VERTICES OF IDEALS OF A p-ADIC NUMBER FIELD II

YOSHIMASA MIYATA

Let k be a \mathfrak{p}-adic number field with the ring \mathfrak{o} of all integers in k, and K be a finite normal extension with Galois group G. Π denotes a prime element of the ring \mathfrak{Q} of all integers in K. Then, an ideal (Π^{a}) of \mathfrak{Q} is an $\mathfrak{o} G$-module. E. Noether [5] showed that if K / k is tamely ramified, \mathfrak{Q} is a free $\mathfrak{0} G$-module. A. Fröhlich [2] generalized E. Noether's theorem as follows: \mathfrak{D} is relatively projective with respect to a subgroup S of G if and only if $S \supseteq G_{1}$, where G_{1} is the first ramification group of K / k. Now we define the vertex $V\left(\Pi^{a}\right)$ of $\left(\Pi^{a}\right)$ as the minimal normal subgroup S of G such that $\left(\Pi^{a}\right)$ is relatively projective with respect to a subgroup S of G (cf. [7] §1). Then, the above generalization by A. Fröhlich implies $V(\mathfrak{D})=G_{1}$. In the previous paper [7], we proved $G_{1} \supseteq V\left(\Pi^{a}\right) \supseteq G_{2}$, where G_{2} is the second ramification group of K / k (cf. [7] Theorem 5). Further, we dealt with the case where $G=G_{1}$ is of order p^{2}, and proved that if $V\left(\Pi^{a}\right) \neq G_{1}$, then $a \equiv 1\left(p^{2}\right)$ and $t_{2} \equiv 1\left(p^{2}\right)$ for the second ramification number t_{2} of K / k (cf. [7] Theorems 15 and 21). The purpose of this paper is to prove the similar theorem for the wildly ramified p-extension of degree p^{n} (Theorem 7).

Throughout this paper, we assume that p is an odd prime and the p-extension K / k is wildly ramified. In the first section $\S 1$, we shall prove that (Π^{a}) is an indecomposable o G-module under the assumption relating to the ramification numbers of subextension of K / k (Theorem 2), which is a generalization of S.V. Vostokov's theorem concerning to the indecomposablity of ideals (Π^{a}) of abelian p-extensions ([10] Theorem 5). In the second section $\S 2$, we shall deal with the case where G_{2} is of order p, and we shall prove that if $a \neq 1\left(\left|G_{1}\right|\right)$, then $V\left(\Pi^{a}\right)=G_{1}$, where $\left|G_{1}\right|$ denotes the order of G_{1} (Theorem 6). In the last section § 3, we shall prove that if $V\left(\Pi^{a}\right) \neq G_{1}$ and $t_{1}=1$, then $a \equiv 1\left(\left|G_{1}\right|\right)$ and $t_{i} \equiv 1\left(\left|G_{1} / G_{i+1}\right|\right)$ for $1 \leqq i \leqq r$, where $t_{1}, t_{2}, \cdots, t_{r}$ are ramification numbers of K / k and G_{i} is

[^0]the t_{i}-th ramification group of K / k (Theorem 7).

§ 1.

Let K / k be a wildly ramified p-extension of degree p^{n}, and $t_{1}, t_{2}, \cdots, t_{r}$ be ramification numbers of K / k with $t_{1}<t_{2}<\cdots<t_{r}$. In this section, we shall prove that $\left(\Pi^{a}\right)$ is $\mathfrak{o} G$-indecomposable. First we observe that if $a \equiv a^{\prime}\left(p^{n}\right)$, then ($\left.\Pi^{a^{\prime}}\right)$ is $\mathfrak{0} G$-isomorphic to $\left(\Pi^{a}\right)$. Therefore, without loss of generality, we assume

$$
0 \leqq a<p^{n}
$$

We define a function $m(t)$ by

$$
m(t)=t-[t / p]
$$

where $[x]$ denotes an integer such that $[x] \leqq x<[x]+1$. Denote by e_{K} the absolute ramification index of K. For $1 \leqq i \leqq r$, let G_{i} be the t_{i}-th ramification group of K / k and K_{i} be the subfield corresponding to G_{i}. Clearly,

$$
k=K_{1} \subset K_{2} \subset \cdots \subset K_{r} \subset K
$$

We state now S. V. Vostokov's results which are used in the following. First, from [9] Proposition 1, we have

Proposition 1. Let K / k and t_{i} be as in the above. Let e_{i} be the absolute ramification index of K_{i}. Then, $m\left(t_{r}\right)=e_{K} / p$ if and only if K / k is cyclic and $m\left(t_{i}\right)=e_{i}$ for $1 \leqq i \leqq r$.

From [10] Theorem 5, we have
Theorem 1. Let K / k be an abelian p-extension. Then, if $m\left(t_{r}\right)<e_{K} / p$, (Π^{a}) is $\mathfrak{0} G$-indecomposable.

Then, from Proposition 1 and Theorem 1, we can prove
Corollary 1. If K / k is a non-cyclic abelian p-extension, then (Π^{a}) is - G-indecomposable.

In this section, we assume

$$
\begin{equation*}
m\left(t_{r}\right)<e_{K} / p . \tag{1}
\end{equation*}
$$

Further, we need some lemmas. Let σ be an element of G_{r} with $\sigma \neq 1$. Then, it is well known that $\sigma^{p}=1$ and σ belongs to the center of G (for example, see [8] p. 77). Denote by Z and K_{Z} the subgroup generated by
σ and the subfield corresponding to Z, respectively. Clearly, the ramification number t of K / K_{Z} is t_{r}. Let $\bar{t}=t-p[t / p]$ and so $\bar{t} \neq 0$ since (t, p) $=1$ by (1). For $0 \leqq i<p^{n-1}$ and $0 \leqq j<p$, we define integers $a(i, j)$ and $b(i, j)$ as follows:

$$
a(i, j)=\left[(p i+j t+\bar{t}-a) / p^{n}\right] \quad \text { and } \quad b(i, j)=p i+j t+\bar{t}-a(i, j) p^{n}
$$

Obviously, $a \leqq b(i, j)<a+p^{n}$ and

$$
\begin{equation*}
a(i, 0) \leqq a(i, 1) \leqq \cdots \leqq a(i, p-1) \tag{2}
\end{equation*}
$$

Lemma 1. Suppose $m(t)<e_{k} / p$. Then, $b\left(i^{\prime}, j^{\prime}\right) \equiv b(i, j)\left(p^{n}\right)$ if and only if $i^{\prime}=i$ and $j^{\prime}=j$.

