REMARKS TO THE UNIQUENESS PROBLEM OF MEROMORPHIC MAPS INTO $P^{N}(C)$, IV

HIROTAKA FUJIMOTO

§1. Introduction

Let $H_{1}, H_{2}, \cdots, H_{N+2}$ be hyperplanes in $P^{N}(C)$ located in general position and $\nu_{1}, \nu_{2}, \cdots, \nu_{N+2}$ divisors on C^{n}. We consider the set $\mathscr{F}\left(H_{i}, \nu_{i}\right)$ of all non-degenerate meromorphic maps of C^{n} into $P^{N}(C)$ such that the pullbacks $\nu\left(f, H_{i}\right)$ of the divisors $\left(H_{i}\right)$ on $P^{N}(C)$ by f are equal to ν_{i} for any $i=1,2, \cdots, N+2$. In the previous paper [6], the author showed that \mathscr{F} $:=\mathscr{F}\left(H_{i}, \nu_{i}\right)$ cannot contain more than $N+1$ algebraically independent maps. Relating to this, the following theorem will be proved.

Theorem. The set \mathscr{F} is finite.
We give here an example which shows that the number $\# \mathscr{F}$ of elements in \mathscr{F} is not less than $(N+1)$!. Take $N+1$ nowhere zero entire functions h_{1}, \cdots, h_{N+1} such that $h_{i} / h_{j} \not \equiv$ const if $i \neq j$, and define

$$
F:=h_{1}+h_{2}+\cdots+h_{N+1} .
$$

We consider hyperplanes

$$
\begin{align*}
& H_{i}: w_{i}=0 \quad(1 \leqq i \leqq N+1) \tag{1}\\
& H_{N+2}: w_{1}+w_{2}+\cdots+w_{N+1}=0
\end{align*}
$$

in $P^{N}(C)$ and divisors

$$
\begin{aligned}
& \nu_{i}=0 \quad(1 \leqq i \leqq N+1) \\
& \nu_{N+2}:=\nu_{F}
\end{aligned}
$$

on C^{n}, where $w_{1}: w_{2}: \cdots: w_{N+1}$ are homogeneous coordinates on $P^{N}(\boldsymbol{C})$ and ν_{F} denotes the divisor defined by the zero-multiplicity of F. Then, $\mathscr{F}:=$ $\mathscr{F}\left(H_{i}, \nu_{i}\right)$ contains

$$
f^{\sigma}=h_{\sigma(1)}: h_{\sigma(2)}: \cdots: h_{\sigma(N+1)}
$$

Received September 14, 1979.
for any permutation $\sigma=\left(\begin{array}{cccc}1 & 2 & \cdots & N+1 \\ \sigma(1) \sigma(2) & \cdots & \sigma(N+1)\end{array}\right)$. Therefore, \# $\# \geqq(N+1)$!.
It is an interesting problem to ask if $\# \mathscr{F}$ is bounded from above by a constant depending only on N. But, the author cannot yet reply to it.

As an application of the above theorem, we shall show the following:
Let $f: C^{n} \rightarrow P^{N}(C)$ be a non-degenerate meromorphic map and $r: C^{n}$ $\rightarrow C^{n}$ a biholomorphic map. If $\nu\left(f, H_{i}\right)(\gamma(z))=\nu\left(f, H_{i}\right)(z)$ for $N+2$ hyperplanes $H_{i}(1 \leqq i \leqq N+2)$ in general position, then there exists some positive integer j_{0} such that $f \circ \gamma^{j_{0}}=f$, where $\gamma^{j_{0}}=\gamma \circ \gamma \circ \cdots \circ \gamma$ (j_{0}-times).

Here, we cannot always take $j_{0}=1$. Consider a holomorphic map

$$
f(z):=e^{\sin (z /(N+1))}: e^{\sin ((z+2 \pi) /(N+1))}: \cdots: e^{\sin ((z+2 N \pi) /(N+1))}
$$

of C into $P^{N}(C)$ and a biholomorphic map $\gamma: C \rightarrow C$ defined by $\gamma(z)=z+$ $2 \pi(z \in C)$. For hyperplanes $H_{i}(1 \leqq i \leqq N+2)$ defined by (1), we see

$$
\nu\left(f, H_{i}\right)(\gamma(z))=\nu\left(f, H_{i}\right)(z) \quad(1 \leqq i \leqq N+2),
$$

but $f(z+2 \pi) \neq f(z)$. In this case, we have to take $j_{0}=N+1$.
In the proof of the above theorem, the classical theorem of E. Borel ([1]) plays an essential role. We can generalize it to the case that meromorphic functions of order less than one are taken as coefficients. By the similar arguments as in the proof of the above theorem, we shall give some results on relations between meromorphic functions of order less than one and meromorphic functions with γ-invariant zeros and poles for a biholomorphic map $\gamma: C^{n} \rightarrow C^{n}$. One of them includes the following result as a special case.

Theorem. Let $\varphi_{1}, \cdots, \varphi_{p}$ be meromorphic functions on C of order less than one and g_{1}, \cdots, g_{p} meromorphic functions on C with $\nu_{g_{i}}(z+\omega)=\nu_{g_{i}}(z)$ for a non-zero constant ω. If $\sum_{i=1}^{p} \varphi_{i} g_{i} \equiv 0$ and $\sum_{i \in I} \varphi_{i} g_{i} \not \equiv 0$ for any proper subset I of $\{1,2, \cdots, p\}$, then there exists some positive integer j_{0} such that $h_{t_{1}} / h_{i_{2}}$ is a periodic function with period $j_{0} \omega$ for any i_{1} and i_{2}.

By applying this, we shall generalize a recent result by Urabe-Yang in [11] and [12] which motivated the studies in this paper.

§ 2. Preliminaries

Let $\varphi(z)$ be a non-zero holomorphic function on a domain D in C^{n}. For each point $a=\left(a_{1}, \cdots, a_{n}\right) \in D$, we expand φ as a convergent series

$$
\varphi\left(a_{1}+u_{1}, \cdots, a_{n}+u_{n}\right)=\sum_{m=0}^{\infty} P_{m}\left(u_{1}, \cdots, u_{n}\right)
$$

on a neighborhood of a, where P_{m} is a homogeneous polynomial of degree m or $P_{m} \equiv 0$. We define

$$
\nu_{\varphi}(a):=\min \left\{m ; P_{m}\left(u_{1}, \cdots, u_{n}\right) \not \equiv 0\right\} .
$$

In case that φ is meromorphic, taking non-zero holomorphic functions φ_{1} and φ_{2} in a neighborhood of a such that $\varphi=\varphi_{1} / \varphi_{2}$ and

$$
\operatorname{codim}\left\{\varphi_{1}=\varphi_{2}=0\right\} \geqq 2,
$$

we define $\nu_{\varphi}^{0}=\nu_{\varphi_{1}}, \nu_{\varphi}^{\infty}=\nu_{\varphi_{2}}$ and $\nu_{\varphi}=\nu_{\varphi_{1}}-\nu_{\varphi_{2}}$, which are determined independently of the choices of φ_{1} and φ_{2}. By definition, a divisor on D is an integer-valued function on D such that for any point $a \in D$ there is a nonzero meromorphic function φ with $\nu=\nu_{\varphi}$ on a neighborhood of a and the carrier of ν is an analytic set

$$
|\nu|:=\overline{\{z \in D ; \nu(z) \neq 0\}} \cap D .
$$

Definition 2.1. Let ν be a divisor on C^{n}. Take a positive constant s arbitrarily. We define the counting function of ν by

$$
N(r, \nu):= \begin{cases}\frac{1}{W} \int_{s}^{r} \frac{d t}{t^{2 n-1}} \int_{|v| \cap \overline{B(t)}} \nu(z) v_{n-1}(z) & (r>s) \text { if } n>1 \\ \int_{s}^{r} \frac{1}{t}\left(\sum_{|z| \leq t} \nu(z)\right) d t & (r>s) \text { if } n=1\end{cases}
$$

where

$$
\begin{aligned}
v_{1} & :=\frac{\sqrt{-1}}{2}\left(d z_{1} \wedge d \bar{z}_{1}+\cdots+d z_{n} \wedge d \bar{z}_{n}\right) \\
v_{n-1} & :=\frac{1}{(n-1)!} v_{1} \wedge v_{1} \wedge \cdots \wedge v_{1} \quad((n-1) \text {-times }) \\
W: & =\frac{\pi^{n-1}}{(n-1)!} \\
B(t) & :=\left\{z=\left(z_{1}, \cdots, z_{n}\right) ;\|z\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}<t^{2}\right\}
\end{aligned}
$$

and the integral over $|\nu| \cap \overline{B(t)}$ means that the integral over the manifold consisting of all regular points of $|\nu| \cap \overline{B(t)}$.

Definition 2.2. Let φ be a non-zero meromorphic function on C^{n}. The order function of φ is defined by

$$
T(r, \varphi):=N\left(r, \nu_{\varphi}^{\infty}\right)+\frac{1}{\Phi(r)} \int_{S(r)} \log ^{+}|\varphi(z)| \sigma_{r}(z) \quad(r>s)
$$

where $\log ^{+} x=\max (\log x, 0), \Phi(r)=\left(2 \pi^{n} /(n-1)!\right) r^{2 n-1}, S(r):=\{z ;\|z\|=r\}$ and σ_{r} denotes the area element of $S(r)$. In case $\varphi \equiv 0$, we define $T(r, \varphi)$ $\equiv 0$. The order of φ is defined by

$$
\rho(\varphi):=\underset{r \rightarrow \infty}{\lim \sup } \frac{\log ^{+} T(r, \varphi)}{\log r}(\leqq+\infty) .
$$

As in the case of meromorphic functions on C, we can prove
(2.3) If φ is holomorphic, then

$$
\rho(\varphi)=\limsup _{r \rightarrow \infty} \frac{\log ^{+} \log ^{+} M(r, \varphi)}{\log r},
$$

where

$$
M(r, \varphi):=\max \{|\varphi(z)| ;\|z\|=r\}
$$

For the proof, see W. Stoll [9].
(2.4) Let φ_{1} and φ_{2} be non-zero meromorphic functions on C^{n} of order less than a positive number ρ. Then, $\varphi_{1}+\varphi_{2}, \varphi_{1}-\varphi_{2}, \varphi_{1} \varphi_{2}$ and $\varphi_{1} / \varphi_{2}$ are also of order less than ρ.

In fact, we can find some positive constants M and ρ_{0} with $0<\rho_{0}<\rho$ such that $T\left(r, \varphi_{i}\right) \leqq M r^{\rho_{0}}(i=1,2)$ for sufficiently large r. Putting $\psi:=$ $\varphi_{1} \pm \varphi_{2}$, or $\varphi_{1} \varphi_{2}^{ \pm 1}$, we have easily
$T(r, \psi) \leqq T\left(r, \varphi_{1}\right)+T\left(r, \varphi_{2}\right)+O(1) \leqq 2 M r^{\rho 0}+O(1)$
and so $\rho(\psi) \leqq \rho_{0}<\rho$.
Definition 2.5. Let ν be a divisor on C^{n}. We define the order of ν by

$$
\rho(\nu):=\lim _{r \rightarrow \infty} \frac{\log ^{+} N(r, \nu)}{\log r}
$$

Take a pure ($n-1$)-dimensional analytic set in C^{n}. We can define a divisor ν_{V} on C^{n} such that $\left|\nu_{V}\right|=V$ and $\nu_{v}(z)=1$ for any regular point z of V. We call the order of ν_{V} the order of V.
(2.6) Let φ be a non-constant meromorphic function on C^{n}. Then, for any $a \in C$

$$
N\left(r, \nu_{\varphi-a}^{0}\right) \leqq T(r, \varphi)+O(1) .
$$

For the proof, see H. Fujimoto [2], pp. 34-35.
(2.7) For a divisor ν on C^{n} there exists a meromorphic function φ on C^{n} such that $\nu_{\varphi}=\nu$ and $\rho(\varphi) \leqq \rho(\nu)$.

