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ON UNRAMIFIED CYCLIC EXTENSIONS OF DEGREE /

OF ALGEBRAIC NUMBER FIELDS OF DEGREE /

YOSHITAKA ODAI

Introduction

Let I be an odd prime number and let K be an algebraic number
field of degree I. Let M denote the genus field of K, i.e., the maximal
extension of K which is a composite of an absolute abelian number field
with K and is unramified at all the finite primes of K. In [4] Ishida has
explicitly constructed M. Therefore it is of some interest to investigate
unramified cyclic extensions of K of degree Z, which are not contained
in M. In the preceding paper [6] we have obtained some results about
this problem in the case that if is a pure cubic field. The purpose of
this paper is to extend those results.

Let Q denote the field of rational numbers and let Z be the ring of
rational integers. Let ζ be a primitive Z-th root of unity. Let k — Q(ζ)
and L = K(ζ). In Section 1 we see how an unramified cyclic extension
N of K of degree I is obtained from an element a of L. Here a satisfies
some conditions, one of which is that there exists an ideal % of L such
that (a) = 2F. In Section 2, assuming that L is a ramified Galois extension
of k, we give a criterion for N to be contained in M by means of a (see
Theorem 1). In Section 3, assuming that Z is regular, we define Fx (resp.
JF0) as the composite of all those N, for which 21 are ambigious over k
(resp. principal) (see Definition). Theorem 2 proves that Fx = FQM. In
Section 4 Fo is investigated and Theorem 4 gives infinitely many examples
of N not contained in M.

NOTATIONS. G = Gal (L/K) is a cyclic group of order I — 1. Let τ

be a generator of G and let f be the element of Z\IZ such that ζτ = ζr.

Let ZβZ[G] denote the group ring of G over Z\IZ. We define

έi = - Σ r-ijrj for 1 £ i £ I - 1.
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Then et sue mutually orthogonal idempotent elements of Z/IZ[G]. For a

Z\IZ[G]-module A, let

A(ι) = Aei = {aki; aeA},

then A(ί) = {ae A; aeί = a} = {a e A; aτ = αri} and A = f]ί=ϊ ^(0 (direct

product). We take r (resp. et) as an element of Z (resp. Z[G]) congruent

to r (resp. έ*) modulo Z. For an algebraic number field F, let JF* (resp. EF)

denote its multiplicative group (resp. its unit group).

§ 1. Preliminaries

In this section, let K be an algebraic number field (not necessarily

of degree Z) such that K Π k = Q. The main idea of this section is due

to G. Gras [1].

Let X be the set of all the cyclic extensions of K of degree I and

let JSf be the set of all the cyclic extensions of L of degree Z, which are

abelian over K. We note that any element of Sf is written in the form

L(Wά), where a e L*. For 1 ^ λ ^ Z, let

^ = {ft, , tλ) 6 {1, , Z - l}λ; Σί=i r ί 4 ΞΞ 0 (mod Z)} .

Let us define that (tu , tλ) and (t[, , $ are equivalent if ίx — # =

= tx — t\ (mod I — 1) and let Γ ; be a complete system of representatives

of the equivalence classes. For (t) = (tu , tλ) e PA, we can take Γ(£) e

Z[G] such that e.-^Li^ = /Γ(ί) since e l T = ^ r (mod ZZ[G]). Let TrL / π

denote the trace map from L to if.

LEMMA 1. For L(ιV~a) e «£?, Zβί

Ό i/ 2^ is empty,

YL/κ(aΓ(t)) otherwise,

ax=-Au α 2 = - ί - ^ + ΣJzJα,^. ,) for 2 £ λ ^ I.

Let x be a root of f(X) = X1 + ΣίUiΛ*X'I~<ι = 0. Lβί ^ 6e ίAe mapping

L(Wa) -> K(x). Then p is a bίjectίon of ££ onto Jf.

