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ON ALGEBRA WITH UNIVERSAL FINITE MODULE
OF DIFFERENTIALS

NORIO YAMAUCHI

Let & be a field and A a noetherian k-algebra. In this note, we shall
study the universal finite module of differentials of A over %k, which is
denoted by D,(A). When the characteristic of k is zero, detailed results
have been obtained by Scheja and Storch [8]. So we shall treat the posi-
tive characteristic case. In §1, we shall study differential modules of a
local ring over subfields. We obtain a criterion of regularity (Theorem
(1.14)). In §2, we shall study the formal fibres and regular locus of A
with D,(A). Our main result is Theorem (2.1) which shows that, if D,(A)
exists, then A is a universally catenary G-ring under a certain assump-
tion. In the local case, this is a generalization of Matsumura’s theorem
([5] Theorem 15), where regularity of A is assumed. '

Throughout this note, rings are commutative with unit element. We
freely use the notation and the terminology in [2].

§0. Preliminaries

First we summarize generalities of universal finite module of differ-
entials. For the detail, see [8].

Let A be a ring and M an A-module. We say that M is a prefinite
A-module if the following condition is satisfied:

For any non-zero element m of M, there is a finite A-module N and
an A-linear map f: M — N such that f(m) = 0.

M is a prefinite A-module if and only if it is a submodule of a direct
product of finite A-modules.

For an A-module M, we put K = {m e M| for any finite A-module N
and any A-linear map f: M — N, f(m) =0} and M = M/K. Let p:M—>M
be the natural surjection.
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ProrosiTioN (0.1). Let the notation be as above. Then:

(1) M is a prefinite A-module.

() If N is a prefinite A-module, then there is a natural isomorphism
of A-modules: Hom, (M, N) ~ Hom, (M, N).

@) If :M— N is a homomorphism of A-modules, then there is a
unique A-linear map f: M — N such that p’ of = f o p where p’ is the natural
surjection N— N. Thus M— M is a covariant functor from the category
of A-modules into the category of prefinite A-modules.

Proof. Let N be an arbitrary prefinite A-module and let f: M — N be
an A-homomorphism. Then it is easy to see that ker(f) D K. The asser-
tions follow from this fact.

Let £ be a ring and A be a k-algebra. Let D be an A-module and
d:A— D a k-derivation. D is called the universal prefinite (resp. finite)
module of differentials of A over k if the following conditions are satisfied
(cf. [8]):

(1) D is a prefinite (resp. finite) A-module and D = AdA,

(2) for any prefinite (resp. finite) A-module M and k-derivation §: A
— M there is a unique A-linear map f: D— M such that é = fod. (ie.
Der, (A, M) ~ Hom, (D, M).)

ProposITiON (0.2). Let k be a ring and A a k-algebra. Then:

(1) The universal prefinite module of differentials of A over k exists
and is unique up to isomorphism.

(2) The universal finite module of differentials of A over k exists if
and only if the universal prefinite module of differentials of A over k is a
finite A-module.

Proof. (1) Let 2, be the usual module of differentials and put
D =9,, Then D is the universal prefinite module of differentials by
0.1).

(2) The “if” part is obvious by the definition, while the “only if”
part is easy since any prefinite module can be embedded into a direct
product of finite modules. (cf. [8] (1.1).)

“We denote by D,(A) the universal finite module of differentials of A
over k. The canonical derivation d: A — D,(A) is called the universal
finite k-derivation of A.

ProposiTiON (0.3). Let k be a ring and A a noetherian k-algebra with
D(A). Then:
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1) If m is a maximal ideal of A, D,(A,) exists and DJ(A,) =~ D,(A),
@ If A is a local ring, D(A) exists and D(A) =~ D(A)®, A where
A denotes the completion of A.

Proof. See [8] (1.8) and (1.6).

ProrosiTioN (0.4). Let k, A and B be noetherian rings and k—£> A

£, B be homomorphisms of rings. Then:

Q) If D.B) exists, so does D, B).