For the proof, see W. Stoll [9].
(2.8) Let φ be a holomorphic function on C^{n} and $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right) \in C^{n}$ $-\{0\}$. We define a holomorphic function φ_{ω} on C by $\varphi_{\omega}(z):=\varphi(z \omega)$, where $z \omega=\left(z \omega_{1}, \cdots, z \omega_{n}\right) . \quad$ Then, $\rho\left(\varphi_{\omega}\right) \leqq \rho(\varphi)$.

This is an immediate consequence of (2.3), because

$$
M\left(r, \varphi_{\omega}\right)=\max _{\|z\|=r}|\varphi(z \omega)| \leqq M(\|\omega\| r, \varphi) .
$$

(2.9) If $h(z)$ is a nowhere zero non-constant holomorphic function on C^{n}, then $\rho(h) \geqq 1$.

This is well-known for the case $n=1$ (c.f., [8]). Let $n \geqq 2$. We can take a point $\omega \in C^{n}-\{0\}$ such that $h_{\omega}(z):=h(z \omega) \not \equiv$ const. By (2.8), we see

$$
\rho(h) \geqq \rho\left(h_{\omega}\right) \geqq 1
$$

We denote the set of all nowhere zero holomorphic functions on C^{n} by H^{*} and the set of all meromorphic functions of order less than one by Φ_{0}. And, for $h, h^{\prime} \in \boldsymbol{H}^{*}$, we mean by $h \sim h^{\prime}$ and $h \not \nsim h^{\prime}$ that $h / h^{\prime} \equiv$ const and $h / h^{\prime} \not \equiv$ const respectively.

Now, we give a generalization of the classical theorem of E. Borel.
Theorem 2.10. Let $h_{1}, \cdots, h_{p} \in \boldsymbol{H}^{*}$ and $\varphi_{1}, \cdots, \varphi_{p} \in \Phi_{0}$. If $h_{i} \nsim h_{j}$ for any i, j with $i \neq j$ and

$$
\begin{equation*}
\varphi_{1} h_{1}+\varphi_{2} h_{2}+\cdots+\varphi_{p} h_{p} \equiv 0 \tag{2}
\end{equation*}
$$

then

$$
\varphi_{1} \equiv \varphi_{2} \equiv \cdots \equiv \varphi_{p} \equiv 0
$$

Proof. This is a well-known fact if $n=1$ (c.f., for example, [7], p. 100). Let us consider the case $n \geqq 2$. To prove Theorem 2.10 by induction on p, it suffices to show that at least one φ_{i} vanishes. Assume that $\varphi_{i} \not \equiv 0$ for any i. For a point $\omega \in \boldsymbol{C}^{n}-\{0\}$, we define $\left(\varphi_{i}\right)_{\omega}(z):=\varphi_{i}(z \omega)$ and $\left(h_{i}\right)_{\omega}(z)$ $:=h_{i}(z \omega)$. We see easily

$$
\bigcup_{i}\left\{\omega ;\left(\varphi_{i}\right)_{\omega} \equiv 0\right\} \cup \bigcup_{i<j}\left\{\omega ; \frac{\left(h_{i}\right)_{\omega}}{\left(h_{j}\right)_{\omega}} \equiv \frac{h_{i}(0)}{h_{j}(0)}\right\} \sqsubseteq C^{n}-\{0\} .
$$

Therefore, we can find some $\omega \in C^{n}-\{0\}$ such that $\left(\varphi_{t}\right)_{\omega} \not \equiv 0(1 \leqq i \leqq p)$ and $\left(h_{i}\right)_{\omega} /\left(h_{j}\right)_{\omega} \not \equiv$ const $(1 \leqq i<j \leqq p)$. The assumption (2) gives the identity

$$
\left(\varphi_{1}\right)_{\omega}\left(h_{1}\right)_{\omega}+\cdots+\left(\varphi_{p}\right)_{\omega}\left(h_{p}\right)_{\omega} \equiv 0
$$

This contradicts Theorem 2.10 for the case $n=1$. We have thus the desired result.

Corollary 2.11. Let $h_{1}, \cdots, h_{p} \in \boldsymbol{H}^{*}$ and assume that

$$
h_{1}^{\ell_{1}} h_{2}^{\ell_{2}} \cdots h_{p}^{\ell_{p}} \not \equiv \text { const }
$$

for any non-zero vector $\left(\ell_{1}, \ell_{2}, \cdots, \ell_{p}\right)$ of integers. If finitely many $\varphi_{\ell_{1} \cdots \ell_{p}} \in \Phi_{0}$ satisfy

$$
\sum_{\left(\ell_{1}, \cdots, e_{p}\right)} \varphi_{\ell_{1} \cdots \ell_{p}} h_{1}^{\ell_{1}} \cdots h_{p}^{\ell_{p}} \equiv 0
$$

then $\varphi_{\ell_{1} \cdots \ell_{p}} \equiv 0$ for any $\left(\ell_{1}, \cdots, \ell_{p}\right)$.
Proof. Since $h_{1}^{\ell_{1}} \cdots h_{p}^{\ell_{p}} \in \boldsymbol{H}^{*}$ and

$$
h_{1}^{\ell_{1}} \cdots h_{p}^{\ell_{p}} \not \not \not h_{1}^{m_{1}} \cdots h_{p}^{m_{p}}
$$

whenever $\left(\ell_{1}, \cdots, \ell_{p}\right) \neq\left(m_{1}, \cdots, m_{p}\right)$, Corollary 2.11 is a direct result of Theorem 2.10.

Corollary 2.12. Let $h_{1}, \cdots, h_{p} \in \boldsymbol{H}^{*}$ and $\varphi_{1}, \cdots, \varphi_{p} \in \Phi_{0}$ satisfy the condition that $\varphi_{i} \not \equiv 0$ and

$$
\varphi_{1} h_{1}+\varphi_{2} h_{2}+\cdots+\varphi_{p} h_{p} \equiv 0
$$

Consider the partition of indices

$$
\{1,2, \cdots, p\}=I_{1} \cup I_{2} \cup \cdots \cup I_{a}
$$

such that, for any $i \in I_{\alpha}$ and $i^{\prime} \in I_{\alpha^{\prime}}, h_{i} \sim . h_{i^{\prime}}$ if $\alpha=\alpha^{\prime}$, and $h_{i} \nsim h_{i^{\prime}}$ if $\alpha \neq \alpha^{\prime}$. Then, for any α,

$$
\sum_{i \in I_{\alpha}} \varphi_{i} h_{i} \equiv 0
$$

Proof. Taking an index $i_{\alpha} \in I_{\alpha}$ for each α, we define

$$
\psi_{\alpha}:=\sum_{i \in I_{\alpha}} \varphi_{i} h_{i} / h_{i_{\alpha}} .
$$

Then, $\psi_{\alpha} \in \Phi_{0}, h_{i \alpha} \not \nsim h_{i_{\alpha^{\prime}}}$ if $\alpha \neq \alpha^{\prime}$, and $\sum_{\alpha} \psi_{\alpha} h_{i_{\alpha}} \equiv 0$. By Theorem 2.10, we have $\psi_{1} \equiv \cdots \equiv \psi_{a} \equiv 0$. This gives Corollary 2.12.

§ 3. Basic lemmas

Take $h_{i j} \in \boldsymbol{H}^{*}$ and $\varphi_{i j} \in \Phi_{0}$ with $\varphi_{i j} \not \equiv 0$, where $i=1,2, \cdots, p$ and $j=$ $1,2, \cdots$. Defining $f_{i j}:=\varphi_{i j} h_{i j}$, we consider a matrix

$$
\mathscr{M}:=\left(f_{i j} ; i=1,2, \cdots, p, j=1,2, \cdots\right)
$$

with p rows and countably many columns.
Lemma 3.1. If we perform the operations (a) changing the order of the indices $i=1,2, \cdots, p$, (b) replacing a suitable subsequence of the indices j 's by $j=1,2, \cdots$ and (c) multiplying each row and each column by a common element of H^{*}, then $\mathscr{M}=\left\{f_{i j}:=\varphi_{i j} h_{i j}\right\}$ may be assumed to satisfy the conditions;
(i) $h_{i j_{1}} \nsim h_{i j_{2}}$ if $1 \leqq i \leqq r$ and $j_{1} \neq j_{2}$,
(ii) $h_{i j} \equiv$ const for any j if $r+1 \leqq i \leqq p$,
where $0 \leqq r<p$ and $r=0$ means that $h_{i j} \equiv \mathrm{const}$ for any i, j.
Proof. Dividing $h_{i j}(1 \leqq i \leqq p)$ by $h_{p j}$, we may assume $h_{p j} \equiv 1$ for each j. We consider the smallest integer r such that, after performing the operations (a) \sim (c), the condition (ii) is satisfied, where we may assume $0<r<p$. Then, for any $i=1,2, \cdots, r$ and $j=1,2, \cdots$, there are only finitely many j^{\prime} such that $h_{i j} \sim h_{i j^{\prime}}$. Because, if not, we have some i_{0} with $1 \leqq i_{0} \leqq r$ and j_{0} such that $h_{i_{0} j_{0}} \sim h_{i_{0 j}}$ for infinitely many j. After performing suitable operations (a) \sim (c), we may assume $h_{r j} \equiv$ const, which contradicts the property of r. We can choose indices j_{1}, j_{2}, \cdots such that $j_{k-1}<j_{\varepsilon}$ and, for any $i=1,2, \cdots, r$,

$$
h_{i j_{k}} \not \not h_{i j_{1}}, h_{i j_{k}} \not \not \not h_{i j_{2}}, \cdots, h_{i j_{\varepsilon}} \nsim h_{i j_{k}-1} .
$$

If we replace the indices $j=j_{1}, j_{2}, \ldots$ by $j=1,2, \cdots$, we obtain the conclusion of Lemma 3.1.

Lemma 3.2. Assume that $\mathscr{M}=\left\{f_{i j}:=\varphi_{i j} h_{i j}\right\}$ satisfies the conclusion of Lemma 3.1 and, furthermore, for any j_{1}, \cdots, j_{p},

$$
\begin{equation*}
\operatorname{det}\left(f_{i j} ; i=1,2, \cdots, p, j=j_{1}, j_{2}, \cdots, j_{p}\right) \equiv 0 \tag{3}
\end{equation*}
$$

If for any j there exist indices $j_{r+1}^{*}, \cdots, j_{p}^{*}$ such that $j<j_{r+1}^{*}<\cdots<j_{p}^{*}$ and

$$
\begin{equation*}
\operatorname{det}\left(f_{i j} ; i=r+1, \cdots, p, j=j_{r+1}^{*}, \cdots, j_{p}^{*}\right) \not \equiv 0 \tag{4}
\end{equation*}
$$

then

$$
\operatorname{det}\left(f_{i j} ; i=1,2, \cdots, r, j=j_{1}, j_{2}, \cdots, j_{r}\right) \equiv 0
$$

for any $j_{1}, j_{2}, \cdots, j_{r}$.
Proof. If $r=0$, we have nothing to prove. Let $r>0$. The set H^{*} can be regarded as a multiplicative group and includes $C^{*}:=C-\{0\}$ as a subgroup. The factor group $G:=H^{*} / C^{*}$ is a torsionfree abelian group. We denote the class in G containing an element $h \in \boldsymbol{H}^{*}$ by [h]. We choose finitely many or countably many elements $\eta_{1}, \eta_{2}, \cdots, \eta_{\tau}, \cdots$ in \boldsymbol{H}^{*} such that
(i) $\left[\eta_{1}\right],\left[\eta_{2}\right], \cdots,\left[\eta_{7}\right], \cdots$ are linearly independent over Z and
(ii) each $h_{i j}$ can be represented as

$$
\begin{equation*}
h_{i j}=c_{i j} \eta_{1}^{\varepsilon_{1}^{i} j} \eta_{2}^{\varepsilon_{i j}^{2 j}} \cdots \eta_{\tau}^{\varepsilon_{\tau}^{i j}} \cdots, \tag{5}
\end{equation*}
$$

where $c_{i j} \in C^{*}, \ell_{i j}^{\tau} \in \boldsymbol{Z}$ and $\ell_{i j}^{\tau}=0$ except finitely many τ for each (i, j). Define

$$
\ell_{i j}=\left(\ell_{i j}^{1}, \ell_{i j}^{2}, \cdots, \ell_{i j}^{\tau}, \cdots\right)
$$

By the assumption, $\ell_{i j_{1}} \neq \ell_{i j_{2}}$ if $1 \leqq i \leqq r$ and $j_{1} \neq j_{2}$, and $\ell_{i j}=0$ for any j if $r+1 \leqq i \leqq p$.