Proof Let iV = L(Wa). Nf is a cyclic extension of i£ of degree

Z(Z — 1). Let N be a unique subfield of N\ of degree Z over JSΓ. Then

the mapping N' -> N is clearly a bisection of Jδf onto Jf. Therefore it

suffices to show that N = if(x). The generator r of G can be extended

to be a generator of Gsl(N'IN). Let y be the generator of Gsi (N'/L)
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such that W a = W a ζ.

1st step. Let y = ΎτN,/N(Wά) = Σί=ί V α"Γ*. Assume that y e K Then

y ' = y for 1 <£ j ^ Z — 1, i.e.,

Σί:ϊ C" V5"ri = Σί-1 V^Γ* for l < j £ I - l .

This implies that the matrix (ζjri — l)i<a,^-i is not regular. It is a

contradiction. Therefore y & K and iV = if(j).

2nd step. We see from Kummer theory that aτ~reL*1, which implies

that aei = α(modi* 4 ). Since L(Wc^) = L(W~a), we have that iV = ϋΓ(̂ )

where 0 = ΎVNΊN{1Λ/C^) (cf. 1st step). Let J5, = ΊτN/κ(zx) for 1 ^ ^ < I. If

ΰ^ = Aλ, we see from Newton relations for elementary symmetric forms

that the minimal polynomial of z over K is f(X). This implies N = K(x).

Therefore it suffices to show that Bλ = Aλ.

3rd step.

where (ί) runs over {1, . , I - If and R(t) = Σ U ^ ' S s ( 0 = Σ ^ i ^ ί έ A s

Σy=iC i Λ ( 0 = ^ or 0 according as R(t) = 0 (mod 0 or not, we have that

O if Pλ is empty,

r V V Λ < V ^ ( ί ) ) otherwise.

It follows from exS(i) = lΓ(t) that

( V ^ ( ° y = (α r ( ί )) 1 and ( V ^ 0 ) 6 1 = (α Γ ( ί ) ) β ι .

Noting that ζe i = ζ, we have that

v« =«
This implies Bλ = A ; and completes the proof of the lemma.

Let c€° (resp. j&?°) be the set of all the elements of X (resp. J2?)
which are unramified over K (resp. L).

COROLLARY. The restriction of p on ^ ° is a bijection of J£?

Proo/. Let N' e Se and iV = (̂iVO e JΓ. Then N'/L and iV/jK" are cyclic

extensions of degree I. As [L: K] = I — 1, we see that iV/l£" is unramified

if and only if N'/L is unramified.
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EXAMPLE. Let T denote ΎτL/κ.

In the case I = 3: If we take r — — 1 and ex = — 1 + r, then

= X* - 3X~ T(a'~τ).

In the case 1 — 5: If we take r = 2 and βj = — 1 + 2r + τ2 — 2τ3, then

/(Z) = X 5 - 10X3 - 5T(cΓ1+τ*)X2

+ (5 - δ ϊ 7 ^ - 1 ^ ^ 2 ^ 3 ) ) ^ - T(oΓ2-r+2rΛ+τ*).

§2. Criterion to be contained in the genus field

Hereafter we assume that K is an algebraic number field of degree

I such that L is a Galois extension of k. (Then Ljk is a cyclic extension

of degree Z.) Let σ be a generator of Gal(L/£). Then L is a Galois

extension of Q, in fact, Gal(L/Q) is generated by σ and r.

Let M' denote the genus field of L over k, i.e., the maximal extension

of L which is a composite of an abelian extension of k with L and is

unramified at all the finite primes of L.

LEMMA 2. Let L(Wa) and K(x) be as in Lemma 1. If L is ramified

over k, then we have that

Wei) C Mf <==φ K(x) c M.

Proof. Let N' = L(Vα") and iV = UL(#). Assume that iV7 c Λf;.

Then, as N' is abelian over if and over k, we see that Nf is a Galois

extension of Q. Moreover, since L is ramified over k, then Gal (N'jk) ~

(Z/lZ)2. If K is not Galois over Q, then an application of Lemma 2 in

[5] to Gal(N'lQ) proves that i V c M If if is cyclic over Q, then so is

L. We see from Kummer theory that N' is abelian over Q, which implies

that N d M. The converse is clear.