(2) Assume that any prefinite B-module is also a prefinite A-module.
Then, when D.,(A) and D,(B) exist, there is an exact sequence of natural
homomorphisms of B-modules:

(%) D(A)®,B—'Dy(B)—D,(B)—0.

() If D.(A) exists and g is surjective, then D,(B) exists and we have
the following exact sequence of B-modules where I = ker(g):

(%) IlI* - D(A)®,B— D(B)—0.

Proof. (1) Trivial by (0.2).
(2) Let M be an arbitrary finite B-module. Then we have the follow-
ing exact sequence of natual homomorphisms:

0 — Der, (B, M) — Der, (B, M) — Der, (A, M) .
By definition,
Der, (B, M) ~ Homyz (D ,(B), M) and Der, (B, M)~ Hom,(D,(B), M) .

Since M is a prefinite A-module by the assumption, Der,(A, M) ~
Hom, (D,(A), M) ~ Hom, (D,(A) ®, B, M). Therefore the sequence

0 — Homj (D (B), M) — Hom; (D(B), M) — Hom; (D(A) ®,, B, M)
is exact. Thus (x) is exact.

(8) The existence of D,(B) is obvious since £, is a homomorphic
image of 2,,. The exactness of (xx) follows from the fact that for any
finite B-module M, the following sequence is exact:

0 — Hom, (D(B), M) — Hom, (D(A) ®, B, M) — Hom, ((I/I*, M) .

Remark. The assumption of (2) is satisfied in the following cases:
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(a) A is a field. (b) g is a local homomorphism of noetherian local
rings. (cf. [8] (1.3)).

ProposiTioN (0.5). Let k be a ring and A a noetherian k-algebra with
D.(A). If Bis

(1) a formal power series ring over A (in a finite number of variables)
or

(2) a finite A-algebra, then D, (B) exists.

Proof. Case (1). Put B = A[[X|,.--,X,]]. Let ds,:B—D be the
universal prefinite k-derivation. Since D can be embedded into a direct
product of finite B-modules and I = (X,, - - -, X,)B C rad (B), D is separated
in I-adic topology. Thus D = >,., Bdy.(a) + >, Bd;,X,. Moreover D
is a prefinite A-module because for any finite B-module M and for any
vy >0, M/I'M is a finite A-module. Hence there is an A-linear map f: D,(A)
— D such that fod, = dg; ¢ where d,,; is the universal finite k-deriva-
tion of A and ¢: A — B is the natural injection. Therefore D is generated
over B by Im(f) and d;,X,, - --,ds:X,. Hence D is a finite B-module.

Case (2). Proof is similar to the case ().

Remark. In the case (1), we have Dy(B) ~ (D.(4)®, B) ® (®, BdX)),
because for any finite B-module M,

Der, (B, M) ~ Der, (A, M) ® Hom, (® BdX,, M) .

We now recall some results on extension of fields which are developed
in E.G.A. chapter O;y. Let k, C B C K be fields. The kernel of the natural
map i, i K— 2«1, is called the module of imperfection and is denoted
by Y g/in,e When k, is the prime field, 2z, is also denoted by 2 x,.. Let
L be an extension of K. Then we have the following exact sequence:

v

u S
(%) 0—> Y x/une® xL > L p/ksio > Y ko —> Y oxie —>0 .

The module 2%/, ® xL will be also denoted by 1'%,/ Obviously the fol-
lowing are equivalent:

(1) v is surjective,

(1Y v is bijective,

@ u=0,

(8) s is injective,

(8) s is bijective.

We say that k is k,-admissible for L/K if the conditions above are
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satisfied. When k&, is the prime field, we use the word ‘“‘admissible” instead
of k,-admissible.

Lemma (0.6) (E.G.A. (0.21.6.5)). Letk,CkC k C KC L C M be fields.
Then A

(1) % is ky-admissible for L/K if and only if k is k,admissible for L|K
and k' is k-admissible for L|K.

