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REMARKS TO THE UNIQUENESS PROBLEM OF
MEROMORPHIC MAPS INTO P*(C), IV

HIROTAKA FUJIMOTO

§1. Introduction

Let H, H,, - - -, Hy,, be hyperplanes in P¥(C) located in general po-
sition and v, v, - - -, vy,, divisors on C*. We consider the set % (H,,v,) of
all non-degenerate meromorphic maps of C" into P¥(C) such that the pull-
backs u(f, H;) of the divisors (H,) on P*(C) by f are equal to v, for any
i=12 -..,N+ 2. In the previous paper [6], the author showed that &#
1= #(H,v,) cannot contain more than N + 1 algebraically independent
maps. Relating to this, the following theorem will be proved.

THEOREM. The set & is finite.

We give here an example which shows that the number #%# of elements
in & is not less than (N 4+ 1)!. Take N 4 1 nowhere zero entire functions
hy -+, hy,, such that h,/h, = const if i &= j, and define

Fi=h+h+ -+ hy,.
We consider hyperplanes
(1) H :w=0 1I<igN+1
Hy. b w,+w,+ -+ + Wy, =0
in P¥(C) and divisors
w=0 @I<i<N+1)

Unses = Vp

on C", where w,: w,: ---: wy,, are homogeneous coordinates on P¥(C) and
vp denotes the divisor defined by the zero-multiplicity of F. Then, &#: =
F(H,,v,) contains

o =ho: hoy? -+t Boany
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for any permutation ¢ = (o(i)o(g) o(JXI_:— 11)) Therefore, % > (N + 1)\
It is an interesting problem to ask if #% is bounded from above by
a constant depending only on N. But, the author cannot yet reply to it.
As an application of the above theorem, we shall show the following:
Let f: C*— P¥(C) be a non-degenerate meromorphic map and y: C*
— C™ a biholomorphic map. If u(f, H,)(y(2)) = v(f, H)(2) for N -+ 2 hyper-
planes H, (1 < i < N + 2) in general position, then there exists some positive
integer j, such that foy’* = f, where y* = yoyo ... oy (j,-times).
Here, we cannot always take j, = 1. Consider a holomorphic map

f(z): — esin (z/(N+1)): esln ((z+21r)/(N+1)): - esin ((z+2N=)/(N+1))

of C into P¥(C) and a biholomorphic map y: C — C defined by y(2) = z +
2n(ze C). For hyperplanes H, (1 < i < N + 2) defined by (1), we see

W, H)¢(@) = u(f,H)z) (1=<i<N-+2),

but f(z + 2z) + f(2z). In this case, we have to take j, = N -+ 1.

In the proof of the above theorem, the classical theorem of E. Borel
([1]D) plays an essential role. We can generalize it to the case that mero-
morphic functions of order less than one are taken as coefficients. By
the similar arguments as in the proof of the above theorem, we shall give
some results on relations between meromorphic functions of order less
than one and meromorphic functions with y-invariant zeros and poles for
a biholomorphic map y: C* — C” One of them includes the following
result as a special case.

THEOREM. Let ¢, ---, ¢, be meromorphic functions on C of order less
than one and g, - - -, &, meromorphic functions on C with v, (z + @) = v, (2)
for a non-zero constant w. If 32, 90,8, =0 and >;c; ¢.8: # O for any proper
subset I of {1,2, ---,p}, then there exists some positive integer j, such that
h|h,, is a periodic function with period jw for any i, and i,

By applying this, we shall generalize a recent result by Urabe-Yang
in [11] and [12] which motivated the studies in this paper.

§2. Preliminaries

Let ¢(2) be a non-zero holomorphic function on a domain D in C”".
For each point a¢ = (a,, - - -, @,) € D, we expand ¢ as a convergent series
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¢(al + Upy *+ 5 Oy + un) = Z:FOPm(ul, Sty un)

on a neighborhood of a, where P,, is a homogeneous polynomial of degree
m or P, =0. We define

D¢(a): = min {m; Pm(ul, Cr 0y un) $ O}‘

In case that ¢ is meromorphic, taking non-zero holomorphic functions ¢,
and ¢, in a neighborhood of a such that ¢ = ¢,/p, and

codim {p, = ¢, = 0} = 2,

we define v = v,,, vy =v,, and vy, =y, — v, which are determined inde-
pendently of the choices of ¢, and ¢,. By definition, a divisor on D is an
integer-valued function on D such that for any point @ € D there is a non-
zero meromorphic function ¢ with v =, on a neighborhood of a and the
carrier of v is an analytic set

lv|: = {ze D; v(z) + 0} N D.

DerFINITION 2.1. Let v be a divisor on C*. Take a positive constant
s arbitrarily. We define the counting function of v by

—Lfri _ u(2),_4(2) r>s)ifn>1
W Js £271 JpinB®w
Nr,v): =+
jl(z v(z))dt r>sifn=1,
s ¢ \izlst
where
v = Vgl(dzl Adz + - +dz, A dz,)
Upoyt = —GL—"{—].WUI AN - Ay ((n — 1)-times)
n-1
|| —
(n —1)!

B@#t): ={z= (2, -+, z)5l12IF = |&f + -+ + 2] <}

and the integral over |v|N B(f) means that the integral over the manifold
consisting of all regular points of |v|N B(?) .

DEerFiNITION 2.2. Let ¢ be a non-zero meromorphic function on C™.
The order function of ¢ is defined by
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T(r,): = N(r,v3) + log*|¢(?)]0.(2) (r>s),

0
o(r) Jsmn
where log* x = max (log x, 0), &(r) = 2z"/(n — ))r**-*, S(r): = {z; ||z|| = r}
and o, denotes the area element of S(r). In case ¢ = 0, we define T'(r, ¢)
= 0. The order of ¢ is defined by

P(SD): = lim sup 10g+—11(r’90)_(§ 4 00).
oo logr

As in the case of meromorphic functions on C, we can prove
(2.3) If ¢ is holomorphic, then

log* log* M(r, ¢)
logr ’

o(p) = lim sup

where
M(r, ¢): = max {|o(2)|; |zl = r}.
For the proof, see W. Stoll [9].

(2.4) Let ¢, and ¢, be non-zero meromorphic functions on C" of order
less than a positive number p. Then, ¢, + @5, 0, — ¢s, 010, and @4/, are also
of order less than p.

