```
Y. Odai
Nagoya Math. J.
Vol. }107\mathrm{ (1987), 135-146
```


ON UNRAMIFIED CYCLIC EXTENSIONS OF DEGREE l OF ALGEBRAIC NUMBER FIELDS OF DEGREE \boldsymbol{l}

YOSHITAKA ODAI

Introduction

Let l be an odd prime number and let K be an algebraic number field of degree l. Let M denote the genus field of K, i.e., the maximal extension of K which is a composite of an absolute abelian number field with K and is unramified at all the finite primes of K. In [4] Ishida has explicitly constructed M. Therefore it is of some interest to investigate unramified cyclic extensions of K of degree l, which are not contained in M. In the preceding paper [6] we have obtained some results about this problem in the case that K is a pure cubic field. The purpose of this paper is to extend those results.

Let \boldsymbol{Q} denote the field of rational numbers and let Z be the ring of rational integers. Let ζ be a primitive l-th root of unity. Let $k=\boldsymbol{Q}(\zeta)$ and $L=K(\zeta)$. In Section 1 we see how an unramified cyclic extension N of K of degree l is obtained from an element α of L. Here α satisfies some conditions, one of which is that there exists an ideal \mathfrak{A} of L such that $(\alpha)=\mathfrak{Z}^{2}$. In Section 2, assuming that L is a ramified Galois extension of k, we give a criterion for N to be contained in M by means of α (see Theorem 1). In Section 3, assuming that l is regular, we define F_{1} (resp. F_{0}) as the composite of all those N, for which \mathfrak{A} are ambigious over k (resp. principal) (see Definition). Theorem 2 proves that $F_{1}=F_{0} M$. In Section $4 F_{0}$ is investigated and Theorem 4 gives infinitely many examples of N not contained in M.

Notations. $G=\operatorname{Gal}(L / K)$ is a cyclic group of order $l-1$. Let τ be a generator of G and let \dot{r} be the element of $\boldsymbol{Z} \mid l \boldsymbol{Z}$ such that $\zeta^{\tau}=\zeta^{\dot{r}}$. Let $\boldsymbol{Z} \mid l \boldsymbol{Z}[G]$ denote the group ring of G over $\boldsymbol{Z} / l \boldsymbol{Z}$. We define

$$
\dot{e}_{i}=-\sum_{j=0}^{l-2} \dot{r}^{-i j_{\tau} j} \quad \text { for } 1 \leqq i \leqq l-1
$$

Received May 16, 1986.

Then \dot{e}_{i} are mutually orthogonal idempotent elements of $Z \mid l Z[G]$. For a $Z / l \boldsymbol{Z}[G]$-module A, let

$$
A(i)=A^{\dot{e}_{i}}=\left\{a^{\dot{e}_{i}} ; a \in A\right\}
$$

then $A(i)=\left\{a \in A ; a^{\dot{e}_{i}}=a\right\}=\left\{a \in A ; a^{\tau}=a^{\dot{r} i}\right\}$ and $A=\prod_{i=1}^{l-1} A(i)$ (direct product). We take r (resp. e_{i}) as an element of Z (resp. $Z[G]$) congruent to \dot{r} (resp. \dot{e}_{i}) modulo l. For an algebraic number field F, let F^{*} (resp. E_{F}) denote its multiplicative group (resp. its unit group).

§ 1. Preliminaries

In this section, let K be an algebraic number field (not necessarily of degree l) such that $K \cap k=\boldsymbol{Q}$. The main idea of this section is due to G. Gras [1].

Let \mathscr{K} be the set of all the cyclic extensions of K of degree l and let \mathscr{L} be the set of all the cyclic extensions of L of degree l, which are abelian over K. We note that any element of \mathscr{L} is written in the form $L(\sqrt{ } \bar{\alpha})$, where $\alpha \in L^{*}$. For $1 \leqq \lambda \leqq l$, let

$$
P_{2}=\left\{\left(t_{1}, \cdots, t_{2}\right) \in\{1, \cdots, l-1\}^{2} ; \sum_{i=1}^{\lambda} r^{t_{i}} \equiv 0(\bmod l)\right\}
$$

Let us define that $\left(t_{1}, \cdots, t_{2}\right)$ and ($t_{1}^{\prime}, \cdots, t_{\lambda}^{\prime}$) are equivalent if $t_{1}-t_{1}^{\prime} \equiv \cdots$ $\equiv t_{\lambda}-t_{\lambda}^{\prime}(\bmod l-1)$ and let T_{i} be a complete system of representatives of the equivalence classes. For $(t)=\left(t_{1}, \cdots, t_{\lambda}\right) \in P_{\lambda}$, we can take $\Gamma(t) \in$ $Z[G]$ such that $e_{1} \cdot \sum_{i=1}^{2} \tau^{t_{i}}=l \Gamma(t)$ since $e_{1} \tau \equiv e_{1} r(\bmod l Z[G])$. Let $\operatorname{Tr}_{L / K}$ denote the trace map from L to K.

Lemma 1. For $L(\sqrt{ } \sqrt{\alpha}) \in \mathscr{L}$, let

$$
\begin{gathered}
A_{\lambda}= \begin{cases}0 & \text { if } T_{\lambda} \text { is empty, } \\
l \sum_{(t) \in T_{2}} \operatorname{Tr}_{L / K}\left(\alpha^{\Gamma(t)}\right) & \text { otherwise, }\end{cases} \\
a_{1}=-A_{1}, \quad a_{\lambda}=-\lambda^{-1}\left(A_{\lambda}+\sum_{i=1}^{\lambda-1} a_{i} A_{\lambda-i}\right) \text { for } 2 \leqq \lambda \leqq l .
\end{gathered}
$$

Let x be a root of $f(X)=X^{l}+\sum_{k=1}^{l} a_{\lambda} X^{l-\lambda}=0$. Let ρ be the mapping $L(\sqrt{\alpha} \bar{\alpha}) \rightarrow K(x)$. Then ρ is a bijection of \mathscr{L} onto \mathscr{K}.