THEOREM 1. Let K be an algebraic number field such that K Π k = Q.

Let a be an element of L* satisfying the following conditions:

0. a £ L*1.

1. α τ - r eL* 1 .

II. ( i) There exists an ideal SI of L such that (a) = %\

(ii) a is a l-ih power residue modulo (1 — ζ)\

Let x be as in Lemma 1. Then K(x) is an unramified cyclic extension of

K of degree L Conversely any unramified cyclic extension of K of degree
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I is obtained as above.

Moreover, if K is an algebraic number field of degree I such that L

is a ramified Galois extension of k, we obtain that K(x) tfiM if and only if

III. a'^&L*1.

Proof. The first assertion follows from Lemma 1, its corollary and

the ramification theory in Kummer extensions (cf. [3] la Satz 9). The

secnod assertion follows at once from Lemma 2 and the fact that

L(Vα") V- Mf 4=> L(y~άΓ) is not abelian over k <=Φ aσ~ι £ L*z.

§ 3. The fields F2 and Fx

In this section, let I be a regular odd prime number and let K be

an algebraic number field of degree I such that L is a Galois extension

of k. Then L is ramified over k.

Let Jf = {cethe ideal class group of L; cι = 1} and let Jf0 denote

the identity subgroup {1} of jf. Let Jf2 (resp. J^) denote the Sylow

Z-subgroup of the group of ambiguous ideal classes (resp. ideal classes

represented by ambigious ideals) of L over k. As the class number of k

is not divisible by Z, we see easily that

So these are Z\lZ[G]-modules. Let N be an unramified cyclic extension

of K of degree Z. By Theorem 1, N is obtained from a e L* such that

(a) = 2Γ where 21 is an ideal of L. The condition I of the theorem

implies that the ideal class cl(2ί) represented by 21 belongs to Jf(l). We

see from Lemma 1 that cl(2l) is uniquely determined. For ie {0, 1, 2}, we

say that N is associated with ^>

i if cl (21) e 3Ί?t(ΐ).

DEFINITION. For ί e {0,1, 2}, Ft is defined as the composite of all the

unramified cyclic extensions of K of degree Z, which are associated with

^ ί

Remark. We see that Fo is the same as the composite of all the

unramified cyclic extensions of K of degree Z, which are obtained from

the units of L.

To investigate Ft (ί — 0, 1, 2), we first consider the genus field M of

K. Let pί9 -,Ps be all the rational primes congruent to 1 modulo I and

totally ramified in K. Then (pt) = pj+'+ +^-a for 1 <: i ^ s, where p, are
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prime ideals of k. Let h denote the class number of k. We write

p% = (TΓJ for 1 rg ί <L s, where πi e £* .

LEMMA 3. Lβί C/ = {α e &* (a, 1 - ζ) = 1} and [/' == {a: € [7; a = 1

(mod(l - 0 1 ) } - Then:

( i ) For an^ aeU, there exists a rational integer m such that (aζm)ei

e U'ZP.

(ii) Let p be as in Lemma 1 and put p(L) = K. Let us take πt so

that πf e U'U1 for 1 £ i < s; then

(MQ.p(L(WT)) if L(W~ζ)IL is unramίfied,
1 = 1 τ[Mo otherwise,

where Λf0 = Πί-i^WVπf 1)). (If s = 0, we define MQ = JΓ).

Proo/. (i) Let V = U/U'U1. Vis a Z/ZZ[O]-module. Let TΓ = 1 - ζ;

then {1 - ^}i^^ί-i is a Z/ZZ-basis of V. As (1 - π')'* e U'U1, we have

that dimz / z z V(ΐ) = 1 for 1 ^ i ^ I - 1. As ζe i = ζ, V(l) is generated by

ζ. This completes the proof of (i).

(ii) Let kt = k(Wπf) and Lt = L(Vί?). Let F(p,) (resp. F(Γ)) denote

a unique subfield, of degree I, of the j v t h (resp. Z2-th) cyclotomic field.