In fact, we can find some positive constants M and p, with 0 < p, < p
such that T'(r, p) < Mr> (i = 1, 2) for sufficiently large r. Putting : =
¢ + ¢, Or o0, we have easily

T(r,v) < T(r, ) + T(r, ) + OQ1) < 2Mr* + OQ1)
and so o(y) < o, < p.

DerFinITION 2.5. Let v be a divisor on C*. We define the order of v
by

o(): = lim sup 108" M)
7o logr

Take a pure (n — 1)-dimensional analytic set in C*. We can define a divisor
v, on C" such that |v,| =V and v,(2) =1 for any regular point z of V.
We call the order of v, the order of V.

(2.6) Let ¢ be a non-constant meromorphic function on C*. Then, for
any acC

N(r,v;-0) < T(r, 9) + OQ1).
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For the proof, see H. Fujimoto [2], pp. 34-35.

(2.7) For a divisor v on C" there exists a meromorphic function ¢ on C"
such that v, = v and p(p) < p(v).

For the proof, see W. Stoll [9].

(2.8) Let ¢ be a holomorphic function on C* and v = (0,, -+, ®,) €C"
— {0}. We define a holomorphic function ¢, on C by ¢,(2): = ¢p(2w), where
20 = (20, - - -, 20,). Then, p(p.) < o(p).

This is an immediate consequence of (2.3), because
M, ¢.,) = max lp(z)| < M|, ¢) -

(2.9) If h(2) is a nowhere zero non-constant holomorphic function on
C*, then p(h) = 1.

This is well-known for the case n=1 (cf, [8]). Let n > 2. We can
take a point w € C" — {0} such that h,(2): = h(zw) = const. By (2.8), we see

o) = p(h) = 1.

We denote the set of all nowhere zero holomorphic functions on C*®
by H* and the set of all meromorphic functions of order less than one by
@,. And, for h, W ¢ H*, we mean by h ~ A’ and h < h' that h/h’ = const
and h/h’ %= const respectively.

Now, we give a generalization of the classical theorem of E. Borel.

TaEOREM 2.10. Let hy, ---,h,e H* and ¢, ---,0,€D,. If h; % h, for
any i,j with i + j and
(2) solhl +¢2h2+ e +S0php50’
then
o=@ =---=¢,=0.

Proof. This is a well-known fact if n = 1 (c.f., for example, [7], p. 100).
Let us consider the case n = 2. To prove Theorem 2.10 by induction on
D, it suffices to show that at least one ¢, vanishes. Assume that ¢, %= 0
for any i. For a point v € C* — {0}, we define (¢,).(2): = ¢(20) and (h,).(2)
:= h(z0). We see easily

L;:J {(D; (Sot)mEO} UKLJJ {(D; gz;‘” = Z:Eg;} cCcr— {0} .
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Therefore, we can find some we C"” — {0} such that (p,), 20 1 i< p)
and (h,),/(h,), % const (1 < i <j < p). The assumption (2) gives the identity

(Spl)w(hl)a + -+ (gﬂp),(hp ,=0.

This contradicts Theorem 2.10 for the case n = 1. We have thus the desired
result.

CoroLrARY 2.11. Let hy, ---,h,ec H* and assume that
hihg - - - hi? = const

for any non-zero vector (4,, £, - - -, £,) of integers. If finitely many ¢,,...,, € D,
satisfy '

4 4y —
Z ¢£1---lghll et hpp =0 s
(81522-48p)

then ¢,,...,, = 0 for any (¢, ---, £,).
Proof. Since hf* -.- hi»e H* and
hi... h§p74h{ﬂ1... hztp

whenever (¢, ---, ¢,) #+ (m,, ---, m,), Corollary 2.11 is a direct result of
Theorem 2.10.

COROLLARY 2.12. Let hy, ---,h,€ H* and ¢,, - - -, ¢, € D, satisfy the con-
dition that ¢, = 0 and

§01h1 +(/’zh2+ +§0php =0.
Consider the partition of indices
{1’23'°"p}=11 ULU"'UIa

such that, for any ic I, and i’'e I, h, ~-h. if a« = o/, and h; % h, if a + .
Then, for any «,

>, ph,=0.

i€lq

Proof. Taking an index i, ¢ I, for each «, we define
Vot = Z @ihalh,
i€ln

Then, v, € Dy, Ay, # by, if @ o/, and 3, ¥ .5, = 0. By Theorem 2.10, we
have ¢, = .-+ = ¢, = 0. This gives Corollary 2.12.
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§ 3. Basic lemmas

Take h,, € H* and ¢,; € @, with ¢,; % 0, where i =1,2, ---,p and j =
1,2,.... Defining f,;: = ¢, h;;, we consider a matrix

.//::(f,,;i:l,2, "'9p,j= 1’2, "')
with p rows and countably many columns.

Lemma 3.1. If we perform the operations (a) changing the order of the
indices i = 1,2, - - -, p, (b) replacing a suitable subsequence of the indices
jsbyj=12,-..- and (c) multiplying each row and each column by a com-
mon element of H*, then M = {f,;: = ¢,;h,;} may be assumed to satisfy the
conditions;

(1) Ay, # hy, if LS i1 and j, # s,

(ii) h;, = const forany jifr+1<i<p,
where 0 < r < p and r = 0 means that h,; = const for any i, j.

Proof. Dividing h;; 1 <i<p) by h,;, we may assume h,, =1 for
each j. We consider the smallest integer r such that, after performing the
operations (a) ~ (c), the condition (ii) is satisfied, where we may assume
0<r<p. Then, for any i=1,2,.--.,rand j=1,2, ..., there are only
finitely many j* such that A,, ~ h,;,. Because, if not, we have some i, with
1<i,<r and j, such that h,, ~ h,, for infinitely many j. After per-
forming suitable operations (a) ~ (c), we may assume k., = const, which
contradicts the property of r. We can choose indices j,, j,, --- such that
jeei<Jj.and, for any i = 1,2, ---, 1,

hih ol hijn hi/; Yad htm sy hu, 7> hm_, .

If we replace the indices j = j,j,, --- by j=1,2, -.., we obtain the con-
clusion of Lemma 3.1.