Proof. Let $N^{\prime}=L(\sqrt{\alpha}) . \quad N^{\prime}$ is a cyclic extension of K of degree $l(l-1)$. Let N be a unique subfield of N^{\prime}, of degree l over K. Then the mapping $N^{\prime} \rightarrow N$ is clearly a bijection of \mathscr{L} onto \mathscr{K}. Therefore it suffices to show that $N=K(x)$. The generator τ of G can be extended to be a generator of $\operatorname{Gal}\left(N^{\prime} / N\right)$. Let ν be the generator of $\operatorname{Gal}\left(N^{\prime} / L\right)$
such that $\sqrt{l}{ }^{\nu}=\sqrt{2} \sqrt{\alpha} \cdot \zeta$.
1st step. Let $y=\operatorname{Tr}_{N^{\prime} / N}(\sqrt{ } \sqrt{\alpha})=\sum_{i=1}^{l-1} \sqrt{\alpha}^{z^{i}}$. Assume that $y \in K$. Then $y^{\nu^{j}}=y$ for $1 \leqq j \leqq l-1$, i.e.,

$$
\sum_{i=1}^{l-1} \zeta^{j r i} \cdot l \sqrt{\alpha}{ }^{\tau^{i}}=\sum_{i=1}^{l-1 l} \sqrt{\alpha}^{\tau^{i}} \quad \text { for } 1 \leqq j \leqq l-1 .
$$

This implies that the matrix $\left(\zeta^{j r^{i}}-1\right)_{1 \leq i, j \leq l-1}$ is not regular. It is a contradiction. Therefore $y \notin K$ and $N=K(y)$.

2nd step. We see from Kummer theory that $\alpha^{z-r} \in L^{* l}$, which implies that $\alpha^{e_{1}} \equiv \alpha\left(\bmod L^{*}\right)$. Since $L\left(\sqrt{\alpha^{e_{1}}}\right)=L(\sqrt{ } \sqrt{\alpha})$, we have that $N=K(z)$ where $z=\operatorname{Tr}_{N^{\prime} / N}\left(\sqrt{\alpha^{e_{1}}}\right)$ (cf. 1st step). Let $B_{\lambda}=\operatorname{Tr}_{N / K}\left(z^{\lambda}\right)$ for $1 \leqq \lambda \leqq l$. If $B_{\lambda}=A_{\lambda}$, we see from Newton relations for elementary symmetric forms that the minimal polynomial of z over K is $f(X)$. This implies $N=K(x)$. Therefore it suffices to show that $B_{\lambda}=A_{\lambda}$.

3 rd step.

$$
\begin{aligned}
B_{\lambda} & =\sum_{j=1}^{l}\left(\sum_{i=1}^{l-1} \zeta^{j r i} \cdot l \sqrt{\alpha^{e e_{1}}}\right)^{r^{i}} \\
& =\sum_{j=1}^{l} \sum_{(t)} \zeta^{j R(t)} \cdot l \sqrt{\alpha^{e}{ }^{e}} S(t)
\end{aligned},
$$

where (t) runs over $\{1, \cdots, l-1\}^{\lambda}$ and $R(t)=\sum_{i=1}^{\hat{1}} r^{t_{i}}, S(t)=\sum_{i=1}^{\lambda} \tau^{t_{i}}$. As $\sum_{j=1}^{l} \zeta^{j R(t)}=l$ or 0 according as $R(t) \equiv 0(\bmod l)$ or not, we have that

$$
B_{\lambda}=\left\{\begin{array}{lc}
0 & \text { if } P_{\lambda} \text { is empty } \\
l \sum_{(t) \in P_{\lambda}}^{l} \sqrt{\alpha^{e_{1}} S(t)}=l \sum_{(t) \in T_{\lambda}} \operatorname{Tr}_{N^{\prime} / N}\left({ }^{l} \sqrt{\alpha^{e_{1}}}{ }^{S(t)}\right) & \text { otherwise. }
\end{array}\right.
$$

It follows from $e_{1} S(t)=l \Gamma(t)$ that

$$
\left(\sqrt{\alpha^{e_{1}}} S^{(t)}\right)^{l}=\left(\alpha^{\Gamma(t)}\right)^{l} \quad \text { and } \quad\left(\sqrt{\alpha^{e_{1}} S(t)}\right)^{e_{1}}=\left(\alpha^{\Gamma(t)}\right)^{e_{1}} .
$$

Noting that $\zeta^{e_{1}}=\zeta$, we have that

$$
{ }^{i} \sqrt{\alpha^{e_{1}}} \overline{S(t)}=\alpha^{\Gamma(t)} .
$$

This implies $B_{\lambda}=A_{\lambda}$ and completes the proof of the lemma.
Let \mathscr{K}° (resp. \mathscr{L}°) be the set of all the elements of \mathscr{K} (resp. \mathscr{L}) which are unramified over K (resp. L).