Proof. Suppose $b\left(i^{\prime}, j^{\prime}\right) \equiv b(i, j)\left(p^{n}\right)$. Then, $b\left(i^{\prime}, j^{\prime}\right) \equiv b(i, j)(p)$ and 'so $j^{\prime}=j$ because $(t, p)=1$ as remarked above. Thus $i^{\prime}=i$. The proof of the converse is obvious.

Next, we define submodules L_{i} of $\left(\Pi^{a}\right)$ for $0 \leqq i<p^{n-1}$. For $0 \leqq i<$ p^{n-1} and $0 \leqq j<p$, elements $A_{i, j}$ of K are defined by

$$
A_{i, y}=\Pi_{1}^{i} x^{j}\left(\Pi^{i}\right) \pi^{-a(i, j)},
$$

where $x=\sigma-1$, and Π_{1} and π are prime elements of K_{z} and k, respectively. Let L_{i} be

$$
L_{i}=\mathfrak{o} A_{i, 0}+\mathfrak{o} A_{i, 1}+\cdots+\mathfrak{o} A_{i, p-1} .
$$

We shall prove that L_{i} is an $\mathfrak{o} G$-module.
Lemma 2. Let val_{K} denote the valuation of K. Then,

$$
\operatorname{val}_{K}\left(A_{i, j}\right)=b(i, j) .
$$

Proof. From $(j, p)=1$ for $1 \leqq j<p$, it follows

$$
\operatorname{val}_{K}\left(x^{j}\left(\Pi^{\bar{t}}\right)\right)=j t+\bar{t} .
$$

Thus, $\operatorname{val}_{K}\left(A_{i, j}\right)=p i+j t+\bar{t}-p^{n} a(i, j)$ and hence $\operatorname{val}_{k}\left(A_{\imath, j}\right)=b(i, j)$.
By Lemma 1 and Lemma 2, we have

$$
\left(\Pi^{a}\right)=L_{0} \oplus L_{1} \oplus \cdots \oplus L_{p^{n-1-1}} .
$$

Clearly, for $0 \leqq j<p-1$,

$$
\begin{equation*}
x\left(A_{i, j}\right)=\pi^{\alpha(i, j+1)-a(i, j)} A_{2, j+1} . \tag{3}
\end{equation*}
$$

Since $(x+1)^{p}=\sigma^{p}=1, x^{p}=-\sum_{j=1}^{p-1}\binom{p}{j} x^{j}$. Then, we have

$$
x\left(A_{i, p-1}\right)=-\sum_{j=1}^{p-1}\left(\begin{array}{l}
p \tag{4}
\end{array}\right) \pi^{a(i, j)-a(i, p-1)} A_{i, j} .
$$

Lemma 3. For $0 \leqq i<p^{n-1}, L_{i}$ is an oZ-module.
Proof. By (2), $\pi^{a(i, j+1)-a(i, j)} \in \mathfrak{o}$. Then, by (3), $x\left(A_{i, j}\right) \in L_{i}$ for $0 \leqq j<$ $p-1$. Define integers b_{i} by

$$
b_{i}=p i+(p-1) t+\bar{t}-a-p^{n} a(i, p-1)
$$

By the definition of $a(i, p-1)$, we have $0 \leqq b_{i}<p^{n}$. Since $p m(t)=$ ($p-1$) $t+\bar{t}<e_{K}$ by (1),

$$
p i+e_{K}-a \geqq p^{n} a(i, p-1)+b_{i} .
$$

Then,

$$
e_{K}-p^{n} a(i, p-1) \geqq b_{i}+a-p i>-p^{n}
$$

Therefore, we obtain $e_{K}-p^{n} a(i, p-1) \geqq 0$. By (4), $x\left(A_{i, p-1}\right) \in L_{i}$, which completes the proof of Lemma 3.

Now, let θ be a primitive p-th root of 1 and $k_{0}=k(\theta)$. For $0 \leqq j<$ p, E denotes a central idempotent $\left(\sum_{u=0}^{p-1} \theta^{j u} \sigma^{u}\right) / p$ of $k_{0} Z$. According to the arguments used in [6], we can prove

Lemma 4. Let E be a central idempotent of $k Z$ and α be an element of \mathfrak{D} such that $\operatorname{val}_{K}(\alpha) \equiv \bar{t}(p)$. Then,

$$
\operatorname{val}_{K}(p E \alpha) \leqq \operatorname{val}_{K}\left(\left(\sum \sigma^{u}\right) \alpha\right)
$$

Lemma 5. Let e be the absolute ramification index of k and suppose that $m(t)<p^{n-1} e-p^{n-1}+1$. Then, for $0 \leqq i<p^{n-1}, L_{i}$ is oZ-indecomposable.