(2) k is kyadmissible for M|K if and only if k is k~admissible for
MJ|L and L|/K.

LEMmA (0.7). Let kC K be fields and L a finitely generated extension
of K. Then 2., and Y ;,x, are finite L-module, and we have

rank; £, — rank, ¥} x> tr.deg, L .
The equality holds if and only if k is admissible for L/K.

Proof is obvious by Cartier’s equality (cf. E.G.A. (0.21.7.1)) and the
exact sequence (xxx).

Let K be a field and F = (k,),.; a family of subfields of K. We say
that F is downward directed if the following condition is satisfied:

For any «, 8 € I, there is some 7€l such that 2, N &, D &,.

Lemma (0.8) (E.G.A. (0.21.8.3)). Let k, C K be fields of characteristic
p>0. Let (k).c: be a downward directed family of subfields of K con-
taining k.. Then the following are equivalent:

(@) N.E(K?) = k(K?),

(b) if L is an extension of K with rank, Y, .., < oo, then there is some
ael such that k, is kr-admissible for L|K,

(b) for any xe K, there is some a €I such that k, is k-admissible for
K(x'?)|K,

(c) the canonical homomorphism Qx, — lim Q. is injective.

Remark. Let k, and K be as above. Let B be a p-basis of K over k,
and {H,} the family of finite subsets of B. Put B, = B\H, and %k, =
ky(K?)B,). Then {k} is a downward directed family of cofinite subfields of
K containing k, which satisfies the conditions of the lemma.

CoroLLARY (0.9). Suppose that (k.).c; satisfies the conditions of the
lemma above. Then, if L is an extension of K with rank,; Y .., < oo, we
have M, k(L?) = k(L").
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LemMA (0.10) ([2] (80.E)). Let k be a field of characteristic p >0 and
(B).cr @ downward directed family of subfields of k. Put k, = (N, k.. Then
we ha’ve ma ka((Tb ) Tr)) = ko((ﬂ, Tty Tr))'

§1. Differential modules of a local ring

Let (A, m) be a local ring containing a field k. Recall that & is called
a quasi-coefficient field of A if A/m is formally etale over k (cf. [4]).

LemmA (1.1). Let (A,m) be a local ring containing o field k. Then:

(1) If A/m is separable over k, there is a quasi-coefficient field of A
containing k. In particular A has a quasi-coefficient field,

(2) if k is a quasi-coefficient field of A, then there is a unique coefficient
field of A containing k,

() if k is a quasi-coefficient field of A and K is a coefficient field of
A containing k, then we have 2;,, ~ Q2;/x-

Proof. (1) and (2) are proved in [4]. (8) is trivial by the following
exact sequence: 0 = 2,, ® A — 24, — 23x— 0.

ProrosiTioN (1.2). Let R C K be fields and let A = K[[X,,---,X,]].
Then the following are equivalent:

(1) D,(A) exists,

(2) ranky 2y, < oo,

B) ch(k) =0 and tr.deg, K < oo, or ch(k) = p > 0 and [K: K?(k)] <
co. Furthermore, if D,(A) exists, it is a free A-module of rank (n +
ranky 24,.).

Proof is obvious by (0.4) and (0.5).

CoroLLARY (1.3). Let A be a noetherian complete local ring, K a coef-
ficient field of A and k a subfield of K. Then D, (A) exists if and only if
rank, 24, < oo.

ProrositioN (1.4). Let (A, m, K) be a noetherian local ring containing
a field k. Assume that

(1) for any cofinite subfield k' of k, D, (A) exists, and

(2 rankY,, < co.
Then there is a subfield k; of k and a quasi-coefficient field K, of A con-
taining k; such that (1) and (2) continue to hold after replacing k by k; and
such that Dy (A) exists.
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Proof. Case (1). ch(k) = 0. Since A has a quasi-coefficient field con-
taining % by (1.1), the assertion follows from (0.4), (1).