Corollary. The restriction of ρ on \mathscr{L}° is a bijection of \mathscr{L}° onto \mathscr{K}°.
Proof. Let $N^{\prime} \in \mathscr{L}$ and $N=\rho\left(N^{\prime}\right) \in \mathscr{K}$. Then N^{\prime} / L and N / K are cyclic extensions of degree l. As $[L: K]=l-1$, we see that N / K is unramified if and only if N^{\prime} / L is unramified.

Example. Let T denote $\mathrm{Tr}_{L / K}$.
In the case $l=3$: If we take $r=-1$ and $e_{1}=-1+\tau$, then

$$
f(X)=X^{3}-3 X-T\left(\alpha^{1-\tau}\right)
$$

In the case $l=5$: If we take $r=2$ and $e_{1}=-1+2 \tau+\tau^{2}-2 \tau^{3}$, then

$$
\begin{aligned}
f(X)= & X^{5}-10 X^{3}-5 T\left(\alpha^{-1+\tau^{2}}\right) X^{2} \\
& +\left(5-5 T\left(\alpha^{-1-\tau+\tau^{2}+\tau^{3}}\right)\right) X-T\left(\alpha^{-2-\tau+2 \tau^{2}+\tau^{3}}\right) .
\end{aligned}
$$

§ 2. Criterion to be contained in the genus field

Hereafter we assume that K is an algebraic number field of degree l such that L is a Galois extension of k. (Then L / k is a cyclic extension of degree l.) Let σ be a generator of $\operatorname{Gal}(L / k)$. Then L is a Galois extension of \boldsymbol{Q}, in fact, $\operatorname{Gal}(L / \boldsymbol{Q})$ is generated by σ and τ.

Let M^{\prime} denote the genus field of L over k, i.e., the maximal extension of L which is a composite of an abelian extension of k with L and is unramified at all the finite primes of L.

Lemma 2. Let $L(\sqrt{ } \sqrt{\alpha})$ and $K(x)$ be as in Lemma 1. If L is ramified over k, then we have that

$$
L(\sqrt[l]{\alpha}) \subset M^{\prime} \Longleftrightarrow K(x) \subset M .
$$

Proof. Let $N^{\prime}=L(\sqrt{\alpha})$ and $N=K(x)$. Assume that $N^{\prime} \subset M^{\prime}$. Then, as N^{\prime} is abelian over K and over k, we see that N^{\prime} is a Galois extension of \boldsymbol{Q}. Moreover, since L is ramified over k, then $\operatorname{Gal}\left(N^{\prime} \mid k\right) \simeq$ $(\boldsymbol{Z} \mid \boldsymbol{Z})^{2}$. If K is not Galois over \boldsymbol{Q}, then an application of Lemma 2 in [5] to $\operatorname{Gal}\left(N^{\prime} / \boldsymbol{Q}\right)$ proves that $N \subset M$. If K is cyclic over \boldsymbol{Q}, then so is L. We see from Kummer theory that N^{\prime} is abelian over \boldsymbol{Q}, which implies that $N \subset M$. The converse is clear.

Theorem 1. Let K be an algebraic number field such that $K \cap k=\boldsymbol{Q}$. Let α be an element of L^{*} satisfying the following conditions:
0. $\alpha \notin L^{*!}$.
I. $\alpha^{r-r} \in L^{* l}$.
II. (i) There exists an ideal \mathfrak{A} of L such that $(\alpha)=\mathfrak{U}^{2}$,
(ii) α is a l-th power residue modulo $(1-\zeta)^{2}$.

Let x be as in Lemma 1. Then $K(x)$ is an unramified cyclic extension of K of degree l. Conversely any unramified cyclic extension of K of degree
l is obtained as above.
Moreover, if K is an algebraic number field of degree l such that L is a ramified Galois extension of k, we obtain that $K(x) \not \subset M$ if and only if III. $\alpha^{\sigma-1} \notin L^{* l}$.

Proof. The first assertion follows from Lemma 1, its corollary and the ramification theory in Kummer extensions (cf. [3] Ia Satz 9). The secnod assertion follows at once from Lemma 2 and the fact that

$$
L(\sqrt{ } \sqrt{\alpha}) \not \subset M^{\prime} \Longleftrightarrow L(\sqrt{\alpha}) \text { is not abelian over } k \Longleftrightarrow \alpha^{\sigma-1} \notin L^{* l} .
$$

§ 3. The fields \boldsymbol{F}_{2} and \boldsymbol{F}_{1}

In this section, let l be a regular odd prime number and let K be an algebraic number field of degree l such that L is a Galois extension of k. Then L is ramified over k.

Let $\mathscr{H}=\left\{c \in\right.$ the ideal class group of $\left.L ; c^{l}=1\right\}$ and let \mathscr{H}_{0} denote the identity subgroup $\{1\}$ of \mathscr{H}. Let \mathscr{H}_{2} (resp. \mathscr{H}_{1}) denote the Sylow l-subgroup of the group of ambiguous ideal classes (resp. ideal classes represented by ambigious ideals) of L over k. As the class number of k is not divisible by l, we see easily that

$$
\mathscr{H}_{0} \subset \mathscr{H}_{1} \subset \mathscr{H}_{2} \subset \mathscr{H} .
$$

So these are $\boldsymbol{Z} / l \boldsymbol{Z}[G]$-modules. Let N be an unramified cyclic extension of K of degree l. By Theorem $1, N$ is obtained from $\alpha \in L^{*}$ such that $(\alpha)=\mathfrak{A}^{l}$ where \mathfrak{A} is an ideal of L. The condition I of the theorem implies that the ideal class $\mathrm{c} 1(\mathfrak{Z})$ represented by \mathfrak{A} belongs to $\mathscr{H}(1)$. We see from Lemma 1 that $c 1(\mathfrak{H})$ is uniquely determined. For $i \in\{0,1,2\}$, we say that N is associated with \mathscr{H}_{i} if $c 1(\mathfrak{H}) \in \mathscr{H}_{i}(1)$.