Proof. By the definition of $A_{i, 0}$, we have

$$
\operatorname{val}_{K}\left(A_{i, 0}\right) \equiv \bar{t}(p) .
$$

Let E be an idempotent of $k Z$. Then, from Lemma 4, it follows

$$
\operatorname{val}_{K}\left(p E A_{i, 0}\right) \leqq \operatorname{val}_{K}\left(\left(\sum \sigma^{u}\right) A_{i, 0}\right)=p i+(p-1) t+\bar{t}-p^{n} a(i, 0) .
$$

Since $(p-1) t+\bar{t}=p m(t)<p^{n} e-p^{n}+p$ by the assumption, we have
(5) $p i+(p-1) t+\bar{t}-p^{n} a(i, 0)<p^{n} e-p^{n}+p+p i-p^{n} a(i, 0)$.

We distinguish two cases: (i) $p i+\bar{t} \geqq a$, (ii) $p i+\bar{t}<a$. In case (i), $p i+$ $\bar{t} \geqq a$, we have $a(i, 0)=0$ because $0 \leqq a<p^{n}$. Therefore, by (5),
$\operatorname{val}_{K}\left(E A_{i, 0}\right)<0$ and so

$$
\operatorname{val}_{K}\left(E A_{i, 0}\right)<a,
$$

which implies that L_{i} is $\mathfrak{0} Z$-indecomposable. In case (ii) $p i+\bar{t}<a$, we have $a(i, 0)=-1$ because $0 \leqq a<p^{n}$. From (5), it follows

$$
p i+p m(t)-p^{n} e<p i+p
$$

Since p divides $\left(p i+p m(t)-p^{n} e\right)$,

$$
p i+p m(t)-p^{n} e \leqq p i
$$

As $p i+\bar{t}<a$, we have

$$
\operatorname{val}_{K}\left(E A_{i, 0}\right)<a
$$

This also implies that L_{i} is $0 Z$-indecomposable, and the proof is completed.
We finally request the next proposition.
Proposition 2. Let K / k be a wildly ramified p-extension of degree p^{n}, and let $Z, L_{i}\left(0 \leqq i<p^{n-1}\right)$ be as above. Suppose that $\left(\Pi^{a}\right) \cap K_{Z}$ is an indecomposable $\mathfrak{\cup}[G / Z]$-module and $\mathfrak{0} Z$-modules L_{i} are indecomposable. Then, $\left(\Pi^{a}\right)$ is an indecomposable $0 G$-module.

Proof. Let f be an $\mathfrak{\bullet} G$-endomorphism of $\left(\Pi^{a}\right)$ such that $f^{2}=f$. Then, f is a $k G$-endomorphism of K. Let $E_{j}=\left(\sum \theta^{j u} \sigma^{u}\right) / p$ as before. Since Z is contained in the center of G, E_{0} is a $k G$-endomorphism of K. Let $f_{0}=E_{0} f$ and so f_{0} is an $k G$-endomorphism of K. Clearly, for $\alpha \in K_{z}, f(x)$ $=f_{0}(\alpha)$ and $f(\alpha) \in K_{Z}$. Therefore, by the assumption that $\left(\Pi^{a}\right) \cap K_{Z}$ is indecomposable, we have $f_{0}=E_{0}$. Since $f\left(\left(\Pi^{a}\right)\right)$ is an oZ-module, $f\left(\left(\Pi^{a}\right)\right)$ can be expressed as a direct sum of indecomposable $\mathfrak{o} Z$-modules M_{u} for $1 \leqq u \leqq v:$

$$
f\left(\left(\Pi^{a}\right)\right)=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{v} .
$$

Since L_{i} is $0 Z$-indecomposable by the assumption, it follows from KrullSchmidt Theorem that for some $i(u)$ with $0 \leqq i(u)<p^{n-1}, M_{u}$ is isomorphic to $L_{i(u)}$. We note that $k L_{i} \cong k Z$ and hence $k M_{u} \cong k Z$. Thus

$$
k f\left(\left(\Pi^{a}\right)\right)=k Z \oplus \cdots \oplus k Z
$$

Since $f_{0}=E_{0}$ as verified above, $k f\left(\left(\Pi^{a}\right)\right) \supseteq K_{Z}$ and so $v=p^{n-1}$. This implies $f=1$ and hence (Π^{a}) is $0 G$-indecomposable.

We are ready to prove the following theorem, which is one of the
main results of this paper.
Theorem 2. Let K / k be a wildly ramified p-extension of degree p^{n}. Let L / F be a subextension of degree p in the extension K / k, and t be the ramification number of L / F. Suppose $m(t)<e_{F}-([F: k]-1)$ for each extension L / F, where $[F: k]$ denotes the degree of F / k. Then, $\left(\Pi^{a}\right)$ is $\mathfrak{0} G$ indecomposable for each $a \geqq 0$.

Proof. We use induction on n. For $n=1$, the result follows from Theorem 1. Let Z be as above. Then, by the induction hypothesis, we have $\left(\Pi^{a}\right) \cap K_{Z}$ is $\mathfrak{o}[G / Z]$-indecomposable. By Lemma $5, L_{i}$ is $\mathfrak{o} Z$-indecomposable for $0 \leqq i<p^{n-1}$. Hence, the result follows from Proposition 2, and the proof of Theorem 2 is completed.

§ 2.

Let K / k be a wildly ramified p-extension of degree p^{n} as before. In the rest of this paper, we deal with investigating the vertex $V\left(\Pi^{a}\right)$ of $\left(\Pi^{a}\right)$. Let us begin with recalling the results of the previous paper [7].

Theorem 3 ([7] Theorem 5). Let K / k be a wildly ramified extension. Let G_{1} and G_{2} be the first and second ramification groups of K / k, respectively. Then, $G_{1} \supseteq V\left(\Pi^{a}\right) \supseteq G_{2}$.

Theorem 4 ([7] Theorem 6). Let $K / k, G_{1}$ and G_{2} be as in Theorem 3. Suppose $G_{2}=\{1\}$.
(i) If $a \neq 1\left(\left|G_{1}\right|\right)$, then $V\left(\Pi^{a}\right)=G_{1}$.
(ii) If $a \equiv 1\left(\left|G_{1}\right|\right)$, then $V\left(\Pi^{a}\right)=\{1\}$.