As 7rfe U'U1, only the prime ideals above /^ are ramified in kjk. As /̂^

is a cyclic extension of Q of degree Z(Z — 1), we see that hi = kF(pt).

Therefore p(Lz) = KF(pt). Similarly, if L(V ζ )/L is unramified, we see

that p(L(WT)) = i^F(Z2). Therefore Theorem of [4] completes the proof

of (ii).

THEOREM 2. Let I be a regular odd prime number and let K be an

algebraic number field of degree I such that L is a Galois extension of k.

Let notations be as above. Then we have that

Fx = FQM.

In particular, if jf 2(1) = ^ Ί ( l ) , then

Proof Let $&, , ψt be all the prime ideals of L, which are|(totally)

ramified over k. As (h, ΐ) = 1, we have

We write
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(φ*)* = (τrθ for 1 < ί ^t9 where < e R

Let πt (1 ^ ί fj s) be as in Lemma 3. Then (Z — ϊ)s <L ί and we can take

7r£ = πla for £ = as + b, where a = 0, , I — 2 and 6 = 1, , s .

For ί> (I — 1)5, observing the decomposition groups of the prime ideals

Vβl of £ over Q, we see that there exist divisers d(ί) Φl — lofl — 1 such

that π'idu)~ι e i?fe. To obtain ί\, we may consider only α e L * such that

(a) - SI1 and cl(2I) e ^ ( 1 ) . Then

α = ε Π «ei)a(ί) (mod L*1) where ε e EL and a(ί) e Z.
ί = l

Here

rf1 = ( 4 θ r α (mod L*1) for i = as + b ^ (Z - l ) s ,

^ e £JfcL*z for i > (I - l)s, because ^ e (r^(i) - 1, l)Z[G].

Therefore

a = ε; Π (;τf)δ(i) (mod L*Σ) where ε; 6 £ L and 6(0 € Z .

Then Lemma 3 proves that Fx = F0M. It is clear that Jf2(ΐ) = Jf^l) φ

F2 = Flt The proof is complete.

COROLLARY. Lei notations and assumptions be as in Theorem 2.

(i) In the case that K is cyclic: Let f be the conductor of K. If

f = P or there exists a prime divisor p Φ I of f such that p ξέ 1 (mod P),

then F2 = F0M.

(ii) In the case that K is not cyclic: If K is totally real, then F2 =

FQM.

Proof. Let N denote the norm map from L to k. Let A = Jf2/^Ί

and B = (Ekf)NL*)INEL. For cl(Sί)e^ 2 , there exists aeL* such that

ψ-1 = (α). Let ^ be the mapping cl(2ί) (mod Jf^ -> Na(mod NEL). It is

well known that φ is a group isomorphism of A onto B. Both A and B

are Z/ZZ[G]-modules. As £ is Galois over Q, we can write τστ~x = σrX

where x e {1, - , I - 1}. Then A(l) - J3(Z - x\ because φ{aτ) = (φ{a)τ)rX

for aeA. Let B+ = (Ek+ΠNL*)NELINEL and S ί F - (WkΓlNL*)NEJNEL,

where k+ is the maximal real subfield of fe and Wk is the group of roots of

unity in k. Then B = B+ X Bw (direct product). Since the elements of

Ek+ are invariant by τα~1)/2, we see that B+ = Πi.even-B(i) (direct product)
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and Bw = B(ϊ).

(i) x = l - l . Namely A(l) = B(ΐ) = Bw = (Wkn NL*)l(WkΠ NEL).

It is clear that ζ 6 NEL if / = Z2. Using the properties of Hubert norm

residue symbols (cf. [3] II Section 11) in k, we see that ζ g JVL* if there

exists a prime divisor p Φ I of / such that p φ. 1 (mod Z2). Therefore

A(l) - {1}.

(ii) If if is totally real, then σ~λτ{l~^βσ = τα~1)/2, i.e., x is even. Hence

I — x is odd. Z — x Φ 1 as if is not cyclic. Therefore A(ϊ) = 23(Z — x) = {1}.

§ 4. The field Fo

In this section Z is not necessarily regular. The definition of Fϋ in

Section 3 is still valid.