Definition. For $i \in\{0,1,2\}, F_{i}$ is defined as the composite of all the unramified cyclic extensions of K of degree l, which are associated with \mathscr{H}_{i}.

Remark. We see that F_{0} is the same as the composite of all the unramified cyclic extensions of K of degree l, which are obtained from the units of L.

To investigate $F_{i}(i=0,1,2)$, we first consider the genus field M of K. Let p_{1}, \cdots, p_{s} be all the rational primes congruent to 1 modulo l and totally ramified in K. Then $\left(p_{i}\right)=\mathfrak{p}_{i}^{1+\tau+\cdots+z^{l-2}}$ for $1 \leqq i \leqq s$, where \mathfrak{p}_{i} are
prime ideals of k. Let h denote the class number of k. We write

$$
\mathfrak{p}_{i}^{h}=\left(\pi_{i}\right) \quad \text { for } 1 \leqq i \leqq s, \text { where } \pi_{i} \in k^{*}
$$

Lemma 3. Let $U=\left\{\alpha \in k^{*} ;(\alpha, 1-\zeta)=1\right\}$ and $U^{\prime}=\{\alpha \in U ; \alpha \equiv 1$ $\left.\left(\bmod (1-\zeta)^{2}\right)\right\}$. Then:
(i) For any $\alpha \in U$, there exists a rational integer m such that $\left(\alpha \zeta^{m}\right)^{e_{1}}$ $\in U^{\prime} U^{l}$.
(ii) Let ρ be as in Lemma 1 and put $\rho(L)=K$. Let us take π_{i} so that $\pi_{i}^{e_{i}} \in U^{\prime} U^{\iota}$ for $1 \leqq i \leqq s$; then

$$
M= \begin{cases}M_{0} \cdot \rho(L(\sqrt{\zeta} \sqrt{\zeta})) & \text { if } L(\sqrt{ } \sqrt{\zeta}) / L \text { is unramified } \\ M_{0} & \text { otherwise }\end{cases}
$$

where $M_{0}=\prod_{i=1}^{s} \rho\left(L\left(\sqrt[l]{\pi_{i}^{e i}}\right)\right) . \quad\left(\right.$ If $s=0$, we define $\left.M_{0}=K\right)$.
Proof. (i) Let $V=U / U^{\prime} U^{l}$. V is a $Z / l Z[G]$-module. Let $\pi=1-\zeta$; then $\left\{1-\pi^{i}\right\}_{1 \leq i \leq l-1}$ is a $Z \mid l Z$-basis of V. As $\left(1-\pi^{i}\right)^{e_{i}} \notin U^{\prime} U^{l}$, we have that $\operatorname{dim}_{Z_{/ l}} V(i)=1$ for $1 \leqq i \leqq l-1$. As $\zeta^{e_{1}}=\zeta, V(1)$ is generated by ζ. This completes the proof of (i).
(ii) Let $k_{i}=k\left(\sqrt{ } \sqrt{\pi_{i}^{e_{1}}}\right)$ and $L_{i}=L\left(\sqrt{\pi_{i}^{e_{1}}}\right)$. Let $F\left(p_{i}\right)$ (resp. $\left.F\left(l^{2}\right)\right)$ denote a unique subfield, of degree l, of the p_{i}-th (resp. l^{2}-th) cyclotomic field. As $\pi_{i}^{e_{1}} \in U^{\prime} U^{l}$, only the prime ideals above p_{i} are ramified in k_{i} / k. As k_{i} is a cyclic extension of \boldsymbol{Q} of degree $l(l-1)$, we see that $k_{i}=k F\left(p_{i}\right)$. Therefore $\rho\left(L_{i}\right)=K F\left(p_{i}\right)$. Similarly, if $L(\sqrt{\zeta}) / L$ is unramified, we see that $\rho\left(L\left({ }^{l} \sqrt{\zeta}\right)\right)=K F\left(l^{2}\right)$. Therefore Theorem of [4] completes the proof of (ii).

Theorem 2. Let l be a regular odd prime number and let K be an algebraic number field of degree l such that L is a Galois extension of k. Let notations be as above. Then we have that

$$
F_{1}=F_{0} M
$$

In particular, if $\mathscr{H}_{2}(1)=\mathscr{H}_{1}(1)$, then

$$
F_{2}=F_{0} M
$$

Proof. Let $\mathfrak{B}_{1}, \cdots, \mathfrak{R}_{t}$ be all the prime ideals of L, which are (totally) ramified over k. As $(h, l)=1$, we have

$$
\mathscr{H}_{1}=\left\langle\operatorname{cl}\left(\mathfrak{P}_{1}^{h}\right), \cdots, \operatorname{cl}\left(\mathfrak{P}_{t}^{h}\right)\right\rangle
$$

We write

$$
\left(\mathfrak{F}_{i}^{n}\right)^{l}=\left(\pi_{i}^{\prime}\right) \quad \text { for } 1 \leqq i \leqq t, \quad \text { where } \pi_{i}^{\prime} \in k^{*} .
$$

Let $\pi_{i}(1 \leqq i \leqq s)$ be as in Lemma 3. Then $(l-1) s \leqq t$ and we can take

$$
\pi_{i}^{\prime}=\pi_{b}^{z^{a}} \text { for } i=a s+b, \text { where } a=0, \cdots, l-2 \text { and } b=1, \cdots, s
$$