Now, assume

$$
\begin{equation*}
\operatorname{det}\left(f_{i j} ; 1 \leqq i \leqq r, j=j_{1}, \cdots, j_{r}\right) \not \equiv 0 \tag{6}
\end{equation*}
$$

for some j_{1}, \cdots, j_{r} with $j_{1}<\cdots<j_{r}$. Then, we can prove
(3.3) There exist indices j_{r+1}, \cdots, j_{p} with $j_{r+1}<\cdots<j_{p}$ such that, for any $s=r+1, \cdots, p$,
(A) $\operatorname{rank}\left(f_{i j} ; i=r+1, \cdots, p, j=j_{r+1}, \cdots, j_{s}\right)=s-r$,
(B) $\ell_{i j_{s}} \neq \ell_{\sigma_{1} j_{1}}+\cdots+\ell_{s-1 j_{s-1}}-\left(\ell_{\tau_{1} j_{1}}+\cdots+\ell_{\tau_{s-1} j_{s-1}}\right)$
whenever $1 \leqq i \leqq r$ and $\sigma_{1}, \cdots, \sigma_{s-1}, \tau_{1}, \cdots, \tau_{s-1} \in\{1,2, \cdots, p\}$.
To see this, we first choose j_{r+1} with $j_{r}<j_{r+1}$ such that

$$
\left(f_{r+1 j_{r+1}}, \cdots, f_{p f_{r+1}}\right) \not \equiv(0, \cdots, 0) .
$$

Let j_{r+1}, \cdots, j_{s-1} be chosen so that $j_{r+1}<\cdots<j_{s-1}$ and they satisfy the conditions (A) and (B). By m we denote the field of all meromorphic functions on C^{n}. If we set $f_{j}={ }^{t}\left(f_{r+1 j}, \cdots, f_{p j}\right) \in \mathfrak{m}^{p-r}$, then $f_{j_{r+1}}, \cdots, f_{j_{s-1}}$ are linearly independent over \mathfrak{m}. Therefore, there are at most $s-r-1$ linearly independent elements \boldsymbol{g} 's in m^{p-r} such that

$$
\operatorname{rank}\left(f_{f_{r+1}}, \cdots, f_{f_{s-1}}, g\right) \leqq s-r-1
$$

On the other hand, for any j, there are indices $j_{r+1}^{*}, \cdots, j_{p}^{*}$ with $j<j_{r+1}^{*}$ $<\cdots<j_{p}^{*}$ satisfying the condition (4). We can choose an index j_{s} among $j_{r+1}^{*}, \cdots, j_{p}^{*}$ such that

$$
\operatorname{rank}\left(f_{j_{r+1}}, \cdots, f_{f_{s-1}}, f_{f_{s}}\right)=s-r
$$

Accordingly, there are infinitely many j_{s} 's satisfying the condition (A). Next, let us examine the condition (B). The set

$$
\left.\left.\begin{array}{rl}
\left\{\ell_{\sigma_{1} j_{1}}\right.
\end{array}\right) \cdots+\ell_{\sigma_{s-1} j_{s-1}}-\left(\ell_{\tau_{1} j_{1}}+\cdots+\ell_{\tau_{s-1} j_{s-1}}\right) ; ~ \sigma_{1}, \cdots, \sigma_{s-1}, \tau_{1}, \cdots, \tau_{s-1} \leqq p\right\}
$$

is finite. Since $\ell_{i j_{1}} \neq \ell_{i j_{2}}$ if $1 \leqq i \leqq r$ and $j_{1} \neq j_{2}$, there are only finitely many j_{s} 's such that

$$
\ell_{i j_{s}}=\ell_{\sigma_{1} j_{1}}+\cdots+\ell_{\sigma_{s-1} j_{s-1}}-\left(\ell_{\tau_{1} j_{1}}+\cdots+\ell_{\tau_{s-1} j_{s-1}}\right)
$$

for some $i \in\{1,2, \cdots, r\}$ and $\sigma_{1}, \cdots, \sigma_{s-1}, \tau_{1}, \cdots, \tau_{s-1} \in\{1,2, \cdots, p\}$. Consequently, we can find infinitely many j_{s} 's satisfying the conditions (A) and (B). And, we have the desired indices j_{r+1}, \cdots, j_{p} inductively.

Now we go back to the proof of Lemma 3.2. Let j_{1}, \cdots, j_{p} satisfy the conditions (6) and (A), (B) of (3.3). We denote by S_{p} the symmetric group of all permutations of p letters $1,2, \cdots, p$ and set

$$
\begin{aligned}
S_{p}^{(1)} & =\left\{\sigma=\left(\begin{array}{ccc}
12 & \cdots & p \\
\sigma_{1} \sigma_{2} & \cdots & \sigma_{p}
\end{array}\right) ; 1 \leqq \sigma_{i} \leqq r \text { for } i=1,2, \cdots, r\right\} \\
S_{p}^{(2)}: & =S_{p}-S_{p}^{(1)}
\end{aligned}
$$

The assumption (3) may be rewritten

$$
\begin{equation*}
\sum_{\sigma \in S_{p}^{(1)}} \psi_{\sigma} h_{\sigma}+\sum_{\sigma \in S_{p}^{(2)}} \psi_{\sigma} h_{\sigma} \equiv \sum_{\sigma \in S_{p}} \psi_{\sigma} h_{\sigma} \equiv 0, \tag{7}
\end{equation*}
$$

where, for $\sigma=\left(\begin{array}{ccc}12 & \cdots & p \\ \sigma_{1} \sigma_{2} & \cdots & \sigma_{p}\end{array}\right) \in S_{p}$,

$$
\begin{aligned}
& \psi_{o}:=\operatorname{sgn}(\sigma) \varphi_{\sigma_{1} j_{1}} \varphi_{\sigma_{2} j_{2}} \cdots \varphi_{o_{p} j_{p}} \in \Phi_{0} \\
& h_{\sigma}:=h_{\sigma_{1} j_{1}} h_{o_{2} j_{2}} \cdots h_{\sigma_{p} j_{p}} \in \boldsymbol{H}^{*} .
\end{aligned}
$$

We shall show $h_{\sigma} \not \nsim h_{\tau}$ whenever $\sigma \in S_{p}^{(1)}$ and $\tau \in S_{p}^{(2)}$. On the contrary, suppose $h_{\sigma} \sim h_{\tau}$ for some $\sigma \in S_{p}^{(1)}$ and $\tau \in S_{p}^{(2)}$. By substituting (5) and observing the exponents, we get

$$
\ell_{\sigma_{1} j_{1}}+\cdots+\ell_{\sigma_{p} j_{p}}=\ell_{\tau_{1} j_{1}}+\cdots+\ell_{\tau_{p} j_{p}}
$$

By definition, $\left\{\sigma_{r+1}, \cdots, \sigma_{p}\right\}=\{r+1, \cdots, p\}$, and $\left\{\tau_{r+1}, \cdots, \tau_{p}\right\} \neq\{r+1, \cdots, p\}$. Choose index s with $r+1 \leqq s \leqq p$ such that $\tau_{s} \notin\{r+1, \cdots, p\}$ and τ_{s+1}, \cdots, $\tau_{p} \in\{r+1, \cdots, p\}$. Since $\ell_{i j}=0$ for any j and $i=r+1, \cdots, p$,

$$
\ell_{\tau_{s} j_{s}}=\ell_{\sigma_{1} j_{1}}+\cdots+\ell_{\sigma_{s-1} j_{s-1}}-\left(\ell_{\tau_{1} j_{1}}+\cdots+\ell_{\tau_{s-1} j_{s-1}}\right)
$$

This contradicts the condition (B) of (3.3). We now apply Corollary (2.12) to the indentity (7). From the above shown fact, we can conclude

$$
\sum_{\sigma \in S_{p}^{(1)}} \psi_{\sigma} h_{\sigma}=0 .
$$

On the other hand,

$$
\begin{aligned}
& \sum_{\sigma \in S_{p}^{(1)}} \psi_{\sigma} h_{\sigma}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{det}\left(f_{i j} ; i=1,2, \cdots, r, j=j_{1}, \cdots, j_{r}\right) \\
& \times \operatorname{det}\left(f_{i j} ; i=r+1, \cdots, p, j=j_{r+1}, \cdots, j_{p}\right) .
\end{aligned}
$$

This does not vanish because of (6) and the conclusion of (3.3). The proof of Lemma 3.2 is completed.

Lemma 3.4. As in Lemma 3.2, suppose that $\mathscr{M}=\left\{f_{i j}\right\}$ satisfies the condition (3). Then, after performing the operations (b) and (c) of Lemma 3.1, we can find indices i_{1}, \cdots, i_{m} with $1 \leqq i_{1}<\cdots<i_{m} \leqq p$ such that

$$
h_{i j} \equiv \text { const }
$$

for $i=i_{1}, \cdots, i_{m}$ and $j=1,2, \cdots$, and

$$
\operatorname{det}\left(f_{i j} ; i=i_{1}, \cdots, i_{m}, j=j_{1}, \cdots, j_{m}\right) \equiv 0
$$

for any $j_{1}, j_{2}, \cdots, j_{m}$.
Proof. This is shown by induction on p. If $p=2$, the conclusion is trivial. Suppose that Lemma 3.4 is true for the case $\leqq p-1$. We may assume that \mathscr{M} satisfies the conditions (i) and (ii) of Lemma 3.1. If the assumption of Lemma 3.2 is satisfied, then we can apply the induction hypothesis to functions $f_{i j}$ for $i=1,2, \cdots, r$ and $j=1,2, \cdots$ and so obtain the desired conclusion. Otherwise, there is some j_{0} such that

$$
\operatorname{det}\left(f_{i j} ; i=r+1, \cdots, p, j=j_{r+1}, \cdots, j_{p}\right) \equiv 0
$$

for any j_{r+1}, \cdots, j_{p} larger than j_{0}. If we replace $j_{0}+1, j_{0}+2, \cdots$ by $1,2, \cdots$ and set $i_{1}=r+1, \cdots, i_{m}=p$, we have also the desired conclusion.

§4. The main theorem

Firstly, we shall recall some notation and terminologies. Let f be a meromorphic map of C^{n} into $P^{N}(C)$ which is non-degenerate, that is, the image of f is not included in any hyperplane in $P^{N}(C)$. For arbitrarily fixed homogeneous coordinates $w_{1}: w_{2}: \cdots: w_{N+1}, f$ has a reduced representation

$$
f=f_{1}: f_{2}: \cdots: f_{N+1}
$$

where f_{1}, \cdots, f_{N+1} are holomorphic on C^{n} and satisfy the condition

$$
\operatorname{codim}\left\{f_{1}=f_{2}=\cdots=f_{N+1}=0\right\} \geqq 2
$$

Take a hyperplane

$$
H: a^{1} w_{1}+a^{2} w_{2}+\cdots+a^{N+1} w_{N+1}=0
$$

in $P^{N}(C)$. Regarding it as a divisor on $P^{N}(C)$, we define its pull-back $\nu(f, H)$ by

$$
\nu(f, H)(z)=\nu_{F}(z) \quad\left(z \in \boldsymbol{C}^{n}\right)
$$

with a holomorphic function

$$
F:=a^{1} f_{1}+a^{2} f_{2}+\cdots+a^{N+1} f_{N+1}
$$

Now, we consider hyperplanes $H_{1}, H_{2}, \cdots, H_{N+2}$ in $P^{N}(C)$ located in general position and divisors $\nu_{1}, \nu_{2}, \cdots, \nu_{N+2}$ on C^{n}. As is stated in §1, we denote by $\mathscr{F}:=\mathscr{F}\left(H_{i}, \nu_{i}\right)$ the set of all non-degenerate meromorphic maps of C^{n} into $P^{N}(C)$ such that $\nu\left(f, H_{i}\right)=\nu_{i}$ for $i=1,2, \cdots, N+2$. The main Theorem is the following.