LevMma 3.2. Assume that M4 = {f,;: = ¢,;h,;} satisfies the conclusion of
Lemma 3.1 and, furthermore, for any j,, -, jp»

(3) det (fi;;i=1,2,-+,0,] =JuJos - +Jp) =0.
If for any j there exist indices j¥.,, - - -, j¥ such that j < j¥, < --- < j* and
(4) det (fiysi=r+1--,p,j=j% - J) %0,
then
det (fisi=1,2,---,rj=Jujs--J) =0
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fOT any jl’ j27 st '7jr'

Proof. If r = 0, we have nothing to prove. Let r > 0. The set H*
can be regarded as a multiplicative group and includes C*: = C — {0} as a
subgroup. The factor group G: = H*/C* is a torsionfree abelian group.
We denote the class in G containing an element hc H* by [h]. We choose
finitely many or countably many elements 7, 7, ---, 7., --+- in H* such
that

(1) [nd, Ipd, -+, [y, - - - are linearly independent over Z and

(ii) each h,, can be represented as

1 2 T
(5) hig = copins -+ - g oo

where ¢;;€ C*, ¢;,€ Z and ¢;; = 0 except finitely many ¢ for each (i, j).
Define

'gi.l = (‘g;j, Z%j’ s ',g;j, tt ')-

By the assumption, ¢,,, # ¢,;, if 1 < i < r and j, # j,, and ¢,; = 0 for any
jJifr4+1<i<p.
Now, assume

(6) det(fij;léié"’]=jb,jr)$0
for some j,, ---,j, with j, < --- <j,. Then, we can prove

(8.3) There exist indices j, .y, +++,J, With j,., < --- < j, such that, for
any s=r+1,---,p,

A) rank(fi;i=r+1 - -,p,j =Jrp - i) =8—T,

B) by F bt o by — gy + -+ by,
whenever L<i<r and a;, - +,0,.4, Tty -+, e, €{1,2, -+ -, PL

To see this, we first choose j,,, with j, < j,,, such that

(fr-njr.na tt fpj,.H) -:F/_ (0’ Tty 0) .

Let j,.s -+, Js-1 be chosen so that j,,, < --- <j,., and they satisfy the
conditions (A) and (B). By m we denote the field of all meromorphic func-
tions on C”. If we set f; = (f,.y5 - -, fo) eM?™", then f, ., ---, f,,_, are
linearly independent over m. Therefore, there are at most s — r — 1 line-
arly independent elements g’s in m?-" such that

rank(j},“, "’hfjx-vg) =s—r— 1.
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On the other hand, for any j, there are indices j*.,, ---, jF with j < j*,

< .-+ < j¥ satisfying the condition (4). We can choose an index j, among
j;k+1: iy ];,k such that

rank (fir+1’ °c "fi,_p .fj,) =8—T7T.

Accordingly, there are infinitely many j,’s satisfying the condition (A).
Next, let us examine the condition (B). The set

{gnh + o+ g”t—-lf:—l - (eﬂjl + o+ gf:—-lj:—l);
1 é Oyy ** 3 05-15T1y *° 5 Tsa ép}

is finite. Since ¢,,, # 4, if 1 < i < r and j, + j,, there are only finitely
many j,’s such that

Zih = 501.71 + o + g":-—lfc—l - (gfljl + - + ZT:-—ljt—l)

for some ie{1,2,---,7} and oy, ---,0,.4, 74, -+, 7, €{1,2, .-+, p}. Con-
sequently, we can find infinitely many j,’s satisfying the conditions (A) and
(B). And, we have the desired indices j,,,, - - -, j, inductively.

Now we go back to the proof of Lemma 3.2. Let j,, - - -, j, satisfy the
conditions (6) and (A), (B) of (3.3). We denote by S, the symmetric group
of all permutations of p letters 1,2, ---,p and set

S;1>:={a=(12 --‘p); l_s_oi§rfori=1,2,---,r}

G0y * gp

SP:=8,—8P.
The assumption (3) may be rewritten

(7 > bkt 5 wh= 5 vk =0,

iy oE5P €8,

where, fora=<12 "'p)eSp,
010, ** + Oy

1"”0: = 8gn (0)§06111¢02.7'2 e go"ﬂ'l’ € @0
ha: = h h - h e H* .

01j1/%02j2 * ° apip

We shall show h, < h, whenever ¢ S{® and re€S®. On the contrary,
suppose h, ~ h, for some ¢ S’ and r e SP. By substituting (5) and ob-
serving the exponents, we get

Zl’l]'l + ttt + go‘pjp = gr1j1+ tte +‘efpjp .
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By definition, {s,.,, - - -, 0,} ={r+1,---,p}, and {r,,y, - - -, e, } #{r+1,-- -, D}
Choose index s with r +1 < s < psuch thatr,e{r+1,---,ptand z,,, - - -,
z,e{r+1,--.,p}. Since ¢,,=0foranyjandi=r+1,---,p,

ersj: = 'eﬂ‘ljl + -+ zo:—xjcq - (eujx + - F 41‘:-1]‘:-1) .

This contradicts the condition (B) of (3.3). We now apply Corollary (2.12)
to the indentity (7). From the above shown fact, we can conclude

2. Woh,=0.

aeS;l’

On the other hand,

=, Vb
aeSpl)
(3 s ) % ( Zy O o Fosy)
9\ o102+ 0y, = Ty 410070,

= det(fl/;i= 192, s, T jzjl’ ""jr)
X det(fij;i: r—+ 1’ ""p,j=jr+h "'sjp)-

This does not vanish because of (6) and the conclusion of (3.3). The proof
of Lemma 3.2 is completed.

LemMmA 3.4. As in Lemma 3.2, suppose that # = {f,;} satisfies the con-
dition (3). Then, after performing the operations (b) and (c) of Lemma 3.1,
we can find indices i, ---,i, with 1 <i, < ... < i, < p such that

h,; = const
fori=1, - -,i,and j=1,2,-.., and
det(fi;i =1y - slmJ =Ji- s Jn)=0
for any ji, s, <+ +5 jme

Proof. This is shown by induction on p. If p = 2, the conclusion is
trivial. Suppose that Lemma 3.4 is true for the case <p — 1. We may
assume that .# satisfies the conditions (i) and (ii) of Lemma 3.1. If the
assumption of Lemma 3.2 is satisfied, then we can apply the induction
hypothesis to functions f;, for i=1,2,-.-,r and j=1,2,--. and so obtain
the desired conclusion. Otherwise, there is some j, such that

det(fij;i= r+ 19 ey Dy j =jr+19 "'9jp) = O
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for any j,,, - - ,J, larger than j,.. If we replacej, +1,j,+2,--- by 1,2,...
and set ; =r+1,-..,i, = p, we have also the desired conclusion.