For $i>(l-1) s$, observing the decomposition groups of the prime ideals \mathfrak{P}_{i}^{l} of k over \boldsymbol{Q}, we see that there exist divisers $d(i) \neq l-1$ of $l-1$ such that $\pi_{i}^{\prime \alpha(i)-1} \in E_{k}$. To obtain F_{1}, we may consider only $\alpha \in L^{*}$ such that $(\alpha)=\mathfrak{X}^{l}$ and $\operatorname{cl}(\mathfrak{X}) \in \mathscr{H}_{1}(1)$. Then

$$
\alpha \equiv \varepsilon \prod_{i=1}^{t}\left(\pi_{i}^{\prime e_{1}}\right)^{\alpha(i)}\left(\bmod L^{* l}\right) \text { where } \varepsilon \in E_{L} \text { and } a(i) \in Z .
$$

Here

$$
\left\{\begin{array}{l}
\pi_{i}^{\prime e_{1}} \equiv\left(\pi_{0}^{\left.e_{1}\right)^{a}}\left(\bmod L^{* l}\right) \text { for } i=a s+b \leqq(l-1) s,\right. \\
\pi_{i}^{\prime e_{1}} \in E_{k} L^{* l} \text { for } i>(l-1) s, \text { because } e_{1} \in\left(\tau^{d(i)}-1, l\right) Z[G] .
\end{array}\right.
$$

Therefore

$$
\alpha \equiv \varepsilon^{\prime} \prod_{i=1}^{s}\left(\pi_{i}^{e_{1}}\right)^{b(i)}\left(\bmod L^{* l}\right) \quad \text { where } \varepsilon^{\prime} \in E_{L} \text { and } b(i) \in Z .
$$

Then Lemma 3 proves that $F_{1}=F_{0} M$. It is clear that $\mathscr{H}_{2}(1)=\mathscr{H}_{1}(1) \Rightarrow$ $F_{2}=F_{1}$. The proof is complete.

Corollary. Let notations and assumptions be as in Theorem 2.
(i) In the case that K is cyclic: Let f be the conductor of K. If $f=l^{2}$ or there exists a prime divisor $p \neq l$ of f such that $p \not \equiv 1\left(\bmod l^{2}\right)$, then $F_{2}=F_{0} M$.
(ii) In the case that K is not cyclic: If K is totally real, then $F_{2}=$ $F_{0} M$.

Proof. Let N denote the norm map from L to k. Let $A=\mathscr{H}_{2} \mid \mathscr{H}_{1}$ and $B=\left(E_{k} \cap N L^{*}\right) / N E_{L}$. For $\operatorname{cl}(\mathscr{H}) \in \mathscr{H}_{2}$, there exists $\alpha \in L^{*}$ such that $\mathfrak{H}^{\sigma-1}=(\alpha)$. Let ϕ be the mapping $\mathrm{cl}(\mathfrak{H})\left(\bmod \mathscr{H}_{1}\right) \rightarrow N \alpha\left(\bmod N E_{L}\right)$. It is well known that ϕ is a group isomorphism of A onto B. Both A and B are $\boldsymbol{Z} \mid l \boldsymbol{Z}[G]$-modules. As k is Galois over \boldsymbol{Q}, we can write $\tau \sigma \tau^{-1}=\sigma^{r^{x}}$ where $x \in\{1, \cdots, l-1\}$. Then $A(1) \simeq B(l-x)$, because $\phi\left(a^{*}\right)=\left(\phi(a)^{\tau}\right)^{r x}$ for $a \in A$. Let $B^{+}=\left(E_{k+} \cap N L^{*}\right) N E_{L} / N E_{L}$ and $B_{W}=\left(W_{k} \cap N L^{*}\right) N E_{L} / N E_{L}$, where k^{+}is the maximal real subfield of k and W_{k} is the group of roots of unity in k. Then $B=B^{+} \times B_{W}$ (direct product). Since the elements of E_{k+} are invariant by $\tau^{(l-1) / 2}$, we see that $B^{+}=\prod_{i . \text { even }} B(i)$ (direct product)
and $B_{W}=B(1)$.
(i) $\quad x=l-1$. Namely $A(1)=B(1)=B_{W}=\left(W_{k} \cap N L^{*}\right) /\left(W_{k} \cap N E_{L}\right)$. It is clear that $\zeta \in N E_{L}$ if $f=l^{2}$. Using the properties of Hilbert norm residue symbols (cf. [3] II Section 11) in k, we see that $\zeta \notin N L^{*}$ if there exists a prime divisor $p \neq l$ of f such that $p \not \equiv 1\left(\bmod l^{2}\right)$. Therefore $A(1)=\{1\}$.
(ii) If K is totally real, then $\sigma^{-1} \tau^{(l-1) / 2} \sigma=\tau^{(l-1) / 2}$, i.e., x is even. Hence $l-x$ is odd. $l-x \neq 1$ as K is not cyclic. Therefore $A(1)=B(l-x)=\{1\}$.

§4. The field F_{0}

In this section l is not necessarily regular. The definition of F_{0} in Section 3 is still valid.