By the definition of the vertex of the ideal and [7] Lemma 7, we can prove

Lemma 6. Let K / k be as above and V be the vertex of $\left(\Pi^{a}\right)$. Let L / F be a subextension of K / k such that $K_{V} \subseteq F \subseteq L \subseteq K$. Then,
(i) $V\left(\left(\Pi^{a}\right) \cap L\right) \subseteq V$.
(ii) $\quad V\left(\operatorname{tr}_{K / F}\left(\left(\Pi^{a}\right) \cap L\right)\right) \subseteq V$, where $\operatorname{tr}_{L / F}$ is the trace map from L to F.

Proof. (i) By the definition of the vertex of $\left(\Pi^{a}\right)$, there exists an $\mathfrak{o} V$-endomorphism f of $\left(\Pi^{a}\right)$ such that $1=\sum_{g} g f g^{-1}$, where the sum is taken over a set of coset representatives of left cosets of V in G. Since the Galois group S of K / L is contained in V, we have $f\left(\left(\Pi^{a}\right) \cap L\right) \subseteq\left(\Pi^{a}\right)$ $\cap L$, which implies that $\left(\Pi^{a}\right) \cap L$ is relatively projective with respect to
V / S of G / S. Thus $V\left(\left(\Pi^{a}\right) \cap L\right) \subseteq V$ and the proof of (i) is completed.
(ii) It is sufficient to prove that $V\left(\operatorname{tr}_{L / F}\left(\left(\Pi^{a}\right) \cap L\right)\right) \subseteq V\left(\left(\Pi^{a}\right) \cap L\right)$. Therefore, we may assume $L=K$. Let T be a subgroup of G corresponding to F and $\operatorname{tr}_{T}=\sum_{g \in T} g$. By the definition of the vertex of $\left(\Pi^{a}\right)$, there exist an $\mathfrak{o} G$-module M and an $\mathfrak{o} V$-module N such that

$$
\left(\Pi^{a}\right) \oplus M=\mathfrak{o} G \otimes_{V} N .
$$

Thus,

$$
\operatorname{tr}_{K^{\prime} / F}\left(\left(\Pi^{a}\right)\right) \oplus \operatorname{tr}_{T} M=\mathfrak{o} G \otimes_{V} \operatorname{tr}_{T} N .
$$

Since $\operatorname{tr}_{T} N$ is an $\mathfrak{0}[V / T]$-module, $\operatorname{tr}_{K / F}\left(\left(\Pi^{a}\right)\right)$ is relatively projective with respect to V / T. The proof is completed.

Now, from Theorem 3, we can conclude that if $G_{1}=G_{2}$, then $V\left(\Pi^{a}\right)$ $=G_{1}$. Therefore, throughout the rest of this paper, we may assume $G_{1} \neq G_{2}$. In this section, we treat the case where G_{2} is of order p. Denote by p^{m} the order of the factor group G_{1} / G_{2}. In [7], we treated the case where $m=1$ and proved the following theorem.

Theorem 5 ([7] Theorems 15 and 21). Let K / k be a wildly ramified p-extension of degree p^{2}. Assume $G_{1} \neq G_{2}$. Then, $V\left(\Pi^{a}\right) \neq G_{1}$ if and only if $a \equiv 1\left(p^{2}\right)$ and $t_{2} \equiv 1\left(p^{2}\right)$.

In this section, we treat the case where $m \geqq 2$ and prove the next theorem.

Theorem 6. Let K / k be a wildly ramified p-extension of degree p^{n}. Suppose that $G_{1} \neq G_{2}$ and G_{2} is of order p. Then, if $a \neq 1\left(p^{n}\right), V\left(\Pi^{a}\right)=G_{1}$.

At first, we remark that $t_{2} \equiv 1(p)$ because $t_{1}=1$ by the assumption $G_{1} \neq G_{2}$. Then, from [8] p. 91 Lemma 4, we have

Lemma 7. Let K / L be a wildly ramified extension of degree p with the remification number t. Suppose $t \equiv 1$ (p). Then, (i) and (ii) hold.
(i) For $p \geqq a \geqq 2, \operatorname{tr}_{K / L}\left(\left(\Pi^{a}\right)\right)=\left(\pi^{b}\right)$, where $b=(p-1)[t / p]+2$.
(ii) For $a=1, \operatorname{tr}_{K / L}((\Pi \Pi))=\left(\pi^{b}\right)$, where $b=(p-1)[t / p]+1$.

As in Section 1, we note that if $a \equiv a^{\prime}\left(p^{n}\right)$, then $\left(\Pi^{a^{\prime}}\right)$ is $0 G$-isomorphic to $\left(\Pi^{a}\right)$ and $V\left(\Pi^{a^{\prime}}\right)=V\left(\Pi^{a}\right)$. Therefore, there is no loss of generality in assuming $2 \leqq a<p^{n}$. Let K_{2} be a subfield corresponding to G_{2} and denote by Π_{1} the prime element of K_{2}. Let $\left(\Pi_{1}^{a_{1}}\right)=\left(\Pi^{a}\right) \cap K_{2}$, and so p^{m} $>a_{1} \geqq 1$ by $p^{n}>a \geqq 2$.

Proposition 3. Let K / k be a wildly ramified extension of degree p^{m+1} and suppose that $G_{1} \neq G_{2}$ and G_{2} is of order p. Let a_{1} be as in the above. Then, if $p^{m}>a_{1}>1, V\left(\Pi^{a}\right)=G_{1}$.

Proof. By Theorem 4 and the assumption $p^{m}>a_{1}>1$, we have $V\left(\Pi_{1}^{a_{1}}\right)=G_{1}$. From Lemma 6, it follows that $V\left(\Pi_{1}^{a_{1}}\right) \subseteq V\left(\Pi^{a}\right)$, which implies $V\left(\Pi^{a}\right)=G_{1}$.