Theorem 4.1. The set \mathscr{F} contains at most finitely many maps.
For the proof, we identify $P^{N}(C)$ with the subspace

$$
\left\{w_{1}+w_{2}+\cdots+w_{N+2}=0\right\}
$$

in $P^{N+1}(C)$, where $w_{1}: \cdots: w_{N+2}$ are homogeneous coordinates on $P^{N+1}(C)$. Moreover, by a suitable change of coordinates, we may assume

$$
H_{i}=\left\{w_{i}=0\right\} \cap P^{N}(C) \quad(1 \leqq i \leqq N+2) .
$$

Suppose that \mathscr{F} contains infinitely many mutually distinct maps f^{1}, $f^{2}, \cdots, f^{j}, \cdots$. Using the above coordinates, we take a reduced representation

$$
f^{j}=f_{1}^{j}: f_{2}^{j}: \cdots: f_{N+2}^{j}
$$

of each f^{j}. By (2.7) there exist entire functions k_{i} with $\nu_{k_{i}}=\nu_{i}$ for $i=$ $1,2, \cdots, N+2$. Since $\nu\left(f^{f}, H_{i}\right)=\nu_{i}$,

$$
h_{i j}:=f_{i}^{j} / k_{i} \in \boldsymbol{H}^{*} .
$$

They satisfy $\sum_{i=1}^{N+2} h_{i j} k_{i} \equiv 0$ for any $j=1,2, \cdots$.
Lemma 4.2. Let $h_{i j} \in \boldsymbol{H}^{*}(1 \leqq i \leqq p, j=1,2, \cdots)$ and $k_{i}(1 \leqq i \leqq p)$ be non-zero entire functions satisfying

$$
\begin{equation*}
\sum_{i=1}^{p} h_{i j} k_{i}=0 \tag{8}
\end{equation*}
$$

for any j and, furthermore,

$$
\begin{equation*}
\sum_{i \in I} h_{i j} k_{i} \not \equiv 0 \tag{9}
\end{equation*}
$$

for any j and any proper subset I of $\{1,2, \cdots, p\}$. Then, there exists a subsequence $\left\{j_{1}, j_{2}, \cdots\right\}$ of $\{1,2, \cdots\}$ such that $h_{i j} \equiv$ const for any $i=1,2, \cdots, p$ and $j=j_{1}, j_{2}, \cdots$ after dividing each row and each column of $\left(h_{t j}\right)$ by a common element of \boldsymbol{H}^{*}.

Proof. The proof is given by induction on p. If $p=2$, we have easily Lemma 4.2 because $h_{1 j_{1}} / h_{2 j_{1}}=h_{1 j_{2}} / h_{2 j_{2}}$ for any j_{1} and j_{2}. Suppose that Lemma 4.2 is true in the case $\leqq p-1$. Eliminating k_{t} from the identities (8), we get

$$
\operatorname{det}\left(h_{i j} ; i=1,2, \cdots, p, j=j_{1}, j_{2}, \cdots, j_{p}\right) \equiv 0
$$

for any $j_{1}, j_{2}, \ldots, j_{p}$. We now apply Lemma 3.4. After performing the operations (a) \sim (c) of Lemma 3.1, it may be assumed that $h_{i j} \equiv$ const for any j and i with $r+1 \leqq i \leqq p$, and

$$
\operatorname{det}\left(h_{i \jmath} ; i=r+1, \cdots, p, j=j_{r+1}, \cdots, j_{p}\right) \equiv 0
$$

for any j_{r+1}, \cdots, j_{p}, where $0 \leqq r \leqq p-1$. Suppose that $r>0$. We may assume that $h_{1 j_{1}} \not \not h_{1 j_{2}}$ for any j_{1}, j_{2} with $j_{1} \neq j_{2}$ by the same argument as in the proof of Lemma 3.1. When we multiply the i-th row of ($h_{t j}$) by a function in \boldsymbol{H}^{*}, (8) does not alter if we replace k_{i} by one divided by the same function. When we multiply the j-th column of $\left(h_{i j}\right)$ by a function
in H^{*}, (8) remains valid if (8) is replaced by one divided by the same function. Therefore, we may assume in the original identities (8) that $h_{1 j_{1}} \nsim$ $h_{1 j_{2}}$ if $j_{1} \neq j_{2}$ and $h_{i j} \equiv$ const if $r+1 \leqq i \leqq p$.

Since

$$
\operatorname{rank}\left(h_{i j} ; r+1 \leqq i \leqq p, j=1,2, \cdots\right)<p-r
$$

we can find a non-zero vector $\left(\lambda_{r+1}, \cdots, \lambda_{p}\right) \in \boldsymbol{C}^{p-r}$ such that

$$
\sum_{i=r+1}^{p} \lambda_{i} h_{i j}=0 \quad(j=1,2, \cdots)
$$

Take a regular matrix $A=\left(a_{i j} ; r+1 \leqq i, j \leqq p\right)$ of order $p-r$ such that $a_{i p}=\lambda_{i}(r+1 \leqq i \leqq p)$. Define functions $k_{r+1}^{*}, \cdots, k_{p}^{*}$ by the relations

$$
k_{i}=\sum_{\ell=r+1}^{p} a_{i \ell} k_{\ell}^{*} \quad(r+1 \leqq i \leqq p)
$$

Then, (8) becomes

$$
\sum_{i=1}^{r} h_{i j} k_{i}+\sum_{\ell=r+1}^{p-1} h_{\ell j}^{*} k_{\ell}^{*}=0
$$

where

$$
h_{\ell j}^{*}:=\sum_{i=r+1}^{p} a_{i \ell} h_{i j} \in \boldsymbol{C}
$$

For convenience' sake, we set $k_{i}^{*}:=k_{i}$ and $h_{i j}^{*}:=h_{i j}$ for $i=1,2, \cdots, r$. After changing the indices j 's suitably, we can take a subset I of $\{1,2, \cdots$, $p-1\}$ such that $1 \in I$,

$$
\sum_{i \in I} h_{i j}^{*} k_{i}^{*} \equiv 0
$$

and for any proper subset I^{\prime} of I and any $j=1,2, \cdots$,

$$
\sum_{i \in I^{\prime}} h_{i j}^{*} k_{i}^{*} \not \equiv 0
$$

By the assumption (9), there is some $i_{0} \in I \cap\{r+1, \cdots, p\}$. Since $\# I \leqq p$ -1 , by the induction hypothesis we see $h_{i j}^{*} \equiv$ const for $i \in I$ and $j=$ $1,2, \cdots$ after suitable changes of indices and $h_{i j}^{*}$. This is a contradiction. Because, $h_{i_{0} j}^{*} \equiv$ const for any j and $h_{1 j_{1}}^{*} \nsim h_{1 j_{2}}^{*}$ for any j_{1}, j_{2} with $j_{1} \neq j_{2}$. Consequently, $r=0$ and we have Lemma 4.2.

Proof of Theorem 4.1. As a consequence of Lemma 4.2, changing k_{i} suitably, taking a suitable subsequence of the indices j 's and choosing a
suitable reduced representation of each f^{j}, we may assume $h_{i j} \equiv$ const for any i, j, and particularly

$$
h_{11} \equiv h_{21} \equiv \cdots \equiv h_{p 1} \equiv 1
$$

where $p=N+2$. Then

$$
f^{j}=h_{1 j} f_{1}^{1}: h_{2 j} f_{2}^{1}: \cdots: h_{N+2} f_{N+2}^{1}
$$

for $j=2,3, \cdots$, which satisfy

$$
h_{1 j} f_{1}^{1}+h_{2 j} f_{2}^{1}+\cdots+h_{N+2 j} f_{N+2}^{1}=0
$$

By the assumption that f^{1} is non-degenerate, we obtain

$$
h_{1 j}=h_{2 j}=\cdots=h_{N+2 j} .
$$

This shows that

$$
f^{1}=f^{2}=\cdots,
$$

which is absurd. We have thus Theorem 4.1.
Theorem 4.3. Let $\gamma: C^{n} \rightarrow C^{n}$ be a biholomorphic map and $f: C^{n} \rightarrow$ $P^{N}(C)$ a non-degenerate meromorphic map. If there exist hyperplanes H_{1}, \cdots, H_{N+2} in general position such that $\nu\left(f, H_{i}\right) \circ \gamma=\nu\left(f, H_{i}\right)(1 \leqq i \leqq N+2)$, then $f \circ \gamma^{j_{0}}=f$ for some positive integer j_{0}.

Proof. Consider

$$
\mathscr{F}:=\mathscr{F}\left(H_{1}, \cdots, H_{N+2}, \nu\left(f, H_{1}\right), \cdots, \nu\left(f, H_{N+2}\right)\right) .
$$

Obviously, the assumption implies that $f \circ \gamma^{j} \in \mathscr{F}$ for any positive integer j. Since $\# \mathscr{F}<\infty, f \circ \gamma^{j_{1}}=f \circ \gamma^{j_{2}}$ for some j_{1}, j_{2} with $j_{1}<j_{2}$. Then, $f \circ \gamma^{j_{0}}=f$ for $j_{0}:=j_{2}-j_{1}$.

§ 5. Meromorphic functions of semi-invariant type

Let $\gamma: C^{n} \rightarrow C^{n}$ be a biholomorphic map and Φ a family of meromorphic functions on C^{n}.

Definition 5.1. We call Φ a γ-admissible family if it satisfies the following conditions;
(i) Φ is a field which includes C,
(ii) any $\varphi \in \Phi$ is of order less than one,
(iii) Φ is γ-invariant, namely, $\varphi \circ \gamma \in \Phi$ whenever $\varphi \in \Phi$,
(iv) if $\varphi \circ \gamma^{j}=c \varphi$ for some $\varphi \in \Phi, c \in \boldsymbol{C}$ and a positive integer j, then $\varphi \equiv$ const.

Example 5.2. 1°. The field C of all constant functions is obviously a γ-admissible family for any biholomorphic map $\gamma: C^{n} \rightarrow C^{n}$.
2°. Let us consider a linear map $\gamma(z)=A z+B$, where A is a regular matrix of order n and $B \in C^{n}$. If there is no pure ($n-1$)-dimensional analytic set V in C^{n} which is of order less than one and $\gamma^{j o}$-invariant for some positive integer j_{0}, then the field Φ_{0} of all meromorphic functions of order less than one is a γ-admissible family. In fact, by (2.4) Φ_{0} is a field and obviously satisfies the conditions (i) \sim (iii). We now suppose that $\varphi \circ \gamma^{j_{0}}=c \varphi$ for some nonconstant $\varphi \in \Phi_{0}, c \in C^{*}$ and a positive integer j_{0}. Then, $V:=\left|\nu_{\varphi}^{0}\right| \cup\left|\nu_{\varphi}^{\infty}\right|$ is a $\gamma^{j_{0}-i n v a r i a n t ~ a n a l y t i c ~ s e t ~ w h i c h ~ i s ~ n o t ~ e m p t y ~}$ because of (2.9). And, V is of order less than one by (2.6), which contradicts the assumption. Therefore, Φ_{0} satisfies also the condition (iv).

In the case of $n=1$, the map γ defined by $\gamma(z)=z+\omega$ for some $\omega \in C^{*}$ has the above-mentioned property. For, if a discrete set V is $\gamma^{j 0}$-invariant and contains a point z_{0}, we have also $z_{0}+j j_{0} \omega \in V$ for $j=1,2, \cdots$. Then, there exists a positive constant c such that

$$
\#\{z \in V ;|z| \leqq t\} \geqq c t
$$

for a sufficiently large t, and so

$$
N\left(r, \nu_{V}\right) \geqq c r
$$

for a sufficiently large r. The set V is not of order less than one.
In the following, γ denotes a biholomorphic map of C^{n} onto C^{n} itself and Φ denotes a γ-admissible family.

Definition 5.3. A meromorphic function $F(z)$ on C is called to be of (γ, Φ)-semi-invariant type if it has a representation

$$
\begin{equation*}
F(z)=\varphi_{1}(z) g_{1}(z)+\cdots+\varphi_{p}(z) g_{p}(z) \tag{10}
\end{equation*}
$$

with $\varphi_{1}, \cdots, \varphi_{p} \in \Phi$ and meromorphic functions g_{1}, \cdots, g_{p} on C^{n} such that $g_{i} \circ \gamma=c_{i} g_{i}$ for some $c_{i} \in C$.