THEOREM 3. Let K be a totally real algebraic number field of degree

I such that L is a ramified Galois extension of k. Then

Proof. Let k+ (resp. L+) be the maximal real subfield of k (resp. L).

As L+ = Kk+, L+ is totally real when K is totally real. Then it follows

that EJEι

L ~ (WLEL+)I(WLEL+)1 (as Z/ZZ[Gal(L/Q)]-modules) where WL is

the group of roots of unity in L (cf. Theorem 4.12 of [9]). For εeEL+,

noting that ε is invariant by rα"1)/2, we have that

εΓ"r 6 L** > ε 6 L*1 > ε^"1 6 L*z .

On the other hand Wτ£r, Wσ

L~ι e L*1, since WL is generared by — ζ or — W ζ .

Therefore WLEL+ has no elements satisfying the conditions I and III of

Theorem 1, and so does EL. The proof is complete by Remark just follow-

ing Definition in Section 3.

Next we consider the case that K is not totally real.

LEMMA 4. Let H be a cyclic group of order I and let σ be a generator

of H. Let g(σ) be the element of Z[H] such that (1 - σ)ι~ι = 1 + a +

+ aι~ι + lg(σ). Then g(a) is ίnυertible in Z[H].

Proof. We see that the ring homomorphism

Z[H] 3f(a) >f(ΐ) X /(ζ) e Z X Z[ζ] (direct product)

is injective, because (X - ^fMX1'1 + Xι~2 + + 1) = (X1 - 1) in Z[X].

We note that #(1) = - 1 and g(ζ) = (1 - ζ)ι~ηi = Π Ή t t + C + + C'1)-1.
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L e t g'(σ) = Π 5:1(1 + σ + ... + σ ^ 1 ) - l'\l + (I - 1 ) ! ) ( 1 + < , + . . . + σ " )

€ Z[H]; then g'(l) - g(ΐ)'1 and gf(ζ) = g(ζ)~\ This proves g'(σ) = g(tf)"Λ

Let if be a pure algebraic number field of degree Z, i.e., K = Q(Wm)

where m Φ 1 is a Z-th power-free natural number. Then it is well known

that L is a ramified Galois extension of k.

THEOREM 4. Let K = Q(Wm) where m Φ 1 is a l-th power-free natural

number written as

Dι + d with D,deZ, D > 0, d\Dι, dφ ± 1 , Z|Z>,

Lei (7 6e the generator of Gal(L/&) swc/i £/ια£ ι^/mσ — 1Λ/m -ζ. We define η =

where a(ί) is a rational integer congruent to Σ ^ i j " 1 modulo I. Then ε0 is

α wniί o/ L satisfying the conditions 0, I, II and III o/ Theorem 1. There-

fore we have

Proof We note that Gal(L/Q) is generated by σ and τ with the

relations σι — τι~x — 1, σr = τσr. Let JB0 be the subgroup of EL generated by

Ek and the conjugates of Eκ. Then EQ =) £ ^ (cf. [8]). Let θ - (Vm - D)7d,

then β e Eκ (cf. [2]). As ηι = ^~% we have that ^ € £L and ε0 € #L.

lsί step. We note that m - diD'd'1 + 1) where Z^d"1 e Z. Therefore

d is Z-th power-free and (d, Z)^" 1 + 1) = 1. Z)^- 1 + 1 =£ ± 1 follows from

Z|D. We see that

(d, Dιd-χ + 1) - 1 with d φ ± 1 , J ? ^ " 1 + 1 Φ ± 1

= φ d g Z z = > θ & Eι

κ ==φ θeEYσ.

Let g(σ) be as in Lemma 4; then ^ ( σ ) g E\~σ follows from this lemma. As

= — 1, we have that

(1) ,<'->

Therefore η^-°)l

(2) <χ, rf, •

We define

' - = (Vm - J

"3 € J?o a n d η{i~

,y*ι->}EJE0 =

σ)l~2 e Eo, which implies that

(η,ηι~a, - - ,ηa~σ)l~3yEQIE0 ~ (z/izy-2.
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The equation (1) implies τfι~% = θ (mod (η, ησ, , ηttl~*y£ι\ since θσ ΈΞ θ

(mod <f 0 As θ£Eι

L, we see from (2) that

(3) δ Π S i - ^oί and <?/<?* - (Z/lZ)1'1.