§4. The main theorem

Firstly, we shall recall some notation and terminologies. Let f be a
meromorphic map of C” into P¥(C) which is non-degenerate, that is, the
image of f is not included in any hyperplane in P¥(C). For arbitrarily

fixed homogeneous coordinates w,: w,: ---: wy,,, f has a reduced repre-
sentation
f=Ff:hi i fua,
where f,, - -+, fy., are holomorphic on C" and satisfy the condition
codim{f,=f,=--- =fy.. =0 = 2.

Take a hyperplane
H: dw, + dcw, + -+ + a"*'wy,,;, =0

in P¥(C). Regarding it as a divisor on P¥(C), we define its pull-back
u(f, H) by ‘

uf, H)(2) = vs(2)  (2eC™)
with a holomorphic function
Fi=adfi+af,+ -+ + a" 'y

Now, we consider hyperplanes H,, H,, - - -, Hy,, in P¥(C) located in
general position and divisors v, v,, - -+, vy,, on C™ As is stated in § 1, we
denote by & := % (H,,v,) the set of all non-degenerate meromorphic maps
of C" into P¥(C) such that v(f, H;) = v, for i =1,2, ..., N 4+ 2. The main
Theorem is the following.

THEOREM 4.1. The set & contains at most finitely many maps.
For the proof, we identify P¥(C) with the subspace
{fw,+w, + - + wy,, =0}

in P¥+{(C), where w,: ---: wy,, are homogeneous coordinates on P¥*!(C).
Moreover, by a suitable change of coordinates, we may assume

H={w=0nP(C) (QA=<i<N+2.
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Suppose that & contains infinitely many mutually distinct maps f*,
4., f, ---. Using the above coordinates, we take a reduced represen-
tation

F=rfifl: - e

of each f/. By (2.7) there exist entire functions %k, with v,, =y, for i =
1,2,---,N+ 2. Since »(f’,H) = v,,

hij: =f{/ki€H* .
They satisfy > 7 *h,k, =0 for any j = 1,2, - -.

Lemma 4.2. Leth,cH*(1<i<p,j=12---)andk, 1 <i<p)be
non-zero entire functions satisfying

(8) Z%L] hijk,; == 0
for any j and, furthermore,
(9) Diier bk 0

for any j and any proper subset I of {1,2, ---,p}. Then, there exists a sub-
sequence {ji, j,, - - -} of {1, 2, - - -} such that h,; = const forany i=1,2,-.-,p
and j = j, j. - -+ after dividing each row and each column of (h,) by a
common element of H*.

Proof. The proof is given by induction on p. If p = 2, we have easily
Lemma 4.2 because h,;,/h,;, = hy,[h,,, for any j, and j,. Suppose that Lemma
4.2 is true in the case < p — 1. Eliminating %, from the identities (8), we
get

det(hij; i = 1, 2’ e, Dy J =j1’j29 . ',jp) =0

for any j;, js ---,Jj,» We now apply Lemma 3.4. After performing the
operations (a) ~ (c) of Lemma 3.1, it may be assumed that h,; = const for
any j and i with r + 1< i< p, and

det(htj;i=r+ 19 "'1p)j=jr+1, ,]p)EO

for any j,,, -+, j, where 0 <r<p — 1. Suppose that r > 0. We may
assume that A,,, %< h,,, for any j, j. with j, # j, by the same argument as
in the proof of Lemma 3.1. When we multiply the i-th row of (h,;) by a
function in H*, (8) does not alter if we replace k, by one divided by the
same function. When we multiply the j-th column of (h;) by a function
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in H*, (8) remains valid if (8) is replaced by one divided by the same func-
tion. Therefore, we may assume in the original identities (8) that h,,, <
hy, if j,+j,and h;=const if r + 1< i < p.
Since
rank (h,; r+1<i<p,j=12--)<p-—r,

we can find a non-zero vector (,,,, - - -, 2,) € C?~" such that

p .
.Zzthu=0 (G=12--4).

i=r+1
Take a regular matrix A =(a,;; r+ 1< 14, j < p) of order p — r such that
a, =2 (r+ 1< i< p). Define functions &},,, - - -, B} by the relations

k=3 akf (+1<i<p).

t=r+1

Then, (8) becomes
3 ok + Tisha ke =0,
where

D
h;‘;: =Z a{‘hijeCo

i=r+l

For convenience’ sake, we set kf: =k, and h}:=h, for i=1,2,-.-,r.
After changing the indices j’s suitably, we can take a subset I of {1,2, - - -,
p — 1} such that 1€,

0

If

Rk

€r

.

of I and any j=1,2,---,
2. hERF £0.

t€l’

and for any proper subset I’

By the assumption (9), there is some i,e IN {r+1,---,p}. Since $I<p
—1, by the induction hypothesis we see h}, = const for iel and j=
1,2, - - - after suitable changes of indices and A}. This is a contradiction.
Because, h}; = const for any j and Af, < Af, for any j, j, with j;, # j..
Consequently, r = 0 and we have Lemma 4.2.

Proof of Theorem 4.1. As a consequence of Lemma 4.2, changing &,
suitably, taking a suitable subsequence of the indices j’s and choosing a



166 HIROTAKA FUJIMOTO
suitable reduced representation of each f’/, we may assume h,; = const for
any i, j, and particularly
hy=hy=---=h,=1,
where p = N + 2. Then
f1=hyfis Bogfss oot By oosf i
for j = 2,38, -- ., which satisfy
hifi + hosfi + -+ + Byiosfya=0.

By the assumption that f' is non-degenerate, we obtain

hy=hy = o = hy,y.
This shows that
fi=f=,
which is absurd. We have thus Theorem 4.1.
THEOREM 4.3. Let y: C"— C™ be a biholomorphic map and f: C* —
P*(C) a non-degenerate meromorphic map. If there exist hyperplanes H,, - - -,

H,,, in general position such that (f, H,)or = v(f, H;) 1 <i < N + 2), then
for!® = f for some positive integer j,.

Proof. Consider
F:= y(Hb ) HN+29 ”(f’ Hl)’ ) V(f9 HN+2)) .

Obviously, the assumption implies that foy?e %# for any positive integer
J. Since & < oo, foy’t = foy’ for some j, j, with j, < j,. Then, foyo=f
for jo: = Jj. — ji.