Definition 5.4. A representation (10) is called a reduced representation if it satisfies the conditions;
(i) $F(z) \not \equiv \sum_{i \in I} \varphi_{i} g_{i}$ for any proper subset I of $\{1,2, \cdots, p\}$,
(ii) whenever $c_{i_{1}}=c_{i_{2}}=\cdots=c_{i_{m}},\left\{\varphi_{i_{1}}, \cdots, \varphi_{i_{m}}\right\}$ and $\left\{g_{i_{1}}, \cdots, g_{i_{m}}\right\}$ are
both linearly independent over \boldsymbol{C}.
(5.5) any meromorphic function of ($\gamma, \Phi)$-semi-invariant type has a reduced representation.

Let $F(z)$ have a representation (10) with $\varphi_{i} \in \Phi$ and g_{i} such that $g_{i} \circ \gamma$ $=c_{i} g_{i}$ for some $c_{i} \in C$. Changing indices, we may assume

$$
c_{i}=\cdots=c_{p_{1}}, c_{p_{1}+1}=\cdots=c_{p_{2}}, \cdots, c_{p_{a-1}+1}=\cdots=c_{p_{a}}
$$

and $c_{p_{\alpha}} \neq c_{p_{\alpha^{\prime}}}$ if $\alpha \neq \alpha^{\prime}$, where $1 \leqq p_{1}<\cdots<p_{a}=p$. For example, for indices $1,2, \cdots, p_{1}$, it may be assumed that $\varphi_{1}, \cdots, \varphi_{r}\left(1 \leqq r \leqq p_{1}\right)$ are linearly independent and

$$
\varphi_{i}=\sum_{j=1}^{r} c_{i j} \varphi_{j} \quad\left(r+1 \leqq i \leqq p_{1}\right)
$$

for some $c_{i j} \in C$. Then, if we set

$$
\tilde{g}_{j}:=g_{j}+\sum_{i=r+1}^{p_{1}} c_{i j} g_{i}
$$

we see $\tilde{g}_{j} \circ \gamma=c_{p_{1}} \tilde{g}_{j}$ and

$$
\sum_{i=1}^{p_{1}} \varphi_{i} g_{i}=\sum_{j=1}^{r} \varphi_{j} \tilde{g}_{j}
$$

Moreover, we may choose indices such that $\tilde{g}_{1}, \cdots, \tilde{g}_{s}$ are linearly independent and

$$
\tilde{g}_{j}=\sum_{\ell=1}^{s} d_{\ell j} \tilde{g}_{\ell} \quad(s+1 \leqq j \leqq r)
$$

for some $d_{\ell j} \in C$. We have then

$$
\sum_{i=1}^{p_{1}} \varphi_{i} g_{i}=\sum_{\ell=1}^{s} \tilde{\varphi}_{\ell} \tilde{g}_{\ell}
$$

where $\tilde{\varphi}_{\ell}:=\varphi_{\ell}+\sum_{j=s+1}^{r} d_{\ell j} \varphi_{j} \in \Phi$ and $\tilde{\varphi}_{1}, \cdots, \tilde{\varphi}_{s}$ are linearly independent. By the same reason, $\sum_{i=p_{\alpha-1}+1}^{p_{\alpha}} \varphi_{i} g_{i}$ has a reduced representation for each α, whence we conclude (5.5).

Theorem 5.6. Let $F(z)$ have two reduced representations

$$
F(z)=\sum_{i=1}^{p} \varphi_{i} f_{i}=\sum_{j=1}^{q} \psi_{j} g_{j},
$$

where $\varphi_{i} \in \Phi, \psi_{j} \in \Phi, f_{i} \circ \gamma=c_{i} f_{i}$ and $g_{j} \circ \gamma=d_{j} g_{j}$ for some $c_{i}, d_{j} \in C$. Then,
$p=q$ and, after a suitable change of indices, we can find a partition of indices

$$
\{1,2, \cdots, p\}=I_{1} \cup I_{2} \cup \cdots \cup I_{a}
$$

satisfying the conditions that, for each $\alpha=1,2, \cdots, a$,
(i) $c_{i}=c_{i^{\prime}}$ and $d_{i}=d_{i^{\prime}}$ if $i, i^{\prime} \in I_{\alpha}$,
(ii) $\sum_{i \in I_{\alpha}} \varphi_{i} f_{i}=\sum_{i \in I_{\alpha}} \psi_{i} g_{i}$,
(iii) there is a regular matrix $C^{\alpha}=\left(c_{i j}^{\alpha} ; i, j \in I_{\alpha}\right)$ such that

$$
g_{j}=\sum_{i \in I_{\alpha}} c_{i j}^{\alpha} f_{i}, \varphi_{i}=\sum_{j \in I_{\alpha}} c_{i j}^{\alpha} \psi_{j} .
$$

For the proof, we need some lemmas.
Lemma 5.7. Let $\varphi_{1}, \cdots, \varphi_{p}, g_{1}, \cdots, g_{p}$ be non-zero meromorphic functions on C^{n} such that $\varphi_{i} \in \Phi$ and $g_{i} \circ \gamma=c_{i} g_{i}$ for some $c_{i} \in C$. If

$$
\begin{equation*}
\operatorname{det}\left(\left(\varphi_{i} \circ \gamma^{j-1}\right)\left(g_{i} \circ \gamma^{j-1}\right) ; \quad 1 \leqq i, j \leqq p\right) \equiv 0 \tag{11}
\end{equation*}
$$

then $c_{i_{1}}=c_{i_{2}}=\cdots=c_{i_{m}}$ and $\varphi_{i_{1}}, \varphi_{i_{2}}, \cdots, \varphi_{i_{m}}$ are linearly dependent for some i_{1}, \cdots, i_{m} with $1 \leqq i_{1}<\cdots<i_{m} \leqq p$.

Proof. This is shown by induction on p. If $p=2, \varphi_{1} \circ \gamma / \varphi_{2} \circ \gamma=$ $\left(c_{2} / c_{1}\right)\left(\varphi_{1} / \varphi_{2}\right)$ and $\varphi_{1} / \varphi_{2} \in \Phi$ by (11). By Definition 5.1, (iv), $\varphi_{1} / \varphi_{2} \equiv$ const and $c_{1}=c_{2}$, which gives Lemma 5.7. Suppose that Lemma 5.7 is valid in the case $\leqq p-1$. For brevity's sake, we define $f_{i j}:=\left(\varphi_{i} \circ \gamma^{j-1}\right)\left(g_{i} \circ \gamma^{j-1}\right)$. For each $j=p-1, p-2, \cdots$ we subtract the j-th column multiplied by $f_{p j+1}$ from the $(j+1)$-th column multiplied by $f_{p j}$ in order. Consequently we obtain

$$
\begin{equation*}
\operatorname{det}\left(f_{p j} f_{i j+1}-f_{p j+1} f_{i j} ; 1 \leqq i, j \leqq p-1\right) \equiv 0 \tag{12}
\end{equation*}
$$

Define

$$
\begin{aligned}
& \tilde{\varphi}_{i}:=c_{i} \varphi_{p}\left(\varphi_{i} \circ \gamma\right)-c_{p} \varphi_{i}\left(\varphi_{p} \circ \gamma\right) \\
& \tilde{g}_{i}:=g_{i} g_{p}
\end{aligned}
$$

for $i=1,2, \cdots, p-1$. Then, $\tilde{\varphi}_{i} \in \Phi, \tilde{g}_{i} \circ \gamma=c_{i} c_{p} \tilde{g}_{i}$ and

$$
\operatorname{det}\left(\left(\tilde{\varphi}_{i} \circ \gamma^{j-1}\right)\left(\tilde{g}_{i} \circ \gamma^{j-1}\right) ; 1 \leqq i, j \leqq p-1\right) \equiv 0 .
$$

If $\tilde{\varphi}_{i} \tilde{g}_{i}=f_{p 1} f_{i 2}-f_{p 2} f_{i 1} \equiv 0$, we have easily $c_{i}=c_{p}, \varphi_{i} / \varphi_{p} \equiv$ const and so the conclusion of Lemma 5.7. We may assume $\tilde{\varphi}_{i} \tilde{g}_{i} \not \equiv 0$ for any i. We now apply the induction hypothesis to functions $\tilde{\varphi}_{i}, \tilde{g}_{i}$. There are indices i_{1}, \cdots,
i_{m-1} with $1 \leqq i_{1}<\cdots<i_{m-1} \leqq p-1$ such that $c_{i_{1}}=\cdots=c_{i_{m-1}}$ and

$$
\sum_{\ell} a_{\ell} \tilde{\varphi}_{i_{\ell}}=\varphi_{p}\left(\sum_{\ell} a_{\ell} c_{i_{\ell}}\left(\varphi_{i_{\ell}} \circ \gamma\right)\right)-c_{p}\left(\varphi_{p} \circ \gamma\right)\left(\sum_{\ell} a_{\ell} \varphi_{i_{\ell}}\right)=0
$$

for some non-zero vector $\left(a_{1}, \cdots, a_{m-1}\right)$. This implies that a function $\psi:=$ $\sum_{\ell} a_{\ell} \varphi_{i_{\ell}} / \varphi_{p}$ in Φ satisfies $\psi \circ \gamma=\left(c_{p} / c_{i_{1}}\right) \psi$, where we may assume $\psi \not \equiv 0$. By Definition 5.1, (iv), $\psi \equiv$ const and $c_{i_{1}}=c_{p}$. Consequently, $c_{i_{1}}=\cdots=c_{i_{m-1}}$ $=c_{p}$ and $\varphi_{i_{1}}, \cdots, \varphi_{i_{m-1}}, \varphi_{p}$ are linearly dependent. The proof is completed.

Lemma 5.8. Let $\varphi_{1}, \cdots, \varphi_{p}, g_{1}, \cdots, g_{p}$ be functions as in Lemma 5.7 and assume that

$$
\begin{equation*}
\varphi_{1} g_{1}+\varphi_{2} g_{2}+\cdots+\varphi_{p} g_{p} \equiv 0 \tag{13}
\end{equation*}
$$

Consider the partition of indices

$$
\{1,2, \cdots, p\}=I_{1} \cup I_{2} \cup \cdots \cup I_{a}
$$

such that, for any $i \in I_{\alpha}$ and $i^{\prime} \in I_{\alpha^{\prime}}, c_{i}=c_{i^{\prime}}$ if $\alpha=\alpha^{\prime}$, and $c_{i} \neq c_{i^{\prime}}$ if $\alpha \neq \alpha^{\prime}$. Then, for any α,
(i) $\sum_{i \in I_{\alpha}} \varphi_{i} g_{i} \equiv 0$,
(ii) $\left\{\varphi_{i} ; i \in I_{\alpha}\right\}$ are linearly dependent.

