ the Zariski closure of $\alpha\left(V^{\prime}\right)$ in A, G the identity component of the group $\{a \in A ; X+a=X\}, h: A \rightarrow A / G=A_{1}$ the canonical mapping onto the quotient $A / G=A_{1}$ and $X_{1}=\overline{h(X)}$. Then (4.8) implies that X_{1} is of positive dimension and of general type. Let W_{1} be the union of subvarieties of X_{1} which are translations of non-trivial closed algebraic subgroups of A_{1}. By Lemma (4.1), W_{1} is a proper algebraic subvariety of X_{1}. Put $f_{1}=h \circ \alpha \circ f^{\prime}$:

Then we have $f_{1}(\boldsymbol{C}) \subset W_{1}$ by Theorem (4.5) if f_{1} is not a constant curve, so that f is algebraically degenerate. Thus inequality (4.8) implies the
algebraic degeneracy of f^{\prime}; this is just a non-complete version of Bloch's conjecture (see [2], [22]).

Example 1. Let $D_{i}, 0 \leqq i \leqq n+k$, be $n+k+1$ distinct hyperplanes of P^{n} and set $V=P^{n}-\sum_{0}^{n+k} D_{i}$. Then we have

$$
\bar{q}(V)=\operatorname{dim} H^{0}\left(\boldsymbol{P}^{n}, \Omega_{P^{n}}^{1}\left(\log \sum_{0}^{n+k} D_{i}\right)\right)=n+k
$$

Assume that $k \geqq 1$. Then $\bar{q}(V)>\operatorname{dim} V$. Let $\alpha: V \rightarrow A=\left(C^{*}\right)^{n+k}$ be the quasi-Albanese mapping and $f: C \rightarrow V$ a holomorphic curve. As in Remark above, we see that $\alpha \circ f(C)$ lies in a translation of a closed algebraic subgroup of A, so that $f(C)$ lies in a proper linear subspace of P^{n}. This fact was proved in Green [7, Theorem 2].

Suppose that $k=1$ and the D_{i} 's are in general position. We take a system ($w_{0}, w_{1}, \cdots, w_{n}$) of homogeneous coordinates of P^{n} so that $D_{i}=$ $\left\{w_{i}=0\right\}$ for $i=0,1, \cdots, n$ and $D_{n+1}=\left\{w_{0}+\cdots+w_{n}=0\right\}$. Put $x_{i}=w_{i} / w_{0}$ for $i=1, \cdots, n$. Then the quasi-Albanese mapping $\alpha: V \rightarrow\left(C^{*}\right)^{n+1}$ is written as

$$
\alpha: V \ni\left(x_{1}, \cdots, x_{n}\right) \mapsto\left(x_{1}, \cdots, x_{n}, \frac{1+x_{1}+\cdots+x_{n}}{n}\right) \in\left(C^{*}\right)^{n+1} .
$$

Set $X=\left\{\left(y_{1}, \cdots, y_{n+1}\right) \in\left(C^{*}\right)^{n+1} ; n y_{n+1}=1+y_{1}+\cdots+y_{n}\right\}$. Then $\alpha: V \rightarrow$ X is biregular and so X is of general type. Let Π denotes the union of diagonal hyperplanes of $\sum_{1}^{n+1} D_{i}$ (see [15, Example 16, p. 395] and [4, p. 243]). Let W be the proper algebraic subvariety of X as in Lemma (4.1). Then $W=\alpha(I I)$. In this case, Fujimoto [4, Theorem 5.5] and Green [8, Part 3] showed Theorem (4.5) (cf. also [1], [5] and [7]). In case $n=2$, the figure of W in X is as follows:

Fig. 1
Here each $W_{i} \cong C^{*}$ and $W=W_{1} \cup W_{2} \cup W_{3}$.
Example 2 ([14, Example 1, p. 92]). Let $Q=\sum_{i=0}^{4} L_{i}$ |be a complete
quadrilateral in P^{2} as in Kobayashi [14, Example 1, p. 92], and set $V=$ $\boldsymbol{P}^{2}-\boldsymbol{Q}$. Take a homogeneous coordinate system $\left(w_{0}, w_{1}, w_{2}\right)$ of \boldsymbol{P}^{2} such that

$$
\begin{array}{ll}
L_{0}=\left\{w_{0}=0\right\}, & L_{1}=\left\{w_{1}=0\right\}, \quad L_{2}=\left\{w_{0}-w_{1}=0\right\}, \\
L_{3}=\left\{w_{2}=0\right\}, & L_{4}=\left\{w_{0}-w_{2}=0\right\} .
\end{array}
$$

Then we have the quasi-Albanese mapping

$$
\alpha: V \ni\left(x_{1}, x_{2}\right) \mapsto\left(\frac{1}{2} x_{1}, x_{1}-1, \frac{1}{2} x_{2}, x_{2}-1\right) \in\left(C^{*}\right)^{4},
$$

where $x_{i}=w_{i} / w_{0}, i=1,2$. Thus $\alpha(V)=X=\left\{\left(y_{1}, \cdots, y_{4}\right) \in\left(C^{*}\right)^{4} ; y_{2}=2 y_{1}-\right.$ $\left.1, y_{4}=2 y_{3}-1\right\}$ and $\alpha: V \rightarrow X$ is biregular. Since there is no C^{*} in $X, W=\emptyset$. Therefore any holomorphic curve $f: \Delta^{*} \rightarrow V$ is extendable to a holomorphic curve $\tilde{f}: \Delta \rightarrow \boldsymbol{P}^{2}$. Kobayashi [14, p. 92] proved this fact by showing that V is hyperbolically embedded in P^{2}.