We note that $a_{1}>1$ if and only if $a>p$. Therefore, from Proposition 3 , we may assume

$$
\begin{equation*}
p \geqq a \geqq 2 \tag{6}
\end{equation*}
$$

Let $t=t_{2}$ for brevity. Define an integer a_{2} by

$$
\left(\Pi_{1}^{a_{2}}\right)=\operatorname{tr}_{K / K_{2}}\left(\left(\Pi^{a}\right)\right) .
$$

Then, by Lemma 7 and (6), we have

$$
\begin{equation*}
a_{2}=(p-1)[t / p]+2 \tag{7}
\end{equation*}
$$

Lemma 8. Let K / k be as above and assume $m \geqq 2$. Then, if $V\left(\Pi^{a}\right)$ $\neq G_{1}, t \equiv p^{2}+p+1\left(p^{3}\right)$.

Proof. By Lemma 6, $V\left(\Pi_{1}^{a_{2}}\right) \subseteq V\left(\Pi^{a}\right)$ and so $V\left(\Pi_{1}^{a_{2}}\right) \neq G_{1}$. Then, by Theorem 4, $a_{2} \equiv 1\left(p^{m}\right)$ and hence by (7), $(p-1)[t / p] \equiv p^{m}-1\left(p^{m}\right)$. Therefore, $[t / p] \equiv p^{m-1}+p^{m-2}+\cdots+1\left(p^{m}\right)$. Since $t \equiv 1(p), \bar{t}=1$ and so $t \equiv p^{m}+p^{m-1}+\cdots+1\left(p^{m+1}\right)$. From the assumption $m \geqq 2$, it follows $t \equiv p^{2}+p+1\left(p^{3}\right)$.

Let p^{c} be the order of the maximal abelian normal subgroup of G_{1}. Then, we have

Proposition 4. Let K / k be as above. Then, if either $m \geqq 3$, or G_{1} is abelian, $V\left(\Pi^{a}\right)=G_{1}$ for $p \geqq a>1$.

Proof. By [4] p. 302 Theorem 7.3, we have

$$
c(c+1) \geqq 2(m+1)
$$

In case $m \geqq 3$, we have $c \geqq 3$. Therefore, there exists an abelian normal subgroup N of G such that $N \supseteq G_{2}$ and $\left|N / G_{2}\right| \geqq p^{2}$. Hence, from [3] p. $171(\mathrm{~V})$, it follows $t \equiv 1\left(\left|N / G_{2}\right|\right)$ and so $t \equiv 1\left(p^{2}\right)$. Thus, by Lemma 8 , $V\left(\Pi^{a}\right)=G_{1}$ in this case. Next, we treat the remained case where $m \leqq 2$ and G_{1} is abelian. In case $m=2$, applying the same arguments as in
the above, we have $V\left(\Pi^{a}\right)=G_{1}$. In case $m=1$, Theorem 5 yields the desired result.

By Proposition 4, we may assume that G_{1} is a non-abelian group of order p^{3}. Moreover, by Lemma 8, t can be written in the form:

$$
\begin{equation*}
t=p^{3} t^{\prime}+p^{2}+p+1 \tag{8}
\end{equation*}
$$

Now, we start to prove lemmas which are used in proving Theorem 6.
Lemma 9. Let K / k be as stated in the above. Then, $m(t)<p^{2} e-p^{2}+1$.
Proof. By (8), $m(t)=p^{2}\left((p-1) t^{\prime}+1\right)$. From Proposition 1, it follows

$$
m(t)<p^{2} e .
$$

Then, $(p-1) t^{\prime}+1 \leqq e-1$ and so $m(t) \leqq p^{2} e-p^{2}<p^{2} e-p^{2}+1$.
For $0 \leqq i<p^{2}, i$ can be written in the form:

$$
i=i_{1} p+i_{0}
$$

where $0 \leqq i_{1}, i_{0}<p$.
Lemma 10. Let K / k be as above and $t=p^{3} t^{\prime}+p^{2}+p+1$.
(i) If $0 \leqq i<(p-2) p+p-1$, then $a(i, 1)=t^{\prime}$.
(ii) If $i>(p-2) p+p-1$, then $a(i, 1)=t^{\prime}+1$.

Proof. By the definition of $a(i, 1)$,

$$
\begin{aligned}
a(i, 1) & =\left[\left(p^{3} t^{\prime}+p^{2}+p+1+1+p i-a\right) / p^{3}\right] \\
& =t^{\prime}+\left[\left(p^{2}\left(i_{1}+1\right)+p\left(i_{0}+1\right)+2-a\right) / p^{3}\right]
\end{aligned}
$$

Since $a \leqq p$ by (6), we have that in the case (ii),

$$
a(i, 1)=t^{\prime}+1
$$

In case (i), we have

$$
p^{2}\left(i_{1}+1\right)+p\left(i_{0}+1\right)+2-a<p^{2}(p-1)+p(p-1)+2-a<p^{3}
$$

and so $a(i, 1)=t^{\prime}$.
For $0 \leqq i<p^{2}$, let L_{i} be the $\mathrm{o} Z$-module as in Section 1 and let A_{i} be the matrix representation afforded by the o Z-module L_{i}. Then, by (3) and (4), we have that for $x=\sigma-1$,

$$
A_{i}(x)=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
x_{i, 1} & 0 & \cdots & 0 \\
\vdots & \ddots & & y_{i, 1} \\
0 & \cdots & 0 & x_{i, p-1} \\
y_{i, p-1}
\end{array}\right)
$$

where $x_{i, j}=\pi^{a(i, j)-a(i, j-1)}$ and $y_{i, j}=-\binom{p}{j} \pi^{\alpha(i, j)-a(i, p-1)}$ for $1 \leqq j<p$.
Lemma 11. For $0<i<(p-2) p+(p-1), L_{i}$ is not isomorphic to L_{0}.

