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ON THE

L2 COHOMOLOGY OF COMPLEX SPACES II

TAKEO OHSAWA

Introduction

This is a continuation of the author's previous work [0-6], in which we have

settled a conjecture of Cheeger-Goresky-MacPherson [C-G-M] by proving that the

L2 cohomology group of a compact (reduced) complex space is canonically

isomorphic to its (middle) intersection cohomology group. Our aim here is, in addi-

tion to that result, to extend further the classical L2 harmonic theory to complex

spaces with arbitrary singularities by establishing the following.

THEOREM 1. Let X be a compact Kdhler space and HfoiX) its r-th U cohomolo-

gy group. Then every element in Hfa (X) is uniquely representable as a sum Σ up'q

where upΛ are L2 harmonic forms of type (p, q). In particular

Here Hf2f,d(X) denotes the subspace of Hf2)(X) consisting of the elements which are

representable by (p, q)-forms. Moreover the complex conjugate of H^diX) is equal to

Combined with our previous result, Theorem 1 implies that the intersection

cohomology group of a compact Kahler space admits a canonical Hodge structure.

Thus we are left with a question whether or not our (L2-) Hodge structure coin-

cides with another one introduced by M. Saito [S]. It follows from the works of

Zucker [Z] and the author [0-5] that they coincide if X admits only isolated sing-

ularities.

As for the proof of Theorem 1, a crucial step is in establishing the existence

of a family of complete Kahler metrics on X': = X — Sing X converging to the
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prescribed one on X' such that the L2 cohomology groups with respect to them are

canonically isomorphic to the intersection cohomology group of X. Since one has

an axiomatic sheaf theoretic definition of the intersection cohomology, our task is

to show the nullity of certain L2 cohomology, while our complete metrics will be

constructed by utilizing a "good" desingularization of X whose existence is

assured in general by the celebrated theory of Hironaka. The analytic part of the

proof of this sort of vanishing theorem is already contained in our earlier work

[0-5], where we proved Theorem 1 under the restriction that X admits only iso-

lated singularities. In order to treat the general case by an obvious induction proc-

edure, we have first to establish an analogue of Leray's theory on the spectral

sequences in the L2 context. We need this work because the theory of equisingular

stratification has not developed well enough to fit our specific purpose here. Thus

our effort will be concentrated to clarify This point (see the splitting lemma in

§ 3). The rest of the proof will be only sketchy because they are essentially the

same argument which we have been repeated in [0-1] through [0-6].

§ 1. Generalized Saper metrics

By generalizing Saper's construction in [S-l, 2] we shall introduce a class

of Hermitian metrics on the nonsingular parts of complex spaces with arbitrary

singularities.

Let X be a (reduced and paracompact) complex space of dimension n and let

X' C X be the set of regular points. A Hermitian metric of X is by definition a

C°° Hermitian metric on X' which is the pull-back of some C°° Hermitian metric

around each point of X via a local holomorphic embedding into C^ (N > 1). We

shall denote a Hermitian metric of X by ds\. By a desingularization of X we shall

mean a complex manifold X together with a proper holomorphic map ώ:X—* X

such that ώ \ ω~ι(Xr) is one-to-one and E^:— ω'HSing X) is a divisor of simple

normal crossings. Let q ^ Eβ be a point of multiplicity k. Then we shall denote

by Zi,.. ,fZk a part of a holomorphic local coordinate around q such that Z\ Zk

= 0 is (set theoretically) a local defining equation of the exceptional set Eω. Let

ds2 be a Hermitian metric on X\ We say that ds2 satisfies Saper's condition with

respect to a desingularization X-+ X if ώ*ds2 is quasi-isometrically equivalent to

~* * 2 i ds2 , £, dZfdZiω d s + + £ zk\

around each point q ^ E<s, where ds2 is a Hermitian metric on X and k is the mul-

tiplicity of Eβ at q.
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We shall say that a desingularization X—+X is good if ω is locally (with

respect to X) a projective morphism and there exists a complex analytic

stratification ί n = l 3 Xn-γ = S i n g X 3 z> Xo => Z_! = 0 such that, for

each Xa and X Ξ XαVXα-i there exist neighbourhoods U ^ x and V 3 .r in X and

J£α \ Xα-i, respectively, with a holomorphic retraction / : U —• V such that

f ° ώ\ ώ~~ι(U) is a holomorphic submersion onto V.