§5. Meromorphic functions of semi-invariant type

Let y: C* — C™ be a biholomorphic map and @ a family of meromor-
phic functions on C™.

DEerFINITION 5.1. We call @ a y-admissible family if it satisfies the fol-
lowing conditions;

(i) @ is a field which includes C,

(ii) any e @ is of order less than one,

(@iii) @ is y-invariant, namely, poy e @ whenever pe @,
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@iv) if poy?! = cp for some pe @, ce C and a positive integer j, then
¢ = const.

ExampLE 5.2. 1°. The field C of all constant functions is obviously
a yr-admissible family for any biholomorphic map y: C* — C™.

2°. Let us consider a linear map y(2) = Az + B, where A is a regular
matrix of order n and BeC" If there is no pure (n — 1)-dimensional
analytic set V in C"™ which is of order less than one and y“-invariant for
some positive integer j, then the field @, of all meromorphic functions of
order less than one is a y-admissible family. In fact, by (2.4) @, is a field
and obviously satisfies the conditions (i) ~ (iii). We now suppose that
o7’ = cp for some nonconstant e @, ce C* and a positive integer j,.
Then, V: = |}| U |vy| is a y-invariant analytic set which is not empty
because of (2.9). And, V is of order less than one by (2.6), which con-
tradicts the assumption. Therefore, @, satisfies also the condition (iv).

In the case of n = 1, the map y defined by ¢(2) = z + o for some we C*
has the above-mentioned property. For, if a discrete set V is y-invariant
and contains a point z,, we have also z, + jjwe V for j=1,2, - ... Then,
there exists a positive constant ¢ such that

Hze Vol < ) = ot
for a sufficiently large ¢, and so
N(r, v,) = cr

for a sufficiently large r. The set V is not of order less than one.
In the following, y denotes a biholomorphic map of C™ onto C" itself
and @ denotes a y-admissible family.

DerFINITION 5.3. A meromorphic function F(z) on C is called to be of
(y, D)-semi-invariant type if it has a representation

(10) F2) = ¢p(2)8:(2) + -+ + ¢0,(2)8,(2)

with ¢y, - - -, ¢, € ® and meromorphic functions g, ---, g, on C” such that
8,01 = ¢,8; for some c, e C.

DErFINITION 5.4. A representation (10) is called a reduced representa-
tion if it satisfies the conditions;

(1) F(2) # Xie1 ¢:8: for any proper subset I of {1,2, ---,p},

(ii) whenever ¢;, =c¢, = --- = ¢, {Qs, * > 01} and {g,, - -+, &i,,} are
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both linearly independent over C.

(5.5) any meromorphic function of (r, ®)-semi-invariant type has a
reduced representation.

Let F(2) have a representation (10) with ¢,€ @ and g; such that g,or

= ¢,g, for some ¢, C. Changing indices, we may assume
Ci =+t =Cpyy Cpypy1 = *++ =2C

929 ...’cpa—l'l‘l == e =Cpu.

and c,, # ¢, if a #0a/, where 1< p, <---<p,=p. For example, for
indices 1,2, ---,p,, it may be assumed that ¢, ---,¢0, A < r<p,) are
linearly independent and

Sf’t=§lcu% r+1<i<p)

for some c;; € C. Then, if we set

p1
gr=8+ i;ﬂ“ugt )

we see g;07 = C,,8; and

Moreover, we may choose indices such that g, ---,g, are linearly inde-
pendent and

§j=;dzj§z +15j<n

for some d,;e C. We have then
p1 s -
,F:i 081 = eZ; De8e 5

=1

where @,: = ¢, + 25511 dijp; €D and &, ---, @, are linearly independent.
By the same reason, > %2, .., 0.8, has a reduced representation for each
a, whence we conclude (5.5).

THEOREM 5.6. Let F(2) have two reduced representations
v q
F@ =3 0fi = 31 0:s,

where ¢, € D, ¥, €D, for = ¢,f, and g,or = d, g, for some c¢;, d;e C. Then,
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P = q and, after a suitable change of indices, we can find a partition of
indices

{132,,p}=IlUIZU UIu

satisfying the conditions that, for each « = 1,2, -+, a,
(i) C;, = Cyp and dz = d»ll if i, i,eIa,
(1) >lier, s = Diters Vi

(iii) there is a regular matrix C* = (c};; i,j e I,) such that
& =2, cgjfi’ 0= D, Civry.
i€lq J€EIa

For the proof, we need some lemmas.

Lemma 5.7. Let ¢, -+, ¢, &, -+, 8, be non-zero meromorphic func-
tions on C™ such that ¢,€ @ and g,or = c,g; for some c,e C. If
11 det (i7" Ngo7'™); 1Li,j<p =0,
then ¢, = ¢, = -+ = ¢, and ¢, 0., - - -, ¢, are linearly dependent for some

By i With 1< 4, <+ < iy < p.

Proof. This is shown by induction on p. If p=2, goy/p,0r =
(c:/e)(pi]:) and @,/p, € @ by (11). By Definition 5.1, (iv), ¢,/¢, = const and
¢, = ¢,, which gives Lemma 5.7. Suppose that Lemma 5.7 is valid in the
case < p — 1. For brevity’s sake, we define f,;: = (¢, 07’ "')(g;o7'""). For
eachj=p —1,p —2,--- we subtract the j-th column multiplied by f,,.,
from the (j + 1)-th column multiplied by f,, in order. Consequently we
obtain

(12) det (fpjfijn - fpj+lfij; 1 é i? j ép - 1) = 0'
Define

$it = Cpp(pior) — Coplppor)
8= gigp
for i=1,2,.---,p — 1. Then, ¢,€®, g,0r = ¢;c,8; and
det (@ioy " Ngiey!™); 15, j<p—-1)=0.

If 3.8, = fofie — foefu = 0, we have easily ¢, = ¢,, ¢;/p, = const and so the
conclusion of Lemma 5.7. We may assume ¢,3; # 0 for any i. We now
apply the induction hypothesis to functions ¢;, g,. There are indices i,, - - -,
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in-y With 1 <4, < --- <i,,<p—1such that ¢, = --- =¢,_, and

210, = %(47_. aCe (@i, 0 7)) — gy r)(; aggoi,) =0

for some non-zero vector (a,, - - -, @,_;). This implies that a function : =
20 @y lp, in @ satisfies 4oy = (c,/c; )V, where we may assume 4 £ 0. By
Definition 5.1, (iv), v=const and ¢;, = ¢,. Consequently, ¢;, = --- =¢,,_,

=c, and ¢, - -+, ¢;,_,, ¢, are linearly dependent. The proof is completed.