Proof. Since $A_{i, j}=\Pi_{1}^{i} x^{j}\left(\Pi^{i}\right) \pi^{-a(i, j)}$ and $a \leqq p$ by (6), we have that for $i>0, a(i, 0)=0$. By Lemma 10 and the definitions of $x_{i, j}, x_{i, 1}=\pi^{t^{\prime}}$. Since $a(0,0)=-1, x_{0,1}=\pi^{t^{\prime+1}}$. Suppose that for some i, L_{i} is isomorphic to L_{0}. Then, there exists an invertible matrix $A=\left(a_{u v}\right)$ in $G L(p, \mathfrak{p})$ such that

$$
\begin{equation*}
A A_{\imath}(x)=A_{i}(x) A \tag{9}
\end{equation*}
$$

Then, $a_{12} x_{0,1}=0, \cdots, a_{1 p} x_{0, p-1}=0$. Therefore, $a_{12}=\cdots=a_{1 p}=0$. Also, from the (2,1) entry of (9),

$$
\begin{equation*}
a_{22} x_{0,1}=x_{i, 1} a_{11}+y_{i, 1} a_{p 1} . \tag{10}
\end{equation*}
$$

By the definitions of $y_{i, 1}$ and $a(i, p-1)$,

$$
\begin{aligned}
\operatorname{val}_{K}\left(y_{i, 1}\right) & =p^{3} e+p^{3} a(i, 1)-p^{3} a(i, p-1) \\
& =p^{3} e+p^{3} a(i, 1)-p i-(p-1) t-\bar{t}+b(i, p-1) \\
& =p^{3} e-p m(t)+p^{3} a(i, 1)+b(i, p-1)-p i
\end{aligned}
$$

By Lemma 9 and Lemma 10,

$$
\operatorname{val}_{K}\left(y_{i, 1}\right)>p^{3} a(i, 1)+b(i, p-1)+p^{3}-p-p i>p^{3} t^{\prime}
$$

Therefore, by (10), $\pi^{t^{\prime}} a_{11} \equiv 0\left(\pi^{t^{\prime+1}}\right)$ and so $a_{11} \in(\pi)$. This implies $A \notin G L(p, \mathfrak{o})$, which is a contradiction. The proof of Lemma 11 is completed.

Lemma 12. Assume $i \geqq(p-1) p$. Then $x_{i, 1}=\pi^{t^{\prime+1},} x_{i, 2}=\cdots=x_{i, p-1}$ $=\pi^{t^{\prime}}$ and $y_{i, j}=-\binom{p}{j} \pi^{(j-p+1)}$ for $1 \leqq j<p$.

Proof. By definitions of $a(i, j)$, we have that for $i=(p-1) p+i_{0}$ and $p>j \geqq 1$,

$$
\begin{aligned}
a(i, j) & =\left[\left(j\left(p^{3} t^{\prime}+p^{2}+p+1\right)+1+p^{2}(p-1)+p i_{0}-a\right) / p^{3}\right] \\
& =j t^{\prime}+1+\left[\left((j-1) p^{2}+j p+p i_{0}+1-a\right) / p^{3}\right] \\
& =j t^{\prime}+1
\end{aligned}
$$

By $\mathrm{a} \leqq p, a(i, 0)=0$. By definitions of $x_{i, j}$ and $y_{i, j}$, we can conclude Lemma 12.

Similarly as in Lemma 12, we have
Lemma 13. $x_{0,1}=\pi^{t^{\prime}+1}, x_{0,2}=\cdots=x_{0, p-1}=\pi^{t^{\prime}}$ and $y_{0, j}=-\binom{p}{j} \pi^{(j-p+1)}$ for $1 \leqq j<p$.

Lemma 14. Let s be the number of ${ }_{0} G_{2}$-modules L_{i} such that L_{i} is isomorphic to L_{0} for $0 \leqq i<p^{2}$. Then, s is relatively prime to p.

Proof. By Lemma 12 and Lemma 13, L_{i} is isomorphic to L_{0} for $p(p-1) \leqq i<p^{2}$. By Lemma 11, L_{i} is not isomorphic to L_{0} for $0<i<$ $p(p-1)-1$. Then, $s=p+1$ or $p+2$ and hence $(s, p)=1$.

We can easily prove the following lemma.
Lemma 15. Let $k^{\prime} \mid k$ be a non-ramified extension of k with the ring $\mathfrak{0}^{\prime}$ of all integers in k^{\prime}. Let \Im^{\prime} be the ring of all integers in the composite field $k^{\prime} K$. Then, $\bigcirc^{\prime} \Pi^{a}=\mathfrak{o}^{\prime} \otimes_{0}\left(\Pi^{a}\right)$ and $V\left(\Im^{\prime} \Pi^{a}\right)=V\left(\Pi^{a}\right)$.

An $\mathfrak{0}^{\prime} G$-module $\mathfrak{0}^{\prime} \otimes_{0}\left(\Pi^{a}\right)$ is expressed as a direct sum of indecomposable $\mathfrak{0}^{\prime} V$-modules M_{u} :

$$
\mathfrak{0}^{\prime} \otimes_{0}\left(\Pi^{a}\right)=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{v}
$$

where $V=V\left(\Pi^{a}\right)$. Applying [1] p. 636 (30.31), we can choose $\mathfrak{0}^{\prime}$ such that M_{u} is absolutely indecomposable for each u.