Case (2). ch(k) =p>0. Let B be a p-basis of k. By the condition
(2) there is a finite subset F' of B such that K is separable over k; = ky(B’)
where £k, is the prime field and B’ = B\F. So A has a quasi-coefficient
field K, containing k;. Put ¥’ = k?(k;) = k?(B’). Then D,.(A) exists because
[k:F] < co. Since we have D,/(A) = D,.(A), the existence of D,(A) fol-
lows from (0.4), (1). If %, is a cofinite subfield of k; then [k?(k;): k?(k,)] <
oo, hence [k:k?(k)] < o and D,,,,(A) = D, (A) exists.

Let A be an integral domain and M an A-module. We put rank, M
= rank,,,M ®, Q(A), where Q(A) denotes the quotient field of A. We will
investigate the rank of differential module of a local domain.

ProrosiTiON (1.5). Let K be a field of characteristic p >0 and k a
subfield of K such that ranky 2, < . Let A = K[[X,, ---,X,]], P a prime
ideal of A and R = A|/P. Then there is a k-subalgebra R, of R such that
D(R) = 24z,

Proof. By the normalization theorem, there is a k-subalgebra R, =
K|[T, ---,T,]] of R such that R is a finite R,-algebra (d = dim R). Put
R, = R(K?)[[T?, ---,T?]]. Then R is a finite R,-algebra because rank; 2,
< oo, S0 0z, i1s a finite R-module. Let N be an arbitrary finite R-
module. Since N is separated in mg-adic topology (m; denotes the maximal
ideal of R) and T, e mj, any derivation of R into N over k vanishes on
R,, hence we have Hom, (D,(R), N) ~ Der, (R, N) ~ Homj (2z/z,, V). This
shows that D,(R) ~ 2,z, by the universal mapping property of D,(R).

Remark. If [K:k] < oo, we can replace R, by E[[T?, -- -, T?]].
CoroLLARY (1.6). Let M = Q(R) and M, = Q(R,). Then we have
rank, D,(R) = rank, 2,4, -

CoroLLARY (1.7). Put M, = Q(R,). Then the following are equivalent:
(1) M, is admissible for M|M,,
(2) rank; D(R) = dim R + ranky Q.

Proof. Let B be a p-basis of K over k. Then BU {T,---,T,} is a
p-basis of R, over R, and hence we have rank,, 24,4, = @ + rank, Q2.
Consider the following exact sequence:

L QMI/MO QOu, M — 2y, — QM/Ml —0.
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Since we have [M: M,] < oo, the condition (1) is equivalent to the follow-
ing by (0.7):

(1y rank,, 2,y = rank, 2, . .

Clearly (1) is equivalent to (2) by (1.6).
The following proposition is an analogy of E.G.A. (0.21.9. 8).

PROPOSITION (1.8). Let k, K and R be as in Proposition (1.5). Assume
moreover that rank;1Y ., < co. Then there is a cofinite subfield k' of k
which satisfies the following: for any cofinite subfield k' of k', we have

I‘ankR Dkn(R) = dimR + I‘ankK QK/k/I .

Proof. Let R, = K[[T,, --+,T,]] (d = dim R) be a subring of R such
that R is a finite R,-algebra, M = Q(R) and M, = Q(R,). Let (k.).c; be a
downward directed family of cofinite subfields of & with (M, k., = k*. Since
rank Y, < oo we have (M), k,(K?) = K? by (0.9). We put M, = k (K*)(?,
..., D) for each @. Then we have by (0.10) ", M, = K*(2?, - - -,7%) = (M?).
Since M is a finite extension of M, we have rank 1", << co. Hence there
is some « € I such that M, is admissible for M/M, by (0.8). Moreover if
k” is a cofinite subfield of k,, the field M"” = E/(K?(QX?, - --,1%)) is also
admissible for M/M, by (0.6), (1). This means by (1.7) that rank D,..(R)
= dim R + rank 2,,... Hence we can take this k&, for %’

LEMMA4(1.9). Let A be a noetherian local domain and k a subfield.
Assume that D(A) exists and that A is analytically unramified. Then, for
each P e Ass(A), we have rank, D,(A) = rank;, ,D(A/P).