LemmA 58. Let ¢y, -, 0,, 8, -+, 8, be functions as in Lemma 5.7 and
assume that

(13) 08+ 8+ 08 = 0.
Consider the partition of indices
{1a23 ’p}=I1 UIz u.-- UIa

such that, for any iel, and i’ eI, ¢, = ¢, if a = o, and ¢, + ¢, if a + .
Then, for any «,

(1) 2lier. 98 =0,
(ii) {¢:; i€ l} are linearly dependent.

Proof. By (13), we have
(o’ Ngier!™) + - + (ppor’ ' Ngor' ™) =0
for j=1,2,.---,p. Therefore,
det ((pio ') &or’™); 1=, j<p)=0.

By Lemma 5.7, {¢;; i€ I,} are linearly dependent for some «. This shows
that (ii) is a consequence of (i). To prove (i), it suffices to get an absurd
conclusion under the assumption that

Iaﬁ = 2: ?%éﬁ 55 0
1€l

for any a. Take a reduced representation

F(2) = 2, ¢/2)&.(2),

i€la

where I, = I, ¢, €® and g,oy = ¢, g, for some i,e€I,. Then, the identity

222 9i8i=0

a=11i€lq
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contradicts Lemma 5.7. We have thus Lemma 5.8.

LemMA 59. Let ¢y, ---,0,€D and g,, - - -, 8, be meromorphic functions
on C* such that g,oy = c,8, for some ¢,e C and

018+ 08+ -0+ 08 = 0.
If ¢, - - -, ¢, are linearly independent, then g, = --- =g,=0.

Proof. If g,, = 0 for some i, {p;; c; =c,} are linearly dependent by
Lemma 5.8. This contradicts the assumption. We have thus the conclu-
sion of Lemma 5.9.

Proof of Theorem 5.6. Take the partitions of indices

L2,--,py=LULU.---UI
L2 --,q}=di UL U -+ Ud,

such that, forie I, i'el,, jed,, jed,, wehavec,=c,, d,=d; fa =,
p=pg,and ¢, #cy, d; £ d;, if a o, 8+ . Define

F,:= Z oifs s
i€la

Gy =2, ¥:8;,
JEI

which do not vanish by Definition 5.4, (i). Apply Lemma 5.8 to the identity

v q
égoifi—;\hgjzo.

We see easily a = b and F, = G, (1 < a < a) after a suitable change of
indices. This gives (i) and (i) of Theorem 5.6.

To prove (iii), we may assume ¢a=b=1and so¢,= .-+« =¢, = d,
=...=d, Since,, ---, Y, are linearly independent, we can choose indi-
ces such that ¥, - -+, ¥, ¢, - - -, 0, are linearly independent and

q 7
(14 o= é Cilr; -+ ,Z=; d,0; r+1<Lip),
where 0 < r<p and ¢, d;;€C. Then
q y4 ks b
; ‘l’f(gj - iglczjfz> — ; go,(f, +i§1di1f1) =0.
It follows from Lemma 5.9 that

p 3
g}"_—i:ZTllctjfi 1<j<9),
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fi+ 2 dufi=0 (QZj=7).

We note here the case r > 1 is impossible because f;, ---,f, are linearly
independent. Therefore, (14) becomes

q
P = jZ—l Cuy¥ry -

‘The similar argument is available if we exchange the roles of f;’s and g,’s.
‘We can conclude that p = ¢ and C = (c;;) is a regular matrix.

§6. Meromorphic functions with y-invariant zeros and poles

In this section, y denotes a biholomorphic map of C* onto C" itself
and @ denotes a y-admissible family. For non-zero meromorphic functions
&, and g, on C”, we mean by notation g ~ g, that g,/g, is y*-invariant,

namely, g, 7%/g,0 7" = g,/g, for some positive integer j,.

THEOREM 6.1. Leto, ---,0,€® and g,, - - -, g, be non-zero meromorphic
functions with vy, o7 = v,,. If

(15) 08+ 08+ -t 08 = 0
and Y .c; 0.8, % 0 for any proper subset I of {1,2, ---,p}, then

~~ S~ N .
& > &: » ; 8

For the proof, we give

LemMmA 6.2. Let ¢y, ---,0,€® and g, - -+, 8, be meromorphic functions
such that ¢; %0, g, £ 0 and v, oy = v,,. If

(16) det ((got"rj-l)(gtorj—l); i= 19 2’ Ry j =j1, o '9jp) =0
fOI‘ any jla jz’ o ‘ajp’ then

8in~ 8y~~~ i mz=2
7 7 7
and ¢, - - -, ¢4, are linearly dependent over C for some indices i,, - - -, i,, with

Proof. We prove this by induction on p. If p = 2, we have

O oy _ Bi°r &

Q2 @107 & &e°r )
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This is reduced to a constant ¢ because the left side is in @ and the right
side is in H* by the assumption. Therefore,

LT P,
P07 P2
And, ¢,/p, = const and ¢ = 1 by virtue of Definition 5.1, (iv). This implies
the r-invariance of g,/g,.
Suppose that Lemma 6.2 is true in the case < p — 1. Changing indi-
ces, we may assume that
(@ if r+ 1< <i,<p, then g, o1'[g,, oy’ = cg,,/g:, for some positive
integer j and a constant c,
@ ifl1<i<randr+1<i, < p, then there is no constant ¢ with
such a property for any j.
Moreover, replacing y’ by y, we may take j=1 in (). On the other
hand, (16) remains valid if we divide the j-th column of the matrix

((¢i°7’j—1)(g¢°7’j—1); I’ = 19 2, ccy D,y .’ = 1, 2’ ° )

by g,°7'"'. Replacing g.,/g, by &;, we may assume that g, =1 and so

&ri1s -+, 8, satisfies g0y = c,g, for some ¢, Define
hij: p— _—.___gi ° rj'l
8
foranyi=1,2,---,pandj=1,2,.... Then, h,; =constforanyjifr+1

< i< p. Moreover, hy,lh;, = const if 1 <i<r and j, <j,. For, if not,
8,°r" /g, = const, which contradicts the above condition (8). Divide the
i-th row of (16) by g,. We have then

det((soiorj_l)hij; i= 192a cecy Dy j =j1, ""jp) = 0

for any j, -, j,
We now assume that the conclusion of Lemma 6.2 is false, namely,
Qi * * +» @1, are linearly independent whenever

ghrr\./gh/?./ e~ 8-

»
Give a positive integer j arbitrarily and define
JRar =0 ik =2j, -, jFr=(—1)j.