DEFINITION. A Hermitian metric on Xr is called a generalized Saper metric if

it satisfies Saper's condition with respect to some good desingularization.

PROPOSITION 1.1. Let X' c X be as above. Then X' admits a generalized Saper

metric.

Proof. Given a complex space X, by Hironaka's theory one can always find a

good desingularization. Hence by a patching argument using a nonnegative C°°

partition of unity we obtain a generalized Saper metric on X'.

From the above construction it is not clear whether a manifold equipped with

a generalized Saper metric should enjoy good properties at all. Thus we must be-

gin with describing a property of generalized Saper metrics.

Let d (resp. 9) denote the complex exterior derivative of type (1,0) (resp.

(0,1)). Given a C°° function φ on a complex manifold, we shall often identify ddφ

with the complex Hessian of φ by an abuse of notation.

PROPOSITION 1.2. Let X be as above. Then there exist a Hermitian metric dsl of

X and a real-valued C°° function φ on X' such that dsl + ddφ is a generalized

Saper metric for which the length of dφ is a bounded function on K c X' for every

compact subset K C X,

Proof. Let X • X be any good desingularization. Since ώ is locally projec-

tive, for each point x ^ X there exist a neighbourhood U ^ x, positive line bun-

dles Li,. . . ,Lm over U = ώ~ι(U) together with holomorphic sections Si,. . . ,sm

vanishing on U Π E& such that, for any q ^ U Π E&, of multiplicity k,

9 9 ( Σ - l o g ( - l o g | s , | ) )

dsjj - y dzjdzj

~ I~ log I *i zk\ iml I Zi

around q (and outside £5), where A ~ B means that c~ιA ^ B ^cB for some
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positive number c. By patching the functions — Σ log (log | s, |) by a partition of

unity one obtains a function ψ on X' such that βds\ + ddφ, for some positive C°°

function p on X, is a Hermitian metric on X' for which | dφ | satisfies the require-

ment. For detailed estimation of ddψ the reader is referred to a computation in

[0-2, §1).

Let us summarize the above mentioned local construction of a generalized

Saper metric in a more convenient form.

PROPOSITION 1.3. Let ds2 be a generalized Saper metric on Xf associated to a

good desingularization X > X. Then for each point x ^ X one can find a neigh-

bourhood U ^ x and a finite number of nonnegative C°° functions a% (i — 1 , . . . ,m)

on ω~ι(U) such that

1) dd log di extends to a C°° form on ω~ι(U).

2) log α, is plurisubharmonic for every i.

3) ds2 ~ ώ*ds2

x + Σ 99(-log(log ad) on ώ~\U Π X').

Remark. A crucial point in the asymptotics of a generalized Saper metric ds2

is that it behaves locally like Poincare metrics on the product of the discs and the

punctured discs up to the logarithmic factor. By this property the L2 cohomology

classes with proper support conditions on ώ ~ι(U Π Xf) are "nearly" zero

(cf. [0-5]). Additional properties of ds2 which lead to the precise L2 cohomology

vanishing are summarized as follows. The first one is that it admits a potential of

bounded gradient ώ~ι(U C\ X'). The second one is more geometric. Namely, in

terms of the above mentioned submersion/ ° ώ: (ώ~ι(U), ώ~ι{V)) —* V attached

to x ^ Xa\Xa-u we shall use later that ώ*ds2 is quasi-isometrically equivalent to

a bundle-like metric on ω~ι(U Π Xf) with respect to a local C°° trivialization

induced from that of the fibration / ° ώ. Since this last property is clear from the

asymptotics of ds2 we shall not give any proof here.