Proof. By (0.4), (3), we have the following exact sequence:
(PIP) ®3&(P) — D(A) ® 36(P) — D(A/P)® 3,p6(P) -0 .

This shows that D,(A)® #(P) = D(A/P)® ;,(P) because A is reduced
and so PA, = 0 and x(P) = A,. Therefore we have

rank, D,(A) = rank, , D, (A)® #(P) = ranky D.(A/P).

THEOREM (1.10). Let R be a noetherian local domain, K a quasi-coef-
ficient field of R and k a subfield of K. Assume that

(1) for any cofinite subfield k, of k, D,,(R) exists,

(2) rankgp? ., < oo, and

(3) R is analytically unramified.
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Then there is a cofinite subfield k' of k which satisfies the following: for
any cofinite subfield k"’ of k', we have rank, D,..(R) = dim R + rank, Q..

Proof. Let K* be a coefficient field of R containing K. Then, if K’
is a subfield of K, we have Y%, =~ Viux and Qg Qx K* ~ Qxux. In
particular we have rank,.?2 ., < co. Next let &, be a cofinite subfield of
k and Pe Ass(R) be such that dim (R/P) = dim R = dim R. Then we have
rank, D, (R) = rank,g,PD,cl(R/P) by (1.9). Therefore we get the assertion
by (1.8) with (k, K*, R/P) for (k, K, R). ‘

COROLLARY (1.11). Under the assumption of the theorem, R is equi-
dimensional and hence R is universally catenary.

Proof. Let Ass (R) ={P, ---,P,}. Then, by the theorem, there is a
cofinite subfield ¥’ of k such that rankg,,, D,(R/P,) = dim (R/P,) + rankx 2,
for each i. This shows that dim(R/P, is independent on i because
rank, D..(R) = ranky,», D.(R/P,) by (1.9). The last assertion follows from
this and E.G.A. (IV. 7.1).

We now give a criterion of the regularity of a local ring with universal
finite module of differentials. We use the following lemma.

LEvmA (1.12). Let (A, m) be a regular local ring and I an ideal of A.
Let a:(I[I)Q®, Ajm — (m/m?) @, Afm be the natural map. Then
(1) rank,,,Im(ax) <htl
(2) The following are equivalent:
(a) A/l is a regular local ring,
(b) « is injective,
(¢) rank,,,Im(ex) = htl

Proof. Note that A/I is regular if and only if I is generated by a
subset of a regular system of parameters of A. The assertions follow from
this fact.

ProposiTiON (1.13). Let kC K be fields, A = K[[X,,---,X,]], I an

ideal of A such that I =+'1 and PeSpec(A) with PO I We put R =
A[I and p = P/I. Assume that D,(R) exists and that we have

rank, D,(R/q) = dim (R/q) + rank, Q.

for each qe Ass(R). Then:
(1) If D(R), is a free R-module, R, is a regular local ring,
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(2) conversely, if R, is regular and we have
ranky,, Dy(R/p) = dim (R/p) + rankg Oy ,
then Dy(R), is a free R,-module.

Proof. Take Qe Ass,(A/I) such that Q C P and htIA, = htQA,
(=ht Q). Then q = Q/I is a minimal prime ideal of R with p D g. Since
R is reduced we have D(R)® rx(q) =~ D(R[q) ®xx(q). Now consider the
following commutative diagram with exact rows:

I ® wr(p) ——> D(A)® 4#(5) —> Dy(R) ® zi(p) —> 0

]

(PIPY® 1e#(P) 2> Dy(A) ® 6(P) —> Dy(Bl5) ® np(p) —> 0

Then, if Dy (R), is R,free, we have rank,,D,(R)® g(p) = rank,, D,(R)
®zk(q) = ranky,, D,(R/q) = dim(R/q) + rankg 2. Thus we have rank,,, Im(i)
> rank,,, Im (§) = dim A + rank; 24, — (dim (R/q) + ranky 24,) = htQ =
htIA,. This means that R, = A,/IA, is regular by (1.12). Hence we
have proved ().