Example 3 ([19, §4(b)]). Let $X=\left\{\left(x_{1}, \cdots, x_{n+2}\right) \in\left(C^{*}\right)^{n+2} ; x_{n+1}=1+\right.$ $\left.x_{1}+\cdots+x_{n-1}, x_{n+2}=x_{1}+\cdots+x_{n}\right\}$ and $n \geqq 3$. Then X is of general type. For the simplicity, let $n=3$. Let W be the proper algebraic subvariety of X as in Lemma (4.1). Then we see that

$$
W=W_{1} \cup W_{2} \cup \cdots \cup W_{5},
$$

where $W_{1} \cong\left(C^{*}\right)^{2}$ and $W_{i} \cong C^{*}$ for $i=2,3,4,5$. The figure of W in X is illustrated as follows:

Fig. 2
Example 4 ([22, §5]). Let $A=E_{1} \times \cdots \times E_{4}$ be a product of four elliptic curves E_{i} belonging to distinct isogeny classes. Let X be the hypersurface of A as defined in Ochiai [22, §5]. Then the algebraic sub-
variety W of X as in Lemma (4.1) consists of several elliptic curves which are mutually disjoint.

Lastly we pose a problem and a conjecture related to Theorems (4.5) and (3.1).

Problem. What can we say of the Kobayashi hyperbolicity of X or $X-W$ in Theorem (4.5)?

Remark. Green [9] gave a nice criterion of the Kobayashi hyperbolicity, but in the present case his criterion does not work since an irreducible component W^{\prime} of W may admit a non-constant holomorphic curve $f: C \rightarrow$ W^{\prime} omitting the other components of W (see Examples 3 and 4).

The case (2) of Remark to Theorem (3.1) suggests that the following conjecture may be true:

Conjecture. Let A be an Abelian variety and D an effective reduced divisor on A. Let $\Omega \in c_{1}([D])$ be a semi-positive definite (1, 1)-form in the first Chern class $c_{1}([D]) \in H^{1,1}(A, C)$ of $[D]$. Then we have

$$
T_{f}(r, \Omega) \leqq N\left(r, f^{*} D\right)+S(r)
$$

for algebraically non-degenerate holomorphic curves $f: \Delta^{*}$ (or C) $\rightarrow A$, where $S(r)=O\left(\log ^{+} T_{f}(r, \Omega)\right)+O(\log r)$ as $r \rightarrow \infty$ outside a set of r with finite linear measure.

References

[1] A. Bloch, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires, Ann. Sci. École Norm. Sup., 43 (1926), 309-362.
[2] - Sur les systèmes de fonctions uniformes satisfaisant à l'équation d'une variété algébrique dont l'irrégularité dépasse la dimension, J. Math. Pures Appl., 5 (1926), 19-66.
[3] H. Fujimoto, Extensions of the big Picard's theorem, Tôhoku Math. J., 24 (1972), 415-422.
[4] -, Families of holomorphic maps into the projective space omitting some hyperplanes, J. Math. Soc. Japan, 25 (1973), 235-249.
[5] -, On meromorphic maps into the complex projective space, J. Math. Soc. Japan, 26 (1974), 272-288.
[6] H. Grauert and H. Reckziegel, Hermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z., 89 (1965), 108-125.
[7] M. Green, Holomorphic maps into complex projective space omitting hyperplanes, Trans. Amer. Math. Soc., 169 (1972), 89-103.
[8] ——, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math., 97 (1975), 43-75.
[9] -, The hyperbolicity of the complement of $2 n+1$ hyperplanes in general posi-
tion in P^{n}, and related results, Proc. Amer. Math. Soc., 66 (1977), 103-113.
[10] P. Griffiths and J. King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math., 130 (1973), 145-220.
[11] S. Iitaka, Logarithmic forms of algebraic varieties, J. Fac. Sci. Univ. Tokyo Sect. IA, 23 (1976), 525-544.
[12] ——, On logarithmic Kodaira dimension of algebraic varieties, Complex Analysis and Algebraic Geometry, pp. 175-189, Iwanami, Tokyo, 1977.
[13] Y. Kawamata, On Bloch's conjecture, Invent. Math., 57 (1980), 97-100.
[14] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Pure and Appl. Math., 2, Dekker, New York, 1970.
[15] _-, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416.
[16] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
[17] _-, Le Théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1939.
[18] J. Noguchi, Holomorphic mappings into closed Riemann surfaces, Hiroshima Math. J., 6 (1976), 281-291.
[19] -, Holomorphic curves in algebraic varieties, Hiroshima Math. J., 7 (1977), 833-853.
[20] ——, Supplement to "Holomorphic curves in algebraic varieties", Hiroshima Math. J., 10 (1980), 229-231.
[21] \longrightarrow, Rigidity of holomorphic curves in some surfaces of hyperbolic type, unpublished notes.
[22] T. Ochiai, On holomorphic curves in algebraic varieties with ample irregularity, Invent. Math., 43 (1977), 83-96.
[23] A. L. Vitter, The lemma of the logarithmic derivative in several complex variables, Duke Math. J., 44 (1977), 89-104.
[24] A. Weil, Introduction à l'Étude des Variétés kählériennes, Hermann, Paris, 1958.

Department of Mathematics College of General Education Osaka University