§2. V1 cohomology with boundary conditions

Let (N, dsu) be a Hermitian manifold of pure dimension n and let Ω c N be

a domain with C°° smooth boundary. We denote by C0(Ω) (resp. C0(Ω)) the set of

compactly supported complex valued C00 differential forms on Ω (resp. on Ω) and

by Co CO) (resp. Cξ(Ω)) the subset of CQ(Ω) (resp. C0(Ω)) consisting of the

r-forms. Given a real-valued C°° function Φ on Ω we put
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II u \\l = f e~φ I u | W for u e= C0(Ω),
J Ω

where | u | denotes the pointwise norm of u and dV the volume form of N with

respect to ds%. The inner product associated to || \\Φ will be denoted by (, )<p. The

weight function Φ will not be referred to if Φ = 0. Let Lr{Ω) denote the Hubert

space defined as the completion of Co(Ω) with respect to || ||φ. We are going to

define the L2 cohomology groups of Ω with certain restrictions on their boundary

values.

Let d be the exterior derivative operating on the space of currents on Ω, and

let δφ be the formal adjoint of d with respect to (-, )Φ. By using the Hodge's star

operator * one has δφ = — eφ * d * e~φ. We put do = d | C0(Ω) and δφ,o =

δφ I Co(Ω). These operators will be regarded as linear operators on LΦ(Ω) : =
In

Θ L%(Ω) which have a dense domain Co(Ω). Then we put dmax = (δφ,0)| and
r=0

dφ,mzx — (rfo)φ. Here ( ) | denotes the Hubert space adjoint with respect to (, )φ.

Similarly we put dmin = (<5φ>max)φ and dΦ,min = (dmaLX)φ. Then the r-th L2 cohomol-

ogy group of β with respect to ds% and Φ is defined as

H(

r

2)tΦ(Ω) : = Ker dm a x Π Lrφ(β) /Im rfmax Π I r

Φ

Elements of Ker dm a x Π Ker (dmax)t will be called harmonic forms. Similarly we

put

H[2hΦ,o(Ω) : = Ker dm[n Π L (fl) /Im dm i n Π L%(Ω).

Furthermore we put dmid: = dmax I dmlx (Dom rfmin) and

: = Ker rfmin Π Lr

Φ(i3) /Im dmid Π

Since dmin ° dmid — 0, H(2)tφtm(Ω) is nothing but the image of H(2)tΦt0 (Ω) in

H(2),Φ (Ω) by the natural inclusion homomorphism.

PROPOSITION 2.1. /w the above notation we have

) ! Γl Co(fl) = {M e C0(Λ); w | 9i2 = *eφrft; for some υ e C 0 (3β)} .

restriction \ dΩ is as a differential form on dΩ.

Proof is omitted because it is a direct computation.

The following is also straightforward.
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PROPOSITION 2.2. Όom(dmid) * φ Π C0(Ω) is dense in D o m ( d m i d ) | with respect

to the graph norm of {dmχ^)%. The same is true for dmin.

From Hahn-Banach's theorem we have

PROPOSITION 2.3. In the following statements (1) implies (2) for any integer r and

any positive number C.

(1) C (\\dminu HI + \\(dmid)t a III) >\\u\\l

for all u <Ξ Dom d m i n Π D o m ( d m i d ) | Π Lrfι(Ω).

(2) For any u e Lr

Φ(Ω) there exist υ e Dom dmid Π LVHfl)

and w e D o m ( d m i n ) | Π Lφ+1CG) swcΛ ίΛat

« = dmid̂  + (rfmm)ίw and C || « ||| > (|| t; III + I w II2,).

§ 3. A splitting: lemma

Given a Riemannian submersion of (N, ds^) onto some differentiable man-

ifold, say M, one can naturally expect to compute the L2 cohomology group of N

from that of the fibers and certain local systems on M just as one deals with

Leray's spectral sequences in topology or complex analytic geometry. We shall

present here a basic lemma which justifies such a procedure in our problem.

From now on we assume that (JV, ds%) is a complete Riemannian manifold,

/ : (N, dsff) —* M a Riemannian submersion and Ω c N is an open subset with

C°° smooth boundary such that f\dΩ is also a submersion onto M. We shall

assume moreover that for any point x ^ M there exists a neighbourhood

B 3 x and a C00 diffeomorphism ? : β x ( Z " 1 ^ ) Π Ω)-+f~ι(B) Π β such that

/ ° ξ is the projection to the first factor. Let us fix such .r, j? and ξ. For simplic-

ity we put F = / ~ 1 ( £) Π ί? and E = B X F. By an abuse of notation we put

E:= B X F, which is naturally identified with /"^(i?) Π Ω. Let pi (resp. £2) be

the projection from E onto B (resp. onto F) We shall identity C0(B) (resp. C0(F))

with p?C0(B) (resp. with p?C0(F)). We assume that the metric | * d s # is of the

form pfdSβ + Σ F , where Σ F is a positive semidefinite Hermitian form on E which

is smoothly extendable to E and annihilates Ker p2. The Hodge's star operator * F

with respect to Σ F , which is well-defined on p~ι(y) for each y ^ B, shall be

naturally extended by linearity as an operator on Co(E). We shall denote by * £

(resp. by *β) the Hodge's star operator with respect to ξ*dsN (resp. ds%). Then we
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note that