To prove (2), note that if the equality in (2) holds, then ¢ is injective.
Hence 6 is injective if and only if i is injective. This last condition is
equivalent to that R, is regular by (1.12). Therefore if R, is regular, we
have rank D,(R) ® rx(p) = dim A + rank 2, — ht IA,. On the other hand
we have rank D,(R)® x(p) > rank D,(R), > dim A + rank 24, — ht IA ,
where the first inequality is obvious and the second follows from the exact
sequence: (I/I)® R, — D,(A)® ,R, — D,(R), — 0 and the regularity of R,.
Hence we have rank Dy(R),® rx(p) = rank Di(R), and this shows that
D,(R), is a free R,-module.

The following theorem is a corollary of the proposition above.

TuEOREM (1.14). Let R be a noetherian local domain containing a field
k and p e Spec(R). Assume that

(1) R has a quasi-coefficient field K containing k,

(2) R is analytically unramified,

(8) for any cofinite subfield k' of k, D,(R) exists, and

(4) rank; Dy(R) = dim R + rank, Q..
Then, if D,(R), is a free R,-module, R, is a regular local ring.

Proof. Let q be a prime ideal of R lying over p. Then DR), =
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D(R),® RPI%,, is a free R, -module. Let K* be a coefficient field of R con-
taining K. R is equidimensional by (1.11). So, for each g, e Ass R), we
have ranks, Di(R/q) = rank, Dy(R) = dim R + ranke Qg = dim (Rfq,) +
rankg. Q4. by (1.9). Hence R, is regular by (1,13). Since R, is faithfully
flat over R,, R, is regular.

ExampLES. Let k be a field and R a noetherian k-algebra with D, (R).
When ch (k) = 0, Scheja and Storch proved the following (cf. [8]):

let p be a prime ideal of R, then R, is regular if and only if D.(R),
is a free R,module.

When ch (k) = p > 0, the following examples (1) and (2) show that the
above result must be modified as in (1.14).

(1) Put R = R[X]/(X?). Then R is an artinian local ring and is not
regular. On the other hand D,(R) exists and is a free R-module of rank
1. For the unique prime ideal m, of R, we have rankg, D.(R/mz) = 0.

(2) Put A = E[[X, Y]] and suppose k +# k*. If ae k — k? then aX? +
Y? is an irreducible element of A. Put R = A/(aX? + Y?). Then D,(R)
is a free R-module of rank 2. The ring R is a local domain of dimension
1 and is not regular.

(3) Assume moreover that [k:k?] = co. Let A = k?[[T]][k]. Take
uek[[T]] — A and put @ = u*. Then R = A[X]/(X? — a) is a local domain
of dimension 1. R = A[X]/(X — w)? is not reduced. It is easy to see that
for any cofinite subfield %2’ of % containing k?, D,.(R) exists and D,.(R) =
(2 @ R)® RAT® RdX. Hence we have rank, D, (R) = rank, 2., + 2.
Thus the assumption (4) of Theorem (1.14) is essential.

§2. Formal fibres and regular loci

TuEOREM (2.1). Let k be a field of characteristic p >0 and let A be a
noetherian k-algebra. Assume that

(1) A is a locally Nagata ring,

(2) for any cofinite subfield k' of k, D,(A) exists, and

) for any maximal ideal m of A, we have rank, .1, < 0.
Then A is a universally catenary G-ring.