Theorem 3. Let K be a totally real algebraic number field of degree l such that L is a ramified Galois extension of k. Then

$$
F_{0} \subset M .
$$

Proof. Let k^{+}(resp. L^{+}) be the maximal real subfield of k (resp. L). As $L^{+}=K k^{+}, L^{+}$is totally real when K is totally real. Then it follows that $E_{L} / E_{L}^{l} \simeq\left(W_{L} E_{L^{+}}\right) /\left(W_{L} E_{L^{+}}\right)^{l}$ (as $\boldsymbol{Z} / l \boldsymbol{Z}[\operatorname{Gal}(L / \boldsymbol{Q})]$-modules) where W_{L} is the group of roots of unity in L (cf. Theorem 4.12 of [9]). For $\varepsilon \in E_{L^{+}}$, noting that ε is invariant by $\tau^{(l-1) / 2}$, we have that

$$
\varepsilon^{\tau-r} \in L^{* l} \Longrightarrow \varepsilon \in L^{* l} \Longrightarrow \varepsilon^{\sigma-1} \in L^{* l} .
$$

On the other hand $W_{L}^{\tau-r}, W_{L}^{\sigma-1} \in L^{* l}$, since W_{L} is generared by $-\zeta$ or $-\sqrt{ } \bar{\zeta}$. Therefore $W_{L} E_{L_{+}}$has no elements satisfying the conditions I and III of Theorem 1, and so does E_{L}. The proof is complete by Remark just following Definition in Section 3.

Next we consider the case that K is not totally real.
Lemma 4. Let H be a cyclic group of order l and let σ be a generator of H. Let $g(\sigma)$ be the element of $Z[H]$ such that $(1-\sigma)^{l-1}=1+\sigma+\cdots$ $+\sigma^{l-1}+\lg (\sigma)$. Then $g(\sigma)$ is invertible in $Z[H]$.

Proof. We see that the ring homomorphism

$$
Z[H] \ni f(\sigma) \longrightarrow f(1) \times f(\zeta) \in Z \times Z[\zeta] \text { (direct product) }
$$

is injective, because $(X-1) \cap\left(X^{l-1}+X^{l-2}+\cdots+1\right)=\left(X^{l}-1\right)$ in $Z[X]$. We note that $g(1)=-1$ and $g(\zeta)=(1-\zeta)^{l-1} / l=\prod_{i=1}^{l-1}\left(1+\zeta+\cdots+\zeta^{i-1}\right)^{-1}$.

Let $g^{\prime}(\sigma)=\prod_{i=1}^{l-1}\left(1+\sigma+\cdots+\sigma^{i-1}\right)-l^{-1}(1+(l-1)!)\left(1+\sigma+\cdots+\sigma^{l-1}\right)$ $\in Z[H]$; then $g^{\prime}(1)=g(1)^{-1}$ and $g^{\prime}(\zeta)=g(\zeta)^{-1}$. This proves $g^{\prime}(\sigma)=g(\sigma)^{-1}$.

Let K be a pure algebraic number field of degree l, i.e., $K=\boldsymbol{Q}(\sqrt{2} \sqrt{m})$ where $m \neq 1$ is a l-th power-free natural number. Then it is well known that L is a ramified Galois extension of k.

Theorem 4. Let $K=\boldsymbol{Q}(\sqrt{2} \sqrt{m})$ where $m \neq 1$ is a l-th power-free natural number written as

$$
D^{l}+d \text { with } D, d \in Z, D>0, d\left|D^{l}, d \neq \pm 1, l\right| D, l \nmid d
$$

Let σ be the generator of $\operatorname{Gal}(L / k)$ such that ${ }^{2} \sqrt{m}{ }^{\sigma}=\sqrt{m} \cdot \zeta$. We define $\eta=$ $(\sqrt{m}-D)^{1-\sigma}$ and

$$
\varepsilon_{0}=\zeta \cdot \prod_{i=1}^{l-2} \eta^{a(i) \sigma^{i}}
$$

where $a(i)$ is a rational integer congruent to $\sum_{j=1}^{i} j^{-1} \operatorname{modulo} l$. Then ε_{0} is a unit of L satisfying the conditions 0 , I, II and III of Theorem 1. Therefore we have

$$
F_{0} \not \subset M
$$

Proof. We note that $\operatorname{Gal}(L / Q)$ is generated by σ and τ with the relations $\sigma^{l}=\tau^{l-1}=1, \sigma \tau=\tau \sigma^{r}$. Let E_{0} be the subgroup of E_{L} generated by E_{k} and the conjugates of E_{K}. Then $E_{0} \supset E_{L}^{l}$ (cf. [8]). Let $\theta=\left({ }^{l} \sqrt{m}-D\right)^{l} / d$, then $\theta \in E_{K}$ (cf. [2]). As $\eta^{2}=\theta^{1-\sigma}$, we have that $\eta \in E_{L}$ and $\varepsilon_{0} \in E_{L}$.

1 st step. We note that $m=d\left(D^{l} d^{-1}+1\right)$ where $D^{l} d^{-1} \in Z$. Therefore d is l-th power-free and $\left(d, D^{l} d^{-1}+1\right)=1 . \quad D^{l} d^{-1}+1 \neq \pm 1$ follows from $l \mid D$. We see that

$$
\begin{aligned}
\left(d, D^{l} d^{-1}+1\right)=1 & \text { with } d \neq \pm 1, D^{l} d^{-1}+1 \neq \pm 1 \\
& \Longrightarrow d \notin K^{\imath} \Longrightarrow \theta \not \Longrightarrow E_{K}^{l} \Longrightarrow \theta \nsubseteq E_{0}^{1-\sigma} .
\end{aligned}
$$