Lemma 16. Let $\mathfrak{0}^{\prime}$ and \mathfrak{D}^{\prime} be as above. Then, there exists an $\mathfrak{0}^{\prime} V$ -

Proof. By [1] p. 467 (19.24), $\mathrm{o}^{\prime} G \otimes_{V} M_{u}$ is also an absolutely indecomposable $\mathfrak{0}^{\prime} G$-module. From Corollary 1 of Theorem 1, Lemma 5, Lemma 9 and Proposition 2, it follows that $\mathfrak{0}^{\prime} \otimes_{0}\left(\Pi^{a}\right)$ is an indecomposable $\mathfrak{0}^{\prime} G$ module. Therefore, by the definition of $V\left(\Pi^{a}\right), \mathfrak{0}^{\prime} \otimes_{0}\left(\Pi^{a}\right)$ is a direct summand of the $\mathfrak{o}^{\prime} G$-module $\mathfrak{o}^{\prime} G \otimes_{V} M_{u}$ for some u. Since $0^{\prime} G \otimes_{V} M_{u}$ is indecomposable, $\mathfrak{o}^{\prime} \otimes_{0}\left(\Pi^{a}\right)=\mathfrak{o}^{\prime} G \otimes_{V} M_{u}$, which completes the proof of Lemma 16.

We are ready to prove Theorem 6, which is the aim of this section.
Proof of Theorem 6. By the above discussion, we may assume that $p \geqq a \geqq 2$ and G_{1} is a non-abelian group of order p^{3}. Suppose $V\left(\Pi^{a}\right) \neq G_{1}$. Let M be the $\mathfrak{o}^{\prime} V$-module as in Lemma 16. Then, M is expressed as a
direct sum of indecomposable $\mathfrak{0}^{\prime} G_{2}$-modules M_{u} :

$$
M=a_{1} M_{1} \oplus \cdots \oplus a_{v} M_{v}
$$

where a_{u} is an integer and for $u^{\prime} \neq u, M_{u^{\prime}}$ is not $\mathfrak{0}^{\prime} G_{2}$-isomorphic to M_{u}. Then, we have the decomposition of the $\mathfrak{o}^{\prime} G_{2}$-module $\mathfrak{o}^{\prime} \otimes\left(\Pi^{a}\right)$:

$$
\mathfrak{o}^{\prime} \otimes\left(\Pi^{a}\right)=\left|G_{1} / V\right| a_{1} M_{1} \oplus \cdots \oplus\left|G_{1} / V\right| a_{v} M_{v}
$$

Using Krull-Schmidt Theorem, we have L_{0} is isomorphic to M_{u} for some u. Let s be the number as in Lemma 14. Then, $s=\left|G_{1} / V\right| a_{u}$. By Lemma 14, $\left(p,\left|G_{1} / V\right|\right)=1$, which implies $G_{1}=V$. This is a contradiction, and the proof of Theorem 6 is completed.

§ 3.

Let K / k be a wildly ramified p-extension. In this section, we shall prove that if $a \neq 1\left(p^{n}\right)$, then $V\left(\Pi^{a}\right)=G_{1}$. Let $t_{1}, t_{2}, \cdots, t_{r}$ be ramification numbers of K / k and G_{i} be the t_{i}-th ramification group of K / k for $1 \leqq i$ $\leqq r$. As in Section 2, we may assume $t_{1}=1$. Let H be a normal subgroup of G such that $G_{3} \subseteq H \subseteq G_{2}$ and $\left|G_{2} / H\right|=p$, and let Π_{2} be a prime element of K_{H}. Then, the ramification number t of K_{H} / K_{2} is t_{2}.

Lemma 17. Let H be as above and let $\left(\Pi_{2}^{a_{s}}\right)=\left(\Pi^{a}\right) \cap K_{H}$. Then, if $V\left(I I^{a}\right) \neq G_{1}, a_{3} \equiv 1(|G / H|)$ and $t_{2} \equiv 1(|G / H|)$.

Proof. By Lemma 6 and the assumption $V\left(\Pi^{a}\right) \neq G_{1}$, we have $V\left(\Pi_{2}^{a_{3}}\right)$ $\neq G_{1} / H$. Then, by Theorem 6, $a_{3} \equiv 1\left(\left|G_{1} / H\right|\right)$. Also, $V\left(\operatorname{tr}_{G_{2} / H}\left(\left(\Pi_{2}^{a_{3}}\right)\right)\right) \neq$ G_{1} / G_{2} by Lemma 6. Let $p^{m}=\left|G_{1} / G_{2}\right|$ as in Section 2. From Lemma 7, it follows that $\operatorname{tr}_{G_{2} / H}\left(\left(\Pi_{2}^{a_{3}}\right)\right)=\left(\Pi_{1}^{m(t)+a^{\prime}}\right)$, where Π_{1} is a prime element of K_{2} and $a^{\prime}=p^{m}\left[\left(a_{3}-1\right) / p^{m+1}\right]$. By Theorem $4, m(t) \equiv 1\left(p^{m}\right)$ and so $[t / p] \equiv 0$ (p^{m}), which completes the proof of Lemma 17.

Proposition 5. Let K / k be a wildly ramified extension of degfree p^{3}. Suppose that there exist three ramification numbers t_{1}, t_{2} and t_{3} with $t_{1}=1$ and G_{1} / G_{3} is not cyclic. Then, if $a \neq 1\left(p^{3}\right), V\left(\Pi^{a}\right)=G_{1}$.

Proof. Similarly as in Section 2, we may assume $p \geqq a \geqq 2$. By Lemma 7 , we have $\operatorname{tr}_{G_{3}}\left(\left(\Pi^{a}\right)\right)=\left(\Pi_{2}^{a_{2}}\right)$, where $a_{2}=(p-1)\left[t_{3} / p\right]+2$. Suppose $V\left(\Pi^{a}\right) \neq G_{1}$. Then, by Lemma $6, V\left(\Pi_{2}^{a_{2}}\right) \neq G_{1} / G_{3}$ and so by Theorem $5, a_{2} \equiv 1\left(p^{2}\right)$. Thus $t_{3} \equiv p^{2}+p+1\left(p^{3}\right)$. Applying the similar arguments as in Section 2, we can conclude Proposition 5.