Proof. Note that A is universally catenary if and only if for any
maximal ideal m of A and any prime ideal p contained in m, A,/pA, is
universally catenary. Hence we can assume by (0.3) and (0.4) that A is a
local domain. Moreover we can assume that & is contained in a quasi-
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coefficient field of A by the conditions (2), (3) and Proposition (1.4). The
local ring A is analytically unramified by (1) (cf. [2] Theorem 70). Hence
A is universally catenary by (1.11)). To prove that A is a G-ring, we can
again localize at a maximal ideal and assume that A is a local ring with
maximal ideal m. Then we have the following lemma.

Lemma (2.2) ([2]. (83.E)). Let R be a noetherian local ring. Then R
is a G-ring if and only if, for any finite integral R-algebra S and for any
prime ideal Q of S such that QN S =(0), .§Q is a regular local ring.

Let B be a finite integral A-algebra and @ a prime ideal of B such
that @ N B = (0). Let n* be a maximal ideal of B containing @ and put
n=n*N B. Then n is a maximal ideal of B and we have é“. = (B.)".
Since B is a finite A-algebra, B and k satisfies (1), (2) and (3). So replac-
ing A by B,, we have only to prove that when A is a local domain, 4,
is a regular local ring whenever @ is a prime ideal of A with @ N A =
(0). Again we can assume that % is contained in a quasi-coefficient field
of A. Then by (1.10), there is a cofinite subfield %k of k& such that
rank, D, (A) = dim A + rank,,, 2, Since A is reduced and D,.(A), =
D (A)®, Q(A) @y A, is a free Ajmodule, A, is a regular local ring by
(1.13), (1.9) and (1.11).

THEOREM (2.3). In addition to the assumption in (2.1), assume that k
is a perfect field. Then A is an excellent ring.

Proof. We have only to prove that A is J — 2, i.e., that for any finite
A-algebra A’, Reg(A’) is an open subset of Spec(A’). To prove this, it is
sufficient to show the following (cf. [2] (32. A) Lemma 1): Reg(A’/p) con-
tains a non-empty open subset of Spec (A’[p) for each p e Spec(A’). Since
A’[p satisfies the same condition as A, the problem is reduced to showing
that when A is an integral domain Reg(A) contains a non-empty open
subset of Spec(A4). First we prove that the following equality holds for
each maximal ideal m of A: (x) rank D,(A,) = dim A,, + rank 2,,,,,. In
fact A, is analytically unramified because it is a Nagata ring. Further-
more since k is perfect, A, has a quasi-coefficient field containing k& by
(1.1), (1), and & = k*. Hence we get the equality by (1.10). Now we prove
the set U = {p e Spec(A)|D,(A), is a free A, module} is contained in
Reg(A). Let pe U. Take a maximal ideal m containing p. Then D, (A),
= (D(A)®, A,), = Di(A,), is a free A, module and (x) holds for m.
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Hence A, = (A.), is regular by (1.14).

Lastly we will prove Matsumura’s theorem ([5] Theorem 15) in a
slightly different way. Let R be a regular ring and P a prime ideal of
height r. Matsumura defined the following condition (cf. [5]):

(WJ) There are some derivations d,, - - -, d, € Der (R) and some elements
fi» -+ ,fr€ P such that det(d.,f,) ¢ P.

LemMmA (2.4) ([5] Theorem 14). Let A be a regular ring. Then A is
excellent if the following is satisfied.

For any n>0 and for any Pe Spec(A[X,, ---,X,]) such that A[X]/P
is a finite A-algebra, (WJ) holds at P.

THEOREM (2.5) (Matsumura). Let A be a regular ring containing a
field k of characteristic p > 0. Assume that

(1) A is a locally Nagata ring,

(2) for any cofinite subfield k' of k, D,(A) exists, and

(8) for any maximal ideal m of A, we have rank, ;2 . < oo.
Then A is an excellent ring.