Let $g(\sigma)$ be as in Lemma 4; then $\theta^{g(\sigma)} \notin E_{0}^{1-\sigma}$ follows from this lemma. As $g(1)=-1$, we have that

$$
\begin{equation*}
\eta^{(1-\sigma)^{l-2}}=(\sqrt{m}-D)^{(l-\sigma)^{l-1}}=d\left({ }^{l} \sqrt{m}-D\right)^{l g(\sigma)}=\theta^{g(\sigma)} . \tag{1}
\end{equation*}
$$

Therefore $\eta^{(1-\sigma)^{l-3}} \notin E_{0}$ and $\eta^{(1-\sigma)^{2-2}} \in E_{0}$, which implies that

$$
\begin{equation*}
\left\langle\eta, \eta^{\sigma}, \cdots, \eta^{o l-3}\right\rangle E_{0}\left|E_{0}=\left\langle\eta, \eta^{1-\sigma}, \cdots, \eta^{(1-\sigma\rangle^{l-3}}\right\rangle E_{0}\right| E_{0} \simeq(\boldsymbol{Z} \mid l \boldsymbol{Z})^{l-2} . \tag{2}
\end{equation*}
$$

We define

$$
\mathscr{E}=\left\langle\eta, \eta^{\sigma}, \cdots, \eta^{o l-3}, \eta^{\sigma l-2}\right\rangle \subset E_{L} .
$$

The equation (1) implies $\eta^{\sigma l-2} \equiv \theta\left(\bmod \left\langle\eta, \eta^{\sigma}, \cdots, \eta^{\left.\sigma^{t-3}\right\rangle} \mathscr{E}^{l}\right)\right.$, since $\theta^{\gamma} \equiv \theta$ $\left(\bmod \mathscr{E}^{l}\right)$. As $\theta \notin E_{L}^{l}$, we see from (2) that

$$
\begin{equation*}
\mathscr{E} \cap E_{L}^{l}=\mathscr{E}^{l} \quad \text { and } \quad \mathscr{E} / \mathscr{E}^{\mathscr{C}} \simeq(\boldsymbol{Z} / l \boldsymbol{Z})^{t-1} \tag{3}
\end{equation*}
$$

2nd step. We shall prove that ε_{0} satisfies the conditions I, II and III (0 follows from III). The condition III: Since $\eta^{\sigma^{l-1}}=\eta^{-1-\sigma-\cdots-\sigma^{t-2}}$ and $a(l-2) \equiv 1(\bmod l)$, we see that $\varepsilon_{0}^{\sigma-1} \in \mathscr{E} \backslash \mathscr{E}^{l}$. Therefore (3) implies that ε_{0} satisfies III. The condition I: For $j \in(\boldsymbol{Z} / l \boldsymbol{Z})^{*}$, we define

$$
\eta_{(j)}=\eta^{1+\sigma+\cdots+\sigma^{j^{\prime}-1}}
$$

where j^{\prime} is a positive rational integer congruent to j modulo l. This definition does not depend on the choice of j^{\prime} because $\eta^{1+\sigma+\cdots+\sigma^{l-1}}=1$. As $(\boldsymbol{Z} \mid l \boldsymbol{Z})^{*}=\langle\dot{r}\rangle$, it is clear that

$$
\mathscr{E}=\left\langle\eta_{(1)}, \eta_{(\dot{r})}, \cdots, \eta_{\left(r^{\prime}-2\right)}\right\rangle .
$$

Since $\eta^{\tau}=\eta^{1+\sigma+\cdots+\sigma^{i r-1}}$, we have that $\eta_{(\gamma)}{ }^{\tau}=\eta_{(j r)}$. Therefore we see from (3) that

$$
\{\varepsilon \in \mathscr{E} ; \varepsilon \text { satisfies I. }\}=\left\langle\varepsilon_{1}\right\rangle \mathscr{E}^{l} \quad \text { where } \varepsilon_{1}=\prod_{i=0}^{l-2} \eta_{(\dot{r i})^{r l-1-i}} .
$$

If $\dot{r}^{i}=j$, then $r^{l-1-i}(\bmod l)=\dot{r}^{-i}=j^{-1}$. Hence

$$
\varepsilon_{1} \equiv \prod_{j=1}^{l-1}\left(\eta^{1+\sigma \cdots+\sigma^{j-1}}\right)^{b(j)} \quad\left(\bmod \mathscr{E}^{l}\right)
$$

where $b(j)$ is a rational integer congruent to j^{-1} modulo l,

$$
\begin{aligned}
& \equiv \prod_{i=0}^{l-2} \eta^{(b(i+1)+\cdots+b(l-1)) \sigma^{i}} \quad\left(\bmod \mathscr{E}^{l}\right) \\
& \equiv \prod_{i=1}^{l-2} \eta^{-\alpha(i) \sigma^{i}} \equiv\left(\zeta^{-1} \varepsilon_{0}\right)^{-1} \quad\left(\bmod \mathscr{E}^{l}\right) .
\end{aligned}
$$

Therefore $\zeta^{-1} \varepsilon_{0}$ satisfies I, and so does ε_{0} as $\zeta^{\tau-r}=1$. The condition II: Clearly ε_{0} satisfies II(i). We note that $l \nmid m$ as $l \mid D$ and $l \nmid d$. Then $\eta=$ $\left({ }^{l} \sqrt{m}-D\right) / \zeta\left({ }^{l} \sqrt{m}-D \zeta^{-1}\right) \equiv \zeta^{-1}\left(\bmod (1-\zeta)^{l}\right)$ because $\left({ }^{2} \sqrt{m}, 1-\zeta\right)=1$ and $(1-\zeta)^{l} \mid D\left(\zeta^{-1}-1\right)$. Hence $\varepsilon_{0} \equiv \zeta \cdot \prod_{\imath=1}^{l-2} \zeta^{-a(i)} \equiv 1\left(\bmod (1-\zeta)^{l}\right)$ because $\sum_{i=1}^{l-2} a(i) \equiv 1(\bmod l)$. Therefore ε_{0} satisfies II(ii). The proof of the theorem is complete.