2nd step. We shall prove that ε0 satisfies the conditions I, II and

III (0 follows from III). The condition III: Since rf1'1 = η'1—'"~σl" and

a(l — 2) = 1 (mod Z), we see that εj"1 e # \ Λ Therefore (3) implies that

ε0 satisfies III. The condition I: For j e(Z/lZ)*, we define

where j 7 is a positive rational integer congruent to j modulo /. This

definition does not depend on the choice of yv because η1 + ̂  + ' + σl~1 — j_t

As {Zfizy = <r>, it is clear that

Since rf — v^^- -arl \ we have that η{j)

τ = ηu±y Therefore we see from (3)

that

{ε€ £; ε satisfies I.} = <ε1)(f
ί where ε! = Π V&)

If fι =j, then r1-1-'1 (mod Z) = r~ι =j~ι. Hence

where b(j) is a rational integer congruent to j ' 1 modulo Z,

Z-2

Therefore ζ " ^ satisfies I, and so does ε0 as ζτ~r = 1. The condition II:

Clearly ε0 satisfies Π(i). We note that l\m as l\D and l\d. Then η =

(V/n- — D)jζ(ιV m — Dζ~ι) = ζ ' 1 (mod(l — ζ)4) because (Wm, 1 — ζ) = 1

and (1 - ζ)1 IDίζ"1 - 1). Hence ε0 = ζ- Ul~Λζ~aiί) = 1 (mod(l - ζ)L) because

Σΐ=i α (0 Ξ 1 (mod Z). Therefore ε0 satisfies IΙ(ii). The proof of the theorem

is complete.
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Remark. For a fixed Z, there exist infinitely many pure algebraic

number fields of degree Z, satisfying the assumption of Theorem 4. For

example, let D = 21D', d = 2 with D'e Z, > 0; then it is known that

Dι + d is Z-th power-free for infinitely many Όf (cf. [7]).

EXAMPLE. Let f(X) be as in Example of Section 1. Let μ denote V/n.

(1) In the case I — 3: We can take

ε0 - ζV° (cf. [6]).

For a = ε0, we have

f(X) = X3 - SX - d~2((9DQ + 12Dsd + 2d2) + (-18D5 - 12D2d)μ + 9Z)y).

For example, let D = 6 and d = 2; then /n = 218 = 2-109 and

f(X) = X3 -3X- 106274 + 35208/̂  - 2916^2.

(2) In the case Z = 5: We can take

For α: = ε0, we have

f(X) = X" - 10Z3

Y (5 Σ [2. *Ί[8,i][6, A] -

+ {5 - 5d-%μ - D)%5 Σ [8,ί][4,j][12,k]-(μ-D)u)}X
i,j,keZ/5Z

- d'\μ - D)\b Σ [14, Hi
ί,j,kez/όz

where

[n, i]= Σ -., ? l ! — ( - f f l ' V for n e Z, > 0 and i € Z/5Z.
!( )

For example, let D = 10 and d = 2; then m = 100002 - 2-3-7-2381 and

f(X) = X5 - 10Z3

+ (214851250061249942499980 - 7812953131906269875000^

- 2734462500653125000000 μ2
 - 78125468730624975000 μ

z

+ 21485000003500000000 μ")X
2

+ (- 6103955090097800313125937395000015

- 610378418345705492203375041750000 μ

- 488294531251561134375000000 μ
ι
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+ 12207617196230505390610000050000 μ
z

+ 4883050784218754125000000 μ
4
) ^

+ 305189818922084520832602335793971812998499996

- 7628387370359553697124163530698356329475000 μ

- 763153085778873923150280657848341250000000 μ
2

+ 305206910252698725568190329921282625025000μ*

- 45779296903685893553409505874946800000000/i
4
.
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