Proof. By (13), we have

$$
\left(\varphi_{1} \circ \gamma^{j-1}\right)\left(g_{1} \circ \gamma^{j-1}\right)+\cdots+\left(\varphi_{p} \circ \gamma^{j-1}\right)\left(g_{p} \circ \gamma^{j-1}\right) \equiv 0
$$

for $j=1,2, \cdots, p$. Therefore,

$$
\operatorname{det}\left(\left(\varphi_{i} \circ \gamma^{j-1}\right)\left(g_{i} \circ \gamma^{j-1}\right) ; \quad 1 \leqq i, j \leqq p\right) \equiv 0
$$

By Lemma 5.7, $\left\{\varphi_{i} ; i \in I_{\alpha}\right\}$ are linearly dependent for some α. This shows that (ii) is a consequence of (i). To prove (i), it suffices to get an absurd conclusion under the assumption that

$$
F_{\alpha}:=\sum_{i \in I_{\alpha}} \varphi_{i} g_{i} \not \equiv 0
$$

for any α. Take a reduced representation

$$
F_{\alpha}(z)=\sum_{i \in I_{\alpha}} \tilde{\varphi}_{i}(z) \tilde{g}_{i}(z),
$$

where $\tilde{I}_{\alpha} \subseteq I_{\alpha}, \tilde{\varphi}_{i} \in \Phi$ and $\tilde{g}_{i} \circ \gamma=c_{i_{\alpha}} \tilde{g}_{i}$ for some $i_{\alpha} \in I_{\alpha}$. Then, the identity

$$
\sum_{\alpha=1}^{a} \sum_{i \in I_{\alpha}} \tilde{\varphi}_{i} \tilde{g}_{i}=0
$$

contradicts Lemma 5.7. We have thus Lemma 5.8.
Lemma 5.9. Let $\varphi_{1}, \cdots, \varphi_{p} \in \Phi$ and g_{1}, \cdots, g_{p} be meromorphic functions on C^{n} such that $g_{i} \circ \gamma=c_{i} g_{i}$ for some $c_{i} \in C$ and

$$
\varphi_{1} g_{1}+\varphi_{2} g_{2}+\cdots+\varphi_{p} g_{p} \equiv 0
$$

If $\varphi_{1}, \cdots, \varphi_{p}$ are linearly independent, then $g_{1} \equiv \cdots \equiv g_{p} \equiv 0$.
Proof. If $g_{i_{0}} \not \equiv 0$ for some $i_{0},\left\{\varphi_{i} ; c_{i}=c_{i_{0}}\right\}$ are linearly dependent by Lemma 5.8. This contradicts the assumption. We have thus the conclusion of Lemma 5.9.

Proof of Theorem 5.6. Take the partitions of indices

$$
\begin{aligned}
& \{1,2, \cdots, p\}=I_{1} \cup I_{2} \cup \cdots \cup I_{a} \\
& \{1,2, \cdots, q\}=J_{1} \cup J_{2} \cup \cdots \cup J_{b}
\end{aligned}
$$

such that, for $i \in I_{\alpha}, i^{\prime} \in I_{\alpha^{\prime}}, j \in J_{\beta}, j^{\prime} \in J_{\beta^{\prime}}$, we have $c_{i}=c_{i^{\prime}}, d_{j}=d_{j^{\prime}}$ if $\alpha=\alpha^{\prime}$, $\beta=\beta^{\prime}$, and $c_{i} \neq c_{i^{\prime}}, d_{j} \neq d_{j^{\prime}}$, if $\alpha \neq \alpha^{\prime}, \beta \neq \beta^{\prime}$. Define

$$
\begin{aligned}
& F_{\alpha}:=\sum_{i \in I_{a}} \varphi_{i} f_{i} \\
& G_{\beta}:=\sum_{j \in I_{\beta}} \psi_{j} g_{j}
\end{aligned}
$$

which do not vanish by Definition 5.4, (i). Apply Lemma 5.8 to the identity

$$
\sum_{i=1}^{p} \varphi_{i} f_{i}-\sum_{j=1}^{q} \psi_{j} g_{j} \equiv 0
$$

We see easily $a=b$ and $F_{\alpha} \equiv G_{\alpha}(1 \leqq \alpha \leqq a)$ after a suitable change of indices. This gives (i) and (ii) of Theorem 5.6.

To prove (iii), we may assume $a=b=1$ and so $c_{1}=\cdots=c_{p}=d_{1}$ $=\cdots=d_{q}$. Since $\psi_{1}, \cdots, \psi_{q}$ are linearly independent, we can choose indices such that $\psi_{1}, \cdots, \psi_{q}, \varphi_{1}, \cdots, \varphi_{r}$ are linearly independent and

$$
\begin{equation*}
\varphi_{i}=\sum_{j=1}^{q} c_{i j} \psi_{j}+\sum_{j=1}^{r} d_{i j} \varphi_{j} \quad(\mathrm{r}+1 \leqq i \leqq p) \tag{14}
\end{equation*}
$$

where $0 \leqq r \leqq p$ and $c_{i j}, d_{i j} \in C$. Then

$$
\sum_{j=1}^{q} \psi_{j}\left(g_{j}-\sum_{i=r+1}^{p} c_{i j} f_{i}\right)-\sum_{j=1}^{r} \varphi_{j}\left(f_{j}+\sum_{i=r+1}^{p} d_{i j} f_{i}\right)=0
$$

It follows from Lemma 5.9 that

$$
g_{j}=\sum_{i=r+1}^{p} c_{i j} f_{i} \quad(1 \leqq j \leqq q)
$$

$$
f_{j}+\sum_{i=r+1}^{p} d_{i j} f_{i}=0 \quad(1 \leqq j \leqq r)
$$

We note here the case $r \geqq 1$ is impossible because f_{1}, \cdots, f_{p} are linearly independent. Therefore, (14) becomes

$$
\varphi_{i}=\sum_{j=1}^{q} c_{i j} \psi_{j}
$$

The similar argument is available if we exchange the roles of f_{i} 's and g_{j} 's. We can conclude that $p=q$ and $C=\left(c_{i j}\right)$ is a regular matrix.

§6. Meromorphic functions with γ-invariant zeros and poles

In this section, γ denotes a biholomorphic map of C^{n} onto C^{n} itself and Φ denotes a γ-admissible family. For non-zero meromorphic functions g_{1} and g_{2} on C^{n}, we mean by notation $g_{1} \underset{\gamma}{\sim} g_{2}$ that g_{1} / g_{2} is $\gamma^{j o}$-invariant, namely, $g_{1} \circ \gamma^{j 0} / g_{2} \circ \gamma^{j_{0}}=g_{1} / g_{2}$ for some positive integer j_{0}.

Theorem 6.1. Let $\varphi_{1}, \cdots, \varphi_{p} \in \Phi$ and g_{1}, \cdots, g_{p} be non-zero meromorphic functions with $\nu_{g i} \circ \gamma=\nu_{g i}$. If

$$
\begin{equation*}
\varphi_{1} g_{1}+\varphi_{2} g_{2}+\cdots+\varphi_{p} g_{p} \equiv 0 \tag{15}
\end{equation*}
$$

and $\sum_{i \in I} \varphi_{i} g_{i} \equiv \equiv 0$ for any proper subset I of $\{1,2, \cdots, p\}$, then

$$
g_{1} \underset{\gamma}{\sim} g_{2} \underset{\gamma}{\sim} \cdots \overbrace{\gamma}^{\sim} g_{p} .
$$

For the proof, we give
Lemma 6.2. Let $\varphi_{1}, \cdots, \varphi_{p} \in \Phi$ and g_{1}, \cdots, g_{p} be meromorphic functions such that $\varphi_{i} \not \equiv 0, g_{i} \not \equiv 0$ and $\nu_{g i} \circ \gamma=\nu_{g i}$. If

$$
\begin{equation*}
\operatorname{det}\left(\left(\varphi_{i} \circ \gamma^{j-1}\right)\left(g_{i} \circ \gamma^{j-1}\right) ; i=1,2, \cdots, p, j=j_{1}, \cdots, j_{p}\right) \equiv 0 \tag{16}
\end{equation*}
$$

for any $j_{1}, j_{2}, \cdots, j_{p}$, then

$$
g_{i_{1}} \sim g_{i_{2}} \widetilde{\sim} \cdots \underset{r}{\sim} g_{i_{m}}, \quad m \geqq 2
$$

and $\varphi_{i_{1}}, \cdots, \varphi_{i_{m}}$ are linearly dependent over C for some indices i_{1}, \cdots, i_{m} with $1 \leqq i_{1}<i_{2}<\cdots<i_{m} \leqq p$.

Proof. We prove this by induction on p. If $p=2$, we have

$$
\frac{\varphi_{1}}{\varphi_{2}} \frac{\varphi_{2} \circ \gamma}{\varphi_{1} \circ \gamma}=\frac{g_{1} \circ \gamma}{g_{1}} \frac{g_{2}}{g_{2} \circ \gamma} .
$$

This is reduced to a constant c because the left side is in Φ and the right side is in H^{*} by the assumption. Therefore,

$$
\frac{\varphi_{1} \circ \gamma}{\varphi_{2} \circ \gamma}=c \frac{\varphi_{1}}{\varphi_{2}} .
$$

And, $\varphi_{1} / \varphi_{2} \equiv$ const and $c=1$ by virtue of Definition 5.1, (iv). This implies the γ-invariance of g_{1} / g_{2}.

Suppose that Lemma 6.2 is true in the case $\leqq p-1$. Changing indices, we may assume that
(α) if $r+1 \leqq i_{1}<i_{2} \leqq p$, then $g_{i_{1}} \circ \gamma^{j} / g_{i_{2}} \circ \gamma^{j}=c g_{i_{1}} / g_{i_{2}}$ for some positive integer j and a constant c,
(β) if $1 \leqq i_{1} \leqq r$ and $r+1 \leqq i_{2} \leqq p$, then there is no constant c with such a property for any j.
Moreover, replacing γ^{j} by γ, we may take $j=1$ in (α). On the other hand, (16) remains valid if we divide the j-th column of the matrix

$$
\left(\left(\varphi_{i} \circ \gamma^{j-1}\right)\left(g_{i} \circ \gamma^{j-1}\right) ; i=1,2, \cdots, p, j=1,2, \cdots\right)
$$

by $g_{p} \circ \gamma^{j-1}$. Replacing g_{i} / g_{p} by g_{i}, we may assume that $g_{p} \equiv 1$ and so g_{r+1}, \cdots, g_{p} satisfies $g_{i} \circ \gamma=c_{i} g_{i}$ for some c_{i}. Define

$$
h_{i j}:=\frac{g_{i} \circ \gamma^{j-1}}{g_{i}}
$$

for any $i=1,2, \cdots, p$ and $j=1,2, \cdots$. Then, $h_{i j} \equiv$ const for any j if $r+1$ $\leqq i \leqq p$. Moreover, $h_{i j_{1}} / h_{i j_{2}} \not \equiv$ const if $1 \leqq i \leqq r$ and $j_{1}<j_{2}$. For, if not, $g_{i} \circ \gamma^{j_{2}-j_{1}} / g_{i} \equiv$ const, which contradicts the above condition (β). Divide the i-th row of (16) by g_{i}. We have then

$$
\operatorname{det}\left(\left(\varphi_{i} \circ \gamma^{j-1}\right) h_{i j} ; i=1,2, \cdots, p, j=j_{1}, \cdots, j_{p}\right) \equiv 0
$$

for any j_{1}, \cdots, j_{p}.
We now assume that the conclusion of Lemma 6.2 is false, namely, $\varphi_{i_{1}}, \cdots, \varphi_{i_{m}}$ are linearly independent whenever

$$
g_{i_{1}} \widetilde{r} g_{i_{2}} \widetilde{r} \cdots \underset{r}{\sim} g_{i_{m}}
$$

Give a positive integer j arbitrarily and define

$$
j_{r+1}^{*}:=j, j_{r+2}^{*}:=2 j, \cdots, j_{p}^{*}:=(p-r) j
$$

And, apply Lemma 5.7 to $\gamma^{j}, \varphi_{i} \circ \gamma^{j}$ and $g_{i} \circ \gamma^{j}(r+1 \leqq i \leqq p)$ instead of γ, φ_{i} and g_{i} respectively. As its consequence, we see

$$
\operatorname{det}\left(\left(\varphi_{i} \circ \gamma^{k j}\right)\left(g_{i} \circ \gamma^{k j}\right) ; i=r+1, \cdots, p, k=1, \cdots, p-r\right) \not \equiv 0
$$

whence

$$
\operatorname{det}\left(\left(\varphi_{i} \circ \gamma^{j-1}\right) h_{i j} ; i=r+1, \cdots, p, j=j_{r+1}^{*}, \cdots, j_{p}^{*}\right) \not \equiv 0
$$

This shows that a matrix $\mathscr{M}=\left(\left(\varphi_{i} \circ \gamma^{j-1}\right) h_{i j}\right)$ satisfies all assumptions of Lemma 3.2. We can conclude

$$
\operatorname{det}\left(\left(\varphi_{i} \circ \gamma^{j-1}\right)\left(g_{i} \circ \gamma^{j-1}\right) ; i=1,2, \cdots, r, j=j_{1}, \cdots, j_{r}\right) \equiv 0
$$

for any j_{1}, \cdots, j_{r}. On the other hand, by the assumption the conclusion of Lemma 5.7 does not occur. This is a contradiction. We have thus Lemma 6.2.