Remark. For a fixed l, there exist infinitely many pure algebraic number fields of degree l, satisfying the assumption of Theorem 4. For example, let $D=2 l D^{\prime}, d=2$ with $D^{\prime} \in Z,>0$; then it is known that $D^{l}+d$ is l-th power-free for infinitely many D^{\prime} (cf. [7]).

Example. Let $f(X)$ be as in Example of Section 1. Let μ denote $\sqrt{2} \sqrt{m}$.
(1) In the case $l=3$: We can take

$$
\varepsilon_{0}=\zeta \eta^{\sigma} \quad \text { (cf. [6]). }
$$

For $\alpha=\varepsilon_{0}$, we have

$$
f(X)=X^{3}-3 X-d^{-2}\left(\left(9 D^{6}+12 D^{3} d+2 d^{2}\right)+\left(-18 D^{5}-12 D^{2} d\right) \mu+9 D^{4} \mu^{2}\right)
$$

For example, let $D=6$ and $d=2$; then $m=218=2 \cdot 109$ and

$$
f(X)=X^{3}-3 X-106274+35208 \mu-2916 \mu^{2}
$$

(2) In the case $l=5$: We can take

$$
\varepsilon_{0}=\zeta \eta^{\sigma-\sigma^{2}+\sigma^{3}} .
$$

For $\alpha=\varepsilon_{0}$, we have

$$
\begin{aligned}
f(X)= & X^{5}-10 X^{3} \\
& -5 d^{-4}(\mu-D)^{4}\left(5 \sum_{\substack{i, j, j \in \in / 5 / 5 Z \\
i+2 j+4 / k=2}}[2, i][8, j][6, k]-(\mu-D)^{16}\right) X^{2} \\
& +\left\{5-5 d^{-6}(\mu-D)^{6}\left(\sum_{\substack{i, j, j \in \in \in \mathcal{Z} / 5 Z \\
2 i+3 j+4 k=1}}[8, i][4, j][12, k]-(\mu-D)^{24}\right)\right\} X \\
& -d^{-8}(\mu-D)^{8}\left(5 \sum_{\substack{i, j, k \in \in \in \mathcal{Z} / 5 Z \\
2 i^{2}+3 j+4 k=3}}[14, i][2, j][16, k]-(\mu-D)^{32}\right),
\end{aligned}
$$

where

$$
[n, i]=\sum_{\substack{0 \leq \leq \leq \leq \\ j(\bmod \leq)=i}} \frac{n!}{j!(n-j)!}(-D)^{n-j} \mu^{j} \quad \text { for } n \in Z,>0 \text { and } i \in Z / 5 Z
$$

For example, let $D=10$ and $d=2$; then $m=100002=2 \cdot 3 \cdot 7 \cdot 2381$ and

$$
\begin{aligned}
f(X)=X^{5} & -10 X^{3} \\
+ & (214851250061249942499980-7812953131906269875000 \mu \\
& -2734462500653125000000 \mu^{2}-78125468730624975000 \mu^{3} \\
& \left.+21485000003500000000 \mu^{4}\right) X^{2} \\
+ & (-6103955090097800313125937395000015 \\
& -610378418345705492203375041750000 \mu \\
& -488294531251561134375000000 \mu^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +12207617196230505390610000050000 \mu^{3} \\
& \left.+4883050784218754125000000 \mu^{4}\right) X \\
+ & 305189818922084520832602335793971812998499996 \\
- & 7628387370359553697124163530698356329475000 \mu \\
- & 763153085778873923150280657848341250000000 \mu^{2} \\
+ & 305206910252698725568190329921282625025000 \mu^{3} \\
- & 45779296903685893553409505874946800000000 \mu^{4} .
\end{aligned}
$$

References

[1] G. Gras, Extensions abéliennes non ramifiées de degré premier d'un corps quadratique, Bull. Soc. Math. France, 100 (1972), 177-193.
[2] F. Halter-Koch und H.-J. Stender, Unabhängige Einheiten für die Körper $K=$ $\boldsymbol{Q}\left({ }^{n} \sqrt{D^{n} \pm d}\right)$ mit $d \mid D^{n}$, Abh. Math. Sem. Univ. Hamburg, 42 (1974), 33-40.
[3] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Physica-Verlag, Würzburg/Wien, 1970.
[4] M. Ishida, On the genus field of an algebraic number field of odd prime degree, J. Math. Soc. Japan, 27 (1975), 289-293.
[5] S. Kobayashi, On the l-dimension of the ideal class groups of Kummer extensions of a certain type, J. Fac. Sci. Univ. Tokyo Sec. IA, 18 (1971), 399-404.
[6] Y. Odai, Some unramified cyclic cubic extensions of pure cubic fields, Tokyo J. Math., 7 (1984), 391-398.
[7] G. Ricci, Ricerche aritmetiche sui polinomi, Rend. Circ. Mat. Palermo, 57 (1933), 433-475.
[8] C. Walter, A class number relation in Frobenius extension of number field, Mathematika, 24 (1977), 216-225.
[9] L. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1982.

Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Fukasawa Setagaya-ku, Tokyo 158