And, apply Lemma 5.7 to 7, ¢,oy! and g,o7’ (r + 1 < i < p) instead of 7,
¢, and g, respectively. As its consequence, we see
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det((¢i°rkj)(gi°rk’); i= r+ 1’ c D, k= 1, ARy 4 -*")550,
whence
det((¢i°rj_l)hij; i = r -+ 1, coey Dy ] =j;k+l’ "',j;k) $ 0.

This shows that a matrix # = ((p,°7’"")h,,) satisfies all assumptions of
Lemma 3.2. We can conclude

det((goiorj_l)(gtorj—l); i= 1’ 23 e, T, j =jl$ - ',jr) = 0

for any j, ---,j,. On the other hand, by the assumption the conclusion
of Lemma 5.7 does not occur. This is a contradiction. We have thus
Lemma 6.2.

Proof of Theorem 6.1. According to (15), we have
(@eor N gioy!™) + -+ + (ppor’ ' Ngpor’™) =0
for any j = 1,2, ---. Therefore,
det (g0 Ngior’™); i=1,---,p, j=ji -+, J)) =0

for any j, ---,j,. If p=2, the desired conclusion is a direct result of
Lemma 6.2. Now, suppose that Theorem 6.1 is true in the case <p —1
and false in the case p. Changing indices, we may assume

gr+,1"r\"gr+2"r\/ s f?/gp ’77ng1

and ¢, - -+, ¢, are linearly dependent over C by the help of Lemma 6.2,
where 1 < r < p. Replacing g,g," by g, and y’ by r for a suitable positive
integer j, each g, with r 4+~ 1 < i < p may be assumed to be y-invariant.
Moreover, we may write

O, = cr+1¢r+1 4+ o+ Cp-1Pp-1
with some constants c,,;, --+,¢,_;. Define

=& Qa<i<r)
gi:zgi+cigp r+1i<p-—-1).

Then, g,,,, --+,8,-, are yr-invariant and (15) is rewritten as
p-1
é 08 =0.

Take a subset I of {1,2, ---,p — 1} which is minimal among subsets with
the property that 1e 7 and
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an 208 =0.
i€l
By the assumption, I £ {1,2, - - -, r} and so I contains some i, in {r+1, - -,

p —1}. Since $I < p — 1, we can conclude form (17)

glr-r\/gior-\/g”l/?/ /?/gp

by the induction hypothesis. This is a contradiction. Theorem 6.1 is true
-in the case p too. Consequently, we have Theorem 6.1.

CoROLLARY 6.3. Let ¢, - - -, ¢, be non-zero functionsin ® and g,, - - -, g,
non-zero meromorphic functions on C™ with v, oy = v,, satisfying

»181 -+ 08 + - - + Pp8p = 0.
Then, there exists a partition of indices

{1,2,"‘,p}=LU12U M UIa

such that, for any «,

Z ©: 81 =0

i€lq

and gi /T\/ gi' if i, i’eI,,.
Proof. It suffices to take a partition
{1,2,---,p}=L u-..-u Ia

such that, for any @, Xjicr, 0.8 =0 and 3., ¢.8 % 0 whenever I, C L.
By Theorem 6.1, we see easily g, ~ g, for any i, i’ e L.

§7. Generalizations of Urabe-Yang’s results

In this section, we restrict ourselves to the study of meromorphic func-
tions on C. Asin §§2 and 3 we denote by @, the set of all meromorphic
functions of order less than one. We consider a biholomorphic functions
of order less than one. We consider a biholomorphic map y,: C — C de-
fined by 7.(2) = z + o for a constant we C*.

We first give the following generalization of a result in [12].

Let us consider meromorphic functions

F:= ¢+ f'_. oufs
E)

G: = ¥, +§‘I’Jgf
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satisfying the conditions:

(1) oy P15 ** * 5 Ops Yoy Yy, * - .,,I,qe@o and fl, . ..,fp, 8, +++, 8, are non-
zero holomorphic functions on C such that f,oy,, = f; and g;o7,, = g, for
some w,, w, € C¥,

(ii) (18) are both reduced representations when they are regarded as
meromorphic functions of (7,,, @,)- and (7,,, D,)-semi-invariant type respec-
tively,

(iii) 4, does not belong to the set {p;, v, - - -, ¥ }¢ of all linear com-
binations of ¢;, ¥y, - - -, ¥, With constant coefficients for any i = 1,2, ---,p,

(v) min {v,,v,, -, v,,} = min{vy, vy, -+, v}

THEOREM 7.1. If vy — v, is of order less than one, then o,/w, is a
rational number and F(2) = c¢G(2) for some ce C*.

Remark. In the special case where p =q =1 and v, = ¢, = 1, Theo-
rem 7.1 is Theorem 1 in [12].
For the proof of Theorem 7.1, we need

LEMMA 7.2. Let D1y * 5 Ppy "Pl P ',\qu¢o and fh . ',fp’ 81 ',gq be
holomorphic functions on C such that f,oy, =f, and g,or,, = &, for some
o, 0, C*. If

g%fi=§‘hg1 =: F(2)

and F(2) is not of order less than one, then /o, is a rational number.

Proof. It may be assumed that >}?_, ¢,f, and >}%_,v,g, are both re-
duced representations of F'(2) when they are regarded as meromorphic func-
tions of (y.,, Do)- and (7., D,)-semi-invariant type.

We first study the case g = 1. Without loss of generality, we may
assume ¥, = 1 and so Foy,, = F. We have then

(19) 3 e rafeora) = 3 oife

We note that f;, and f;07,, are y,-invariant. We can regard both sides
of (19) as reduced representations of a meromorphic function of (y,,, D,)-
semi-invariant type. By the help of Theorem 5.6, (iii), we can find a regular
matrix C = (c,;) such that
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(20) o + @) = z cui(2)

£(2) = 3 cufidz + 0.