Proof of Theorem 6.1. According to (15), we have

$$
\left(\varphi_{1} \circ \gamma^{j-1}\right)\left(g_{1} \circ \gamma^{j-1}\right)+\cdots+\left(\varphi_{p} \circ \gamma^{j-1}\right)\left(g_{p} \circ \gamma^{j-1}\right) \equiv 0
$$

for any $j=1,2, \cdots$. Therefore,

$$
\operatorname{det}\left(\left(\varphi_{i} \circ \gamma^{j-1}\right)\left(g_{i} \circ \gamma^{j-1}\right) ; i=1, \cdots, p, j=j_{1}, \cdots, j_{p}\right) \equiv 0
$$

for any j_{1}, \cdots, j_{p}. If $p=2$, the desired conclusion is a direct result of Lemma 6.2. Now, suppose that Theorem 6.1 is true in the case $\leqq p-1$ and false in the case p. Changing indices, we may assume

$$
g_{r+1} \sim_{\gamma} g_{r+2} \sim_{\gamma} \cdots \sim_{\gamma} g_{p}{\underset{\gamma}{r}}_{\sim}^{g_{1}}
$$

and $\varphi_{r+1}, \cdots, \varphi_{p}$ are linearly dependent over \boldsymbol{C} by the help of Lemma 6.2, where $1 \leqq r<p$. Replacing $g_{i} g_{p}^{-1}$ by g_{i} and γ^{j} by γ for a suitable positive integer j, each g_{i} with $r+1 \leqq i \leqq p$ may be assumed to be γ-invariant. Moreover, we may write

$$
\varphi_{p}=c_{r+1} \varphi_{r+1}+\cdots+c_{p-1} \varphi_{p-1}
$$

with some constants c_{r+1}, \cdots, c_{p-1}. Define

$$
\begin{array}{ll}
\tilde{g}_{i}:=g_{i} & (1 \leqq i \leqq r) \\
\tilde{g}_{i}:=g_{i}+c_{i} g_{p} & (r+1 \leqq i \leqq p-1)
\end{array}
$$

Then, $\tilde{g}_{r+1}, \cdots, \tilde{g}_{p-1}$ are γ-invariant and (15) is rewritten as

$$
\sum_{i=1}^{p-1} \varphi_{i} \tilde{g}_{i}=0
$$

Take a subset I of $\{1,2, \cdots, p-1\}$ which is minimal among subsets with the property that $1 \in I$ and

$$
\begin{equation*}
\sum_{i \in I} \varphi_{i} \tilde{g}_{i} \equiv 0 \tag{17}
\end{equation*}
$$

By the assumption, $I \nsubseteq\{1,2, \cdots, r\}$ and so I contains some i_{0} in $\{r+1, \cdots$, $p-1\}$. Since $\# I \leqq p-1$, we can conclude form (17)

$$
g_{1} \widetilde{r}^{\sim} g_{i_{0}} \underset{r}{\sim} g_{r+1} \widetilde{r} \cdots \overbrace{r} g_{p}
$$

by the induction hypothesis. This is a contradiction. Theorem 6.1 is true in the case p too. Consequently, we have Theorem 6.1.

Corollary 6.3. Let $\varphi_{1}, \cdots, \varphi_{p}$ be non-zero functions in Φ and g_{1}, \cdots, g_{p} non-zero meromorphic functions on C^{n} with $\nu_{g_{i}} \circ \gamma=\nu_{g_{i}}$ satisfying

$$
\varphi_{1} g_{1}+\varphi_{2} g_{2}+\cdots+\varphi_{p} g_{p} \equiv 0
$$

Then, there exists a partition of indices

$$
\{1,2, \cdots, p\}=I_{1} \cup I_{2} \cup \cdots \cup I_{a}
$$

such that, for any α,

$$
\sum_{i \in I_{\alpha}} \varphi_{i} g_{i} \equiv 0
$$

and $g_{i} \underset{\gamma}{ } g_{i^{\prime}}$ if $i, i^{\prime} \in I_{\alpha}$.
Proof. It suffices to take a partition

$$
\{1,2, \cdots, p\}=I_{1} \cup \cdots \cup I_{a}
$$

such that, for any $\alpha, \sum_{i \in I_{\alpha}} \varphi_{i} g_{i} \equiv 0$ and $\sum_{i \in I_{\alpha}^{\prime}} \varphi_{i} g_{i} \not \equiv 0$ whenever $I_{\alpha}^{\prime} \sqsubseteq I_{\alpha}$. By Theorem 6.1, we see easily $g_{i} \underset{\gamma}{ } g_{i^{\prime}}$ for any $i, i^{\prime} \in I_{\alpha}$.

§ 7. Generalizations of Urabe-Yang's results

In this section, we restrict ourselves to the study of meromorphic functions on C. As in $\S \S 2$ and 3 we denote by Φ_{0} the set of all meromorphic functions of order less than one. We consider a biholomorphic functions of order less than one. We consider a biholomorphic map $\gamma_{\omega}: C \rightarrow C$ defined by $\gamma_{\omega}(z)=z+\omega$ for a constant $\omega \in C^{*}$.

We first give the following generalization of a result in [12].
Let us consider meromorphic functions

$$
\begin{align*}
& F:=\varphi_{0}+\sum_{i=1}^{p} \varphi_{i} f_{i} \tag{18}\\
& G:=\psi_{0}+\sum_{j=1}^{q} \psi_{j} g_{j}
\end{align*}
$$

satisfying the conditions:
(i) $\varphi_{0}, \varphi_{1}, \cdots, \varphi_{p}, \psi_{0}, \psi_{1}, \cdots, \psi_{q} \in \Phi_{0}$ and $f_{1}, \cdots, f_{p}, g_{1}, \cdots, g_{q}$ are nonzero holomorphic functions on C such that $f_{i} \circ \gamma_{\omega_{1}}=f_{i}$ and $g_{j} \circ \gamma_{\omega_{2}}=g_{j}$ for some $\omega_{1}, \omega_{2} \in C^{*}$,
(ii) (18) are both reduced representations when they are regarded as meromorphic functions of $\left(\gamma_{\omega_{1}}, \Phi_{0}\right)$ - and $\left(\gamma_{\omega_{2}}, \Phi_{0}\right)$-semi-invariant type respectively,
(iii) ψ_{0} does not belong to the set $\left\{\varphi_{i}, \psi_{1}, \cdots, \psi_{q}\right\}_{C}$ of all linear combinations of $\varphi_{i}, \psi_{1}, \cdots, \psi_{q}$ with constant coefficients for any $i=1,2, \cdots, p$,
(iv) $\min \left\{\nu_{\varphi_{0}}, \nu_{\varphi_{1}}, \cdots, \nu_{\varphi_{p}}\right\}=\min \left\{\nu_{\psi_{0}}, \nu_{\psi_{1}}, \cdots, \nu_{\psi_{q}}\right\}$.

Theorem 7.1. If $\nu_{F}-\nu_{G}$ is of order less than one, then ω_{1} / ω_{2} is a rational number and $F(z)=c G(z)$ for some $c \in C^{*}$.

Remark. In the special case where $p=q=1$ and $\psi_{1}=\varphi_{1}=1$, Theorem 7.1 is Theorem 1 in [12].

For the proof of Theorem 7.1, we need
Lemma 7.2. Let $\varphi_{1}, \cdots, \varphi_{p}, \psi_{1}, \cdots, \psi_{q} \in \Phi_{0}$ and $f_{1}, \cdots, f_{p}, g_{1}, \cdots, g_{q}$ be holomorphic functions on C such that $f_{i} \circ \gamma_{\omega_{1}}=f_{i}$ and $g_{j} \circ \gamma_{\omega_{2}}=g_{j}$ for some $\omega_{1}, \omega_{2} \in C^{*}$. If

$$
\sum_{i=1}^{p} \varphi_{i} f_{i}=\sum_{j=1}^{q} \psi_{j} g_{j}=: F(z)
$$

and $F(z)$ is not of order less than one, then ω_{1} / ω_{2} is a rational number.
Proof. It may be assumed that $\sum_{i=1}^{p} \varphi_{i} f_{i}$ and $\sum_{j=1}^{q} \psi_{j} g_{j}$ are both reduced representations of $F(z)$ when they are regarded as meromorphic functions of ($\gamma_{\omega_{1}}, \Phi_{0}$)- and ($\gamma_{\omega_{2}}, \Phi_{0}$)-semi-invariant type.

We first study the case $q=1$. Without loss of generality, we may assume $\psi_{1} \equiv 1$ and so $F \circ \gamma_{\omega_{2}}=F$. We have then

$$
\begin{equation*}
\sum_{i=1}^{p}\left(\varphi_{i} \circ \gamma_{\omega_{2}}\right)\left(f_{i} \circ \gamma_{\omega_{2}}\right)=\sum_{i=1}^{p} \varphi_{i} f_{i} . \tag{19}
\end{equation*}
$$

We note that f_{i} and $f_{i} \circ \gamma_{\omega_{2}}$ are $\gamma_{\omega_{1}}$-invariant. We can regard both sides of (19) as reduced representations of a meromorphic function of ($\gamma_{\omega_{1}}, \Phi_{0}$)-semi-invariant type. By the help of Theorem 5.6, (iii), we can find a regular matrix $C=\left(c_{i j}\right)$ such that

$$
\begin{align*}
& \varphi_{i}\left(z+\omega_{2}\right)=\sum_{j=1}^{p} c_{i j} \varphi_{j}(z) \tag{20}\\
& f_{j}(z)=\sum_{i=1}^{p} c_{i j} f_{i}\left(z+\omega_{2}\right)
\end{align*}
$$

Then, by the classical theorem of Jordan, if we take a regular linear transformation

$$
\tilde{\varphi}_{k}=\sum_{\ell=1}^{p} r_{k c} \varphi_{\ell}
$$

suitably, (20) is reduced to the relations

$$
\tilde{\varphi}_{i}\left(z+\omega_{2}\right)=\sum_{j=1}^{p} d_{i j} \tilde{\varphi}_{j}
$$

such that $\lambda_{i}:=d_{i i} \neq 0, \varepsilon_{i}:=d_{i t+1}$ is equal either to 0 or to 1 , and $d_{i j}=0$ if $i \geqq j+1$ or $j>i+1$, where $\lambda_{i}=\lambda_{i+1}$ if $\varepsilon_{i}=1$. Particularly, we see $\tilde{\varphi}_{p}\left(z+\omega_{2}\right)=\lambda_{p} \tilde{\varphi}_{p}$. As is shown in Example 5.2, 2°, it follows that $\tilde{\varphi}_{p} \equiv$ const and $\lambda_{p}=1$. If $\varepsilon_{i}=0$ for some $i(1 \leqq i \leqq p-1)$, we see also $\tilde{\varphi}_{i}\left(z+\omega_{2}\right)=$ $\lambda_{i} \tilde{\varphi}_{i}(z)$ and hence $\tilde{\varphi}_{i} \equiv$ const. This is a contradiction because $\tilde{\varphi}_{1}, \cdots, \tilde{\varphi}_{p}$ are linearly independent. Therefore, $\varepsilon_{1}=\cdots=\varepsilon_{p-1}=1$ and so $\lambda_{1}=\lambda_{2}=\cdots$ $=\lambda_{p}=1$. Define

$$
\ell(z)=\sum_{k=1}^{p} r_{k e} f_{k}(z)
$$

Then,

$$
\tilde{f}_{j}(z)=\sum_{i=1}^{p} d_{i j} \tilde{f}_{i}\left(z+\omega_{2}\right) .
$$

In particular, $\tilde{f}_{1}(z)=\tilde{f}_{1}\left(z+\omega_{2}\right)$ and $\tilde{f}_{2}(z)=\tilde{f}_{2}\left(z+\omega_{2}\right)+\tilde{f}_{1}\left(z+\omega_{2}\right)$. Now, assume that ω_{1} / ω_{2} is not a rational number. Since $\tilde{f}_{1}(z)$ is a periodic holomorphic function with period ω_{1} and simultaneously ω_{2}, it must be a constant. Then,

$$
\tilde{f}_{2}^{\prime}(z)=\tilde{f}_{2}^{\prime}\left(z+\omega_{2}\right) .
$$

\tilde{f}_{2}^{\prime} is also periodic with period ω_{1} and ω_{2}. Hence, $\tilde{f}_{2}^{\prime}(z) \equiv$ const $=: c$. We can write

$$
\tilde{f}_{2}(z)=c z+d
$$

where $d \in C$. On the other hand, $\tilde{f}_{2}\left(z+\omega_{1}\right)=\tilde{f}_{2}(z)$. We conclude $c=0$ and so $\tilde{f}_{2}(z) \equiv$ const. This is absurd because f_{1}, \cdots, f_{p} are linearly independent. Consequently, ω_{1} / ω_{2} is a rational number.