Proof. Put A, = A[X,, ---,X,]. Let PeSpec(A,) such that B = A,/P
is a finite A-algebra. We prove that (WJ) holds at P. Let n be a maximal
ideal of A, containing P and put m = n N A. Then m is a maximal ideal
of A since B is a finite A-algebra. Replacing A by A, and A, by (A,).,
we can assume that A is a regular local ring. Let B be a p-basis of &
and let {F,},c; be the family of finite subsets of B. Put &, = k?(B,) and
k., = ky(B,) where k, is the prime field and B, = B\F,. Then (k..c:
(resp. (k.).c;) is a downward directed family of cofinite subfields of %
(resp. ky(B)) with (. k, = k? (resp. (.k. = (k(B))?). Note that D, (A)
exists for each & by (2) and that D, (A) = D\, (A). Moreover D, (B) exists
and D, (B) = D, (B). There is some « ¢ I such that #(m) is separable over
k. by (3), and hence A has a quasi-coefficient field K, containing k..
Replacing % by k., we can assume that & C K,. Similarly we can assume
that & is contained in a quasi-coefficient field of B, because [k(1): £(m)]
< oo and hence we have rank,,, 2, < . Since rank,q, 2wy .m <
there is some g€ I such that %, is admissible for x(n)/x(m) by (0.8) and
(0.9). Consider the following exact sequence:

07 &(n)/e(m)/kp ‘Qx(m)/kﬁ @ (1) — Q‘m)/fc,e = Qe —>0.

We have rank, ., £, < o and rank,q, 2.q, < o because D,,:Q(A) and
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D, (B,) exist. Thus we have by (0.7) rank,, 2w, — rank,q, 2,um, =
rank, ., 2, /e — rank.w owemms = 0. On the other hand, since B, is
a Nagata ring and hence analytically unramified, there is some 7 € I such
that rank, D, (B,) = dim B, + rank,q, ..y, by (1.10). We can assume
that £ = k, = k,. Put D = (D(4)®, B) ® (P2, BdX,). There are natural
B-homomorphism P/P*—2,., &4, B = (24,®,B)® (@7, BdX,) and 2,,
— D(A). Hence we get a B-homomorphism §: P/P?— D. We have also
a B-homomorphism u:D — D,(B) defined by the natural map D,(A)&, B
— D(B) and dX, — dx; (x, = X,mod P). Thus we get the following sequ-
ence of B-homomorphism:

() P> D% D(B) —>0.

Now we prove that () is exact. Let M be an arbitrary finite B-module.
Then M is a finite A-module. Hence Hom, (D, M) ~ Hom, (D,(4)Q, B, M) ®
Hom, (&7, BdX,, M) ~ Der, (A, M) ® Hom,, (7., A,dX,, M) ~ Der, (A,, M).
Thus the following sequence is exact:

0 —> Hom, (D(B), M) — Hom; (D, M) —> Hom, (P/P*, M) .

Therefore (x) is exact. Tensoring (x) with «(P) = Q(B), we have the fol-
lowing exact sequence:

P/P* @y k(P) LN (D(A) R, x(P)) D (i—é x(P)d)Q) —> D(B)Qze(P) —> 0.

Since A is a complete regular local ring, D(A) = D (A)®, A is a free A-
module of rank (dim A + rank 2,,,) by (1.2). Hence D,(A) is A-free by
[2] (4. E) and we have rank Im (4) = rank D, (A) + n — rank D(B) = dim A
+ rank 2,y + n — (rtank 2., + dim B,) = ht P. This means that (WJ)
hold at P.

CoroLLARY (2.6) (cf. [5] and [9]). Let k be a field. Then the ring
R[X, -+, XY, - - -, Y]] is excellent.

Remark. Let k be a field and A a noetherian k-algebra with D,(A).
When the characteristic of k is zero, then A is excellent (cf. [8]). When
the characteristic of £ is p > 0, A is not necessary excellent. For in-
stance, the ring A = k?[[T]][k] is not excellent if [k: k"] = oo (cf. [2] (34.
B)), while D, (A) exists and is a free A-module of rank 1. (cf. also §1,
Example (3).)
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