Lemma 18. K / k be a wildly ramified extension which is not the extension stated in Proposition 5. Then, if $V\left(\Pi^{a}\right) \neq G_{1}, t_{2} \equiv \cdots \equiv t_{r} \equiv 1\left(p^{2}\right)$.

Proof. We use induction on r. For $r=2$, the result follows from Lemma 17 and Theorem 5. Without loss of generality, we can assume $\left|G_{r}\right|=p$. First, we treat the case where $\left|G_{1} / G_{r}\right| \geqq p^{3}$. As in Section 2, let p^{c} be the order of the maximal abelian normal subgroup N of G_{1}. Clearly, $N \supseteq G_{r}$. As in the proof of Proposition 4, we have

$$
c(c+1) \geqq 2 \cdot 4
$$

and so $c \geqq 3$. Then, from the induction hypothesis $t_{2} \equiv \cdots \equiv t_{r-1} \equiv 1$ (p^{2}), it follows that $t \equiv 1\left(p^{2}\right)$ for a ramification number t of K / K_{N} with $t \neq t_{r}$. By [3] p. $171(\mathrm{~V})$, we have also that $t \equiv t_{r}\left(p^{2}\right)$ and hence $t \equiv 1$ $\left(p^{2}\right)$. Next, we treat the remained case where $\left|G_{1} / G_{r}\right|=p^{2}$. Since $r \geqq 3$ and $\left|G_{1}\right|=p^{3}$ by $\left|G_{r}\right|=p$, we have $r=3$. From the assumption that K / k is not the extension stated in Proposition 5, it follows G_{1} / G_{3} is cyclic. Hence G_{1} is abelian. Applying [3] p. 171 (V) as in the above, we can conlcude the desired result.

Finally, we prove the following theorem, which is one of the main results of this paper.

Theorem 7. Let K / k be a wildly ramified extension of degree p^{n}. Let $t_{1}, t_{2}, \cdots, t_{r}$ be ramification numbers of K / k with $t_{1}=1$ and G_{i} be the t_{i}-th ramification group of G for $1 \leqq i \leqq r$. Then, if $V\left(\Pi^{a}\right) \neq G_{1}$, (i) $a \equiv 1\left(\left|G_{1}\right|\right)$ and (ii) $t_{i} \equiv 1\left(\left|G_{1} / G_{i+1}\right|\right)$ for $1 \leqq i \leqq r$, where $G_{r+1}=\{1\}$.

Proof. Let p^{l} be the order of G_{2}. We use induction on l. For $l=1$, the result follows from Lemma 17 and Theorem 6. Let Z be a subgroup of order p in the center of G_{1}, and t be the ramification number of K / K_{Z}. By the assumption $V\left(\Pi^{a}\right) \neq G_{1}$ and Lemma 6, we have $V\left(\left(\Pi^{a}\right) \cap K_{Z}\right) \neq$ G_{1} / Z. Therefore, we may assume $1 \leqq a \leqq p$. Also, $V\left(\operatorname{tr}_{z}\left(\Pi^{a}\right)\right) \subseteq V\left(\Pi^{a}\right)$ and so $V\left(\operatorname{tr}_{z}\left(\left(\Pi^{a}\right)\right)\right) \neq G_{1} / Z$. Suppose $2 \leqq a \leqq p$. By Proposition $5, K / k$ is not as stated in Proposition 5. From Lemma 7 and the induction hypothesis, it follows

$$
(p-1)[t / p]+2 \equiv 1\left(\left|G_{1} / Z\right|\right) .
$$

Therefore, $[t / p] \equiv 1\left(\left|G_{1}\right| Z \mid\right)$ and so $t \equiv p+1\left(p^{2}\right)$, which is contrary to the fact stated in Lemma 18. Thus, we have $a=1$ and conclude (i). Next, we shall prove (ii). As in the proof of Lemma 17, we have

$$
(p-1)[t / p]+1 \equiv 1\left(\left|G_{1} / Z\right|\right)
$$

Therefore, $[t / p] \equiv 0\left(\left|G_{1}\right| Z \mid\right)$ and so $t \equiv 1\left(\left|G_{1}\right|\right)$. This implies (ii) and the proof is completed.

As an immediate consequence of Theorem 7, we have
Corollary 2. Let K / k be as in Theorem 7. Then, if $a \neq 1\left(\left|G_{1}\right|\right)$, $V\left(\Pi^{a}\right)=G_{1}$.

References

[1] C. W. Curtis and I. Reiner, Methods of Representation Theory Vol. 1, Interscience, New York, 1981.
[2] A. Fröhlich, Some topics in the theory of module conductors, Oberwolfach Berichte, 2 (1966), 59-83.
[3] H. Hasse, Führer, Discriminant und Verzweigungskörper relative-Abelscher Zahlkörper, J. reine angew. Math., 162 (1930), 169-184.
[4] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[5] E. Noether, Normalbasis bei Körpern ohne höhere Verzweigung, J. reine angew. Math., 167 (1932), 147-152.
[6] Y. Miyata, On the module structure of the ring of all integers of a \mathfrak{p}-adic number field, Nagoya Math. J., 54 (1974), 53-59.
[7] Y. Miyata, Vertices of ideals of a \mathfrak{p}-adic number field, Illinois J. Math., to appear. [8] J. P. Serre, Corps Locaux, Hermann, Paris, 1968.
[9] S. V. Vostokov, Ideals of an abelian p-extension of an irregular local field as Galois modules, Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), 46 (1974), 14-35 (Russian).
[10] S. V. Vostokov, Ideals of an abelian p-extension of a local field as Galois modules, Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), 57 (1976), 6484 (Russian).

Faculty of Education
Shizuoka University
Shizuoka, 422
Japan

[^0]: Received January 30, 1986.