Now, we shall prove Lemma 7.2 in the general case. By the assumption,

$$
\sum_{i=1}^{p} \varphi_{i}\left(z+k \omega_{2}\right) f_{i}\left(z+k \omega_{2}\right)=\sum_{j=1}^{q} \psi_{j}\left(z+k \omega_{2}\right) g_{j}(z)
$$

for any $k=0,1,2, \cdots$. Since $\psi_{1}, \cdots, \psi_{q}$ are assumed to be linearly independent, we have

$$
\operatorname{det}\left(\psi_{j}\left(z+(k-1) \omega_{2}\right) ; 1 \leqq j, k \leqq q\right) \not \equiv 0
$$

as a result of Lemma 5.7. Choosing $\chi_{i k}^{j} \in \Phi_{0}$ suitably, we get

$$
g_{j}(z)=\sum_{i k} \chi_{i k}^{j}(z) f_{i}\left(z+(k-1) \omega_{2}\right) .
$$

Since $g_{j}(z)$ and $f_{i}\left(z+(k-1) \omega_{2}\right)$ are periodic with period ω_{2} and ω_{1} respectively, by applying Lemma 7.2 with $q=1$, we conclude that ω_{1} / ω_{2} is a rational number.

Proof of Theorem 7.1. By the assumption, we can write

$$
\begin{equation*}
F(z)=h(z) \varphi(z) G(z) \tag{21}
\end{equation*}
$$

with $h \in \boldsymbol{H}^{*}$ and $\varphi \in \Phi_{0}$. Substituting $z+k \omega_{1}$ for z in this identity, for each $k=0,1, \cdots, p$ we have

$$
\begin{aligned}
\varphi_{0}(z & \left.+k \omega_{1}\right)+\sum_{i=1}^{p} \varphi_{i}\left(z+k \omega_{1}\right) f_{i}(z) \\
& =h\left(z+k \omega_{1}\right) \varphi\left(z+k \omega_{1}\right)\left(\psi_{0}\left(z+k \omega_{1}\right)+\sum_{j=1}^{q} \psi_{j}\left(z+k \omega_{1}\right) g_{j}\left(z+k \omega_{1}\right)\right)
\end{aligned}
$$

both sides of which we denote by $\chi_{k}(z)$. Eliminating f_{1}, \cdots, f_{p}, we obtain

$$
\begin{aligned}
\Phi(z): & =\operatorname{det}\left(\varphi_{0}\left(z+k \omega_{1}\right), \varphi_{1}\left(z+k \omega_{1}\right), \cdots, \varphi_{p}\left(z+k \omega_{1}\right) ; 0 \leqq k \leqq p\right) \\
& =\operatorname{det}\left(\chi_{k}(z), \varphi_{1}\left(z+k \omega_{1}\right), \cdots, \varphi_{p}\left(z+k \omega_{1}\right) ; 0 \leqq k \leqq p\right),
\end{aligned}
$$

the right side of which we may rewrite

$$
\Phi(z)=\sum_{0 \leq k \leq p, 0 \leq l \leq q} \tilde{\varphi}_{k l}(z) h\left(z+k \omega_{1}\right) g_{\ell}\left(z+k \omega_{1}\right)
$$

where $g_{0} \equiv 1$ and $\tilde{\varphi}_{k \ell} \in \Phi_{0} . \quad$ Since $\varphi_{0}, \varphi_{1}, \cdots, \varphi_{p}$ are linearly independent, $\Phi(z)$ $\not \equiv 0$ by Lemma 5.7. Then, as is easily seen by Corollary 6.3, we can find some k_{0} and ℓ_{0} such that $1 \underset{\gamma_{\omega_{2}}}{\sim} h\left(z+k_{0} \omega_{1}\right) g_{\ell_{0}}\left(z+k_{0} \omega_{1}\right)$, and so $h(z+$ $\left.k_{0} \omega_{1}\right) g_{\ell_{0}}\left(z+k_{0} \omega_{1}\right)$ is periodic with period $j_{0} \omega_{2}$ for a positive integer j_{0}. Therefore, $h(z)$ itself is periodic with period $j_{0} \omega_{2}$. In view of (21) and Lemma
7.2, we can conclude that ω_{1} / ω_{2} is a rational number. Then, f_{i}, g_{j} and h are all periodic with period $\omega:=k_{1} \omega_{1}=k_{2} \omega_{2}$ for some non-zero integers k_{1}, k_{2}. We may regard both sides of the identity

$$
\varphi_{0}+\sum_{i=1}^{p} \varphi_{i} f_{i}=\varphi \psi_{0} h+\sum_{j=1}^{q} \varphi \psi_{j} h g_{j}
$$

as two reduced representations of a meromorphic function $F(z)$ of ($\gamma_{\omega}, \Phi_{0}$)-semi-invariant type. According to Theorem 5.6, (iii), $p=q$ and there is a regular matrix $C=\left(c_{i j}\right)$ such that

$$
\begin{array}{cc}
\varphi_{i}=\sum_{j=0}^{p} c_{i j} \varphi \psi_{j} & (0 \leqq i \leqq p) \\
g_{j} h=\sum_{i=0}^{p} c_{i j} f_{i} & (0 \leqq j \leqq p) \tag{23}
\end{array}
$$

where $f_{0} \equiv g_{0} \equiv 1$.
We now take a function $\chi \in \Phi_{0}$ such that

$$
\nu_{x}=\min \left(\nu_{\varphi_{0}}, \cdots, \nu_{\varphi_{p}}\right)=\min \left(\nu_{\psi_{0}}, \cdots, \nu_{\psi_{q}}\right)
$$

by the use of (2.7). Changing $\chi \varphi_{i}$ and $\chi \psi_{j}$ by φ_{i} and ψ_{j} respectively, we may assume that $\varphi_{0}, \cdots, \varphi_{p}, \psi_{0}, \cdots, \psi_{q}$ are all holomorphic and

$$
\begin{equation*}
\left\{\varphi_{0}=\cdots=\varphi_{p}=0\right\}=\left\{\psi_{0}=\cdots=\psi_{q}=0\right\}=\phi \tag{24}
\end{equation*}
$$

We next write $\varphi=\beta / \alpha$ with holomorphic functions $\alpha, \beta \in \Phi_{0}$ which have no common zero. Then, (22) becomes

$$
\alpha \varphi_{i}=\sum_{j} c_{i j} \beta \psi_{j}
$$

If $\beta \not \equiv$ const, β has a zero $z_{0} \in C$ because of (2.7). Then, $\alpha\left(z_{0}\right) \varphi_{i}\left(z_{0}\right)=0$ for any i and so $\alpha\left(z_{0}\right)=0$ by (24), which is absurd. We conclude $\beta \equiv$ const. Similarly, we see $\alpha \equiv$ const. We may assume $\varphi \equiv 1$. In (22), if $c_{i 0} \neq 0$ for some i with $1 \leqq i \leqq p$, then $\psi_{0} \in\left\{\varphi_{i}, \psi_{1}, \cdots, \psi_{p}\right\}_{c}$ which contradicts the assumption (iii). So, $c_{i 0}=0$ for $i=1,2, \cdots, p$. We conclude from (23)

$$
h=g_{0} h=c_{00} \equiv \text { const } .
$$

This shows Theorem 7.1.
Let us consider two entire functions

$$
\begin{aligned}
& F=\sum_{i=1}^{p} \varphi_{i} f_{i} \\
& G=\sum_{j=1}^{q} \psi_{j} g_{j}
\end{aligned}
$$

where $\varphi_{1}, \cdots, \varphi_{p}, \psi_{1}, \cdots, \psi_{q}$ are entire functions of order less than one, and f_{1}, \cdots, f_{p} and g_{1}, \cdots, g_{q} are periodic entire functions with period ω_{1} and ω_{2} respectively.

Corollary 7.3. Assume that $\left\{z, \varphi_{1}, \cdots, \varphi_{p}\right\},\left\{z, \psi_{1}, \cdots, \psi_{q}\right\},\left\{1, f_{1}, \cdots, f_{p}\right\}$ and $\left\{1, g_{1}, \cdots, g_{q}\right\}$ are all linearly independent, and $z \notin\left\{\varphi_{i}, \psi_{1}, \cdots, \psi_{q}\right\}_{c}, z \notin$ $\left\{\psi_{j}, \varphi_{1}, \cdots, \varphi_{p}\right\}_{C}$ for any i, j. If the sets of all fixed points of $F(z)$ and $G(z)$ coincide with each other except a divisor of order less than one, then ω_{1} / ω_{2} is a rational number and $F(z)=G(z)$.

Proof. Define $\tilde{F}(z)=z-F(z)$ and $\tilde{G}(z)=z-G(z)$. If we set $\varphi_{0}(z)=$ $\psi_{0}(z)=z$, they satisfy obviously the conditions (i) ~ (iii). Moreover, (iv) is also satisfied. Because, if φ is a non-constant entire function of order less than one such that $\nu_{z} \geqq \nu_{\varphi}$, then we have necessarily $\varphi(z)=c z$ for some $c \in C^{*}$. On the other hand, the assumption implies that $\nu_{\mathscr{F}}-\nu_{\tilde{G}}$ is of order less than one. Therefore, by Theorem 7.1, ω_{1} / ω_{2} is a rational number and there is a constant c such that

$$
z-\sum_{i=1}^{p} \varphi_{i} f_{j}=c\left(z-\sum_{j=1}^{q} \psi_{i} g_{j}\right)
$$

so that

$$
(c-1) z+\sum_{i=1}^{p} \varphi_{i} f_{i}=c\left(\sum_{j=1}^{q} \psi_{j} g_{j}\right) .
$$

Both sides are regarded as reduced representations of a meromorphic function of ($\gamma_{\omega}, \Phi_{0}$)-semi-invariant type for some $\omega \in C^{*}$, By Theorem 5.6, we have easily $c=1$. This gives Corollary 7.3.

References

[1] E. Borel, Sur les zéros des fonctions entières, Acta Math., 20 (1897), 357-396.
[2] H. Fujimoto, On families of meromorphic maps into the complex projective space, Nagoya Math. J., 54 (1974), 21-51.
[3] -, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., 58 (1975), 1-23.
[4] , A uniqueness theorem of algebraically non-degenerate meromorphic maps into $P^{N}(C)$, Nagoya Math. J., 64 (1976), 117-147.
[5] -, Remarks to the uniqueness problem of meromorphic maps into $P^{N}(C), ~ I, ~ I I, ~$ Nagoya Math. J., 71 (1978), 13-41.
[6] , Remarks to the uniqueness problem of meromorphic maps into $P^{N}(C)$, III, Nagoya Math. J., 75 (1979), 71-85.
[7] M. L. Green, Holomorphic maps into the complex projective space omitting hyperplanes, Trans. AMS., 169 (1972), 89-103.
[8] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris (1929).
[9] W. Stoll, Ganze Funktionen endlicher Ordnung mit gegebenen Nullstellenfächen, Math. Z., 57 (1953), 211-237.
[10] - Normal families of non-negative divisors, Math. Z., 84 (1964), 154-218.
[11] H. Urabe and C. Yang, On the zeros of an entire function which is periodic mod a non-constant entire function of order less than one, Proc. Japan Acad. Ser. A. 54 (1978), 142-144.
[12] - On a characteristic property of periodic entire functions, Kodai Math. J., 3 (1979), 253-286.

Nagoya University