(4) *E(uΛv) = ( - l)degudegv*Bu/\ *Fv

for all u ^ C0(B) and v ^ C0(F), since / is a Riemannian submersion. The La-

placian dδ + δd on N will be denoted simply by Δ, which will also stand for the

Laplacian on E.

Let us put

ίinfίr; w e C0(E) A Q(F)} if w e C0(E) \ {0}
άegFw = i o .. Λ

Then we have the following.

LEMMA 3.1. For any w e C o (£) , d e g ^ w > άegFw.

Proof. Clearly it suffices to show the inequality for those w of the form

u A v with u e Co(B) and ι> e C0

5CF). For such a form the result follows from

the fact that

άegF(δ(u A dv)) > s

άegF(δ(du A v) + ( - l)r+1du A * F d * F ^) > 5

and

degF(rf5(« Λt/) + ( - l)rdu A * F rf*F t;) > 5.

Let φ be any C°° real-valued function on B and let Φ = pΐφ. Then the

weighted Laplacian Δφ := dδφ Λ-δφd has the same property as above. Namely we

have

(5) degF ΔΦw > άegFW for any w e C0(E).

For any w ^ Cξ(E), one has a canonical decomposition w; = Σl=oWs such that

= 5 and degF * F WO > degF * F W\ > # * > degF * F Wr.

PROPOSITION 3.2. Under the notation as above, if w e Cζ(E) Π Dom dm i n Π

Dom(dmin)| ί̂ βw ^ F * F ^51 dE = 0 /or all s. Here dF denotes the exterior derivative

along the fiber direction.

Proof is a staightforward computation and may well be omitted.
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Using the above mentioned computations we shall prove the following basic

lemma.

SPLITTING LEMMA. Under the above notation

II dw III + II δφW III > Σ (II dFws III + II δFws III)
s=0

for any w ^ Cξ(E) Π Dom dmm. Here δF : = — * F dF*F.

Proof Since w ^ C0(E) Π Dom dm i n,

(5) (ΔΦw, w)Φ = \\ dw Hi + || δΦw ||| + f e~φδΦw A ~*E~W.
J dE

We note that

(6) f e~φδΦ w A~WE~W = Σ Γ *Γ%> ws Λ"*7ϋΓ s
%J 9JE 5 -o J dE

since w; ^ Dom dmm.

By Lemma 3.1 we have
r

(7) (ΔφW, w)Φ = Σ (ΔφWs, ws)φ
s=0

since (ΔφW, W)Φ = lim G4<j>w, pvw)φ for cut off functions p^ converging to one.

Thus we obtain from (5), (6) and (7)
r

II dw Hi + II δφW III = Σ (II dws III + II δφWs | | | )

from which the desired inequality follows immediately.

Let us choose B in advance so that one has a local C°° frame of T*M, say

θι,... ,02m over B. For each w ^ Cζ(E) with the canonical splitting w — Σ ws as

above we put
Ws = Σ / 0/ Λ wί,

where / runs through the increasing multi-indices of length r — s, θi — θ\x

A Λ θir-s for / = (h, . . . ,irs) and «// e C§(E) Θ C 0 (F) . If one has w e

Cί (£) Π Dom(dmid)φ, it is clear that w\\pϊι(y) e DomWf | ^ ί ι ( | / ) ) * for all z/ e

B. Therefore the splitting lemma shows in particular the following.

PROPOSITION 3.3. Under the above situation, suppose moreover that there exists a

positive number C such that for every y ^ B and r ^ Z, the estimate
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holds for all u e Dom dm i n Π Dom (dm\ά)t Π Lr(f~ι(y) Π i2), w/wί? ^ operators

dm\n and rfmid represent those on f~ι{y) relative to ds% \ f~ι(y). Then one has for every

r^Z,

\\dminw\\l + \\(dmid)*w\\l>C\\w\\l

for all w e Dom dmin Π Dom ( d m i d ) | Π Lr(f~ι(B) Π ί3), provided that the metric

ds2

N \f~ι(B) is replaced by a complete metric of the form ds% + f*ds2 for some com-

plete metric ds2 on B.