Then, by the classical theorem of Jordan, if we take a regular linear trans-
formation

¥4
P = Z Tk
£=1
suitably, (20) is reduced to the relations

?
¢i(z + ) = ]Z=£ dij¢l

such that 2,;: = d;; # 0, ¢;: = d,;,, is equal either to 0 or to 1, and d,; =0
ifi>j+1or j>i+ 1, where 1, = 4,,, if ¢, = 1. Particularly, we see
&,(2 + @;) = 2,3,. As is shown in Example 5.2, 2°, it follows that ¢, = const
and 1,=1. If e, =0 for some i (1 <i < p — 1), we see also ¢,z + w,) =
2:¢4(2) and hence ¢, = const. This is a contradiction because ¢, - - -, ¢, are
linearly independent. Therefore, ¢, = --- =¢,_,=1and so 4, =4, = ---
=2, = 1. Define

(2) = kZZ; Teef(2) -
Then,

F(@) = 3 dufiz + o).

In particular, f(2) =fi(z+ @) and fi(2) = fi(z + @) + fiz + »). Now,
assume that /o, is not a rational number. Since f(2) is a periodic
holomorphic function with period w, and simultaneously ®,, it must be a
constant. Then,

fi2) = filz + ) .
f. is also periodic with period o, and w,. Hence, f;(z) = const = :c. We
can write
fle) =cz+d,

where d e C. On the other hand, f,(z + 0,) = fi(2). We conclude ¢ = 0 and
80 fi(2) = const. This is absurd because f,, - - -, f, are linearly independent.
Consequently, o,/w, is a rational number.
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Now, we shall prove Lemma 7.2 in the general case. By the assump-
tion,

3 0z + Rodfe + ko) = 339z + kg (2)

for any £ =0,1,2,.... Since v, ---, ¥, are assumed to be linearly inde-
pendent, we have

det(Yy(z + (B —Dw); 1< j, k< q)#0
as a result of Lemma 5.7. Choosing yJ, € @, suitably, we get

8/2) = 2 1h(2)f iz + (k — Do) .

Since g,(2) and f(z + (¢ — 1)w,) are periodic with period o, and o, re-
spectively, by applying Lemma 7.2 with ¢ = 1, we conclude that ,/w, is a
rational number.

_ Proof of Theorem 7.1. By the assumption, we can write
(21) F(2) = h(2)p(2)G(2)

with he H* and ¢e®, Substituting z + ko, for z in this identity, for
each k= 0,1, .--,p we have

oz + ko) + 33 o + ko)f(?)
= Wz + ko)o(z + ko)(bz + ko) + ; ¥z + ko) (z + ko),

both sides of which we denote by x,(2). Eliminating f, -, f,, we obtain

O(2): = det (pi(2 + ko)), p:(2 + k), - -+, 0(z + ko)); 0 < k < p)
= det (Xk(z)9 ¢l(z + kml)’ c Sop(z + ka’l); 0 __S_ k é p) ’

the right side of which we may rewrite

@(Z) = Z . ¢kz(z)h(z + k(l)x)ga(z + k(l’l)

_____

where g, = 1 and ¢, € ®,. Since ¢, ¢, - - -, ¢, are linearly independent, @(z)
# 0 by Lemma 5.7. Then, as is easily seen by Corollary 6.3, we can find
some k, and ¢, such that 1 ~ Mz + kw)g.(2 + kw,), and so h(z +
Ruo) g2+ kgw,) is periodic with period ju, for a positive integer j,. There-
fore, h(2) itself is periodic with period jw, In view of (21) and Lemma
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7.2, we can conclude that o,/0, is a rational number. Then, f,, g, and A
are all periodic with period w: = kw0, = kw, for some non-zero integers %,
k.. We may regard both sides of the identity

» q
@ + ; Sthi = Smkoh + j; ijhgj

as two reduced representations of a meromorphic function F(2) of (7,, D,)-
semi-invariant type. According to Theorem 5.6, (iii), p = q and there is
a regular matrix C = (c¢;;) such that

(22) po=cupr; 0<isp)
(29) gh=3cuf. OSisP),

where f, =g, = 1.
We now take a function y e @, such that

v, = min (v, + ++,,,) = min (v, - -+, vy)

by the use of (2.7). Changing yp, and xy, by ¢, and 4, respectively, we
may assume that ¢y, - - -, ¢, Y, -« -, ¥, are all holomorphic and

29 =" =p=0={h=-=9=0=4¢.

We next write ¢ = /e with holomorphic functions «, 8 € &, which have no
common zero. Then, (22) becomes

o, = ZJ: CiByy

If B # const, 8 has a zero z,€ C because of (2.7). Then, a(z)¢.(2,) = 0 for
any i and so a(2) = 0 by (24), which is absurd. We conclude § = const.
Similarly, we see @ = const. We may assume ¢ = 1. In (22), if ¢;, # 0 for
some i with 1 < i< p, then € {p;, ¥y, - -+, ¥,}¢ Which contradicts the
assumption (iii). So, ¢, =0 for i = 1,2, ---,p. We conclude from (23)

h = gh = ¢, = const .
This shows Theorem 7.1.

Let us consider two entire functions

F %ft
G

b4
2
i=1

q
28,
i=1
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where ¢,, - -+, 0, Y, -+, ¥, are entire functions of order less than one,
and f;, ---,f, and g, -- -, g, are periodic entire functions with period o,
and w, respectively.

COROLLARY 7.3. Assume that {z, ¢,, - - -, 0o}, {2, V1 - - Vb {1, fis - - -5 [}
and {1, 8, - -+, 8,} are all linearly independent, and z & {p,, V1, -+, Vo}e» 2 €
(¥ 01 -5 @o}e for any i, j. If the sets of all fixed points of F(2) and G(2)
coincide with each other except a divisor of order less than one, then o,/o,
is a rational number and F(2) = G(2).

Proof. Define F(2) = z— F(z) and G(2) = z — G(z). If we set 0o(2) =
P(2) = 2z, they satisfy obviously the conditions (i) ~ (iii). Moreover, (iv)
is also satisfied. Because, if ¢ is a non-constant entire function of order
less than one such that v, =, then we have necessarily ¢(2) = cz for
some ce C*. On the other hand, the assumption implies that vy — vz is
of order less than one. Therefore, by Theorem 7.1, w,/0, is a rational
number and there is a constant ¢ such that

z— ésocfj = C(z - é "I"tgj) ,
so that
(c— Dz + Z;; o = c(jZ: 1h:‘:’j) .

Both sides are regarded as reduced representations of a meromorphic func-
tion of (y,, 9,)-semi-invariant type for some we C*, By Theorem 5.6, we
have easily ¢ = 1. This gives Corollary 7.3.
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