Given a Riemannian manifold (T, dsγ) equipped with a real valued C°° func-

tion Φ, we say for convenience that the triple (Γ, dsl, Φ) is L2-acyclic with mag-

nitude C if

|| u HI < C(| | dmmu HI + || (rfmid)%w Hi)

for all u e Dom dm i n Π Dom (rfmid)|. We say simply that (T, ds2

T, Φ) is

L2-acyclic if H[2),Φ,m(T) = 0 for all r. Let us restate Proposition 3.3 by using this

terminology.

PROPOSITION 3.3'. Let ( 5 , dsl) be a complete Riemannian manifold, let Ωo be a

smoothly bounded domain in a paracompact C°° manifold F, let N = B X F, let

ds% — p*dSβ + Σ F be a bundle-like and complete metric on N with respect to the pro-

jection p : N—* B, and let Ωv = {y} X β 0 . Suppose that (Ωy, Σ F I i?y) is L2-acyclic

with magnitude C for all y ^ B. Then for any C°° real valued function φ on B, (iV,

dslr, p*φ) is also L2 -acyclic with magnitude C.

§4. The main results

Let X be a compact complex space of pure dimension n and let Xr, ds2 and X

— ^ X be as in Proposition 1.3. Let {Xα} be a stratification associated to ω, let x

& Xa\ Xa~i be any point for some α, and let U and V be neighbourhoods of x

in X and ^ α \ ^ ί α - i , respectively, such that there exists a holomorphic retraction

/ : U~* V such that p : = f° ώ | ω~ι{U) is a holomorphic submersion. For any

open set Ω c I w e put ί 7 = i2 Π ω " 1 ^ ' ) .

PROPOSITION 4.1. T/ι̂ r̂  msf α neighbourhood system {Ωk}t=i of A in ώ~ι(U)

such that for any complete metric dsv on V and any C°° function φ : V~> R
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(Ω'k, ds21 Ω'k, p*ψ) is L2 acyclic.

Proof. Let us proceed by induction on n. If n = 0, there is nothing to prove.

Suppose that the assertion is true if n < k. Then, from the remark at the end of

§1 and Proposition 3.3', the result is true for n — k if a > 0. If a = 0, the result

is contained in the author's previous work (cf. [0-6] Theorem 3.5).

In virtue of the sheaf theoretic characterization of the intersection cohomology

group of X (cί. [C-G-M]), Proposition 4.1 implies the following.

THEOREM 4.2. With respect to any generalized Saper metric ds2 on X'', we have

H[2)(XΊ = IHr(X) for all r.

Here IHr(X) denotes the r-th intersection cohomology group of X.

Let us denote by HfoiX) the r-th L2 cohomology group of X' with respect to

a Hermitian metric ds\ of X. Then we have H&(X) = IHr(X) for all r by

[0-6]. Hence, applying Proposition 4.1 to dsi: = ds2+εds2 for ε e (0,1], noting

that the magnitude of L2-acyclicity remains bounded as ε —• 0, we obtain the fol-

lowing.

PROPOSITION 4.3. Let {/oj*°=i be a C°° family of compactly supported cut-off func-

tions uniformly converging to 1 on each compact subset of X'. Then, for any harmonic

form h on X' with respect to ds2 the harmonic parts of pkh with respect to ds2 converge

to h on every compact subset of Xr as ε —*.O and k —* °°.

In case ds\ is Kahlerian, one can choose ds2 also to be a Kahler metric.

Therefore, from Theorem 4.2 we obtain

THEOREM 4.4. Ifdsx is Kahlerian,

H{2){X') = Θ
ρ+q=r

and

with respect to any generalized Saper metric on Xr.

Combining Theorem 4.4 with Proposition 4.3 we obtain Theorem 1.
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